United States Patent i

Shorter

(11] E
(45] Reissued Date of Patent:

USOORE35448E
Patent Number:

Re. 35,448
*Feb. 11, 1997

[54] METHOD FOR ESTABLISHING CURRENT
TERMINAL ADDRESSES FOR SYSTEM
USERS PROCESSING DISTRIBUTED
APPLICATION PROGRAMS IN AN SNA LU
6.2 NETWORK ENVIRONMENT

[75] Inventor: David U. Sherter, Lewisville, Tex.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[*] Notice: The portion of the term of this patent

subsequent to Aug. 14, 2007, has been

disclaimed.

21] Appl. No.: 13,507

221 Filed: Feb. 4, 1993
Related U.S. Patent Documents
Reissue of:
[64] Patent No.: 4,991,089
Issued: Feb. 5, 1991
Appl. No.: 251,279
Filed: Sep. 30, 1988
517 Int. CLO oo reerete e GO6F 13/14
52] US.CL ... 395/500; 364/222.2; 364/242.94;
364/284; 364/284.4
[58] Field of Search 395/200, 325,
395/650, 800, 725
[56] References Cited
U.S. PATENT DOCUMENTS
4,430,728 2/1984 Bertel ...eueneireeeiiereeeene. 364/DIG. 1
4,437,184 3/1984 COrK .covvvveeeenirrneiiiniirireieeneneeannes 371/19
4,694,396 9/1987 Weisshaar et al. 395/200
4,719,566 1/1988 Kelly .oooveoeeeereeeeeeeeeeerrnn.. 340/825.34
4,823,122 4/1989 Mann et al.ccauuuenennee, 340/825.28
4,835,685 5/1989 KUN .covvrvevnrieeeeciienieeeeeeneeeenn 395/650
4,855,905 B/1989 Estradacccooevveeervvvrnnernnnnnnns 395/500
4,864,492 9/1989 Blakely-Foget et al. 395/54
4,949,254 8/1990 ShOIteroocoevieeeriimmeemnnreeneene. 395/700

SYSTEM 1

HOST CPU
23

24
¢ [nost ceu

N
-
e

TERMINAL
21

Primary Examiner—David Y. Eng
Attorney, Agent, or Firm—Jonathan E. Jobe; Andrew J.
Dillon

[57] ABSTRACT

A method 1s described which permits a user of an Intelligent
Work Station (IWS) in an SNA type network in which
communication with the host processor employs LU 6.2
advanced program to program protocols and in which the
host processor does not assign a dedicated virtual machine
to the user dunng the period the user is active on the system,
to notify the system of the user’s current terminal address so
that distnbuted applications programs having component
parts distributed at the host and the IWS may be executed.
When resident counterpart programs of distributed applica-
tions are executed by assigning each LU 6.2 conversation to
an idle virtual machines from a preestablished pool of virtual
machines created by the host processor, rather than to a
dedicated virtual machine, the prior art methods that are
based on associating the current address of the user with the
address of the dedicated virtual are no longer operable. The
new method does not require the user to notify the system
that the user’s IWS 1s active, since the user may want to run
programs that do nor involve the host processor and may not
want to be distracted with communications from the host
and other users. In accordance with the new method a
distributed application is provided at the terminal which is
invoked by the user when a decision is made to provide the
current terminal address to the host. The distributed appli-
cation 1ssues an LU 6.2 ALLOCATE verb requesting a
conversation with the counterpart program resident at the
host. The counterpart program is executed at the host by a
virtual machine from the pool and establishes a data struc-
ture where the USERID of the user and the terminal address
of the IWS are associated. The data structure is stored at a
location which 1s scanned by all subsequent LU 6.2 conver-
sation requests from the host and other users for a match of
USERIDs. When a match occurs the associated current
terminal address of the USERID is inserted into the request
and sent to the IWS by the system.

13 Claims, 10 Drawing Sheets

SYSTEM 2

25

ee|ee g

TERMINAL
21

U.S. Patent Feb. 11, 1997 Sheet 1 of 10 Re. 35,448

SYSTEM 1 SYSTEM 2

24
wost cpu | ¢ [nosT cpu

26

Fig. 1

DiISK
STORAGE
UNIT

39

DISPLAY
36
KEYBOARD
37

Fg. 2

PRINTER
38

U.S. Patent

Feb. 11, 1997 Sheet 2 of 10 Re. 35,448

PROGRAMS FOR END USER
END USER

MANAGE NETWORK
NAU SERVICES SESSION SERVICES
PRESENTATION SERVICES

MAINTAIN SEND-RECEIVE
DATA FLOW CONTROL MODES. HIGH LEVEL
ERROR CORRECTING

SESSION LEVEL PACING
TRANSMISSION CONTROL ENCRYPTION AND DECRYPTION
ROUTING
PATH CONTROL
ERROR CONTROL, LINK LEVEL
DATA LINK ADDRESS SEQUENCING
SIGNAL CHARACTERISTICS OF
PHYSICAL CONNECTOR PIN ASSIGNMENTS

SEGMENTING DATA UNITS

VIRTUAL ROUTE PACING

Fg. 3

PROGRAM A PART B

AN S aliel e albhis e SEpr TEy e Sy e T Tl S T - A S B A A e AR G i e s AN v dmms e Gl Saay "y aial o vl danie ueele bl AR e el

VIRTUAL MACHINE POOL MANAGER

LU 6.2
PROTOCOL BOUNDARY
SERVICES

COMMUNICATION
LAYER

SERVICES

LU 6.2
PROTOCOL BOUNDARY
SERVICES

PROGRAM A PART A

Fg. 48

Re. 35,448

Sheet 3 of 10

Feb. 11, 1997

U.S. Patent

AJLSAS ONILVY3d0 A31NngiI¥1SIa

d N1
S33d3N0S3dy 1vIoO01

NOISSIS d3YVHS

NOISSIS
01 SS303V

g4 304N0S3dY
01 SS300V

v 30400S 3y
Ol SS300V

S3J31A43S NOILVINISIN™d

AdVANNOG 1030104d JddV

YV AVY4O0dd

vV N1

dIIOVNVA

334N0S3Y
1N

iy by

U.S. Patent Feb. 11, 1997 Sheet 4 of 10 Re. 35,448

PC-1

VIRTUAL

APPL1
MACHINE
5001 PARTa

MANAGER APPL?

VM04: APPL3; PT.B; USER?2
VM03; APPL2; PT.B; USERH
VMO02; APPL1; PT.B; USERZ2
VMO1; APPL1;, PT.B, USER1

PART a
USERT
PC-2
APPL1
PARTa

APPL3
PARTa

USERZ

U.S. Patent

Feb. 11, 1997 Sheet 5 of 10 Re. 35,448

START

PROVIDE VIRTUAL MACHINE

POOL PARAMETERS AT
HOST PROCESSOR

START IPL PROCESS
FOR HOST PROCESSOR

TRANSFER CONTROL TO
VIRTUAL POOL MACHINE
MANAGER (VMPM)

CREATE VMPM
DATA STRUCTURE

ISSUE AUTOLOG MACRO TO
CREATE FIRST VIRTUAL
MACHINE WITH FIRST
GENERIC NAME

UPDATE ENTRY IN VMPM
DATA STRUCTURE FOR
FIRST CREATED MACHINE

ISSUE AUTOLOG MACRO TO
CREATE NEXT VIRTUAL
MACHINE WITH NEXT
GENERIC NAME

UPDATE ENTRY IN VMPM
DATA STRUCTURE FOR
NEXT CREATED MACHINE

NO HAVE ALL POOL
MACHINES BEEN CREATED ?

YES

g

U.S. Patent Feb. 11, 1997 Sheet 6 of 10 Re. 35,448

START

USER DICKC ON
PS/2 TERMINAL HAVING
0S/2 OPERATING SYSTEM

LOGS ONTO NETWORK

USER DICKC ISSUES ALLOCATE

LUNAME=LUO1;
TPN=MAIL; USERID=DICKC

VTAM ON HOST DETERMINES
IF LUO1 HAS BEEN DEFINED
BY AVS COMPONENT OF
OPERATING SYSTEM

NO WAS LUNAME IDENTIFIED
BY AVS AS VMPM ITEM ?

YES

PROCESS AS
PER PRIOR ART

TRANSFER CONTROL TO VMPM

TRANSFER ALLOCATE
PARAMETERS

VMPM SCANS DATA STRUCTURE
FOR IDLE MACHINE IN VM POOL

VMPM INDICATED VMO1 IS

Fig. 64

IDLE REPLACES LUO1 WITH
VMO1 IN LUNAME PARAMETER

TO FIG. 8B

U.S. Patent

Keb. 11, 1997 Sheet 7 of 10

FROM FIG. 8A

VMPM UPDATES DATA
STRUCTURE TO INDICATE
ASSIGNMENT AND BUSY STATUS

VMPM REISSUES ALLOCATE
WITH CHANGED LUNAME
PARAMETER TO AVS

ALLOCATE IS PROCESSED BY
VMO1 AND CONVERSATION IS
ESTABLISHED WITH T1/PS2

CONVERSATION FLOWS
BETWEEN VM01 AND T1/PS2
UNTIL ONE PARTNER
ISSUES A DEALLOCATE

AVS DETECTS DEALLOCATE
AND INVOKES VMPM
ESTABLISHED WITH T1/PS2

VMPM RETURNS VMQ01 TO
POOL AND TERMINATES
CONVERSATION DATA
STRUCTURE IS UPDATED

END

Fig. 8B

Re. 35,448

U.S. Patent Feb. 11, 1997 Sheet 8 of 10 Re. 35,448

START

PC USER INVOKES
APPLICATION PROGRAM FOR
SIGN ON PROCESS ENTERS

USERID AND PASSWORD

PC APPLICATION ISSUES AN

ALLOCATE VERB TO CREATE
CONVERSATION WITH
THE VMPM

VMPM INVOKES

SUB-COMPONENT PROGRAM
VMPMID AS PART B
OF APPLICATION PROGRAM

PART B ACCEPTS THE
CONVERSATION AND

ISSUES A RECEIVE

PART A SENDS
INFORMATION USER ENTERED

PART B CREATES AN ICBE AND
FORMATS WITH INFORMATION

FROM USER AND FMH5 DATA

PLACE FORMATTED ICBE ON

CHAIN OF ICBES IN STORAGE

Fq{g g PART B ISSUES DEALLOCATE
TO TERMINATE CONVERSATION

PART A INDICATES
SUCCESSFUL COMPLETION
TO USER

U.S. Patent

PCID

Feb. 11, 1997 Sheet 9 of 10

POINTER TO NEXT ICBE IN CHAIN

Fag. 10

START

MAIL APPLICATION PART A

ISSUES ALLOCATE TO

USERID TO ESTABLISH
A CONVERSATION

PART A SCANS CHAIN OF

ICBES IN STORAGE FOR
MATCH WITH USERID

Re. 35,448

NO IS THERE MATCH OF
STORE MAIL USERIDS ?

Fig. 11

YES

FORMAT ALLOCATE TO USERID

WITH CURRENT TERMINAL
ADDRESS FROM ICBE

ISSUE THE ALLOCATE TO
THE USERID AT THE
CURRENT ADDRESS WHEN
ACCEPTED START DIALOG

NORMAL END
PROCESSING

U.S. Patent Feb. 11, 1997 Sheet 10 of 10 Re. 35,448

START

PC USER INVOKES
APPLICATION PROGRAM FOR
SIGN OFF PROCESS ENTERS

USERID AND PASSWORD

PC APPLICATION ISSUES AN
ALLOCATE VERB TO CREATE
CONVERSATION WITH
THE VMPM

VMPM INVOKES
SUB-COMPONENT PROGRAM

VMPMID AS PART B
OF APPLICATION PROGRAM

PART B ACCEPTS THE
CONVERSATION AND
ISSUES A RECEIVE

PART A SENDS
INFORMATION USER ENTERED

PART B SCANS CHAIN OF ICBES
FOR MATCH OF USERID DATA

FROM USER AND FMH5 DATA
DELETE ICBE FROM
CHAIN WHEN FOUND
F’Lg. 17 PART B ISSUES DEALLOCATE
TO TERMINATE CONVERSATION

PART A INDICATES
SUCCESSFUL COMPLETION

TO USER

Re. 35,448

1

METHOD FOR ESTABLISHING CURRENT
TERMINAL ADDRESSES FOR SYSTEM
USERS PROCESSING DISTRIBUTED
APPLICATION PROGRAMS IN AN SNA LU
6.2 NETWORK ENVIRONMENT

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

U.S. patent application, Ser. No. 07/261,861, entitled
“Method to Provide Concurrent Execution of Distributed
Application Programs by a Host Computer, and an Intelli-
gent Work Station on an SNA Network” filed 10/24/88 and
assigned to the Assignee of the present invention, 1s directed
to a method for executing LU 6.2 conversations for distrib-
uted application programs which involves creating a pool of
virtual machines at the host which are maintained 1n a run
ready idle state until assigned by a Virtual Machine Pool
Manager, to a request from a terminal executing a first part
of a distributed application program, for a conversation with
the second part of the distributed application program stored
at the host system.

U.S. patent application, Ser. No. 07/250,598, entitled
“Method to Manage Concurrent Execution of a Distributed
Application Program by a Host Computer and a Large
Plurality of Intelligent Work Stations of an SNA Network™
filed 9/29/88 now U.S. Pat. No. 4,940,254 issued Aug. 14,
1990 and is assigned to the Assignee of the present inven-
tion, is directed to a method for providing improved com-
munications between distributed portions of an application
program that is being executed on a network simultaneously
by a relatively large number of terminals, in which a pool of
virtual machines is created at the host and each machine is
primed (initialized) with the host resident portion of the
program. When a conversation request 1s received at the host
and assigned to a virtual machine in the pool, the machine
is ready to accept the request and begin processing imme-
diately. The pool manager monitors the use of the pool
relative to anticipated demand and adjusts the size accord-
ingly in accordance with an established algorithm.

FIELD OF INVENTION

This invention relates in general to LU 6.2 type inter-
program communication methods in SNA data processing
networks in which terminals are not preassigned in the
system with specific end users and in particular to a method
for permitting an end user to establish a current terminal
address which is valid only while the terminal is active or
until terminated by the user.

BACKGROUND ART

The prior an discloses a variety of computer networks.
The IBM System Journal, Volume 22, Number 4, 1983
includes a series of articles devoted to a review of the IBM
System Network Architecture (SNA). On page 345 of that
publication a network is defined as “a configuration of
terminals, controllers, and processors and the links that
connect them. When such a configuration supports user
applications involving data processing and information
exchange and conforms to the specifications of the System
Network Architecture it is called an SNA network. Essen-

10

15

20

23

30

35

40

43

50

35

65

2

tially SNA defines logical entities that are related to the
physical entities in a network and specifies the rules for
interactions among these logical entities.

The logical entities of an SNA network include network
addressable units and the path control network that connects
them. Network addressable units communicate with one
another using logical connections called “sessions.” The
three types of Network Addressable Units (NAUs) are the
Logical Unit (LU), the Physical Unit (PU), and the System
Services Control Point (SSCP) which are defined as follows;

Logical Unit (LU). An LU is a port through which end
users may access the SNA network. An end user uses an LU
to communicate with another end user and to request ser-
vices of a System Services Control Point (SSCP).

Physical Unit (PU). A PU is a component that manages
the resources of a node in cooperation with an SSCP.

System Services Control Point (SSCP). This is a focal
point for configuration management, problem determination
and directory services for end users. SSCPs may have
sessions with LUs and PUs. When such a session occurs, the
LU or PU is in the domain of the SSCP. In addition to
sessions with LUs and PUs, SSCPs may also communicate
with each other to coordinate the initiation and the termi-
nation of sessions between Logical Units and in different
domains.”

From the hardware standpoint, a simple network com-
prises a host system having a processing unit and a plurality
of remote terminals that are assigned to individual users. The
remote terminals are selectively connectable to the host
system through one or more communication links. These
links may comprise merely a coaxial cable, a dedicated
telephone line, or in some cases, a satellite communication
link.

The host processing unit most always has an operating
system which supports the creation of a large number of
virtual machines or the functional equivalents, each of
which is assigned, on request, to an end user. A virtual
machine processes tasks for the assigned end user, by time
sharing the host processor hardware of the host system.
Some hosts systems may include more than one hardware
processor so that true simultaneous processing occurs at the
host since a plurality of processors are running in parallel.
More often, there is merely one hardware processor that
“concurrently” runs data processing tasks for the virtual
machines by a time sharing technique. This is transparent to
the end users at the terminals.

In prior art networking systems, a user of the system 1s
assigned a USERID by the system administrator at the time
the user is first authorized to use the system. The user is also
assigned a Password at that time, which is required to be
presented to the system each time the User “Logs On” to the
system. The system administrator has entered the user’s
USERID, and Password into the system. If the information
that is provided by the Log On process does not match the
information entered into the system by the administrator, the
user in not allowed access to the system. If the information
is correct then the system allows access. As pan of the Log
On process the User is permanently assigned the exclusive
unse of a Virtual Machine by the system until a Log Off
process is completed. The name given to the assigned Virtual
machine is the USERID of the user that is Logging On. The
system address of the terminal being used by the user for the
Log On process is also transmitted to the assigned virtual
machine and stored as part of the Log On process. Any
subsequent communications intended for the user, require
only the user’s USERID as part of the massage address. The

Re. 35,448

3

message 1S transferred to and processed by the assigned
virtual machine and sent to the user at the terminal address

stored by the dedicated virtual machine at the time of Log
On.

This method of assigning a user’s USERID as the name
of the virtual machine that has been assigned to that user and
storing the user’s current terminal address in the assigned
virtual machine, avoids the address conversion problem of
converting USERIDs to terminal addresses in order to
deliver a message addressed to a specified USERID. With
this prior art approach the system only requires the USERID
of the intended recipient in order to deliver a message. When
a message 1s received for a user it is stored and a check is
made to determine if the message can be delivered imme-
diately. If the user is on line at the time the system receives
the message, the system will indicate this after scanning a
relative short list of virtual machines that were dedicated to
specific users at Log On, and proceed accordingly to deliver
the message by causing the one dedicated virtual machine
having the name USERID to transmit the message to the
user' s current terminal address stored by that dedicated
virtual machine. Otherwise, as part of the Log On process,
the system checks the list of undeliverable messages, for
messages addressed to the user and advises the newly signed
on user that there is a waiting message stored in the system.

‘Two general types of terminals are employed in data
processing networks. The first is referred to as a “dumb
terminal” in that it comprises merely a keyboard and a
display device and little or no processing capability other
than that required to make a connection with the host
system. The second type of terminal is referred to as an
Intelligent Work Station (IWS) and is provided with its own
processor unit, Operating System and supporting peripheral
devices. The terms IWS and Personal Computer (PC) are
often used interchangeably. With the ready availability of
PCs having very attractive price performance characteris-
tics, most new networks are implemented with IWS type
terminals and many of the older networks are being modified
with the replacement of dumb terminals with IWS type
terminals.

Providing each end user on the network with its own

processing capability relieves the host CPU from doing
many of the data processing tasks that were previously done
at the host. The nature of the tasks that are processed by the
host CPU therefore has changed and more sophisticated
applications such as electronic mail and electronic calen-
daring are now implemented on the network under the
control of the host system. Both of these applications
involve what is referred to as distributed application pro-
grams, in that one part of the application program is resident
on the host system and another is resident on the IWS
terminal.

Many of the current data processing networks are
designed 1n accordance with the IBM SNA architecture
which was first described in 1974. Since then various new
functions and services have been added. As suggested ear-
lier, SNA networks can be viewed as a plurality of nodes
interconnected by data links. At each of these nodes, path
control elements send information packets, referred to as
Path Information Units (PIUs), between resource managers
called Logical Units. The logical connections of the paths
are called a session. A transport network for data is therefore
defined by the path control elements and the data link control
clements.

Nodes can be connected by a plurality of links and
comprise a plurality of LUs. Various types of LUs sessions

10

15

20

25

30

35

40

45

50

35

60

65

4

and protocols have been established within the framework of
the SNA architecture. There are three general classes of
sessions. The first class is unspecified by SNA. The second
class involves terminals and the third involves program to
program communication, For example LU 6 provides SNA
defined inter-program communication protocols which
avoids the limitations of terminal LU types such as LU 2 and
LU 7. LU 6.21s referred to as Advanced Program to Program
Communication or APPC protocols.

Logical Units arc more than message ports. LUs provide
operating system services such as program to program
communication involving one or more local programs. Each
applicauon program views the LUs as a local operating
system and the network of loosely coupled LUs connected
by sessions as a distributed operating system.

The LU allocates a plurality of resources to its programs,
which are dependent on the particular hardware and its

configuration. Some of the resources that are made available
arc remote while others arc local, 1.e., associated with the
same LU as the application program. The sessions are
considered local resources at each LU, but arc shared
between particular LUs.

The control function of an LU is resource allocation.
Programs ask one for access to a resource. Sessions which
carry messages between LUs or programs running on LUSs
are considered shared resources. A session is divided so that
a plurality of conversations are run serially.

Two LUs connected by a session have a shared respon-
sibility in allocating sessions to application programs for use
as “‘conversations.” The application programs are therefore
sometimes referred to as “transaction programs.”

The successful connection between LUSs occurs as a result
of a common set of protocols which function first to activate
a session between two LUs and second to facilitate the
exchange of message data.

The SNA format and protocol reference manual desig-
nated SC30-3112, published by the IBM Corporation
describes SNA by describing, for example, with program-
ming language declarations, the format of messages that
flow between network entities and the programs that gen-
crate, manipulate, translate, send and return messages.

The SNA transaction program reference manual for LU
0.2 referred to as GC30-3084, published by the IBM Cor-

poration defines the verbs that describe the functions pro-
vided by the implementing products.

Intelligent work stations that are connected to a SNA type
network and employ an LU 6.2 protocol to process an
application program that is distributed between the IWS and
the host system operate efficiently so long as the operating
system of the IWS does not run more than one application
concurrently at the terminal. However, if the IWS is oper-
ating under an operating system such as OS/2, which allows
an WS such an IBM PS/2 personal computer to run con-
current application programs which are distributed, the
advantage of concurrent operation on the PS/2 is lost. The
advantage is lost because at the host, the separate transac-
tions which are run concurrently at the terminal become
serialized. The serialization of the transaction occurs
because the host creates only one virtual machine that is
permanently associated with the user ID and the specific
terminal as long as the session is active.

In order to avoid the serialization at the host, the second
application being run at the terminal has to be run with a
different user ID in order to have a separate virtual machine
established at the host that will be dedicated solely to the
second application.

Re. 35,448

~

The invention described in the cross-referenced applica-
tion Ser. No. 07/261,861 is directed to a method to permit
two or more distributed application programs that are being
run concurrently on one intelligent work station of a data
processing network to be executed on separate virtual
machines created by the host system to prevent the appli-
cations from becoming serialized at the host and to allow
each to be run concurrently with the other on both the host
and the terminal.

With the method of the cross-referenced application, the
host system creates a plurality of virtual machines (VMs)
that are brought to a run ready state prior to and in antici-
pation of being assigned to a distributed application program
for processing a task which has been defined in said dis-
tributed application program, part of which is resident on the
host system and the companion part of which is resident on
one of the IWS end user terminals. The pool of run ready
VM machines are preferably created automatically at the
time that the host system is initialized under the control of
a pool manager, which is a program resident on the host
system, whose other main function is to assign an idle VM
machine from the pool in response t0 an end user request
that identifies a distributed application program, & previ-
ously assigned Logical Unit name and a USERID. The VM
is assigned only for a period of time required to compiete
one LU 6.2 conversation. At the end of the conversation the
VM machine is returned to the pool for subsequent assign-
ment to another, possibly different, application program and
user. The method allows two distributed application pro-
grams being executed concurrently on the IWS to run
concurrently on the host in two separate virtual machines

even though the conversation requests have the same USE-
RID.

While the above system improves the processing of
distributed application programs, it requires a new method
to determine the current terminal location of an on-line user.
It will be recalled that in the prior art method, the dedicated
virtual machine that was named the USERID of the current
user, was used to store the current terminal address of the
user. This dedicated machine has effectively been eliminated
and replaced by a pool of virtual machines which are not
permanently associated with either one user or one terminal
address. Since virtual machines from the pool are assigned
dynamically to process relatively short LU 6.2 type conver-
sations between the host and the terminals, and then returned
to the pool, it is not practical to use the prior art method of
determining the current terminal address of an active user by
naming an assigned virtual machine from the pool with the
USERID of the user and storing the user’s current terminal
address in this virtual machine.

The method of the present invention, allows the current
terminal address of a specific user in an SNA system
employing a pool of virtual machines organized according to
the teaching of the above Cross-referenced applications to
be determined only after the intelligent workstation terminal
user has decided that the host system or other system users
may communicate to the user’s intelligent workstation.

SUMMARY OF THE INVENTION

In accordance with the method or the present invention, a
specific user of an intelligent work station such as an IBM
PS/2 type personal computer, running a multi-tasking type
operating system such as the IBM OS/2 operating system
and which is connected to an SNA network having a host
processing system employing LU 6.2 program to program

10

15

20

25

30

35

45

50

33

60

65

6

communication protocols decides when the host system or
other users on the system may deliver messages addressed to
the USERID of the specific user employing those protocols.
The method establishes a distributed Sign On application
program in the system with one pan of the program resident
on each IWS and the other part resident at the host processor.
When the IWS user decides that communication with the
host processor and other users is in order, the Sign On
distributed application program is evoked on the IWS. The
Sign On program displays a screen to the user prompting for
the user’s USERID and the password that was assigned
when the user was authorized to use the system. The
workstation then issues an LU 6.2 ALLOCATE verb
requesting a conversation with the counterpart program that
is specified in the ALLOCATE. The Part B of the Sign On
program, which has the name “BEGIN”, is executed on the
host processor to process the conversation being requested
by the ALLOCATE. The Begin program calls a program
which is named VMPMID, that is a component of the Virtual
Machine Pool Manager (VMPM) program. A Identification
Control Block Entry (ICBE) is created by this component

which functions to store USERID and Terminal ID infor-
mation in respective fields along with a pointer to a follow-
ing ICBE if one exists. A DEALLOCATE verb is then issued
by the BEGIN counter part program and the conversation 1s
terminated with a message to the user indicating a successful
conclusion. The method further stores the chain of ICBES 1n
storage at the host processor which is accessible to any
program that is run on a virtual machine that is a member of
the pool of virtual machines. The method also requires that
any distributed application program that originates at the
host processor and in tends to issue an allocate verb to
initiate a conversation involving a specific user, first scan the
ICBE chain to determine if the user 1s accepting messages,
and if so the current system address where these messages
should be sent in accordance with LU 6.2 protocols.

The user is allowed to revoke the permission initially
granted by evoking the Sign On program again and selecting
the end option. An ALLOCATE verb is then 1ssued by the
terminal, requesting a conversation with a counterpart appli-
cation program called “END” which 1s another component
program of the VMPM program. The ALLOCATE transmits
sufficient information to allow the END component program
to locate the appropriate ICBE in the chain of ICBEs and
cause it to be deleted. The END program then issues a
DEALLOCATE back to the terminal, which display a mes-
sage to the user indicating a successful completion or the
permission revoking task.

It is therefore an object of the present invention to provide
an improved method for executing distributed applications
in a data processing network.

A another object or the present invention is to provide an
improved method for processing distributed application pro-
grams in an SNA type data processing network in which a
pool of virtual machines is established at the host processors.

A further object of the present invention is to provide an
improved method for processing distributed application pro-
grams in an SNA type network employing LU 6.2 protocols,
whereby an end user determines when messages addressed
to the user’s USERID from other system users may be
delivered to the user.

A still further object of the present invention is to provide
an improved method for identifying the current terminal
address of an end user in an SNA network which employs
LU 6.2 protocols in which the host processor does not create
a virtual machine that is dedicated to one user at one

terminal.

Re. 35,448

7

A still further object of the present invention is to provide
a method for identifying the current address of an intelligent
workstation being operated by a specified user of an SNA
network employing LU 6.2 protocols in which the specified
user 1s not required to execute prior art log on procedures in
order to use the workstation.

Objects and advantages other than those mentioned above
will become apparent from the following description when
read in connection with the drawing.

DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic design of a data processing network.

FIG. 2 is a schematic representation of one of the IWS
terminals shown in FIG. 1.

FIG. 3 illustrates the organization of the various layers of

programming that are involved in the SNA network of FIG.
1.

FIGS. 4A and 4B show the relationships between parts of
a distributed application program and network programs.

FIG. 3 1s a schematic representation of the pool of run
ready virtual machines that are created at the host processor.

FIG. 6 illustrates the details of the Virtual Machine Pool
Data Structure that 1s employed the by the Pool Manager in
managing the pool of virtual machines shown in FIG. S.

FIG. 7 1s a flow chart setting forth the steps involved in
creating the pool, of virtual machines shown in FIG. 5.

FIGS. 8a and 8b are flow charts setting forth the steps
involved by the Pool Manager in executing a distributed
application program in accordance with the new method.

FIG. 9 is a flow chart setting forth the steps involved in
advising the host processor of the current terminal address of
a system user.

FIG. 10 illustrates the Identification Control Block Entry
(ICBE) data structure that is created to store the current
terminal address of an online system user.

FIG. 11 1s a flow chart setting forth the steps involved
when the host processor attempts to initiate an LU 6.2
conversation with a system user.

FI1G. 12 i1s a flow chart setting forth the steps involved
when an online user decides not to receive any further
conversations with the host processor.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 illustrates an information handling system com-
prising an SNA network 20 of interactive type terminals or
Intelligent Work Stations (IWS) 21 of the type shown in
detail in FIG. 2. As described, the network includes a
plurality of terminals 21 which are interconnected to a host
central processing system 23. As shown in FIG. 1, host 23
In turn 18 connected by communication link 24 to a host
processing system 28, which also connects to another SNA
network 26 of interactive terminals 21. Functionally, the
system operates to allow each terminal or end user to
communicate with the host and to one or more other
terminals or users using established SNA communication
protocols so that the various serially connected communi-
cation links are transparent to the users.

The host system includes a host processing unit which
may by way of example be an IBM 370 system. A virtual
machine type operating system, such as the IBM VM
Operating Systems, is assumed in the description of the
preferred embodiment.

10

15

20

25

30

35

40)

45

50

35

60

63

8

[t should be assumed that the SNA network shown in FIG.
1 supports two distributed applications referred to as
“MAIL"” and “CALENDAR” which are available to each
terminal user. The MAIL application program allows a user
at one terminal to generate a document such as a letter and
send that letter to one or more other users at a designated
nodes on the network. The sender can store the document in
the host system at some logically central system location.
Each addressee of the letter has the capability of retrieving
that document at a later time by also using the MAIL
application program from his terminal. The CALENDAR
application functions to maintain an electronic calendar for
cach terminal user. The CALENDAR application, for
example, allows one end user to view other end users’
calendars prior to scheduling a meeting in order to determine
free penods of those persons being invited to the meeting.
Such systems are well known in the art and are currently an

extensive commercial use. Since the general organization
and operation of such distributed applications is well known,
only those details that are necessary for an understanding of
the method of processing data in distributed application
programs of the present invention will be described.

It should therefore be assumed in the following descrip-
tion that each workstation on the network is an Intelligent
Work Station such as an IBM PS 2 personal computing
system employing a multitasking operating system such as
the IBM OS/2 Operating System. It may be further assumed
that conventional SNA services to support Logical Unit type
LU 6.2 for distributed applications are provided by the
system. The terminal shown in FIG. 1 may therefore process
two distributed application programs such as MAIL and
CALENDAR concurrently.

FIG. 2 illustrates the functional components of one of the
interactive type data processing terminals 21, shown in FIG.
1. The terminal comprises a processing unit 31, which
includes a microprocessor block 32, which is, for example,
an Intel 80386 micro-processor, a semi-conductor memory
33, a control block 34 which functions to control input-
output operations in addition to the interaction between the
microprocessor block 32 and the memory unit 33.

The terminal further includes a group of convention
peripheral units including a display device 36, keyboard 37,
printer 38, a storage unit 39, and modem 40. Since the details
of the above described functional blocks form no part of the
present invention and can be found in the prior art, only brief
functional description of each block is set forth along with
the descniption of their interaction, sufficient to provide a
person of ordinary skill in the an with the basis of under-
standing applicant’s improved method of processing distrib-
uted application programs concurrently.

Processing unit 31 corresponds, for example, to the sys-
tem unit of an IBM personal computer such as the IBM PS/2
model 80 system. Unit 31 is provided with an operating
system program which may be the IBM multi-tasking OS/2
operating system which 1s normally employed to run the
PS/2 model 80. The operating system program is stored in
memory 33 along with the application programs that the user
has selected to run. When the system supports a distributed
application program such as MAIL or CALENDAR, only
one part, €.g., part A of the distributed application program
1s stored at the terminal while the other part, part B, is stored
at the host system. Depending on the capacity of memory 33
and the size of the application programs, portions of these
programs as-needed may be transferred to memory 33 from
the disk storage unit 39 which may include, for example, a
40 megabyte hard disk drive and a diskette drive. The basic
function of storage unit 39 is to store programs and data that

Re. 35,448

9

are employed by the system and which may readily be
transferred to the memory umit 33 when needed. The func-
tion of the diskette drive 1s to provide a removable storage
function of entering programs and data into the system and
a vehicle for storing data in a form that 1s readily transport-

able for use on other terminals or systems.

Display 36 and keyboard 37 together provide for the
interactive nature of the terminal, in that 1n normal operation
the interpretation that the system gives to a specific key-
stroke by the operator depends, in substantially all situa-
tions, on what is being displayed to the operator at that point
in time.

In some situations the operator, by entering commands
into the system, cause the system to perform a certain
function. In other situations, the system requests the entry of
certain data generally by displaying a prompt type of menu/
message screen. The depth of the interaction between the
operator and the system varies by the type of operating
system and the application program, but 1S a necessary
characteristic of terminals on which the method of the
present invention may be employed.

The terminal shown in FIG. 2 further includes a printer
38, which functions to provide hard copy output of data.
Lastly, the modem 40 functions to transfer data from the
terminal 21 of FIG. 2, to a host system through one or more
SNA communication links.

FIG. 3 shows the various layers of programming that are
employed 1in an SNA type network. The SNA programming
environment 18 generally considered to consist of seven
layers as shown. The top layer as shown 1s the End User
layer and consists of the end user programs. The second
layer 1s called the NAU Services. These services include, for
example, presentation services, terminal services and for-
matting data for specific applications. The third layer is
referred to as Data Flow Control. Its function is to maintain
send/receive modes and perform high level error correction.
The fourth layer 1s the data Transmission Control layer. Its
function involves such things as encryption and decryption
plus session level pacing. The fifth layer 1s the Path Control
which does routing, segmenting data units and virtual route
pacing. The Data Link layer 1s the sixth layer. It functions to
provide link level addressing, sequencing and error control.
The seventh and last layer 1s the Physical layer which defines
for example the pin assignments on connectors for the
various signals.

APPC defines the NAU services, Data Row Control and
Transmission Control As explained on page 306 or the
previously referenced IBM Systems Journal, the method of
defining the LU 6.2 conversation functions, is in terms of
programming-language-like statements called verbs. Docu-
mentation with verbs which are completely defined by the
procedural logic that generates session flows, provides sig-
nificantly greater precision than English prose. FIG. 4A
shows how the verbs define the interaction between trans-
action programs, 1.e., Part A or Part B of the distributed
application, and Logical Units for conversation resources. A
set of verbs 1s referred to as a protocol boundary rather than
as an application program interface.

As shown in FIG. 4A, the presentation services compo-
nent interprets verbs and can be thought of as including a
subroutine for each verb. The LU resource manager does
allocation of conversation resources and assignment of
conversations to the sessions, keeping queues of free ses-
stons and pending allocation requests. Its equivalent com-
ponent in products also allocates local resources in products
specific ways, The function of the following LU 6.2 verbs is

10

13

20

25

30

35

40

45

50

55

65

10

set forth on page 307 of the previously mentioned IBM
System Journal. The 6.2 verbs discussed are one, SEND
DATA, RECEIVE_AND_WAIT, PREPARE_TO_RE-
CEIVE, FLUSH, REQUEST_TO_SEND, SEND_ ER-
ROR, CONFIRM, ALLOCATE AND DEALLOCATE.

The ALLOCATE verb 1nitiates new activity at another LU
by building a conversation to a named partner program. The
named partner 1s placed in execution and given addressabil-
ity to the conversation that started it. The ALLOCATE verb
carries several parameters including the following.

1. LU _ NAME. This 1s the name of the LU at which the
partner program 1s located.

2. TPN. TPN is the Transaction Program Name of the
partner program with which the conversation 1s desired.

3. MODE__NAME. MODE_ NAME specifies the type of
transportation service that the conversation is to provide. For
example, a SECURE, a BULK, or a LOW__DELAY con-
versation can be requested. The LU uses a session with the
appropriate MODE__NAME to carry the conversation.

The target of the conversation is a newly created process
or task, which means that the distributed processing in the
network at any instant of time, consists of a number of
independent distributed transactions, each of which consists
of two or more transaction programs connected by a con-
versation. The DEALILLOCATE verb ends the conversation.
In as much as each partner may issue DEALLOCATE, a
conversation varies from a single short message to many
exchanges of long or short messages. A conversation could
continue indefinitely, terminated only be a failure of a
Logical Unit or by the session that carries it. Transaction
programs are not ended by DEALLOCATE, but continue
until they terminate their own execution, end abnormally or
are terminated by control operator action.

Both network application programs and service transac-
tion programs use the execution services provided by Logi-
cal Units. Service transaction programs run on Logical Units
in the same way as other transaction programs. They interact
with the human operator or they may run as a pure pro-
grammed operator. Many service transaction programs
effect only the local Logical Unit. An example 1s a command
to display the current set of active transaction programs.

Other control transactions, especially those that relate to
sessions, can effect other Logical Units as well as applica-
tions at other Logical Units. For example, a local command
to prematurely terminate a transaction that is using a con-
versation causes the conversation to be ended abnormally, a
state change that must be transmitted to the partner Logical
Unit for presentation to the transaction program that is
sharing the conversation. Or a decision to activate one or
more of the sessions shared by the two LUs may be made by
one LU operator but must be communicated to the other
Logical Unit. Advanced program to program communica-
tion for SNA includes several control operator verbs that
provide LU to LU control and coordination, especially for
activation and deactivation of sessions. When a distributed
service transaction program starts at one LU, it creates a
conversation to a partner transaction program in a partner
L.U. The two transaction programs then cooperate to preform
the desired control activity.

The IBM VM host operating system includes a compo-
nent referred to as APPC/VTAM Services (AVS) which 1s
responsible for the APPC protocol boundary support in the
Operating System. AVS defines one more LU 6.2 Logical
Units to IBM Virtual Telecommunications Access Method
(VTAM). VTAM is the IBM host computer component that

manages the communications layer between the host and the

Re. 35,448

11

various terminals of the network. AVS acts as a bridge for
APPC communications to virtual machines within the oper-
ating system. For example, when an APPC ALLOCATE
verb is received that originated from outside the VM oper-
ating system, VTAM will determine if there 1s a Logical Unit

active that corresponds to the LU name specified in the
ALLOCATE. AVS will have previously told VTAM that it
will handle all traffic for particular LU names. VTAM will
find that AVS has defined an LU that corresponds to the LU
name in the ALLOCATE verb and pass the ALLOCATE
verb to AVS.

There is additional information supplied with the ALLO-
CATE verb that 1s used in thus process. Included in the
ALLOCATE is a User ID, the identification of the user that
the allocate was submitted in behall of, and a Transaction
Program Name (TPN). The TPN is the application program
to be invoked, that is the Part B of the distributed application
such as MAIL. At the time AVS receives the ALLOCATE,
it will create a virtual machine and pass the transaction
program named in ALLOCATE to an operating system
component that is resident in the virtual machine. The
operating system component in the virtual machine will
activate the named application and interaction can occur
between the Part A and Part B of the application.

FIGS. 4A and 4B are similar to the representation of the
SNA programming environment shown in FIG. 3 and rep-
resent the SNA/APPC programming environment in which
the method of the present invention is advantageously
employed.

The IWS is provided with a programming organization
which allows the terminal to run two application programs
concurrently. An article entitled “Multiple Tasks” beginning
on page 90 of Volume 5, Number 11, of the PC Tech Journal,
published November, 1987 explains in detail the IBM OS5/2
multi-tasking capabilities.

In the previous example, when the same terminal 1nitiates
a second distributed application program, it will be assigned
the same virtual machine that has been created for the first
distributed application program. As a result, the two appli-
cation programs running on the host virtual machine become
serialized, which defeats the overall purpose of providing an

operating system at the terminal that is capable of multi-
tasking operations.

In accordance with the method of the present invention,
an additional function referred to as a VM Pool Manager
(VMPM), shown schematically in FIG. 4B has been added
to the Protocol Boundary services of the prior art. The
VMPM operates in the same virtual machine as does the
Protocol Boundary services, which in the IBM Vm operating
system is called the AVS module. When activated, the
VMPM will read a set of installation supplied parameters
and create a plurality of virtual machines as shown 1n FIG.
§, that are brought to the run ready state. Included in these
parameters are generic names of the virtual machines to be
created in the pool. The names or virtual machines IDs will
previously have been defined in the Operating System’s
directory of virtual machines. The VMPM 1issues an Autolog
macro for each of the machines. The Autolog macro is a
known function in the VM operating system. When 1ssued
for a particular virtual machine, it will result 1n that machine
being created and placed in a state such that it is waiting for
work, in this case waiting for an APPC ALLOCATE verb to
be passed from AVS.

As each machine is successfully created by the Autolog
macro, the VMPM will create an entry in a VMPM data
structure shown in FIG. 6 representing that virtual machine

10

13

20

25

30

35

40

45

50

55

60

65

12

and its state, in control blocks that are owned by the VMPM.
When all virtual machines in the list have been created, the
VMPM will return control to the AVS. After the virtual
machines have been created and the pool manager has
returned control to the AVS, the following scenario occurs.

The terminal operator interactively enters information
into his terminal to invoke the distributed application pro-
gram Mail. As a result of that, the “A” part of the Mail
distributed application issues the ALLLOCATE verb includ-
ing the following parameters

LU name=LU 1,
TPN=MAIL,
USERID=DICKC.

When VTAM receives the ALLOCATE verb, it sees that
an LU named LU]l was defined by AVS and 1t passes the
allocate to AVS. AVS sees that LU1 is associated with the
pool manager by scanning the pool manager data structure.
It therefore activates the pool manager component of AVS
and passes the ALLOCATE information to it. The second
function of the pool manager is to scan its control block
entries that represent virtual machines in the VM pool and
look for one that is available for work. When it finds an
available virtual machine, it changes the ALLOCATE
parameters to the following:

LU NAME=VMOI,
TPN=MAIL,
USERID =DICKC.

The pool manager changes the LU name to the name of
the virtual machine in the pool. The pool manager aiso
updates the control block entry that represents the virtual
machine to show that it is no longer available. The pool
manager then places information into the control block entry
that reflects what the virtual machine is busy doing. The pool
manager then re-issues the ALLOCATE verb with the
changed LU name.

The VM operating system will then pass the ALLOCATE
to the operating system code resident in the selected virtual
machine. That code then activates the application part B
named in MAIL and switches the ID of the virtual machine
to the ID specified in the allocate verb which, 1n this case,
was DICKC. A conversation is then conducted between part
A and part B of the MAIL distributed application program.
Similar interactions of the type described above can occur
concurrently from a single multi-tasking PC or from mul-
tiple PCs. When the part A and part B complete their
interaction, either may issue an APPC DEALLOCATE verb
to end the conversation. When a DEALLOCATE verb 1s
received, AVS will invoke the pool manager and it will
change the control block entry that represents the virtual
machine that was involved. The pool manager will change
the status of the virtual machine to an available state. It will
be seen that in accordance with the above process, a single
conversation defined by an ALLOCATE and a DEALLO-
CATE is handled by an assigned virtual machine from the
pool of virtual machines under the control of the pool
manager. The next conversation would undoubtedly be
assigned to a different virtual machine from the pool. As a
result, two distributed application programs that are being
run concurrently from a single terminal with a single user ID
are assigned by the VMPM, in accordance with the new
method, to different VM machines that were created earlier
by the virtual machine pool manager.

While the above described new method avoids the prob-
lem that exists in prior art systems where two distributed
application programs originating from the same terminal

Re. 35,448

13

with the same user ID become serialized within one virtual
machine at the host system, it requires that a new method be
developed to recognize the current terminal address of a
system user since a user 1s no longer assigned a dedicated
virtual machine by a Log On process. Prior to describing the
new method, the steps involved in creating the virtual
machine pool at the host processor when the host system 1is
initially IPLed as described above may be briefly reviewed
by reference to the flow chart of FIG. 7 which summarizes
these steps. Similarly, the steps involved in the program to
program communication process discussed above may also
be briefly reviewed by reference to the flow chart of FIG. 8
which summarizes that process.

The term “distributed application program’ has been used
in the above description with reference {o a pair of programs

that have been coded to communicate with each other using
APPC verbs. One program executes on a terminal while the
other executes on the host. The program that issues the first
Allocate verb to initiate a conversation request 1s sometimes
referred to as Part A of the distributed application program
while the program addressed in the request has been reterred
to as Part B of the distributed application program. The term
“transaction program’ has been used with reference to either
Part A or Part B of a distnibuted application program.

In accordance with the new method, since the terminals
on the network are intelligent work stations, such as personal
computers (PC), which are capable of doing useful work for
a user without ever communicating with the host processor,
the option is given to the system user to identify the current
terminal address where communication with the user may
occur. At the time that the user decides to establish com-
munication with the host, a PC distributed application pro-
gram 1$ evoked by the user. Pan A of the program is resident
on the PC and functions to establish an LU 6.2 conversation
with 1ts Part B counterpart that is resident at the host
processor. Part A presents a panel on the screen of the
display device to the user after the program is evoked which
prompts the user for predetermined information as to the
identity of the user and then develops the data required by
the ALLLOCATE verb that 1s sent to the host processor. The
USERID of the user is entered along with the password of
the user. The Part A of the program issues an ALLOCATE
to establish a conversation with Part B. It 1s assumed that the
Part B name is BEGIN and the Host 1s named LU1. The
ALLOCATE would take the form shown below;

ALLOCATE TPN=BEGIN
USERID=DICKC
PASSWORD=ABCD0001
LUNAME=LUI

When the ALLOCATE 1s received at the Host LU1, the
AVS component of the VTAM services forwards the Allo-
cate on to the Virtual Machine Pool Manager since it
understands that the VMPM has jurisdiction over the trans-
action program BEGIN. The VMPM has a sub component
program BEGIN which creates the Identification Control
Block Entry data structure shown in FIG. 10, and then stores
the USERID from the ALLOCATE and the terminal 1D,
PCID, from the Function Management Header 5 (FMH 5)
which is a set of control information that accompanies each
ALLOCATE verb. The Begin program then places the ICBE
into a chain of 1CBEs that are located in a portion of the
storage area of the host that i1s available to all of the
programs that are run under the control of the VMPM. The
pointer field of the next previous ICBE 1s updated to point
to the location of the newly created ICBE after which a

10

15

20

25

30

35

43

50

55

60

65

14

DEALLOCATE is tssued to terminate the conversation. The
host processor now understands the current terminal address

of the user since the ICBE relates USERID to PCID. The
steps of the above Sign On process are similar from an
external appearance to the Log On process-of the prior art in
that the user enters a USERID and a Password. In substan-
tially all other aspects, the two processes are different as to
the interactions that occur at the host. FIG. 9 i1s a flow chart
that summaries the steps involved in the Sign On process.

Any distributed application that issues a request for a
conversation with USERID is serviced by the VMPM. Since

the ALLOCATE that represents this request carries the
USERID name of the addressee, the VMPM firsts scans the

chain of ICBEs located in storage looking for a match with
the USERID contained in the ALLOCATE. When the match
is found, the related PCID is used to forward the ALLO-
CATE to the correct terminal where it 1s accepted and
processed in the normal way. FIG. 10 summarizes the steps
of the above described process.

When USERID decides that communication with the host
processor and other terminal users 1s no longer required or
desired, a PC application program 1s evoked by the user. The
application program presents a screen to the user which
prompts him for the desired action and data necessary to
cancel his current terminal address. The application program
then issues an ALLOCATE to the host processor LU1 for a
conversation with the Part B counterpart transaction pro-
gram called END. On receipt at the host the AVS component
of the VTAM services program determines that the TPN
called END is run under the control of the VMPM and
passes the ALLOCATE on to the VMPM where a sub-
component program functions to erase the ICBE which
stores the USERID contained in the ALLOCATE. After the
ICBE containing the USERID is deleted from the chain of
ICBEs, the END program issues a DEALLOCATE to ter-
minate the conversation. The current terminal address of
USERID is thereafter unknown to the system. USERID may
still execute programs on the PC that do not require any
interaction with the host. FIG. 12 summarizes the steps
involved in deleting USERID’s current terminal address
from the system.

While the invention has been shown and described with
reference to the preferred embodiment, 1t should be under-
stood by those persons skilled in the art that changes and
modifications may be made without departing from the spirit
of the invention or the scope of the appended claims.

I claim:

1. A method for controlling the processing of host origi-
nated conversation requests for known Users of an SNA type
network that processes distributed application programs in
accordance with LU 6.2 protocols in which a conversation
1s selectively established between portions of a distributed
application program, one portion being stored and executed
at one of plurality of Intelligent Work Stations (IWSs) which
is selectively connectable to said network and another
portion being stored at a host processor, said processor
having a Virtual Machine Pool Manager (VMPM) for cre-
ating a pool of virtual machines and for managing the
assignment of each machine to process the said another
portion, said assignment being terminated and said assigned
virtual machine being returned to said pool at the time that
a processed conversation is terminated, satd method pre-
venting a host originated conversation request addressed to
a first user having a specific USERID from being processed
by an assigned virtual machine unless spectfically autho-
rized by said first user designating the ID of one said IWS
to which said host originated conversation requests are 1o be

Re. 35,448

15

sent, while permitting a conversation request by said first
user originating from an IWS to be processed by a virtual
machine assigned by said VMPM, said method comprising
the following steps,

(A) providing a second distributed application program
having one portion resident at said first IWS and the
counterpart portion resident on said host to authonze
the processing by an assigned said virtual machine of
host originated conversation requests addressed to said
first user,

(B) invoking at said first IWS said one portion of said
second application program to transmit an ALLOCATE
verb requesting a conversation with said counter part
portion, said ALLOCATE verb including said USERID
and the ID of said first IWS at which said first user 1s

currently located,

(C) processing said ALLOCATE conversation request at
said host including the steps of,

(1) creating an Identification Control Block Entry
(ICBE) data structure for storing the said USERID of
said first user and said first IWS ID, and

(2) appending said ICBE onto a chain of ICBEs at a
location in storage that is accessible to each said
virtual machine to permit said first IWS ID and said
first USERID user to be deterrmaned by each virtual
machine assigned to process a host originated
request for a conversation with said first USERID,

(D) processing with an assigned virtual machine a host
originated request for a conversation with said first
USERID. including the step of
(1) scanning said chain of ICBEs to determine the IWS
ID at which said specified User is currently located,
and

(2) transmitting said request only if said IWS ID 1s
determined in said step of scanning.

2. The method recited in claim 1 including the further step

of,

(A) storing in said ICBE data transferred to said host with
said ALLOCATE to relate said first USERID and the
IWS ID that issued said ALLOCATE verb.

3. The method recited in claim 2 including the further step

of,

(A) issuing a DEALLOCATE verb to said first IWS ID
from said host to terminate said conversation,

4. The method recited in claim 1 in which said step of

processing includes the further steps of,

(A) issuing an ALLOCATE verb at said host, requesting
a conversation with said first USERID, and

(B) determining if said first USERID is accepting con-
versation requests by,
(1) scanning said chain of ICBEs for an entry contain-
ing said first USERID, and
(2) transmitting the ALLOCATE verb to IWS 1D stored
in the ICBE containing said first USERID when said
USERID is found by said scanning step.
5. The method recited in claim 4 including the further step
of,

(A) terminating said step of processing when said step of
scanning determines that said first USERID has not
been stored in a scanned ICBE.

6. A method of controlling communication within a net-
work between a host processor and a plurality of work
stations which are selectably connectable to said network,
said host processor including a pool of virtual machines
each of which is in a ready state for assignment in response
to requests from said host processor and from said plurality

10

15

20

25

30

35

45

50

55

60

635

16

of work stations and wherein each virtual machine will be
returned to said pool upon completion of said assignment,
said method comprising the data processing system imple-
mented steps of:

permitting a user at a selected one of said plurality of
work stations to provide an authorization indication at
said host processor indicating that host originated
communications will be accepted;

storing said authorization indication at said host proces-
sor;

assigning an idle virtual machine for communications
with said host processor which are initiated by said
selected one of said plurality of work stations; and

assigning an idle virtual machine for communications
with said selective one of said plurality of work stations
which are initiated by said host processor only in
response to a presence of an authorization indication
provided by said user at said host processor.

7. The method for controlling communication within a
network between a host processor and a plurality of work
stations according to claim 6 further including the step of
transmitting said communication initiated by said host pro-
cessor utilizing said assigned idle virtual machine only in
response to a presence of said authorization indication

provided by said user at said host processor.

8. The method of controlling communication within a
network between a host processor and a plurality of work
stations according to claim 6 wherein said step of permitting
a user at a selected one of said plurality of work stations to

provide an authorization indication at said host processor

indicating that host originated communication will be
accepted further comprises the step of permitting a user at
a selected one of said work stations to provide an authori-

zation indication at said host processor indicating that host
originated communications will be accepted, said authori-
zation indication including a user identification for said user
and a unique identification for said selected one of said
plurality of work stations.

9. The method for controlling communication within a
network between a host processor and a plurality of work
stations according to claim 6 further including the step of
permitting a user to selectively delete said authorization
indication within said host processor.

10. A system for controlling communication within a
network between a host processor and a plurality of work
stations which are selectively connectable to said network,
said host processor including a pool of virtual machines
each of which is in a ready state for assignment in response
to requests from said host processor and from said plurality
of work stations, wherein each virtual machine will be
returned to said pool upon completion of said assignment,
said system comprising:

means for permitting a user at a selected one of said

plurality of work stations to provide an authorization
indication at said host processor indicating that host
originated communications will be accepted,

means for storing said authorization indication at said
host processor;

means for assigning an idle virtual machine for commu-
nications with said host processor which are initiated
by said selected one of said plurality of work stations;
and

means for assigning an idle virtual machine for commu-
nications with said selected one of said plurality of
work stations which are initiated by said host processor
only in response to a presence of an authorization
indication provided by said user at said host processor.

Re. 35,448

17

11. The system for controlling communication within a
network between a host processor and a plurality of work
stations according to claim 10 further including means for
transmitting said communications initiated by said host
processor utilizing said assigned virtual machine only in
response to a presence of an authorization indication pro-
vided by said user at said host processor

12. The system for controlling communication within a
network between a host processor and a plurality of work
stations according to claim 10 wherein said means for
permiutting a user at a selected one of said plurality of work
stations to provide an authorization indication at said host
processor indicating that host originated communications
will be accepted further comprises means for permitting a

18

user at a selected one said plurality of work stations to
provide an authorization indication at said host processor
indicating that host originated communication will be
accepted, said authorization indication including a user
identification for said user and a unique identification for
said selected one of said plurality of work stations.

13. The system for controlling communication within a
network between a host processor and a plurality of work

10 Stations according to claim 10 further including means for

permutiing a user to selectively delete said authorization
indication within said host processor

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE. 35,448
DATED : February 11, 1997
INVENTOR(S) : Shorter

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below: -

Column 1, line 58: change "an" to --art--

Column 8, line 48: change "an" to --art--

Column 9, line 47: change "Row" to --Flow--

Signed and Sealed this
Twenty-sixth Day of August, 1997

Altest: ﬁM Z’Jﬁb—-ﬂ—\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

