00 0 00 A AT

United States Patent 9 [11]

Johnson [45]

USOORE35794E
E Patent Number: Re. 35,794

Reissued Date of Patent: May 12, 1998

1s4] SYSTEM FOR REDUCING DELAY FOR 4295193 10/1981 POMEICNE ...coreercerseceonsccersrenne 395/375
EXECUTION SUBSEQUENT TO 4430706 2/1984 SANA .oeerreerruemimsresenssenmrensmssosnss 395/375
CORRECTLY PREDICTED BRANCH 4477872 10/1984 Losq et al. .veerecerreervnrsccmnerens 395/375
INSTRUCTION USING FETCH 4.604,691 8/1986 AKAZL .ccovvrinmiiimninineerneanonaas: 395/375
INFORMATION STORED WITH EACH 4755966 7/1988 Lee et al. .corerreersicnsarisnnrens 395/375
BLOCK OF INSTRUCTIONS IN CACHE 4764861 8/1988 ShiDUYA ..ooureecimersenssresmsmmssassens 395/375

_ s ‘ 4,807,115 2/1989 Torug ..o 395/375

[75] Inventor: William M. Johnson, Austin, Tex. 4858104 8/1989 Matsuo et al. w.ooemreriessrreees 395/375

[73] ASSigIIEe: Ad?ﬂll(‘:ﬁd Micm De"iCES, Illc... 4.8&),197 8/1989 Lﬂﬂgﬁﬂdﬂrf S| [395/375

Sunnyvale Calif 4894772 1/1990 Langendorfccrvmrreiinneenn. 3095/375
" ‘ 4,984,154 1/1991 Hanatani et al.ccceceuienerrenns 395/375
211 Appl. No.: 285,520
[22] Filed: Aug. 4, 1994 Primary Examiner—Kenneth §. Kim
Attorney, Agent, or Firm—Foley & Lardner
Related U.S. Patent Documents

Reissue of: [57) ABSTRACT

[64] Patent No.: 5,136,697
Issued: Aug. 4, 1992 A super-scaler processor is disclosed wherein branch-
Appl. No.: 361,870 prediction information is provided within an instruction
Filed: Jun. 6, 1989 cache memory. Each instruction cache block stored in the

151] Ink CLO meeccmnscsecssssrmssrnsisrsanaes GO6F 9/38 instruction cache memory includes branch-prediction infor-

72 TR S5 5 o; F— 395/586; 395/382; 305/584; mation fields in addition to instruction fields. which indicate

395/585: 395/587; 395/421.1; 395/421.11 the address of the instruction block’s successor and infor-

[58] Field of Searchccvnvonnvininernnnnnes 395/375. 800. mation indicating the location of a branch instruction within

395/421.03. 421.07, 421.1, 421.11. 382, the instruction block. Thus. the next cache block can be
584, 585. 586, 587 casily fetched without waiting on a decoder or execution
unit to indicate the proper fetch action to be taken for

56 Ref Cit

>0} eferences Cited correctly predicted branching.

U.S. PATENT DOCUMENTS
4200927 4/1980 Hughes et al. ..o.vveerereersesenene. 395/375 27 Claims, 7 Drawing Sheets
[INSTRUCTION
| STORE ARRAY
2o
FQOM N B } TAD
BiJ | CCMP, |
| |
NETRLCTON | |
GiSTER LATCH }‘54
e]
R T 1 |
COUNTER | l 1L:&%S!—I _ I |
44 (NG 50 I 48 i 1
| MUX |
| A e - | y ¥ VISPREDIC TFD
1 : I i .
C L Ir-~r::;.TFE‘U'+(“T N o
~ LH | FE TCH -*
v COMN THOL
1O Fﬁ%\ﬂ TO 57
AR ANCH BRANCH INS TRUCT ION ~ ROM
PR=DICTION EXECUTION DEQCDER RANCH
14 UNIT G PREDICTION
e FIE0 v
14 TO INSTRUCTION
DECODER

[[&

U.S. Patent May 12, 1998 Sheet 1 of 7
ER N
BRANCH

Re. 35,794

SOURCE CACHE BLOCK =]
SOURCE CACHE BLOCK ™2

_ T T2 DESTINATION CACHE BLOCK ™

FIG. 1

TwWO- INSTRUCTION DECOLER

[EtI_AY

1.125 INSTRUCTION/ CYCLE ,

FIG. 2

BRANCH

0.9 INSTRUCTIONS Cy(CLt

U.S. Patent May 12, 1998 Sheet 2 of 7 Re. 35,794

FOUR - INS TRUCTION DECODER JNSTF?UCTTI(?I{JO DECODER
- S| — S
54 55 <o cq
- ks S4 S5
4| - —] T
225 INSTRUCTIONS/ CYCLE BEZEEER
Ta | —

1.5 INSTRUCTIONS /CYCLE

FIG. 3

HIT RATE
V2

100 — — e
9 4 - WAY
80 _

SET - ASSOCIATIVE =~ o———%———=
?O el

a0 DIRECT -MAPPED

50 ’

40
S0
20

10

o 32 o4 128 256 512 1048 2048
NUMBER OF ENTRIES

U.S. Patent May 12, 1998 Sheet 3 of 7 Re. 35,794

CACHE ENTFEY

L

ADDRESS TAG

JJCCESSOR INDEX B

BRANCH BLOCK
INDE X

—SUCCESSOR VALID

FIG. o

TO EXTERNAL MEMORY

BIU
. BRANCH PREDICTION F!FO
CACHE EGISTER REORDER
FILE BUFFER |
8 20
DECODER }1o

LOAD STOR
Tl -

BRANCH EXECUTION
ADOR - A

FI1G. 7 54

Re. 35,794

Sheet 4 of 7

May 12, 1998

U.S. Patent

9 OIAd

1749
¢l

¢t treztr-0d

o

S
LS

mm&q@g\. NI 300

S = QWA HOSS3IOONS L0 = XAANI 0018 HONvHE JJJs = X3ANI "HOSSI0ONS 00 = vl SS3AAV
H Jlfl.;l ﬁlUHi 51 l

0 = dMvA HOSS00NS 00 = X3ANI M001d HONVId Bidc = X3FONI HOSS30Os HL00= 9vL SS3addv

ST o T
S = QvA Y0SSI0NS Ol = XION »001d HONvdd £02z2 = XIANI 40SS300NSs $/00= L SSIAV
I s [t5

0 = QFYA HOSSIOONS 00 =XIANI Y0018 HONvHE 8b9¢ =X3ONI HOSS300NS $.00 = 9vl SS34adv

= s | IS B

:SAIHENT FHOVO

- 8 Old

Re. 35,794

NOLLONHLSNI OL bl
O3l 27 _
NO! LIS 9l LINN bl
HONYHE 4300030 NOLLD3X 3 NOI LI035
NOH NOI IDNE 1SN HONYSG HON WY HE
25 oL NOH oll
0HLNOD
y HOL 34 2
o~ ~ NOLLOMHLSN | w -
S {mo3esin | A
b DRSS A v,
- HONYEE) HOLV T ke
3 | an |
7 ab [0S TN bt
iR J H3LNNOO
wn_ INVHO0Ud
| T HOL 3
oL
=
= | | =
. FOIY 1 931519
o | V5 ,..._ zo:bEPw?E
o
M ;

r | Nig
_lf | H S ‘*) NNGYE

=) HESIDINS
< v Ob o9 C ._
- AEHY
W SNLVLS ANHYY AvHYY 3HOLS

) MO0 S\vil NOLLONY LSNI _
Sl — -
-

Re. 35,794

Sheet 6 of 7

May 12, 1998

U.S. Patent

(13 1 2l 34dSIHn
HONYHG

6 DlAd

JHOVO
NOILONELSNE OL

NO! 1001
91 HONVHG
B
oEIE 0414

NOIIwOO 1| L308vL
HONWVHE | HONVYY

JHOVO
NOILONGLSN INOGH S

odl
JdO

Ol "OId

Re. 35,794

bl
Ndl 04 -
No B E
- > 2d) HONYEE Ol
» I3 LN
m sNd LNs3d

v9

1IN
NOILVLNNOD HONvHY

May 12, 1998

U.S. Patent

Re. 35.794

1

SYSTEM FOR REDUCING DELAY FOR
EXECUTION SUBSEQUENT TO
CORRECTLY PREDICTED BRANCH
INSTRUCTION USING FETCH
INFORMATION STORED WITH EACH
BLOCK OF INSTRUCTIONS IN CACHE

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissuoe.

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for improving processor performance by reducing process-
ing delays associated with branch instructions. In particular.
the present invention provides an instruction cache for a
super-scalar processor wherein branch-prediction informa-
tion is provided within the instruction cache.

The time taken by a computing system to perform a
particular application is determined by three basic factors.
namely, the processor cycle time, the number of processor
instructions required to perform the application, and the
average number of processor cycles required to execute an
instruction. Overall system performance can be improved by
reducing one or more of these factors. For example, the
average number of cycles required to perform an application
can be significantly reduced by employing a multi-processor
architecture. i.e.. providing more than one processor to
execute separate instructions concurrently.

There are disadvantages, however, associated with the
implementation of a multi-processor architecture. In order to
be effective, multi-processing requires an application that
can be easily segmented into independent tasks to be per-
formed concurrently by the different processors. The
requirement for a readily segmented task limits the effective
applicability of multi-processing. Further, the increase in
processing performance attained via multi-processing in
many circumstances may not offset the additional expense
incurred by requiring multiple processors.

Single-processor hardware architectures that avoid the
disadvantages associated with multi-processing have been
proposed. These so called “super-scalar™ processors permit
a sustained execution rate of more than one instruction per
processor cycle, as opposed to conventional scalar proces-
sors which—while capable of handling multiple instructions
in different pipeline stages in one cycle—are limited to a
maximum pipeline capacity of one instruction per cycie. In
contrast, a super-scalar pipeline architecture achieves con-
currency between instructions both in different pipeline
stages and within the same pipeline stage.

A super-scalar processor that executes more than one
instruction per cycle, however, can only be effective when
instructions can be supplied at a sufficient rate. It is readily
apparent that instruction fetching can be a limiting factor in
overall system performance if the average rate of instruction
fetching is less than the average rate of instruction execu-
tion. Providing the necessary instruction bandwidth for
sequential instructions is relatively easy, as the instruction
fetcher can simply fetch several instructions per cycle. It is
much more difficult, however, to provide sufficient instruc-
tion bandwidth in the presence of non-sequential fetches
caused by branches. as the branches make the instruction
fetching dependent on the results of instruction execution.
Thus. the instruction fetcher can either stall or fetch incor-
rect instructions when the outcome of a branch is not known.

10

15

25

30

3

45

50

35

65

2

For example, FIG. 1 illustrates two instruction runs con-
sisting of a mumber of instructions occupying four
instruction-cache blocks (assuming a four-word cache
block) in an instruction cache memory. The first instruction
run consists of instructions S1-SS that contain a branch to a
second instruction run T1-T4. FIG. 2 illustrates how these
instruction runs are sequenced through a four-instruction
decoder and a two-instruction decoder. assuming for pur-
poses of illustration that two cycles are required to deter-
mine the outcome of a branch. As would be expected, the
four-instruction decoder provides a higher instruction band-
width than the two-instruction decoder. but neither provides
sufficient instruction bandwidth for a super-scalar processor.
As illustrated in FIG. 3, the instruction bandwidth improves
dramatically if the branch delays are reduced to zero.

The dependency between the instruction fetcher and the
execution unit caused by branches can be reduced by
predicting the outcome of the branch during an instruction
fetch without waiting for the execution unit to indicate
whether or not the branch should be taken. Branch predic-
tion relies heavily on the fact that the outcome of a branch
does not change frequently over a given period of time. The
instruction fetcher can predict future branch executions
using information collected on the outcome of the previous
branch executions performed by the execution unit.

A conventional method for hardware-branch prediction
uses a branch target buffer to collect information about the
most-recently executed branches. See. for example, “Branch
Prediction Strategies and Branch Target Buffer Design”™, by
JK.F. Lee and A.J. Smith, IEEE Computer, Vol. 17. pp.
6-22, January, 1984. Typically. the branch target buffer is
accessed using an instruction address, and indicates whether
or not the instruction at that address is a branch instruction.
If the instruction is a branch instruction, the branch target
buffer indicates the predicted outcome and the target
address.

The hit ratio of a branch target buffer, i.e.. the probability
that a branch is found in the branch target buffer at the time
it is fetched, increases as the size of the branch target bufter
increases. FIG. 4 is a graph of the hit ratio for a target branch
buffer for selected sample benchmark programs, and illus-
trates the necessity of a relatively large branch target buffer
in order to obtain an acceptable prediction accuracy.
Accordingly. it would be desirable to provide an improved
hardware branch prediction architecture that would require
less hardware support as compared with a conventional
branch target buffer.

SUMMARY OF THE INVENTION

The present invention provides a super-scalar processor
wherein branch-prediction information is provided within an
instruction cache memory. Each instruction cache block
stored in the instruction cache memory includes branch-
prediction information fields in addition to instruction fields.
which indicate the address of the instruction block’s suc-
cessor and information indicating the location of a branch
instruction within the instruction block. Thus, the next cache
block can be easily fetched without waiting on a decoder or
execution unit to indicate the proper fetch action to be taken
for comrectly predicted branching.

More specifically, branch predication is accomplished in
accordance with the present invention by loading a plurality
of instruction blocks into the instruction cache memory,
wherein each of the instruction blocks includes a plurality of
instructions and instruction fetch information. The instruc-
tion fetch information includes an address tag. a branch

Re. 35.794

3

block index and a successor index that includes a successor
valid bit. A fetch program counter is used to generate and
supply a fetch program counter value to the instruction
cache memory in order to prefetch one of the plurality of
instruction blocks stored in the instruction cache memory.
The processor determines whether the successor valid bit of
the prefetched instruction block is set to a predetermined

condition which indicates that a branch instruction within
the prefetched instruction block is predicted as taken. If the
successor valid bit is not set to the predetermined condition,
the fetch program counter value is incremented and supplied
to the instruction cache memory to prefetch a succeeding
instruction block. If the successor valid bit is set to the
predetermined condition, a predicted target branch address
is generated by the instruction cache memory based on
information contained in the instruction fetch information
field associated with the instruction block. The predicted
target branch address and the branch location of the branch
instruction within the instruction cache memory is then
stored in a branch prediction memory. The branch instruc-
tion is subsequently executed with a branch execution unit

which generates an actual branch location address and a
target branch address for the executed branch instruction.
The actual branch location and the target branch address are
then respectively compared with the branch location and
predicted target branch address stored in the branch predic-
tion memory. A misprediction signal is generated if the
compared values are not equal, and the successor valid bit

and instruction fetch information are updated for the instruc-
tion block in response to misprediction signal.

The utilization of the instruction cache and branch pre-
diction memory as described above, provides branch pre-
diction accuracy substantially identical to that of a target
branch buffer without requiring as much hardware support.

BRIEF DESCRIPTION OF THE DRAWINGS

With the above as background. reference should now be
made to the following detailed description of the preferred
embodiments in conjunction with the drawings. in which:

FIG. 1 shows a sequence of two instruction runs to
illustrate decoder behavior;

FIG. 2 illustrates the sequencing of the instruction runs
shown in FIG. 1 through a two-instruction and four-
instruction decoder;

FIG. 3 illustrates the improvements in instruction band-
width for the instruction runs illustrated in FIG. 2 if branch
delays are avoided;

FIG. 4 is a graph of the hit ratio of a target branch buffer;
FIG. S illustrates a preferred layout for an instruction-
cache entry in accordance with the present invention:

FIG. 6 an example of instruction-cache entries for the
code sequence illustrated in FIG. 3;

FIG. 7 is a block diagram of a super-scalar processor
according to the present invention;

FIG. 8 is a block diagram of an instruction cache
employed in the super-scalar processor illustrated in FIG. 7;

FIG. 9 is a block diagram of a branch prediction FIFO
employed in the super-scalar processor illustrated in FIG. 7;
and

FIG. 10 block diagram of a branch execution unit
employed in the super-scalar processor illustrated in FIG. 7.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The basic operation of an instruction cache for a super-
scalar processor in accordance with the present invention

1G

15

20

25

30

35

40

45

5C

33

635

4

will be discussed with reference to FIG. $. which illustrates
a preferred layout for an instruction-cache entry required by
the super-scalar processor. In the example illustrated. the
cache entry holds four instructions and instruction fetch
information which is shown in expanded form to include a
conventional address tag field and two additional fields: a
successor index field which indicates both the next entry
predicted to be fetched and the first instruction within the
next entry predicted to be executed. and a branch block
index field which indicates the location of a branch point
within the instruction block. The successor index field does
not specify a full instruction address. but is of sufficient size
to select any instruction address within the instruction cache.
The successor index field includes a successor valid bit that
indicates a branch is predicted to be taken when set, and that
a branch is not predicted to be taken when cleared.

FIG. 6 illustrates instruction-cache entries for the code
sequence shown in FIG. 3. assuming a 64 Kbyte direct-
mapped cache and the indicated instruction address. When a
cache entry is first loaded. the address tag is set and the
successor valid bit is cleared. The default for a newly-loaded
entry, therefore, is to predict that a branch is not taken and
the next sequential instruction block is to be fetched. FIG. 6
also illustrates that a branch target program counter can be
constructed at branch points by concatenating the successor
index field of the instruction block where the branch occurs
to the address tag of the successor instruction block.

The validity of instructions at the beginning of a current
instruction block are preferably determined by the low-order
bits of the successor index field in the preceding instruction
block. The successor index of the preceding instruction
block may point to any instruction within the current instruc-
tion block, and instructions up to this point in the current
instruction block are not executed by the processor. The
validity of instructions at the end of the block are determined
by the branch block index, which indicates the point where
a branch is predicted to be taken The branch block index is
required by an instruction decoder to determine valid
instructions, while cache entries are retrieved based on the
successor index fields alone.

To check branch predictions. the processor keeps a list of
predicted branches. stored in the order in which the branches
are predicted, in a branch prediction FIFO associated with
the instruction cache. Each entry on the list indicates the
location of the branch in the imstruction cache, which is
identified by concatenating the successor index of the entry
preceding the branching entry with the branch location index
field. Each entry also contains a complete program-counter
value for the target of the branch.

The processor executes all branches in their original

program sequence with a branch execution unit, and com-
pares information resulting from the execution of the
branches with information at the head of the list of predicted
branches. The following conditions must hold for a success-
ful branch prediction. First, if the branch is taken. its
location in the instruction cache must match the location of
the next branch on the list contained in the branch prediction
FIFQ. This condition is required to detect a taken branch that
was predicted to be not taken. Secondly. the predicted target
address of the branch at the head of the list must match the
next instruction address determined by executing the branch.

The second comparison is relevant only if the locations
match. and is required primarily to detect a branch which
was not taken that was predicted to be taken. However. as
the predicted target address is based on the address tag of the

successor block, this comparison also detects that cache

Re. 35.794

S

replacement during execution has removed the original
target entry. In addition, comparing program-counter values
checks that indirect branches were properly predicted.

The branch is mispredicted if either or both of the
above-described conditions does not hold. When a mispre-
diction occurs. the appropriate cache entry must be fetched
using the location of the branch determined by the execution
unit. The successor valid bit and instruction fetch informa-
tion for the incorrect instruction block must also be updated
based on the misprediction to reflect the actual result of the
execution of the branch. For example. the successor valid bit
is cleared if a branch had been predicted as taken but was not
taken, so that on the next fetch of the instruction block the
branch will be predicted as not taken, Thus, the successor
valid bit and instruction fetch information alway refiect the
actual result of the previous execution of the branch instruc-
tion.

With the above as background, reference should now be
made to FIG. 7 for a detailed description of a preferred
embodiment of the invention. FIG. 7 illustrates a block
diagram of a super-scalar processor that includes a bus
interface unit (BIU) 10, an instruction cache 12, a branch
prediction FIFO 14, an instruction decoder 16, a register file
18, a reorder buffer 20, a branch execution unit 22, an
arithmetic logic unit (ALU) 24, a shifter unit 30, a load unit
32 a store unit 33. and a data cache M.

The reorder buffer 20 is managed as a FIFO. When an
instruction is decoded by the instruction decoder 16. a
corresponding entry is allocated in the reorder buffer 20. The
result value of the decoded instruction is written into the
allocated entry when the execution of the instruction is
completed. The result value is then written into the register
file 18 if there are no exceptions associated with the instruc-
tion. If the instruction is not complete when its associated
entry reaches the head of the reorder buffer 20, the advance-
ment of the reorder buffer 20 is halted until the instruction
is completed, additional entries, however, can continue to be
allocated. If there is an exception or branch misprediction,
the entire contents of the reorder buffer 20 are discarded.

As illustrated in FIG. 8, the instruction cache 12 includes
an instruction store array 36 which is a direct mapped
instruction cache organized as 512 instruction blocks of four
words each. a tag array 38 having 512 entries composed of
a 19 bit tag and a single valid bit for the entire block, a dual
ported successor array 40 having 512 entries composed of an
11 bit successor index and a successor valid bit which
indicates when set that the successor index stored in the
successor array [340] 40 should be used to access the
instruction store array 36. and indicates when cleared that no
branch is predicted within the instruction block, a dual
ported block status array 42 that contains a branch block
indicator for each instruction block in the instruction cache
12 which indicates the last instruction predicted to be
executed within a block, a fetch program counter (PC) 44
(including a PC latch 46, a MUX unit 48 and an incrementer
(INC) 50) that generates a PC value that is used for prefetch-
ing the instruction stream from the instruction cache 12, an
instruction fetch control unit 52 that controls the fetching of
instructions from the instruction cache 12, the replacement
of cache blocks on misses, and the reformatting of the
successor array 40 and branch block array 42 on branches
that are mispredicted, and an instruction register latch 54
which is loaded with the instructions to be provided to the
instruction decoder 16.

The branch prediction FIFO 14 is used to maintain
information related to every predicted branch within an

10

15

20

235

30

35

45

S0

35

635

6

instruction block. Specifically, the location in the cache
where the branch is predicted to occur (i.e. the branch
location) as well as the predicted branch target PC of the
branch are stored within the branch prediction FIFO 14. As

illustrated in FIG. 9, the branch prediction FIFO 14 is
preferably implemented as a fixed array with a target PC
FIFQ and a branch location FIFO. incrementing read/write
pointers 36 and 58. and also includes a target PC comparator
60 and a branch location comparator 62 which are respec-
tively coupled to a branch location data bus (CPC) and a
target PC data bus (TPC). The output signals generated by
the target PC comparator 60 and the branch location PC
comparator 62 are provided to a branch FIFO control circuit
63. The FIFO 14 could alternatively be implemented as a
shiftable array or a circular FIFO.

The branch execution unit 22 contains the hardware that
actually executes the branch instructions and writes the
branch results back to the reorder buffer 18 As shown in FIG.
10. the branch execution unit 22 includes a branch reserva-
tion station 62, a branch computation unit 64 and a result bus
interface 66. The reservation station 62 is a FIFO array
which receives decoded instructions from the instruction
decoder 16 and operand information from the register file 18
and reorder buffer 20 and holds this information until the
decoded instruction is free from dependencies and the
branch computation unit 64 is free to execute the instruction.
The result bus interface 66 couples the branch execution unit
22 to the CPC bus and TPC bus, which in turn are coupled
to the branch location comparator 62 and the target PC
comparator 60 of the branch predication FIFO 14 as illus-
trated in FIG. 9.

In operation. the instruction cache 12 is loaded with
instructions from an instruction memory via the BIU 10. The
fetch PC 44 supplies a predicted fetch PC value to the
instruction cache 12 in order to prefetch an instruction
stream. As previously stated. the successor valid bit for each
instruction block is cleared when the instruction block is first
loaded into the instruction cache 12. Thus, when a given
instruction block is first fetched from the instruction cache
12, any branch in the block is predicted as not taken. The
prefetched instruction block is supplied to the instruction
decoder 16 via the instruction decode latch 34, The predicted
fetch PC is then incremented via the incrementer S0 and
loaded back into the fetch PC latch 46 via the MUX unit 48.
The resulting fetch PC is then supplied to the instruction
cache 12 in order to fetch the next sequential instruction
block in the instruction store.

The branch execution unit 22 processes any branch
instruction contained in the first prefetched instruction
block, and generates an actual PC value and target PC value
for the executed branch instruction. Note, that if the branch
is not taken on execution, the target PC value generated by
the branch execution unit 22 will be the next sequential
value after the actual PC value. i.e.. the term “target PC” 1n
this sense does not necessarily mean the target of an
executed branch. but instead indicates the address of the next
instruction block to be executed regardless of the branch
results. The actual PC value and the target PC value are
respectively supplied to the CPC bus and the TPC bus and
loaded into the branch location comparator and the target PC
comparator in the branch prediction FIFO.

Where a branch was predicted as not taken but was taken
on execution, the comparison of the actual PC value sup-
plied by the branch instruction unit 22 with the branch
location value supplied from the branch location FIFO of the
branch prediction FIFO 14 will fail. The branch prediction
FIFO 14 resets and generates a branch misprediction signal

Re. 35.794

7

which is supplied to the instruction fetch control unit of the
instruction cache 12. The target PC from the branch execu-
tion unit 22 is then loaded into the fetch PC latch 46 via the
MUZX unit 48 and the successor array is updated to set the
successor valid bit under control of the instruction fetch
control circuit 52. Thus. the branch will be predicted as
taken on subsequent fetches of the instruction block.

When the successor valid bit is set indicating a branch i1s
predicted as taken, the value of the fetch PC latch is loaded
into the next available entry in the branch prediction FIFO.
A reconstructed predicted fetch PC formed from the suc-
cessor index and the tag field read out of the tag array is
loaded via the MUX 48 into the fetch PC latch 46. This
reconstructed fetch PC is supplied to the instruction store
array 36 to fetch the next instruction and to the branch
prediction FIFO. Thus. the branch prediction FIFO entry
contains the branch location of the branch as well as the
predicted target of the branch.

The branch execution unit 22 subsequently executes the
branch instruction and generates an actual PC value and a
target PC value which are supplied to the branch location
comparator and the target PC comparator in the branch
prediction FIFO. If the branch was predicted to be taken, the
PC value generated by the branch execution unit 22 will
always match the branch location loaded from the branch
location FIFQ. Three possible conditions, however, will
result in the target PC value generated by the branch
execution unit 22 not matching the target PC stored in the
branch prediction FIFO 14: the branch was predicted as
taken but was not taken in which case the successor valid bit
must be cleared, the branch executed a subroutine return to
an address which did not match the predicted address
thereby requiring the successor index be updated. or cache
replacement occurred prior to the execution of the branch
instruction requiring the reloading of the instruction cache.

The principal hardware cost of the above-described
branch prediction scheme is the increase in the cache size
caused by the successor index and branch block index fields
associated with each entry in the instruction cache. This
increase is minimal when compared with other hardware
prediction schemes, however, as the present invention saves
storage space by predicting only one taken branch per cache
block, and predicting non-taken branches by not storing any
branch information associated with the instruction block into
the successor index. For an 8 Kbyte direct mapped cache, the
additional fields add about 8% to the cache storage required.
The increase in overall system performance due to branch
prediction, however. justifies the increased size requirement
for the instruction cache.

The requirement for updating the cache entry when a
branch is mispredicted does conflict with the requirement to
fetch the correct branch target, i.c., unless it is possible to
read and write the fetch information for two different entries
simultaneously. the updating of the fetch information on a
mispredicted branch takes a cycle away from instruction
fetching. The requirement for an additional cycle causes
only a small degradation in performance, however, as
mispredicted branches occur infrequently and the increase in
performance associated with branch prediction easily out-
weigh any degradation in performance due to the additional
cycles required mispredicted branches.

The invention has been described with particular refer-
ence to certain preferred embodiments thereof. The inven-
tion is not limited to these disclosed embodiments and
modifications and variations may be made within the scope
of the appended claims.

10

15

20

25

30

33

40

45

50

33

65

3

What is claimed is:

1. A branch prediction method, comprising the steps of:

a. loading a plurality of instruction blocks into an instruc-
tion cache memory, each of said instruction blocks
comprising a plurality of imstructions and instruction
fetch information. wherein said instruction fetch infor-
mation comprises an address tag, a predicted target
branch address. a branch block index and a successor
index that includes a successor valid bit;

b. generating and supplying a fetch program counter value
to said instruction cache memory in order to prefetch
one of said plurality of instruction blocks [and store]
stored in said instruction cache memory;

c. determining whether said successor valid bit of said
prefetched instruction block is set to a predetermined
condition which indicates that a branch instruction
within said prefetched instruction block is predicted as
taken;

d. [incrementing said fetch program counter and supply-
ing the incremented fetch program counter value to said
instruction cache memory to prefetch a succeeding
instruction block if said successor valid bit 1s not set to
said predetermined condition, and] generating a branch
location address indicative of the location of said
branch instruction within said instruction [memory]
cache memory and a predicted target branch address if
said successor valid bit is set to said predetermined
condition;

e. storing said predicted target branch address and said
branch location address in a branch prediction memory
if said successor valid bit is set to said predetermined
condition;

f. incrementing said fetch program counter value and
supplying the incremented fetch program counter value
to said instruction cache memory to prefetch a suc-
ceeding instruction block if said successor valid bit is
not set to said predetermined condition;

g. executing said branch instruction with an execution
unit and generating an actual branch address and a
target branch address for the executed branch instruc-
tion;

[2.] A. comparing said actual branch address generated by
said execution unit with said branch location address
stored in said branch prediction memeory and generating
a first misprediction signal if g branch corresponding to
said branch instruction was taken on execution and
either said actual branch address is not equal to said
branch location address or said executed target branch

address is not equal to said predicted target branch
address stored in said branch prediction memory;

[h.] i. comparing [the executed target] said actual branch
address with [the predicted] said branch [ocation
address stored in said branch prediction memory and
generating a second misprediction signal if [the
executed target] said branch corresponding to said
branch instruction was not taken on execution and said
actual branch address is [not] equal to [the predicted
target] said branch location address:;

[i.] j. updating the successor valid bit and instruction fetch
information for said instruction block in response to
said first or second misprediction signal; and

[j.] k. updating said fetch program counter value with the
target branch address in response to said first or second
misprediction signal.

2. A method as set forth in claim 1. wherein said predicted

target branch address is generated by concatenating said

Re. 35,794

9

successor index of said prefetched instruction block to an
address tag of a successor instruction block.

3. A method as set forth in claim 2. wherein said branch
location address is generated by concatenating a successor
index from a preceding instruction block [with the branch
location address] to an address tag of said prefetched
instruction block.

4. An apparatus comprising:

a. first means for storing a plurality of instruction blocks,

>

each of said instruction blocks comprising a plurality of

instructions and instruction fetch information, wherein
said instruction fetch information comprises an address
tag. a predicted target branch address. a branch block
index and a successor index that includes a successor
valid bit;

b. second means for generating and supplying a fetch
program counter value to said first means in order to
prefetch one of said plurality of instruction blocks [and
store] stored in said first means;

c. third means for determining whether said successor
valid bit of said prefetched instruction block is set to a

predetermined condition which indicates that a branch
instruction within said prefetched instruction block is

predicted as taken;

d. fourth means for {incrementing said fetch program
counter and supplying the incremented fetch program
counter value to said first means to prefetch a succeed-
ing instruction block if said successor valid bit is not set
to said predetermined condition;

e. fifth means for] generating a branch location address
and a predicted target branch address if said successor
valid bit is set to said predetermined condition;

[f. sixth]
e. fifth means for storing said predicted target branch

address and said branch location address if said suc-
cessor valid bit is set to said predetermined condition;

[g. seventh]

f. sixth means for incrementing said fetch program
counter value and supplying the incremented fetch
program counter value to said instruction cache

memory to prefetch a succeeding instruction block if

said successor valid bit is not set to said predetermined
condition;
g. seventh means for executing said branch instruction

and generating an actual branch address and a target
branch address for the executed branch instruction;

h. eighth means for comparing said actual branch address
generated by said seventh means with said branch
location address stored im said sixth means and gener-

ating a first misprediction signal if a branch corre-
sponding to said branch instruction was taken on
execution and either said actual branch address is not
equal to said branch location address or said executed
target branch address is not equal to said predicted
branch address stored in said sixth means;

i. ninth means for comparing [the executed target) said
actual branch address with [the predicted] said branch

location address stored in said [branch prediction
memory] sixth means and generating a second mispre-

diction signal fbased on the result of said comparisons]
if said branch corresponding to said branch instruction
was not taken on execution and said actual branch
address is equal to said branch location address;

fi. ninth means}

j. tenth means for updating the successor valid bit and
instruction fetch information for said instruction block
in response to said first or second misprediction signal;

and

15

20

25

a0

35

45

>0

55

60

65

10

[i.] k. eleventh means for updating said fetch program
counter value with the target branch address in
response to said first or second misprediction signal.

5. An apparatus as claimed in claim 4, wherein said

[seventh] fourth means generates said predicted target
branch address by concatenating said successor index of said
prefetched instruction block to an address tag of a successor
instruction block.

6. A method as set forth in claim 4, wherein said [seventh]
fourth means generates said branch location address by

concatenating a successor index from a preceding instruc-
tion block [with the branch location address] to an address
tag of said prefetched instruction block.

7. An apparatus comprising:

a bus interface unit, an instruction cache memory coupled
to said bus interface unit and configured to receive a
plurality of instruction blocks. each of said instruction
blocks comprising a plurality of imstructions and
instruction fetch information, wherein said instruction
fetch information comprises an address tag. a branch
block index and a successor index that includes a
successor valid bit;

a branch prediction memory coupled to said instruction
cache memory,;

an instruction decoder coupled to said instruction cache
memory. [an instruction branch memory coupled to
said instruction cache memory.] wherein when said
successor valid bit is not set to a predetermined
condition, a fetch program counter value is incre-
mented and supplied to said instruction cache memory
for prefetching a succeeding instruction block. and
when said successor valid bit is set to the predeter-
mined condition, a predicted target branch address is
generated by said instruction cache memory based on
information contained in said instruction fetch infor-
mation and said predicted target branch address within
the instruction cache memory is stored in said branch
prediction [said] memory; and

a processing unit including a branch execution unmit
coupled to said instruction decoder and a register file,
wherein said branch instruction is subsequently
executed with said branch execution unit which gen-
erates an actual branch location address and a target
branch address for said executed branch instruction and
said actual branch location address and the target
branch address are respectively compared with the
branch location address and said predicted target
branch address stored in the branch prediction memory.
generating a misprediction signal if said branch
instruction was taken on execution and the compared
values are not equal. and said successor valid bit and
said instruction fetch information being updated for the
instruction block in response to the misprediction sig-
nal and updating said ferch program counter value with
the target branch address in response to the mispredic-
tion signal.

8. An apparatus as claimed in claim 7, wherein said
instruction cache memory includes an instruction store array
coupled to said bus interface unit. a tag array coupled to said
instruction store array. a successor array coupled to said tag
array, and a block status array coupled to said successor
array.

9. An apparatus as claimed in claim 8, wherein said
instruction cache memory further comprises a fetch program
counter that includes a PC latch. an incrementer, and a MUX
unit.

10. An apparatus as claimed in claim 9. wherein said
instruction cache memory further comprises an instruction

Re. 35,794

11

fetch control circuit coupled to said fetch program counter.
wherein said instruction fetch control circuit controls the
operation of said Mux unit to selectively load the PC latch
with a value generated by said incrementer. a value supplied
by said branch [control] execution unit. or a reconstructed
fetch PC value.

11. An apparatus as claimed in claim 7, wherein said
branch prediction memory comprises a branch target FIFO

and a branch location FIFO.
12. An apparatus as claimed in claim 11. wherein said

branch prediction memory further comprises a target PC
comparator coupled to said branch target FIFO and a bus
that is coupled to said branch execution unit, and a branch
location comparator coupled to said branch location FIFO
and a bus that is coupled to said branch execution unit,
wherein the output of said target PC comparator and said
branch location comparator are coupled to a control circuit.

3. A branch prediction method comprising the steps of:

a. loading a plurality of instruction blocks into an instruc-
tion cache memory, each of said instruction blocks
comprising a plurality of instructions and instruction
fetch information, wherein said instruction fetch infor-
mation comprises a successor index indicative of a
predicted target branch address and a successor valid
bit;

b. generating and supplying a fetch program counter
value to said instruction cache memory in order to
prefetch one of said plurality of instruction blocks
stored in said instruction cache memory;

c. determining whether said successor valid bit of said
prefetched instruction block is set to a predetermined
condition which indicates that a branch instruction
within said prefetched instruction block is predicted as
taken,

d. generating a branch location address indicative of the
location of said branch instruction within said instruc-
tion cache memory and a predicted target branch
address if said successor valid bit is set to said prede-
termined condition;

e. storing said predicted target branch address and said
branch location address in a branch prediction memory
if said successor valid bit is set to said predetermined
condition;

incrementing said fetch program counter value and
supplying the incremented fetch program counter value
to said instruction cache memory to prefetch a suc-

ceeding instruction block if said successor valid bit is
not set to said predetermined condition,

g. executing said branch instruction with an execution
unit and generating an actual branch address and a
target branch address for the executed branch instruc-
tion,

h. comparing said actual branch address generated by
said execution unit with said branch location address
stored in said branch prediction memory and generat-
ing a first misprediction signal if said branch instruc-
tion was taken on execution and either said actual
branch address is not equal to said branch location
address or said executed target branch address is not
equal to said predicted target branch address stored in
said branch prediction memory;

i. comparing said actual branch address with said branch
location address stored in said branch prediction
memory and generating a second misprediction signal
if said branch instruction was not taken and said actual
branch address is equal to said branch location
address;

10

15

20

25

30

35

43

30

35

65

12

j. updating the successor valid bit and instruction fetch
information for said instruction block in response to

said first or second misprediction signal; and

k. updating said fetch program counter value with the
target branch address in response to said first or
second misprediction signal.

14. A method as set forth in claim |3, wherein said
instruction fetch information further comprises an address
tag and wherein said predicted target branch address is
generated by concatenating said successor index of said
prefetched instruction block to an address tag of a successor
instruction block.

15. A method as set forth in claim {4, wherein said branch
location address is generated by concatenating a successor
index from a preceding instruction block to an address tag
of said prefetched instruction block.

16. An apparatus comprising:

a. first means for storing a plurality of instruction blocks,
each of said instruction blocks comprising a plurality
of instructions and instruction fetch information,
wherein said instruction fetch information comprises a
successor index indicative of a predicted target branch
address and a successor valid bit;

b. second means for generating and supplying a fetch
program counter value to said first means in order to
prefetch one of said plurality of instruction blocks
stored in said first means;

¢. third means for determining whether said successor
valid bit of said prefetched instruction block is set to a
predetermined condition which indicates that a branch
instruction within said prefetched instruction block is
predicted as taken,

d. fourth means for generating a branch location address
and a predicted target branch address if said successor
valid bit is set to said predetermined condition;

e. fifth means for storing said predicted target branch
address and said branch location address if said suc-
cessor valid bit is set to said predetermined condition;

f. sixth means for incrementing said fetch program
counter value and supplying the incremented fetch
program counter value to said first means to prefetch a
succeeding instruction block if said successor valid bit
is not set to said predetermined condition,

g. seventh means for executing said branch instruction
and generating an actual branch address and a target
branch address for the executed branch instruction;

h. eighth means for comparing said actual branch address
generated by said seventh means with said branch
location address stored in said sixth means and gen-
erating a first misprediction signal if a branch corre-
sponding to said branch instruction was taken on
execution and either said actual branch address is not
equal to said branch location address or said executed
target branch address is not equal to said predicted
target branch address stored in said fifth means;

i. ninth means for comparing said actual branch address
with said branch location address stored in said sixth
means and generating a second misprediction signal if
said branch instruction was not taken on execution and
said actual branch address is equal to said branch
location address;

j. tenth means for updating the successor valid bit and
instruction fetch information for said instruction block
in response to said first or second misprediction signal;
and

Re. 35.794

13

k. eleventh means for updating said fetch program
counter value with the target branch address in

response to said first or second misprediction signal.

{7. An apparatus as claimed in claim 16, wherein said
instruction fetch information further comprises an address
tag and wherein said fourth means generates said predicted
target branch address by concatenating said successor index
of said prefetched instruction block to an address tag of a
successor instruction block.

18. A method as set forth in claim 16, wherein said
instruction fetch information further comprises an address
tag and wherein said fourth means generates said branch
location address by concatenating a successor index from a
preceding instruction block to an address tag of said
prefetched instruction block.

19. An apparatus comprising:

an instruction cache memory configured to receive a

plurality of instruction blocks, each of said instruction
blocks comprising a plurality of instructions and
instruction fetch information, wherein said instruction
fetch information comprises a successor index indica-
tive of a predicted target branch address and a suc-
cessor valid bit;

a branch prediction memory coupled to said instruction
cache memory,

an instruction decoder coupled to said instruction cache
memory, wherein when said successor valid bit is not
set to a predetermined condition, a fetch program
counter value is incremented and supplied to said
instruction cache memory for prefetching a succeeding
instruction block, and when said successor valid bit is
set to the predetermined condition, a predicted target
branch address is generated for a branch location
address by said instruction cache memory based on
information contained in said instruction fetch
information, and wherein said predicted target branch
address and said branch location address are stored in
said branch prediction memory; and

processing unit including a branch execution unit
coupled to said instruction decoder, wherein said
branch instruction is subsequently executed by said
branch execution unit which generates an actual
branch location address and a target branch address
for said executed branch instruction and said actual
branch location address and the target branch address
are respectively compared with the branch location
address and said predicted target branch address
stored in the branch prediction memory, generating a
misprediction signal if a branch corresponding to said
branch instruction was taken on execution and the
compared values are not equal, and said successor
index being updated for the instruction block in said
instruction cache memory in response to the mispre-
diction signal and updating said fetch program counter
value with the target branch address in response to said
misprediction signal.

20. An apparatus as claimed in claim 19, wherein said
instruction cache memory includes an instruction store
array, a tag array coupled to said instruction store array, a
successor array coupled to said tag array, and a block status
array coupled to said successor array.

21. An apparatus as claimed in claim 20, wherein said
instruction cache memory further comprises a fetch pro-
gram counter that includes a PC latch, an incrementer, and
a MUX unut.

22. An apparatus as claimed in claim 21, wherein said
instruction cache memory further comprises an instruction

10

135

20

23

30

33

45

50

55

65

14

fetch control circuit coupled to said fetch program counter,
wherein said instruction fetch control circuit controls the
operation of said MUX unit to selectively load the PC latch
with a value generated by said incrementer, a value supplied
by said branch control unit, or a reconstructed fetch PC
value.

23. An apparatus as claimed in claim 19, wherein said
branch prediction memory comprises a branch rarget FIFO
and a branch location FIFQ.

24. An apparatus as claimed in claim 23, wherein said
branch prediction memory further comprises a target PC
comparator coupled to said branch target FIFO and a bus
that is coupled to said branch execution unit, and a branch
location comparator coupled to said branch location FIFO
and a bus that is coupled to said branch execution unit,
wherein the output of said target ‘PC comparator and said
branch location comparator are coupled to a control circuit.

25. An apparatus for prefetching branch instructions for
a processor, cComprising:

a. first means for storing a plurality of instruction blocks,
each of said instruction blocks comprising a plurality
of instructions and instruction fetch information,
wherein said instruction fetch information comprises
an index field indicating a succeeding instruction block
predicted to be fetched and a branch/no branch pre-
diction;

b. second means for generating and supplying a fetch
program counter value to said first means in order to
prefetch one of said plurality of instruction blocks
stored in said first means as a prefetched instruction
block;

c. third means for reading said instruction fetch informa-
tion of said prefeiched instruction block and increment-
ing said fetch program counter value and supplying
said incremented fetch program counter value to said
first means if said branch/mo branch prediction stored
within said instruction fetch information of said
prefetched instruction block indicates a no branch
condition, and updating said fetch program counter
value with said succeeding instruction block stored in
said instruction fetch information of said prefetched
instruction block if said branch/mo branch prediction
stored within said instruction fetch information of said
prefetched instruction block indicates a branch condi-
tion;

d. fourth means for storing a branch location address and
a corresponding predicted target branch address if said
branch/no branch prediction stored within said instruc-
tion fetch information of said prefetched instruction
block indicates said branch condition;

e. fifth means for executing a branch instruction con-
tained in said prefetched instruction block and gener-
ating an actual target branch address as a result of said
execution of said branch instruction;

sixth means for comparing said actual target branch
address with said predicted target branch address
corresponding to said branch instruction stored in said
fourth means, wherein when a branch corresponding to
said branch instruction was taken on execution and
said comparison result indicates that said branch loca-
tion address stored in said fourth means corresponds to
said branch instruction executed by said fifth means
and said predicted target branch address is not equiva-
lent to said actual target branch address, sending a first
update signal to said first means to replace said index
field with said actual target branch address; and

Re. 35.794

15

g. seventh means for comparing said branch location
address stored in said fourth means with an address of
said branch instruction executed by said fifth means
and for sending a second update signal to said first
means to update said branch/no branch prediction to
said no branch condition if said branch corresponding
to said branch instruction was not taken on execution
and said comparison result indicates that said address
of said branch instruction is equal to said branch
location address stored in said fourth means.

26. A method of prefetching branch instructions for a

processor, comprising the steps of.

a. loading a plurality of instruction blocks into an instruc-
tion cache memory, wherein each of said instruction
blocks comprises a plurality of instructions and
instruction fetch information, wherein said instruction
fetch information comprises an index field indicating a
succeeding instruction block predicted to be fetched
and a branch/no branch prediction;

b. generating and supplying a fetch program counter
value to said instruction cache memory in order to
prefetch one of said plurality of instruction blocks as a
prefetched instruction block,

c. reading said instruction fetch information of said
prefetched instruction block and incrementing said
fetch program counter value if said branch/no branch
prediction stored within said instruction fetch informa-
tion of said prefetched instruction block indicates a no
branch condition, and updating said fetch program
counter value with said succeeding instruction block
stored in said instruction fetch information of said
prefetched instruction block if said branch/no branch
prediction stored within said instruction fetch informa-
tion of said prefetched instruction block indicates a
branch condition,

d. storing a branch location address and a corresponding
predicted target branch address in a branch prediction
memory if said branch/no branch prediction stored
within said instruction fetch information of said
prefetched instruction block indicates said branch con-
dition;

e. executing a branch instruction contained in said
prefetched instruction block and generating an actual
target branch address as a result of said execution of
said branch instruction,

f. comparing said actual target branch address with said
predicted target branch address corresponding to said
branch instruction stored in said branch prediction
memory, wherein when a branch corresponding to said
branch instruction was taken on execution and said
comparison result indicates that said branch location
address stored in said branch prediction memory cor-
responds to said executed branch instruction and said
predicted target branch address is not equivalent to
said actual target branch address, sending a first
update signal to said instruction cache memory to
replace said index field with said actual target branch
address for said corresponding branch instruction; and

g. comparing said branch location address stored in said
branch prediction memory with an address of said
executed branch instruction and for sending a second
update signal to said instruction cache memory fo
update said branch/no branch prediction to said no
branch condition if said branch corresponding to said
branch instruction was not taken on execution and said
comparison result indicates that said address of said

5

10

15

20

25

30

33

45

5C

33

65

16

branch instruction is equal to said branch location
address stored in said branch prediction memory.
27. An apparatus for prefetching instructions for a
processor, comprising:

a. an instruction cache memory configured to receive a
plurality of instruction blocks, each of said instruction
blocks comprising a plurality of instructions and
instruction fetch information, wherein said instruction
fetch information comprises an index field indicating a
succeeding instruction block predicted to be fetched
and a branch/no branch prediction;

b. a fetch program counter operatively connected to said
instruction cache memory to prefetch one of said plu-
rality of instruction blocks stored in said instruction
cache memory as a prefetched instruction block based
on a fetch program counter value supplied to said
instruction cache memory:

c. an instruction fetch control unit operatively connected
to said fetch program counter and said instruction
cache memory for reading said instruction fetch infor-
mation of said prefetched instruction block, wherein
said instruction fetch control unit sends a signal to said
fetch program counter to increment and supply said
fetch program counter value to said instruction cache
memory if said branch/no branch prediction stored
within said instruction fetch information of said
prefetched instruction block indicates a no branch
condition, and wherein said instruction fetch control
unit sends a signal to said fetch program counter to
update said fetch program counter value with said
succeeding instruction block stored in said instruction
fetch information of said prefetched instruction block if
said data representing said branch/no branch predic-
tion stored within said instruction fetch information of
said prefetched instruction block indicates a branch
condition;

d. a branch prediction memory coupled to said instruction
cache memory for storing a branch location address
and a corresponding predicted target branch address if
said data representing said branch/no branch predic-
tion stored within said instruction fetch information of
said prefetched instruction block indicates said branch
condition;

e. an execution unit coupled to said branch prediction
memory, wherein when said branch instruction is
executed by said execution unit, an actual target
branch address is generated, and when a branch cor-
responding to said branch instruction is taken on
execution, said actual target branch address is com-
pared to said predicted target branch address stored
within said branch prediction memory and said branch
location address is compared with an address of said
branch instruction executed by said execution unit, and
wherein said index field of said instruction cache
memory is updated with said actual target branch
address if said actual target branch address is not

equivalent to said predicted target branch address or if
said branch location address is not equivalent to said
address of said branch instruction executed by said
execution unit, and
wherein when execution of said branch instruction by said
execution unit results in said branch corresponding to said
branch instruction not being taken, said address of said
branch instruction executed by said execution unit is com-
pared with said branch location address stored in said
branch prediction memory and said branch/no branch pre-

Re. 35,794
17 18

diction stored in said instruction cache memory is updated lent to said branch location address stored in said branch
to indicate a no branch condition if said address of said prediction memory.
branch instruction executed by said execution unit is equiva- * #

	Front Page
	Drawings
	Specification
	Claims

