United States Patent [

Vassiliadis et al.

[11] E
[45] Reissued Date of Patent:

USOORE3S311E
Patent Number:

Re. 35,311
Aug. 6, 1996

[54] DATA DEPENDENCY COLLAPSING
HARDWARE APPARATUS

[75] Inventors: Stamatis Vassiliadis, Vestal: James E.
Phillips, Binghamton; Bartholomew
Blaner, Newark Valley, all of N.Y.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 292,606

[22] Filed: Aug. 18, 1994
Related U.S. Patent Documents
Reissue of:
[64] Patent No.: 5,051,940
Issued: Sep. 24, 1991
Appl. No.: 504,910
Filed: Apr. 4, 1990

U.S. Applications:
|63] Continuation of Ser. No. 931,624, Aug. 18, 1992, aban-

doned.

(511 Int. CLO oo eerereneene. GO6F 7/38
(52] ULS. Cle e ssesseessassnsane 364/736
[58] Field of Search ...............coovveereeneencc. 364/736, 768,
364/787, 716, 395/375

[56] References Cited

U.S. PATENT DOCUMENTS

4,675,806 6/1987 Uchida ....cccccccurneniriieninienenennn. 364/200
4,754,412 6/1988 Deering .......covvveveeveeieereeennnnnnn. 364/736
4,766,416 3/1988 Noujaim .........ccccvevveveeereenereenen. 36471736
4,775,952 10/1988 Danielsson et al. .................... 364/736
4,800,159  2/1989 SOWa ..cooceeeerniiriciriiinereenirinrenaees 364/200
4,816,155 4/1989 Wulfetal. .....oouvvvveennnneneen. 395/375
4,852,040 7/1989 O01a ....ccoveerieeeeeeeeneeirnenirenenees 364/736
5,021,947 6/1991 Campbell et al. ...................... 364/200

OTHER PUBLICATIONS

Hwang, Kai & Faye A. Briggs, “Computer Architecture and
Parallel Processing”, 1984, pp. 325-328.

Wulf, Wm. A. “The WM Computer Architecture”, Computer
Architecture News, vol. 16, No. 1, Mar. 1988, pp. 70-84.

INSTRUCTION STREAM INCLUDING
COMPOUNDED INSTRUCTIONS

52 l 56 T 58
A 1 U
Lmsm:cnon |T1 IHSTRZUCTION 2| #2770
™~

REGISTER SELECT

Hwang, Kai, “Computer Arithmetic”, 1979, pp. 88-100.

Jouppi, Norman P. & David W. Wall, “Available Instruc-
tion—-Level Parallelism for Superscalar and Superpipelined
Machines”, Third Intn’t Conference on Architectural Sup-

port for Prog. Languages & Operating Sys., 1989, pp.
272-282.

P. M. Kogge, “The Architecture of Pipelined Computers”,
pp. 222-225, published 1981.

EP-A-0 118 830 (IBM), p. 5, line 3, p. 9, line 21, p. 12, line
17-25; claims; FIG. 1.

Patent Abstracts of Japan, vol. 5, No. 169 (P-086) Oct. 28,
1981 & JP-A-56 096 328 (Fujitsu Ltd) 4 Aug. 81, Abstract.

EP-A-0 281 132 (NEC Corp), pp. 2, 3, 5, 6, 8, 9; Abstract,
claims, FIGS. 4, 8.

US—-A—4 819 155 (Wulf et al) Col. 4; Abstract; claims 1-4;
FIG. 2.

Hwang “Computer Arithmetic: Principles, Architecture and
Design”, pp. 97-100.

Computer Architecture News vol. 16, No. 1, Mar. 1988, NY
US pp. 70-84.

Patent Abstracts of Japan vol. 7, No. 270 (P-240) (1415) 2
Dec. 83 and JP-A-58 149 542 (Hitachi Seisakusho K. K.) 5
Sep. 83 Abstract.

Primary Examiner—Tan V. Mai
Atiorney, Agent, or Firm—Baker, Maxham, Jester & Meador

[57] ABSTRACT

A multi-tunction ALU (arithmetic/logic unit) for use in
digital data processing facilitates the execution of instruc-
tions 1n parallel, thereby enhancing processor performance.
The proposed apparatus reduces the instruction execution
latency that results from data dependency hazards in a
pipelined machine. This latency reduction is accomplished
by collapsing the interlocks due to these hazards. The
proposed apparatus achieves performance improvement
while maintaining compatibility with previous implementa-
tions designed using an identical architecture.

46 Claims, 13 Drawing Sheets

GEMERAL
63— PURPOSE

REGISTERS |

| —~64
62— AIO JAI1 ] AI2

‘ DATA
DEPENDENCY

FUNCTION SELECT

COLLAPSING

?TG

DECODE
AND

874

( 'i:> ALU

[ FUNCTION SELECT

66 i

E;r AQ
i

TWO-OPERAND | AD

CONTROL

REGISTER SELECT

ALU '"I"

871

FROM

REGISTERS

a7 - |8
| 872 AT0 | AT
GENERAL PURPOSE >




U.S. Patent Aug. 6, 1996 Sheet 1 of 13 Re. 35,311
REGISTER
FILE
FIG. 1
PRIOR ART
ID ., A
PIPELINED [ (1) &4 CA | PA /
INTERLOCKED | (2)}12 4 EX | PA 4
ok A e
INSTRUCTION ) (3 o T =X, PA
8 (A AG
(1) ID_4 AG | CA . PA
COMPOUND | ¢ oy | ID
INSTRUCTION o | EX | PA_
SET (3 +— ...
MACHINE 4 ID AG
o (b AL
(1)L AG , CA | PA
(2) iD EX PA
SUPERSCALAR / ‘&/— —1........... =
WITH (Y4 =X PA
BYPASSING 1D AG
28 (4) .................................. I—l
( 1) ID AG CA PA
INSTRUCTION./ /[ 1........... EX , PA
SET WITH (3, =
BYPASSING ID AG
4
o ()= AL
FIG. 2




U.S. Patent

Aug. 6, 1996 Sheet 2 of 13

R1 RZ —RJ3

N
S
ik B

I 16

1/0 1

20 C—— 171

22
I /0
24

26

Re. 35,311

FIG. 3

RESULT=(R1) +(R2) —( R3)

AIQ All Al2

S— 30
- MUX

e |
R2
“MUX KB O MUX3
[I 77

FIG. 9



U.S. Patent Aug. 6, 1996 Sheet 3 of 13 Re. 35,311

1. RR-FORMAT LOADS, LOGICALS, ARITHMETICS, COMPARES
. LCR - LOAD COMPLEMENT |
. LPR - LOAD POSITIVE
. LNR - LOAD NEGATIVE
. LR — LOAD REGISTER
. LTR = LOAD AND TEST

NR — AND

. OR - OR

. XR - EXCLUSIVE OR
AR — ADD

SR ~ SUBTRACT

ALR ~ ADD LOGICAL

SLR = SUBTRACT LOGICAL
. CLR - COMPARE LOGICAL
. CR - COMPARE

2. RS-FORMAT SHIFTS {NO STORAGE ACCESS)
. SRL - SHIFT RIGHT LOGICAL
. SLL - SHIFT LEFT LOGICAL
SRA ~ SHIFT RIGHT ARITHMETIC

. SLA — SHIFT LEFT ARITHMETIC
. SRDL = SHIFT RIGHT LOGICAL

. SLDL - SHIFT LEFT LOGICAL
. SRDA -~ SHIFT RIGHT ARITHMETIC
SLDA - SHIFT LEFT ARITHMETIC

3. BRANCHES — ON COUNT AND INDEX
. BCT - BRANCH ON COUNT ( RX—FORMAT)

. BCTR - BRANCH ON COUNT (RR-FORMAT)
. BXH - BRANCH ON INDEX HIGH (RS-FORMAT)
. BXLE - BRANCH ON INDEX LOW (RS—FORMAT)

4, BRANCHES — ON CONDITION
BC — BRANCH ON CONDITION { RX—FORMAT)
BCR - BRANCH ON CONDITION ( RR-FORMAT)

5. BRANCHES - AND LINK _
. BAL — BRANCH AND LINK (RX-FORMAT)
. BALR - BRANCH AND LINK ( RR-FORMAT)
. BAS - BRANCH AND SAVE (RX—FORMAT)
. BASR ~ BRANCH AND SAVE (RR—-FORMAT)

FIG. 4A




U.S. Patent Aug. 6, 1996 Sheet 4 of 13 Re. 35,311

v T FUE W W B T O rE W ek & v T

5. STORES

STCM — STORE CHARACTERS UNDER MASK (0-4-BYTE STORE, RS-FORMAT)

MVI — MOVE IMMEDIATE (ONE BYTE, SI-FORMAT)

. ST — STORE ( 4 BYTES)
. STC - STORE CHARACTER (ONE BYTE)
. STH - STORE HALF (2 BYTES)
7. LOADS
LH = LOAD HALF (2 BYTES)
. L - LOAD (4 BYTES)

LA -~ LOAD ADDRESS

8.
0. RX/SI/RS-FORMAT ARITHMETICS, LOGICALS, INSERTS, COMPARES
. A — ADD
AH — ADD HALF
AL — ADD LOGICAL
N — AND
0 - OR
S - SUBTRACT

SH — SUBTRACT HALF

. SL — SUBTRACT LOGICAL
. & — EXCLUSIVE OR

IC — INSERT CHARACTER

. ICM — INSERT CHARACTERS UNDER MASK (0— TO 4-BYTE FETCH)
C - COMPARE

CH — COMPARE HALF
CL — COMPARE LOGICAL
CLI — COMPARE LOGICAL IMMEDIATE

CLM -~ COMPARE LOGICAL CHARACTER UNDER MASK
10. TM — TEST UNDER MASK

FIG. 4B

200 202
ﬂ FIG. 14




U.S. Patent Aug. 6, 1996 Sheet 5 of 13 Re. 35,311

FUNCTIONS ARISING FROM LOGICAL(#),
ADD(G) INSTRUCTION COMPOUNDINGS

SEQUENCE INTERLOCK CONDITION

FUNCTION
(R1pR2)¢ R4
R3& R1¢R2)
(R1gR1){R4
R3E(RipR1)
R1pR2)E( R1gR2
RigR1){(RiIPR1
R1CR2) R4

LOGICAL, ADD
LOGICAL, ADD

LOGICAL, ADD
LOGICAL, ADD
LOGICAL, ADD
LOGICAL, ADD

ADD, LOGICAL
ADD, LOGICAL

ADD, LOGICAL
ADD, LOGICAL
ADD, LOGICAL
ADD, LOGICAL
LOGICAL, LOGICAL

LOGICAL, LOGICAL

LOGICAL, LOGICAL
LOGICAL, LOGICAL

LOGICAL, LOGICAL
LOGICAL, LOGICAL
ADD, ADD
ADD, ADD
ADD, ADD
ADD, ADD
ADD, ADD
ADD, ADD

R1=RI™RZ>R4
R1=R47R2%R3

R1=R2=R3*R4
R1=R2=R4#R3
R1=R3=R4=R2
R1=R2=R3=R4

R1=R3I#R2*R4
R1=R4»#R2#R3

R1=R2=R3#R4
R1=R2=R4=R3
R1=R3=R4#R2
R1=R2=R3=R4
R1=R3#R>*R4

R1=R4#=R2#R3

R1=R2=R3*R4
R1=R2=R4>RK3

R1=R3=R4*R2

R1=R2=R3-R4
R1=R3#R2#%R4
R1=R4#R2*R3
R1=R2=RR3*~R4
R1=R2=R3*R3
R1=R3=R4#R2

R1=R2=R3=R4

FIG. 5

Ty,

oy |~ o~ |~ | ™
)

A 1

A pr e

o3 =

) e

o N

| S

(R1¢R1) R4
R3p(R1¢R1)
(R1{R2)@(R1ER2
(R1CR1)@( R1¢RE
(R1pR2)¥R4
R3@ R1¢R2)
(R1¢R1)R4
R3p( RigR1)
RigR2) P R1¥R2
RipR1)¢(RipR1
R1¢R2)(R4
R3&({ R1{R2)
(R1ER1)ER4

(R1{R2)(RIER2
(R1¢R1)E(RIERY



U.S. Patent

Aug. 6, 1996 Sheet 6 of 13 Re. 35,311

FUNCTIONS REQUIRING IMPLEMENTATION TO
COLLAPSE DATA HAZARD INTERLOCKS

FUNCT ION OP1 OP2

V.
v
oAz -
WA I
RS R
A iz T
N AC Y A E
Al2 OP]1 AI2

v
Ao (2 opiaig -
Tz ormi) oA A,

Al2- 1

>

J
~
<<
®| 6

L 1

~{

\'\
>
o |
N
\\

> >

> > >
<KKIK
SHECRE

pch

N | ot | ] e | pts | ot | ok | o ] o2 | ok | =

>
<
®

IR

N
-~

SIS |
<<l Y
CRICHICHLS,

2
<
®

> |+ >4+ |+
<l<l |
@ &>
+ | >{>+ |+
<Kl |
DD
A+
|

I N I\
N R + | Qo

"
l
-~
ey
N
S’
i
—

FIG.




U.S. Patent Aug. 6, 1996 Sheet 7 of 13

1

~L,;:
o g
N

bl
P
|

i

RIE TR FIRE
< <<
@ (-B@

(sz OP1 AI0) - 1

(AI2 - 1) OP1 All
AI2 OP1 (AIO — 1)

(A12 - 1) OP1 (AI2 - 1)

+~

bl WIWDIWIW W] WIW L] W | W
Nl WOIN[= ]SO 1D O Wl O

>

<

“+
|

@ D

2
<

FiG. 6B



Re. 35,311

Sheet 8 of 13

1996

Aug. 6,

U.S. Patent

— |
b ol i« -

(o

i
o

i

vt | vt — | v —
s all 5 ' o | o

J
jrvad
-

" <+ || ™
!I

)
(o -

!III!!!II!!I
@-
>,
<< I<KILI<] +

A
oc |

td
e

| |V} | =
I

1Y

¢d

310N 33S
(14=)2Y

(1¥=)2

310N 33S
(13=)2Y

(134=)2¥

310N 33S
(19=)2y
(14=)2Y
(14= )2

o

0]
aay-

<

AN
| | |
+ |+l +[+ | +] +]|+

|
+

I

®|e
2| >

®|®
2| 2

- ='4| (oIv 1do 21v)

e
{2

e1v) | vus(radiy)
c1v) | (zuni)ed |

@n
>,
<<

®|®
2| >
<

1dO dOo N d0 Q341530

IVOI1007 04 SNOILVY3d0 (3d1IS3A JONA0Hd Ol SONILNOY ANYYHIdO



Re. 35,311

o

. V. DI

=

w 'G3ANTONT LON F¥3IM SONILNOH ONYNM3dO dIJH1

% ‘IHO04TYTHL 01 FNNSIS 40 MOSYLIVA TvOIO0T 3FHL NI Q3IININIIHATI LON IyIm
'JNYS 3HL J4Y #Y ONY ‘B ‘TY HO3 SNOILYOISID3dS ¥31S1938 3JHL NIHM dNO00 HOIHM ‘SNOILVY3H0 3S3HL 3LON
N T €1V 2d0 LIV + OIV 1d0 2Iv | (zujiy))(zudiy)

[ ed| Quyey| -] - (01V 1d0 21V) 2d0 11V (rudry )Iey

= L w|  vd| Quedaw| 4] - (01v 1do gIv) 2do 1lv-|

o — _

n Wl ] (wed] 4] - 01V 1d0 21V) 2d0 VIV

o9

U.S. Patent



Re. 35,311

Sheet 10 of 13

Aug. 6, 1996

U.S. Patent

LL8

OY

OY

SY31S193d

‘ N :
VA 3S0duNd TYY3INID Q9 DIA
:<- o1V L8 ’ NOY 4
GL8 M

Ny
(NVy3d0-0ml

niy

INISAYTI00
AONIANId3Q

S441S1934
3S0ddnd

BAL-ELER,

10413S 318103

] 10LNGD

13313S zouhoz:u maoowc

8S & 96

SNOTLONYASNI A3ANNOdNOO
ONIGNTONI AY3YLS NOTLONYLSNI



U.S. Patent Aug. 6, 1996 Sheet 11 of 13 Re. 35,311

FUNCTIONS REQUIRING IMPLEMENTATION TO
COLLAPSE AHAZ INTERLOCKS

FUNCTION

AGI2
-AGIZ

/AGI2/

-/AG12/
AGI1 OP1 AGI2

AGIO + AGI2
GI0 — AGIZ2

AGIO + AGIZ2 + AGI3

AGIO - AGIZ + AGI3
AGIC + AGIZ2 - AGI3

AGIO — AGI2 - AGI3

GIO + /AGI2/

AGIO -
AGIO + /AGI2/ + AGI3
AGIO + AGIZ + /AGI3/
AGIO + /AGI2/ + /AGI3/

AGIO - /AGI2/ + AGI3
AGIO + AGI2 - /AGI3/

AGIC - JAG12/ — /AG13/
AGID + (AGI1 OP1 AGI2)

GIO + (AGI1 OP1 AGI2) + AGIA
AGIO + (AGI1 OP1 AGI2) + (AGI3 OP1 AGI4)

P

N P =) o= b | =t ] 2| b | b | b ] |
QO] O~ DH]{AN]| | W] =] O

o

= >
>
e
[
™)
~

>[>> >
<|<|< <
D D D @
-u-+ "+
I | ! |

b
|l

L
L
-l

FIG. 10



U.S. Patent Aug. 6, 1996 Sheet 12 of 13 Re. 35,311

FUNCTIONS REQUIRING IMPLEMENTATION TO
COLLAPSE AHAZ INTERLOCKS

FUNCTION OP1

DI + BDIZ2 - BDI3
DI1 + BDI2 + BDI3

DI1 + BDI2 + /BDI3/
8011 + BDI2 -
DI1 - BDI2 - BDI3

BDI1 + /BDI2/ - BDI3
DI1 — - BDI3
-BDIO) + BDI2 - BDI3
-BD10) - BDI2 - BDI3
-BDI0) + BDI2 + BDI3

BDIO + BDI2 - BDI3
DIO/ + BDI2 - BDI3

/BDI0/ + BDI2 -

(-/BD10/) + BDI2 - BDI3
(-/BD10/) + BDIZ2 + /BDI3/
(-/BDIO/Y - /BDI2/ — BDI3

/B — BDI3

DIO OP{ BDI3) + BDI1 - BDI2

BDI1 + BDI2 - (BDI3 OP1 BDIO)
DI1 - BDI2 + (BDI3 OP1 BDIO)

BDI3 -1 -0
BDI3) - 1 -~ O
-1 -0
-1-0
BDI3 OP1 BDIO) — 1 - O
BDI3 OP1 BDIO) + BDI2 - (BDI3 OP1 BDIO)
(BDI3 OP1 BDIO) - BDI2 + (BDI3 OP1 BDIO)

oo sv Ml
=
O
p—q
Cad
.

ﬁ#‘\f‘\m
S

J

]

N

~

&
=

PPN NI ] =] | - ol Bl el Eas ~J & I ¥ - Iy 0%

J

L ]

-

S

+

I

[ |

N

.
o )
[
Cud
N

o,
09

2>
<
D
T

Q
@
O
x
>

=
=

> >

< <

@ @

-+ +

2
<
@
+
|

2
<
@D
+
1

FIG. 12



U.S. Patent Aug. 6, 1996 Sheet 13 of 13 Re. 35,311

8DI0 BDI1 BDI2 BDI3

110

AGIO AGI1 AGIZ2 AGI3

160

FIG. 11



Re. 35,311

1

DATA DEPENDENCY COLLAPSING
HARDWARE APPARATUS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This application is a file wrapper continuation of U.S.

application Ser. No. 07/931,624, filed Aug. 18, 1992, now
abandoned.

BACKGROUND OF THE INVENTION

This invention relates to the execution of scalar instruc-
tions in a scalar machine. More particularly, the invention
concerns the parallel execution of scalar instructions when
one of the instructions uses as an operand a result produced
by a concurrently-executed instruction.

Pipelining is a standard technique used by computer
designers to improve the performance of computer systems.
In pipelining an instruction is partitioned into several steps
or stages for which unique hardware is allocated to 1mple-
ment the function assigned to that stage. The rate of 1nstruc-
tion flow through the pipeline depends on the rate at which
new instructions enter the pipe, rather than the pipeline’s
length. In an idealized pipeline structure where a maximum
of one instruction is fed into the pipeline per cycle, the
pipeline throughput, a measure of the number of 1nstructions
executed per unit time, is dependent only on the cycle time.
If the cycle time of an n-stage pipeline implementation 18
assumed to be m/n, where m is the cycle time of the
corresponding implementation not utilizing pipelining tech-
niques, then the maximum potential improvement offered by
pipelining 1s n.

Although the foregoing indicates that pipelining oflers the
potential of an n-times improvement in computer system
performance, several practical limitations cause the actual
performance gain to be less than that for the ideal case.
These limitations result from the existence of pipeline
hazards. A hazard in a pipeline is defined to be any aspect of
the pipeline structure that prevents instructions from passing
through the structure at the maximum rate. Pipeline hazards
can be caused by data dependencies, structural (hardware
resource) conflicts, control dependencies and other tactors.

Data dependency hazards are often called write-read
hazards or write-read interlocks because the first instruction
must write its result before the second instruction can read
and subsequently use the result. To allow this write before
the read, execution of the read must be blocked until the
write has occurred. This blockage introduces a cycle of
inactivity, often termed a “bubble” or “stall”, into the
execution of the blocked instruction. The bubble adds one
cycle to the overall execution time of the stalled instruction
and thus decreases the throughput of the pipeline. If imple-
mented in hardware, the detection and resolution of struc-
tural and data dependency hazards may not only result in
performance losses due to the under-utilization of hardware
but may also become the critical path of the machine. This
hardware would then constrain the achievable cycle time of
the machine. Hazards, therefore, can adversely affect two
factors which contribute to the throughput of the pipeline:
the number of instructions executed per cycle; and the cycle
time of the machine.

The existence of hazards indicates that the scheduling or
ordering of instructions as they enter a pipeline structure 18
of great importance in attempting to achieve effective use of

10

15

20

25

30

35

45

50

33

60

65

2

the pipeline hardware. Effective use of the hardware, 1n turn,
translates into performance gains. In essence, pipeline
scheduling is an attempt to utilize the pipeline to its maxi-
mum potential by attempting to avoid hazards. Scheduling
can be achieved statically, dynamically or with a combina-
tion of both techniques Static scheduling is achieved by
reordering the instruction sequence before execution to an
equivalent instruction stream that will more fully utilize the
hardware than the former. An example of static scheduling
is provided in Table I and Table II, in which the interlock
between the two Load instructions has been avoided.

TABLE I
X1 ;any instruction
X2 ,any instruction
ADD R4,R2 ‘R4 = R4 + R2
[LOAD R1,(Y) ;load R1 from memory location Y
[LOAD R1,(X[R1]) :load Rl from memory location X
function of R
ADD R3,R1 :R3=R3 + Rl
LCMP R1,R4 ;Joad the 2’s complement of (R4) to R1
SUB R1,R2 '‘R1 = R1 + R2
COMP R1,R3 ;compare Rl with R3
X3 ;any compoundable instruction
X4 ,any compoundable instruction
TABLE 11
X1 ;any instruction
X2 ,any instruction
LLOAD R1.(Y) load R1 from memory location Y
ADD R4,R2 'R4 = R4 + R2
LOAD Ri,(X|R1]) :load R1 from memory location X
function of R
ADD R3,R1 ‘R3 = R3 + Rl
LCMP R1,R4 :load the 2’s complement of (R4) to R1
SUB R1,R2 'R1 =Rl + R2
COMP R1,R3 ,compare R1 with R3
X3 ,any compoundable instruction
X4 ,any compoundable instruction

While scheduling techniques may relieve some hazards
resulting in performance improvements, not all hazards can
be relieved. For data dependencies that cannot be relieved by
scheduling, solutions have been proposed. These proposals
execute multiple operations in parallel. According to one
proposal, an instruction stream is analyzed based on hard-
ware utilization and grouped into a compound instruction for
issuc as a single unit. This approach differs from a “super-
scalar machine” in which a number of instructions are
grouped strictly on a first-in-first-out basis for simultaneous
issue. Assuming the hardiware is designed to support the
simultaneous issue of two instructions, a compound instruc-

tion machine would pair the instruction sequence of Table 11
as follows: (—X1) (X2 LOAD) (ADD LOAD) (ADD LCMP)

(SUB COMP) (X3,X4), thereby avoiding the data depen-
dency between the second LOAD instruction and the second
ADD instruction. A comparable superscalar machine, how-
ever, would issue the following instruction pairs: (X1.X2)
(LOAD,ADD) (LOAD,ADD) (LCMP SUB) (COMP X3)
(X4-) incurring the penalty of the LOAD-ADD data depen-
dency.

A second solution for the relief of data dependency
interlocks has been proposed in Computer Architecture
News, March, 1988, by the article entitled “The WM Com-
puter Architecture,” by W. A. Wulf. The WM Computer
Architecture proposes:

I. architecting an instruction set that imbeds more than one
operation into a single instruction;

2. allowing register interlocks within an architected instruc-
tion; and



Re. 35,311

3

3. concatenating two ALU’s as shown in FIG. 1 to collapse
interlocks within a single instruction.

Obviously, in Wulf’s proposal, new instructions must be
architected for all instruction sequence pairs whose inter-
locks are to be collapsed. This results in either a prohibitive
number of opcodes being defined for the new instruction set,
or a limit, bounded by the number mf opcodes available,
being placed upon the number of operation sequences whose
interlocks can be collapsed. In addition, this scheme may not
be object code compatible with earlier implementations of
an architecture. Other drawbacks for this scheme include the
requirement of two ALUs whose concatenation can result in
the execution of a multiple operation instruction requiring
close to twice the execution time of a single instruction.
Such an increase in execution time would reflect into an
increase 1n the cycle time of the machine and unnecessarily
penalize all instruction executions.

In the case where an existing machine has been archi-
tected to sequentially issue and execute a given set of
instructions, 1t would be beneficial to employ parallelism in
istruction issuing and execution. Parallel issue and execu-
tion would increase the throughput of the machine. Further,
the benefits of such parallelism should be maximized by
minimization of instruction execution latency resulting from
data dependency hazards in the instruction pipeline. Thus,
the adaptation to parallelism should provide for the reduc-
tion of such latency by collapsing interlocks due to these
hazards. However, these benefits should be enjoyed without
having to pay the costs resulting from architectural changes
to the existing machine, creating a new instruction set to
provide all possible instruction pairs and their combinations
possessing interlocks, and adding a great deal of hardware.
Further, the adaptation should present a modest or no impact
on the cycle time of the machine.

SUMMARY OF THE INVENTION

The invention achieves these objectives in providing a
computer architected for serial execution of a sequence of
scalar operations with an apparatus for simultaneously
executing a plurality of scalar instructions in a single
machine cycle. The apparatus is one which collapses data
dependency between simultaneously-executed instructions,
which means that a pair of instructions can be executed even
when one of the pair requires as an operand the result
produced by execution of the other of the pair of instruc-
tions.

In this invention, the apparatus for collapsing data depen-
dency while simultaneously executing a plurality of scalar
instructions includes a provision for receiving a plurality of
scalar instructions to be concurrently executed and informa-
tion as to an order of execution of those instructions, a
second of the scalar instructions using as an operand the
result produced by execution of a first of the scalar instruc-
tions. The apparatus further has provision for receiving three
operands which are used by the first and second scalar
instructions and has a control component connected to the
provision for receiving the instructions which generates
control signals that indicate operations which execute the
plurality of scalar instructions and which indicate the order
of their execution. A multi-function ALU is connected to the
operands and to the control provisions and responds to the
control signals and the operands by producing, in parallel
with execution of the first instruction, a single result corre-
sponding to execution of the second instruction.

Viewed from another aspect, the invention is an apparatus
which supports simultaneous execution of a plurality of

10

15

20

25

30

35

45

50

55

65

4

scalar instructions where a result produced by a first of the
simultaneously executing instructions is used as an operand
in a second of the simultaneously executing instructions.
The apparatus executes the second instruction in parallel
with execution of the first instruction by provision of a data
dependency-collapsing ALU which has provision for receiv-
ing three operands which are used by the first and second
instruction to provide the result of the second instruction
concurrently with the result of the first instruction.

It 1s therefore a primary object of this invention to provide
an apparatus which facilitates the execution of instructions
in parallel to increase existing computer performance.

A significant advantage of the apparatus is the reduction
of instruction execution latency that results from data depen-
dency hazards existing in the executed instructions.

An objective in this apparatus is to collapse the interlocks
due to data dependency hazards existing between instruc-
tions which are executed in parallel.

These objectives and advantages are achieved, with a
concomitant improvement in performance and instruction
execution by an apparatus which is compatible with the
scalar computer designed for sequential execution of the
Instructions.

The achievement of these and other objectives and advan-
tages will be appreciated when the following detailed
description is read with reference to the below-described
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1llustrates a prior art architecture for execution of
an instruction which pairs operations.

FIG. 2 is a set of timing sequences which illustrate
pipelined execution of scalar instructions.

FIG. 3 1s an illustration of an adder which accepts up to
three operands and produces a single result.

FIGS. 4A and 4B illustrate categorization of instructions
executed by an existing scalar machine.

FIG. 5 illustrates functions produced by interlocking
cases where logical and add-type instructions in category 1
of FIG. 4A are combined.

FIGS. 6A and 6B specify the operations required to be
performed on operands by an ALU according to the inven-

tion to support instructions contained in compoundable
categories in FIGS. 4A and 4B.

FIGS. 7A and 7B summarize the routing of operands to an
ALU defined in FIGS. 6A and 6B.

FIG. 8 is a block diagram showing how the invention is
used to effect parallel execution of two interlocking instruc-
tions.

FIG. 9 is a multi-function ALU defined by FIGS. 6A, 6B,
7A, and 7B.

FIG. 10 illustrates functions requiring implementation to
collapse interlocks inherent in hazards encountered in
address generation.

FIG. 11 1s a logic diagram illustrating a multi-function
ALU according to FIG. 10.

FIG. 12 lays out the functions supported by an ALU to
collapse interlocks in compounded branching instructions.

FIG. 13 is a logic diagram illustrating an ALU according
to FIG. 12.

FIG. 14 illustrates an adder configuration required to
collapse interlocks for instructions involving nine operands.



Re. 35,311

S

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the discussion which follows, the term “machine cycle”
refers to the pipeline steps necessary to execute an 1nstruc-
tion. A machine cycle includes individual intervals which
correspond to pipeline stages. A “scalar instruction”™ is an
instruction which is executed using scalar operands. Scalar
operands are operands representing single-valued quantities.
The term “compounding” refers to the grouping of instruc-
tions contained in a sequence of instructions, the grouping
being for the purpose of concurrent or parallel execution of
the grouped instructions. At minimum, compounding 1S
represented by “pairing” of two instructions for simulta-
neous execution. In the invention being described, com-
pounded instructions are unaltered from the forms they have
when presented for scalar execution. As explained below,
compounded instructions are accompanied by “tags”, that 1s,
bits appended to the grouped instructions which denote the
grouping of the instructions for parallel execution. Thus, the
bits indicate the beginning and end of a compound instruc-
tion.

In the sections to follow an improved hardware solution
to relieve execution unit interlocks that cannot be relieved
using prior art techniques will be described. The goal 1s to
minimize the hardware required to relieve these interlocks
and to incur only a modest or no penalty to the cycle time
from the added hardware. No architectural changes are
required to implement this solution; therefore, object code
compatibility 1s maintained for an existing architecture.

The presumed existing architecture is exemplified by a
sequential scalar machine such as the System/370 available
from the International Business Machines Corporation, the
assignee of this application. In this regard, such a system can
include the System/370, the System/370 extended architec-
ture (370-XA), and the System/370 enterprise systems archi-
tecture (370-ESA). Reference is given here to the Principles
of Operation of the IBM System/370, publication number
GA22-7000-10, 1987, and to the Principles of Operation,
IBM Enterprise Systems Architecture/370, publication num-
ber SA22-7200-0, 1988.

The instruction set for these existing System/370 scalar
architectures is well known. These instructions are scalar
instructions in that they are executed by operations per-
formed on scalar operands. References given hereinbelow to

particular instructions in the set of instructions executed by
the above-described machines are presented in the usual
assembly-level form.

Assume the following sequence of instructions is to be
executed by a superscalar machine capable of executing four
instructions per cycle:

TABLE III
(1) LOAD R1, X load the content of X to R1
(2) ADD R1, R2 add Rl to R2 and put the resuit in R1
(3) SUB R1, R3 subtract R3 from R1 and put the
result 1n
(4) STORE R1,Y store the result in memory location Y

Despite the capability of multiple instruction execution
per cycle, the superscalar machine will execute the above
sequence serially because of instruction interlocks. It has
been suggested based on analysis of program traces, that
interlocks occur approximately one third of the time. Thus
much of the superscalar machine’s resources will be wasted,
causing the superscalar’s performance to degrade. The
superscalar machine performance of interlocked scalar

10

15

20

25

30

35

45

50

35

63

6

instructions is illustrated by the timing sequence indicated
by reference numeral 8 in FIG. 2. In this figure, the pipeline
structure for the instructions of

Table III 1s assumed to be as follows:
(1) LOAD:ID AG CA PA
(2) and (3) ADD and SUBTRACT:ID EX PA
where ID is instruction decode and register access, AG ts
operand address generation, CA represents cache access, EX
represents execute, and PA (put away) represents writing the
result into a register. To simplify exposition all examples
provided in this description assume, unless explicitly stated,
that bypassing is not implemented. In the superscalar
machine, the execution of the instruction stream is serialized
due to instruction interlocks reducing the performance of the
superscalar to that of a scalar machine.

In FIG. 2, instructions (2) and (3) requirc no address
generation (AG). However, this stage of the pipeline must be
accounted for. Hence the unlabeled intervals 7 and 9. This
convention holds also for the other three sequences in FIG.
2.

The above example demonstrates that instruction inter-
locks can constrain the parallelism that is available at the
instruction level for exploitation by a superscalar machine.
Performance can be gained with pipelining and bypassing of
the results of one interlocked instruction to the other;
nevertheless, the execution of interlocked instructions must
be serialized.

COMPOUND INSTRUCTIONS

If loss of execution cycles due to interlocks is to be
avoided, the interlocked instructions must be executed in
“parallel” and viewed as a unique instruction. This leads to
the concept of a compounded interlocked instruction, a set
of scalar instructions that are to be treated as a single unique
instruction despite the occurrence of interlocks. A destrable
characteristic of the hardware executing a compounded
instruction is that its execution requires no more cycles than
required by one of the compounded instructions. As a
consequence of instruction compounding and its desired
characteristics, a compound instruction set machine must
view scalar instructions by hardware utilization rather than
opcode description.

EXECUTION OF INTERLOCKED
INSTRUCTIONS

The concepts of compounded interlocked instructions can
be clarified using the ADD and SUB 1instructions in Table H1.
These two instructions can be viewed as a unique instruction
type because they utilize the same hardware. Consequently
they are combined and executed as one instruction. To
exploit parallelism their execution requires the execution of:

R1=R1+R2-R3
in one cycle rather than the execution of the sequence:

R1=R1+R2
R1=R1-R3

which requires more than one cycle to execute. The interlock
can be eliminated because the add and subtract utilize
identical hardware. Moreover, by employing an ALU which
utilizes a carry save adder, CSA, and a carry look-ahead
adder, CLA, as shown in FIG. 3, the combined instruction
R1+R2-R3 can be executed in one cycle provided that the



Re. 35,311

7

ALU has been designed to execute a three-to-one addition/
subtraction function.

As should be evident, the combined form (R1+R2-R3)
corresponds to rewriting the two operands of the second
instruction in terms of three operands, thereby implying the
requirement of an adder which can execute the second
instruction in response to three operands.

In FIG. 3, the carry save adder (CSA) is indicated by
reference numeral 10. The CSA 10 is conventional in all
respects and receives three operands to produce two results,
a sum (5) on output 12 and a carry (C) on output 14. For the
example given above, the inputs to the CSA 10 are the
operands contained in the three registers R1, R2, and R3
(complemented). The outputs of the CSA 10 are staged at 16
and 17 for the provision of a leading “1” or “0” (a “hot” 1
or 0) on the carry value by way of input 20. The value on
input 20 is set conventionally according to the function to be
performed by the CSA 10.

The sum and carry (with appended 1 or 0) outputs of the
CSA 10 are provided as the two inputs to the carry look-
ahead adder (CLA) 22. The CLA 22 also conventionally
receives a “hot” 1 or O on input 24 according to the desired
operation and produces a result on 26. In FIG. 3 the result
produced by CLA 22 is the combination of the contents of
the three registers R1, R2 and R3 (complemented).

Carry save and carry look-ahead adders are conventional
components whose structures and functions are well known.
Hwang in his COMPUTER ARITHMETIC: Principles,
Architecture and Design, 1979, describes carry look-ahead
adders at length on pages 88-93 and carry save adders on
pages 97-100.

Despite the three-to-one addition requiring an extra stage,
the CSA in FIG. 3, in the critical path of the ALU, such a
stage should not compromise the cycle time of the machine
since the length of other paths usually exceed that of the
ALU. These cntical paths are usually found in paths pos-
sessing an array access, address generation which requires a
three-to-one ALU and a chip crossing; therefore, the extra
stage delay 1s not prohibitive and the proposed scheme will
result in performance improvements when compared to
scalar or superscalar machines. The performance improve-
ment 1S shown in FIG. 2 by the set of pipelined plots
indicated by reference numeral 26. These plots show the
execution of the instruction sequence under consideration by
a compound instruction set machine which includes an ALLU
with an adder configured as illustrated in FIG. 3.

As shown by the timing sequences 8 and 26 of FIG. 2,
execution of the sequence by the compound instruction set
machine requires eight cycles or two cycles per instruction,
CPI, as compared to the 11 cycles or 2.75 CPI achievable by
the scalar and superscalar machines. If bypassing is assumed
to be supported in all of the machines, plot sets 28 and 30
of FIG. 2 describe the execution achievable with the scalar/
superscalar machines and the compound instruction set
machine respectively. From these sets, the superscalar
machine requires eight cycles or two CPI to execute the
example code while the compound instruction set machine
requires six cycles or 1.5 CPl. The advantage of the com-
pounded machine over both superscalar and scalar machines
should be noted along with the lack of advantage of the
superscalar machine over the scalar for the assumed instruc-
tion sequence.

Compounding of instructions with their simultaneous
execution by hardware is not limited to arithmetic opera-
tions. For example, most logical operations can be com-
pounded in a manner analogous to that for arithmetic
operations. Also, most logical operations can be com-

10

15

20

25

30

35

45

50

35

60

65

8

pounded with arithmetic operations. Compounding of some
instructions, however, could result in stretching the cycle
time because unacceptable delays must be incurred to per-
form the compounded function. For example, an ADD-
SHIFT compound instruction may stretch the cycle time
prohibitively which would compromise the overall perfor-
mance gain. The frequency of interlocks between these
instructions, however, is low given the low frequency of
occurrence of shift instructions; therefore, they can be
executed senally without substantial performance loss.

As described previously, data hazard interlocks occur
when a register or memory location is written and then read
by a subsequent instruction. The proposed apparatus of this
invention collapses these interlocks by deriving new func-
tions that arise from combining the execution of instructions
whose operands present data hazards while retaining the
execution of functions inherent in the instruction set.
Though some instruction and operand combinations would
not be expected to occur in a functioning program, all
combinations are considered. In general all the functions
derived from the above analysis as well as the functions

arising from a scalar implementation of the instruction set
would be implemented. In practice, however, certain func-
tions arise whose implementation is not well suited to the
scheme proposed for this apparatus. The following presen-
tation elucidates these concepts by discussing how new
functions arise from combining the execution of two instruc-
ttons. Examples of instruction sequences that are well
handled according to the invention are presented along with
some sequences that are not handled well. A logical diagram
of the preferred embodiment of the invention is shown.

The apparatus of the invention is proposed to facilitate the
parallel 1ssue and execution of instructions. An example of
1ssuing instructions in parallel is found in the superscalar
machine of the prior art; the invention of this application
facilitates the parallel execution of issued instructions which
include interlocks. The use of the data dependency collaps-
ing hardware of this invention, however, is not limited to any
particular i1ssue and execution architecture but has general
applicability to schemes that issue multiple instructions per
cycle.

To provide a hardware platform for the present discussion
a System/370 instruction level architecture is assumed in
which up to two instructions can be issued per cycle. The use
of these assumptions, however, neither constrains these
concepts to a System/370 architecture nor to two-way par-
allelism. The discussion is broken into sections cover ALU
operations, memory address generation, and branch deter-
mination.

In general, the System/370 instruction set can be broken
into categonies of instructions that may be executed in
parallel. Instructions within these categories may be com-
bined or compounded to form a compound instruction. The
below-described apparatus of the invention supports the
execution of compounded instructions in parallel and
ensures that interlocks existing between members of a
compound instruction will be accommodated while the
instructions are simultaneously executed. For example, the
System/370 architecture can be partitioned into the catego-
ries 1llustrated in FIGS. 4A and 4B.

Rationale for this categorization was based on the func-
tional requirements of the System/370 instructions and their
hardware utilization. The rest of the System/370 instructions
are not considered to be compounded for execution in this
discussion. This does not preclude them from being com-
pounded on a future compound instruction execution engine
and possibly use the conclusions of interlock “avoidance” as
presented by the present paper.



Re. 35,311

9

Consider the instructions contained in category 1 com-
pounded with instructions from that same category as exem-
plified in the following instruction sequence:

AR R1,R2
SR R3,R4

This sequence, which is free of data hazard interlocks,

produces the results:

R1=R1+R2
R3=R3}+R4

which comprise two independent instructions specified by
the 370 instruction level architecture. Executing such a
sequence would require two independent and parallel two-
to-one ALU’s designed to the instruction level architecture.
These results can be generalized to all instructions sequence
pairs that are free of data hazard interlocks in which both
instructions specify an ALU operation. Two ALU’s are
sufficient to execute instructions issued in pairs since each
instruction specifies at most one ALU operation.

Many instruction sequences, however, are not free of data
hazard interlocks. These data hazard interlocks lead to
pipeline bubbles which degrade the performance in a typical
pipeline design. A solution for increasing processor perfor-
mance is to eliminate these bubbles from the pipeline by
provision of a single ALU that can accommodate data
hazard interlocks. To eliminate these interlocks, the ALU
must execute new functions arising from instruction pairing
and operand conflicts. The functions that arise depend on the
ALU operations specified, the sequence of these operations,
and operand “conflicts” between the operations (the mean-
ing of the term operand conflicts will become apparent in the
following discussion). All instruction sequences that can be
produced by pairing instructions that are contained within
the compoundable list given earlier in this section and will
specify an ALU operation must be analyzed for all possible
operand conflicts.

INTERLOCK-COLLAPSING ALU

The general framework for collapsing interlocks accord-
ing to the invention has been presented above. The following
presents a more concrete example of the analyses to be
performed in determining the requirements of an interlock
collapsing ALU. Assume the existence of a three-to-one
adder as described above in reference to FIG. 3. Let OP1 and

OP2 represent respectively the first and second of two
operations to be executed. For instance, for the following

sequence of instructions,

NR R1 R2

AR R3,R4

OP1 corresponds to the operation NR while OP2 corre-
sponds to the operation AR (see below for a description of
these operations). Let A10, All, and Al2 represent the
inputs corresponding to (R1), (R2), and (R3) respectively of
the three-to-one adder in FIG. 3. Consider the analysis of
compounding the set of instructions (NR, OR, XR, AR,
ALR, SLR, SR), a subset of category 1 as defined in FIGS.
4A and 4B. The operations of this set of instructions are
specified by:

NR Bitwise Logical AND represented by A
OR Bitwise Logical OR represented by V
XR Bitwise Exclusive OR represented by &
AR 32 bit signed addition represented by +
ALR 32 bit unsigned addition represented by +

10

15

20

25

30

35

45

50

55

65

-continued
SR 32 bit signed subtraction represented by —
SLR 32 bit unsigned subtraction represented by —

This instruction set can be divided into two sets for further
consideration. The first set would include the logical instruc-
tions NR, OR and XR, and the second set would include the
arithmetic instructions, AR, ALR, SR, and SLR. The group-
ing of the arithmetics can be justified as follows. The AR and
ALR can both be viewed as an implicit 33 bit 2’s comple-
ment addition by using sign extension for AR and O exten-
sion for ALR and providing a hot ‘0’ to the adder. Though
the setting of condition code and overflow are unique for
each instruction, the operation performed by the adder, a
binary addition, is common to both instructions. Similarly,
SR and SLR can be viewed as an implicit 33 bit 2’s
complement addition by using sign extension for SR and 0
extension for SLR, inverting the subtrahend, and providing
a hot ‘1’ to the adder. The inversion of the subtrahend is
considered to be external to the adder. Because the four
arithmetic operations essentially perform the same opera-
tion, a binary add, they will be referred to as ADD-type
instructions while the logical operations will be referred to
as LOGICAL-type instructions.

As a result of the reduction of the above instruction set to
two operations, the following sequences of operations must

be considered to analyze the compounding of this instruction
set:

LOGICAL followed by ADD

ADD followed by LOGICAL

LOGICAL followed by LOGICAL

ADD followed by ADD.

For each of these sequences, all combinations of registers
must be considered. The combinations are all four register
specifications are different plus the number of ways out of
four possible register specifications that: 1) two are the
same; 2) threec are the same; and 3) four are the same. The
number of combinations, therefore, can be expressed as:

4
Number of combinations =1 + 22 4C)
1=

where ,C, represents n combined r at a time. But,
C,=n!/((n—r1)!r!)

from which formulas the number of combinations can be

found to be 12. These 12 register combinations are:
1.R1#£R2£R3#R4

2.R1=R2£R3+#R4
3.R2=R3+#R1+R4
4 R2=R4+#R1#R3
5.R3=R4#R1+R2
6.R2=R3=R4+#R1
7.R1=R3#R2+#R4
8.R1=R4#R2+R3
9.R1=R2=R3+#R4
10.R1=R2=R4+R3
11.R1=R3=R4#R2
12.R1=R2=R3=R4

Of these combinations, only seven through twelve gtve
ris¢ to data dependency interlocks. The functions produced
by the above interlocking cases for the LOGICAL-ADD
sequences listed earlier are given in FIG. 3. In this Figure,
the LOGICAL-type operations are designated by an ¢ and
the ADD-type operations are denoted by C.



Re. 35,311

11

While FIG. 5 specifies the operations that must be per-
formed on the operands of ADD-type and LOGICAL-type
instructions to collapse the interlocks, FIGS. 6A and 6B
specify the ALU operations required to be performed on the
ALU inputs AlIQ, AlIl, and AI2 to support all 370 instructions
that are contained in the compoundable categories of FIGS.
4A and 4B. In FIGS. 6A and 6B a unary — indicates 2’s
complement and /x/ indicates the absolute value of x. This
Figure was derived using an analysis identical to that given
above; however, all possible category compoundings were
considered. For the operations of FIG. 5 to be executed by
the ALU, the execution unit controls must route the desired
register contents to the appropriate inputs of the ALU. FIGS.
7A and 7B summarize the routing of the operands that needs
to occur for the ALU defined as in FIGS. 6A and 6B to
perform the operations of FIG. 5. Along with these routings,
the LOGICAL and ADD-type instructions have been given
to facilitate the mapping of these results to FIGS. 6A and 6B.
Routing for some ADD-ADD compoundings were not
included since these operations require a four input ALU
(see “Idiosyncarasies”) and are so noted.

Wile the description thus far has focused the consideration
of compound instruction analysis on four specifically-enu-
merated registers, R1, R2, R3, R4, it should be evident that
the practice of the invention is not limited to any four
specific registers. Rather, selection of these designations is
merely an aid to analysis and understanding. In fact, it
should be evident that the analysis can be generalized, as
implied by the equations given above.

A logical block diagram illustrating an apparatus for
implementing the multifunctional ALU described essentially
1n FIGS. §, 6A, 6B, 7A, and 7B is illstrated in FIG. 8. In FIG.
8, a register 50 receives a compound instruction including
instructions 52 and 54. The compounded instructions have
appended tags 56 and 58. The instructions and their tags are
provided to decode and control logic 60 which decodes the
instructions and the information contained in their tags to
provide register select signals on output 62 and function
select signals on output 66. The register select signals on
output 62 configure a cross-connect element 64 which is
connected to general purpose registers 63 to provide the

contents of up to three registers to the three operand inputs
AlQ, AIl, AI2 of a data dependency collapsing ALU 65. The
ALU 65 1s a multi-function ALU whose functionality is
selected by function select signals provided on the output 66
of the decode and control logic 60. With operands provided
from the registers connected through the cross-connect 64,
the ALU 65 will perform the functions indicated by the
function select signals produce a result on output 67.

Operating in parallel with the above-described ALU appa-
ratus 1s a second ALU apparatus including decode and
control logic [70] 870 which decodes the first instruction in
the instruction field 52 to provide register select signals to a
conventional cross connect 872 which is also connected to
the general purpose registers 63. The logic 870 also provides
function select signals on output 874 to a conventional
two-operand ALU 875. This ALU apparatus is provided for
execution of the instruction in instruction field 52, while the
second instruction in instruction ficld 54 is executed by the
ALU 65. As described below, the ALU 65 can execute the
second instruction whether or not one of its operands
depends upon result data produced by execution of the first
instruction. Both ALUs therefore operate in parallel to
provide concurrent execution of two instructions, whether or
not compounded.

10

15

20

25

30

35

40

45

30

55

60

65

12

Returning to the compounded instructions 52 and 54 and
the register 50, the existence of a compounder is presumed.
It 1s asserted that the compounder pairs or compounds the
instructions from an instruction stream including a sequence
of scalar instructions input to a scalar computing machine in
which the compounder resides. The compounder groups
instructions according to the discussion above. For example,
category 1 instructions (FIG. 5) are grouped in logical/add,
add/logical, logical/logical, and add/add pairs in accordance
with Table 5. To each instruction of a compound set there is
added a tag containing control information. The tag includes
compounding bits which refer to the part of a tag used
specifically to identify groups of compound instructions.
Preferably, in the case of compounding two instructions, the
following procedure is used to indicate where compounding
occurs. In the System/370 machines, all instructions are
aligned on a half word boundary and their lengths are either
2, 4 or 6 bytes. In this case, a compounding tag is needed for
every half word. A one-bit tag is sufficient to indicate
whether an instruction is or is not compounded. Preferably,
a “‘1” indicates that the instruction that begins in a byte under
consideration i1s compounded with the following instruction.
A 0" 1ndicates no compounding. The compounding bit
associated with half words hat do not contain the first byte
of an 1nstruction 1s ignored. The compounding bit for the
first byte of the second instruction in the compound pair is
also 1gnored. Consequently, only one bit of information is
needed to identify and appropriately execute compounded
instructions. Thus, the tag bits 56 and 58 are sufficient to
inform the decode and control logic 60 that the instructions
in register fields 82 and 54 are to be compounded, that is
executed 1n parallel. The decode and control logic 60 then
inspects the instructions 52 and 54 to determine what their
execution sequence 1s, what interlock conditions, if any
obtain, and what functions are required. This determination
1s illustrated for category 1 instructions in FIG. 5. The
decode and control logic also determines the funcnons
required to collapse any data hazard interlock as per FIGS.
6A and 6B. These determinations are consolidated in FIGS.
7A and 7B. In FIGS. 7A and 7B, assuming that the decode
and control logic 60 has, from the tag bits, determined that

instructions in fields 52 and 54, are to be compounded, the
logic 60 sends out a function select signal on output 66

indicating the desired operation according to the left-most
column of FIG. 7A. The OP codes of the instructions are
explicitly decoded to provide, in the function select output,
the specific operations in the columns headed OP1 and OP2
of FIGS. 7A and 7B. The register select signals on output 62
route the registers in FIG. 8 by way of the cross-connect 64
as required 1n the AlQO, All, and AI2 columns of FIGS. 7A
and 7B. Thus, for example, assume that the first instruction
in field 52 1s ADD R1, R2, and that the second instruction
1s ADD R1,R4. The eighteenth line in FIG. 7A shows the
ALU operations which the decode and control circuit indi-
cates by OP1=+ and OP2=+, while register R2 is routed to
input AlQ, regtster R4 to input AIl, and register R1 to input
Al2.

Refer now to FIG. 9 for an understanding of the structure
and operation of the data dependency collapsing ALU 65. In
FIG. 9, a three-operand, single-result adder 70, correspond-
ing to the adder of FIG. 3 is shown. The adder 70 obtains
inputs through circuits connected between the adder inputs
and the ALU inputs AIQ, All, and AI2. From the input Al2,
an operand i1s routed through three logic functional elements
71, 72 and 73 corresponding to logical AND, logical OR,
and logical EXCLUSIVE-OR, respectively. This operand is
combined in these logical elements with one of the other



Re. 35,311

13

operands and routed to AI0 or AIl according to the setting
of the multiplexer 80. The multiplexer 75 selects either the
unaltered operand connected to AI2 or the output of one of
the logical elements 71, 72, or 73. The input selected by the
multiplexer 75 is provided to an inverter 77, and the mul-
tiplexer 78 connects to one input of the adder 70 either the
output of the inverter 77 or the uninverted output of the
multiplexer 75. The second input to the adder 70 1s obtained
from ALU input AIl by way of a multiplexer 82 which
selects either “0” or the operand connected to ALU input
AIl. The output of the multiplexer is inverted through
inverter 84 and the multiplexer 85 sclects either the nonin-
verted or the inverted output of the multiplexer 82 as a
second operand input to the adder 70. The third input to the
adder 70 is obtained from input AI0 which is inverted
through inverter 87. The multiplexer 88 selects either “07,
the operand input to Al0, or its inverse provided as a third
input to the adder 70. The ALU output 1s obtained through
the multiplexer 95 which selects the output of the adder 70
or the output of one of the logical elements 90, 92 or 93. The
logical elements 90, 92, and 93 combine the output of the
adder by means of the indicated logical operation with the
operand input to All.

It should be evident that the function select signal consists
essentially of the multiplexer select signals ABCDEFG
and the “hot” 1/0 selections input to the adder 70. It will be
evident that the multiplexer select signals range from a
single bit for signals A, B, E, and F to two-bit signals for C,
D, and G.

The states of the complex control signall ( ABCDEFG
1/0 1/0) are easily derived from FIG. 7A and 7B. For
example, following the ADD R1, R2 ADD R1, R4 example
given above, the OP1 signal would set multiplexer signal C
to select the signal present on AI2, while the F signal would
select the noninverted output of the multiplexer 75, thereby
providing the operand in R1 to the right-most input of the
adder 70. Similarly, the multiplexer signals B and E would
be set to provide the operand available at All in uninverted
form to the middle input of the adder 70, while the multi-
plexer signal D would be set to provide the operand at AI0
to the left-most input of the adder 70, without inversion.
Last, the two “I/O” inputs are set appropriately for the two
add operations. With these inputs, the output of the adder 70
1s simply the sum of the three operands, which corresponds
to the desired output of the ALU. Therefore, the control
signal G would be set so that the multiplexer 95 would
output the result produced by the adder 70, which would be
the sum of the operands in registers R1, R2, and R3.

When instruction compounding a logical/add sequence,
the logical function would be selected by the multiplexer 75
and provided through the multiplexer 78 to the adder 70,
while the operand to be added to the logical operation would
be guided through one of the multiplexers 835 or 88 to one of
the other inputs of the adder 70, with a 0 being provided to
the third input. In this case, the multiplexer 95 would be set
to select the output of the adder 70 as the result.

Last, in an add/logical compound sequence, the two
operands to be first added will be guided to two of the inputs
of the adder 70, while the O will be provided to the third
input. The output of the adder is instantaneously combined
with the non-selected operand in logical elements 90, 92 and

93. The control signal G will be set to select the output of the
element whose operation corresponds to the second instruc-
tion of the compound set.

More generally, FIG. 9 presents a logical representation of
the data dependency collapsing ALU 65. In deriving this
dataflow, the decision was made to not support interlocks 1n
which the result of the first instruction 1s used as both
operands of the second instruction. More discussion of this
can be found in the “ldiosyncrasies” section. That this

10

13

20

23

30

35

45

50

35

65

14

representation implements the other operations required by
LOGICAL-ADD cormpoundings can be seen by comparing
the dataflow with the function column of FIG. §. In this
column, a LOGICAL-type operation upon two operands is
followed by an ADD-type operation between the LOGICAL
result and a third operand. This is performed by routing the
operands to be logically combined to AIQ and AI2 of FIG.
9 and through the appropriate one of logical blocks 71, 72,
or 73, routing this result to the adder 70, and routing the third
operand through All to the adder. Inversions and provision
of hot 1’s or O’'s are provided as part of the function select
signal as required by the arithmetic operation specified. In
other cases, an ADD-type operation between two operands
is followed by a LOGICAL-type operation between the
result of the ADD-type and a third operand. This 1s per-
formed by routing the operands for the ADD-type operation
to AI0 and AI2, routing these inputs to the adder, routing the
output of the adder to the post-adder logical blocks 90, 92
and 93, and routing the third operand through AI3 to these
post-adder logical blocks. LOGICAL-type followed by
LOGICAL-type operations are performed by routing the two
operands for the first LOGICAL-type to AI0 and AI2 which
are routed to the pre-adder logical blocks, routing the results
from the pre-adder logical blocks through the ALU without
modification bv addition to zero to the post-adder logical
block, and routing the third operand through AI3 to the
post-adder logical block. For an ADD-type operation fol-
lowed by an ADD-type operation, the three operands are
routed to the inputs of the adder, and the output of the adder
is presented to the output of the ALU.

The operation of the ALU 65 to execute the second
instruction in instruction field 54 when there is no data
dependency between the first and second instructions is
straightforward. In this case, only two operands are provided
to the ALU. Therefore, if the second instruction is an add
instruction, the two operands will be provided to the adder
70, together with a zero in the place of the third operand,
with the output of the adder being selected through the
multiplexer 95 as the output of the ALU. If the second
instruction 1s a logical instruction, the logical operation can
be performed by routing the two operands to the logical
elements 71, 72, and 73, selecting the appropriate output,
and then flowing the result through the adder 70 by provid-
ing zeros to the other two adder inputs. In this case, the
output of the adder would be equal to the logical result and
would be selected by the multiplexer 95 as the output of the
ALU. Alternatively, one operand can be flowed through the
adder by addition of two zeros, which will result in the adder
70 providing this operand as an output. This operand is
combined with the other operand in the logical elements 90,
92, and 93, with the appropriate logical element output being
selected by the multiplexer 95 as the output of the ALU.

When instructions are compounded as illustrated in FIG.
8, whether or not dependency exists, the instruction in
instruction field 52 of register 50 will be conventionally
executed by decoding of the instruction 870, 874, selection
of its operands by 70, 871, 872, and performance of the
selected operation on the selected operands in the ALU 873.
Since the ALU 875 is provided for execution of a single
instruction, two operands are provided from the selected
register through the inputs AIQ and AIl, with the indicated
result being provided on the output 877.

Thus, with the configuration illustrated in FIG. 8, the data
dependency collapsing ALLU 65, in combination with the
conventional ALU 873 supports the concurrent (or, parallel)
execution of two instructions, even when a data dependency
exists between the instructions.



Re. 35,311

15
AHAZ-COLLAPSING ALU

Address generation can also be affected by data hazards
which will be referred to as address hazards, AHAZ. The
following sequence represents a compounded sequence of

System/370 instructions that i1s free of address hazards:
AR R1,R2

S R3,D(R4,R5)

where D represents a three nibble displacement. No AHAZ
exists since R4 and RS which are used in the address
calculation were not altered by the preceding instruction.

Address hazards do exist in the following sequences:
AR R1,R2

S R3,D(R1,RS)
AR R1,R2
S R3,D(R4,R1)

The above sequences demonstrate the compounding of an
RR 1instruction (category 1 in FIG. §) with RX instructions
(category 9) presenting AHAZ. Other combinations include
RR instructions compounded with RS and SI instructions.

For an interlock collapsing ALU, new operations arising
from collapsing AHAZ interlocks must be derived by ana-
lyzing all combinations of instruction sequences and address
operand conflicts. Analysis indicates that common inter-
locks, such as the ones contained in the above instruction
sequences, can be collapsed with a four-to-one ALU.

The functions that would have to be supported by an ALU
to collapse all AHAZ interlocks for a System/370 instruction
level architecture are listed in FIG. 10. For those cases where
four inputs are not specified, an implicit zero is to be
provided. The logical diagram of an AHAZ interlock col-
lapsing ALU defined by FIG. 10 is given in FIG. 11. A large
subset, but not all, of the functions specified in FIG. 10 are
supported by the 1llustrated AL U. This subset consists of the
functions given in rows one to 21 of FIG. 10. The decision
as to which functions to include is an implementation
decision whose discussion is deferred to the “Idiosyncra-
sies’ section.

As FIG. 11 shows, the illustrated ALU includes an adder
100 in which two three-input, two-output carry save adders
101 and 102 are cascaded with a two-input, single-output
carry look ahead adder 103 in such a manner that the adder
100 1s effectively a four-operand, single-result adder neces-
sary for operation of the ALU in FIG. 11.

In generating FIG. 10, the complexity of the ALU struc-
ture was simplified at the expense of the control logic. This
is best explained by example. Consider the two following
System/370 instruction sequences:

NR R1,R2 4)

S R3,D(R1,RS)

and

NR R1,R2 (5)

S R3,D(R4,R1).

Let the general notation for this sequence be

NR rl1,r2

S r3,D(R4,RS).

For the first sequence, the address of the operand is:

OA=D+(RI1NR2}+5
while that for the second sequence 1s:
OA=D+R4+(R1NR2)

To simplify the execution controls at the expense of ALU

complexity, the following two operations would need to be
executed by the ALU:

OA=AGI0+(AGIINAG12)+AG13

10

15

20

25

30

35

45

50

55

65

16

OA=AGI10+AGI12+(AG11INAGLI)

in which D is fed to AGIO, r2 is fed to AGI1, r4 is fed to
AGI2 and rS 1s supplied to AGI3. The ALU could be
simplified however if the controls detect which of r4 and 5
possess a hazard with rl and dynamically route this register
to AGI2. The other register would be fed to AGI3. For this
assumption, the ALU must only support the operation:

OA=AGI0+(AGIINAGI2)H+AG13

Trade-offs such as these are made in favor of reducing the
complexity of the address generation ALU as well as the
execution and branch determination ALU’s.

The ALU of FIG. 11 can be substituted for the ALU 65 in
FIG. 8. In this case, the decode and control logic 60 would
appropriately reflect the functions of FIG. 10.

BRANCH HAZARD-COLLAPSING ALU

Similar analyses to those for the interlock collapsing
ALU’s for execution and address generation must be per-
formed to derive the affects of compounding on a branch
detertnmation ALU which 1s given by FIGS. 12 and 13. The
branch determination ALU covers functions required by
instructions comparing register values. This includes the
branch instructions BXLE, BXH, BCT, and BCTR, in which
a register value 1s incremented by the contents of a second
register (BXLE and BXH) or is decremented by one (BCT
and BCTR) before being compared with a register value
(BXLE and BXH) or 0 (BCT and BCTR) to determine the

result of the branch. Conditional branches are not executed
by this ALU.

The ALU illustrated in FIG. 13 include a multi-stage
adder 110 in which two carry save adders 111 and 112 are
cascaded, with the two outputs of the carry save adder 112
providing the two inputs for the carry look ahead adder 113.

This combination effectively provides the four-input, single
result adder provided for the ALU of FIG. 13.

As an example of the data hazards that can occur, consider
the following instruction sequence:
AL R1,D(R2,R3)
BCT R1,D(R2,R3)

Let [x] denote the contents of memory location x. The
results following execution are:

R1=R1+[D+R2+R3]-1
Branch if (R1={D+R2+R3])-1=0

This comparison could be done by performing the opera-
tion:

R1+[D+R2+R3]1.

The results of analyses for the branch determination ALU
are provided in FIGS. 12 and 13 without further discussion.
The functions supported by the dataflow include those
specified by rows one to 25 of FIG. 12.

The ALU of FIG. 13 can be substituted for the ALU 65 in
FIG. 8. In this case, the decode and control logic 60 would
appropnately reflect the functions of FIG. 12.

IDIOSYNCRASIES

Some of the functions that anise from operand conflicts
are more complicated than others. For example, the instruc-
tion sequence:

AR R1,R2



Re. 35,311

17

AR R1,R1
requires a four-to-one ALU, along with its attendant com-
plexity, to collapse the data interlock because its execution
results in:

R1=(R1+R2)+(R1+R2).

Other sequences result in operations that require addi-
tional delay to be incorporated into the ALU in order to
collapse the interlock. A sequence which 1llustrates
increased delay 1is:

SR R1,R2
LPR R1,R1

which results in the operation
R1=/R1-R2/.

This operation does not lend itself to parallel execution
because the results of the subtraction are needed to set up the
execution of the absolute value.

Rather than collapse all interlocks in the ALU. an instruc-
tion issuing logic or a preprocessor can be provided which
is designed to detect instruction sequences that lead to these
more complicated functions. Preprocessor detecUon avoids
adding delay to the issue logic which is often a near-critical
path. When such a sequence is detected, the 1ssuing logic or
preprocessor would revert to issuing the sequence 1n scalar
mode, avoiding the need to collapse the interlock. The
decision as to which instruction sequences should or should
not have their interlocks collapsed is an implementation
decision which is dependent upon factors beyond the scope
of this invention. Nevertheless, the trade-off between ALU
implementation complexity and issuing logic complexity
should be noted.

Hazards present in address generation also give rise to
implementation trade-offs. For example, most of the address
generation interlocks can be collapsed using a four-to-one
ALU as discussed previously. The following sequence
AR R1,R2
S R3.D(R1,R1);
however, does not fit in this category. For this case, a
five-to-one ALU is required to collapse the AHAZ interlock
because the resulting operation 1is:

OA=D+(R1+R2+(R1+R2)

where OA 1is the resulting operand address. As before,
inclusion of this function in the ALU is an implementation
decision which depends on the frequency of the occurrence
of such an interlock. Similar results also apply to the branch
determination ALU.

GENERALIZATION OF THE ADDER

Analyses similar to those presented can be performed to
derive interlock collapsing hardware for the most general
case of n interlocks. For this discussion. refer to FIG. 14.
Assuming simple data interlocks such as:

AR R1,R2

AR R3,R1

in which the altered register from the first instruction is used
as only one of the operands of the second instruction, a (n+1)
by one ALU would be required to collapse the interlock. To
collapse three interlocks, for example, using the above
assumption would require a four-to-one ALU This would
also require an extra CSA stage in the ALU.

The increase in the number of CSA stages required in the
ALU, however, is not linear. An ALU designed to handle
nine operands as a single execution unit would take four

10

15

20

25

30

35

45

50

35

65

18

CSA stages and one CLA stage. This can be seen from FIG.
14 in which each vertical line represents an adder input and
each horizontal line indicates an adder. Carry-save adders
are represented by the horizontal lines 200-206, while the
carry look-ahead adder is represented by line 209. Each CSA
adder produces two outputs from three inputs. The reduction
in input streams continues from stage to stage until the last
CSA reduces the streams to two. The next adder 1s a CLA
which produces one final output from two inputs. Assuming
only arithmetic operations, a one stage CLA adder, and a
four stage CSA adder, the execution of nine operands as a
single unit using the proposed apparatus could be accom-
plished, to a first order approximation, in an equivalent time
as the solution proposed by Wulf in the reference cited
above.

Data hazard interlocks degrade the performance obtained
from pipelined machines by introducing stails into the
pipeline. Some of these interlocks can be relieved by code
movement and instruction scheduling. Another proposal to
reduce the degradation in performance 1is to define instruc-
tions that handle data interlocks. This proposal suffers from
limitations on the number of interlocks that can be handled
in a reasonable instruction size. In addition, this solution 1s
not available for 370 architectttre compatible machines.

In this invention, an altermnative solution for relieving
instruction interlocks has been presented. This invention
offers the advantages of requiring no architectural changes,
not requiring all possible instruction pairs and their inter-
locks to be architected into an instruction set, presents only
modest or no impacts to the cycle time of the machine,
requires less hardware than is required in the prior art
solution of FIG. 1, and is compatible with System/370-
architected machines.

While the invention has been particularly shown and
described with reference to the preferred embodiment
thereof, it will be understood by those skilled in the art that
many changes in form and details may be made therein
without departing from the spirit and scope of the invention.

What 1s claimed 1s:

1. In a computer architected for serial execution of a
sequence of single scalar instructions in a succession of
execution cycles, an apparatus for supporting parallel execu-
tion of a plurality of scalar instructions in a single instruction
cycle, the apptratus comprising:

an instruction means for receiving a plurality of scalar
instructions, a first of the scalar instructions producing

a calculation result used as an operand by a second of
the scalar instructions;

an operand means for substantially simultaneously pro-
viding a plurality of operands, at least two of sad
operands being used by the first and second scalar
instructions;

a control means connected to the instruction means for
generating control signals to indicate operations which
execute the plurality of scalar instructions; and

an execution means connected to the operand means and
to the control means and responsive to the control
signals and to a plurality of operands including the two
operands for producing, in a single execution cycle, a
single result corresponding to the performance of said
operations on said plurality of operands.

2. The apparatus of claim 1, wherein the execution means
includes an adder which produces a single adder result 1n
response to three operands.

3. The apparatus of claim 2, wherein the adder includes a
carry save adder which produces two outputs 1n response to

the three operands and a carry look ahead adder, connected



Re. 35,311

19

to the carry save adder, which produces one output in
response to the two outputs of the carry save adder.

4. The apparatus of claim 2, wherein the execution means
further includes logical means connected to the operand
means and to the adder for performing a logic function on
the operands to produce a logic result, the adder producing
said single adder result in response to the logic result and
one of the operands.

5. The apparatus of claim 2, wherein the execution means
further includes logic means connected to the operand
means and to the adder for performing a logic function on a
first and second operand to produce a logic result, the
execution means producing the single result in response to
the logic result and the single adder result.

6. The apparatus of claim 1 wherein the first scalar
instruction is a logical instruction and the second scalar
Instruction is an arithmetic instruction and the execution
means includes logical means for combining first and second
operands to produce a logical result required by said logical
instruction and arithmetic means for combining the logical
result with a third operand to produce said single result, said
single result being required by the arithmetic instruction.

7. The apparatus of claim 1 wherein the first scalar
instruction is an arithmetic instruction and the second scalar
instruction 1s a logical instruction and the execution means
includes arithmetic means for combining first and second
operands to produce an arithmetic result required by said
arithmetic instruction and logical means for combining the
arithmetic result with a third operand to produce said single
result, said single result being required by the logical
instruction.

8. The apparatus of claim 1, wherein the first scalar
instruction 1s an arithmetic instruction and the second scalar
instruction is an arithmetic instruction and the execution
means includes arithmetic means for combining the three
operands to produce a single arithmetic result, said single
arithmetic result being provided as said single result.

9. The apparatus of claim 1 wherein the first scalar
instruction 1s a logical restruction and the second scalar
instruction 1s a logical instruction and the execution means
includes logical means for combining first and second
operands to produce a first logical result, said first logical
result required by said first logical instruction, and second
logical means for combining the first logical result with a
third operarand to produce a second logical result, said
second logical result being required by the second scalar
instruction and said second logical result being provided as
said single result.

10. A multifunction ALU (arithmetic logic unit) for com-
bining three operands to produce a single result in response
to a pair of instructions, including:

a first set of logical elements for logically combining two
operands to produce a first logical result;

an adder for arithmetically combining three operands to
produce a single arithmetic result;

a circuit for inputting to the adder either all of said
operands, two of said operands and a zero, one of said
operands, a zero, and said first logical result, or two
zeros and said first logical result;

a second set of logical elements for logically combining
one of said operands with said single arithmetic result
to produce a second logical result; and

a circuit for providing as an output either said arithmetic
result or said second logical result.
11. The multifunction ALU of claim 10, wherein said
adder includes:

5

10

15

20

25

30

35

40)

45

30

55

60

63

20

a carry-save adder for producing two outputs in response
to three operands: and

a carry look ahead adder connected to said carry save
adder for producing one output in response to said two
outputs.

12. In a computer architected for serial execution of a
sequence of scalar mstrucnons in a succession of execution
periods, an interlock-collapsing apparatus for supporting
simultaneous parallel execution of a plurality of scalar
instructions, the apparatus comprising:

an instruction register means for receiving a plurality of
scalar instructions for simultaneous execution, a first
instruction of the plurality of scalar instructions pro-
ducing a result used as an operand by a second instruc-
tion of the plurality of scalar instructions;

an operand means for substantially simultaneously pro-
viding a plurality of operands used in execution the
plurality of sclar instructions;

a control means connected to the instruction register
means for generating control signals to indicate oper-
ands which execute the plurality of scalar instructions;
and

an interlock-collapsing execution means connected to the
operand means and to the control means [an] and
responsive to the control signals and to the plurality of
operands for producing a single result corresponding to
the simultaneous execution of said first and second
instructions in a single execution period.

13. The apparatus of claim 12, wherein the interlock-
collapsing execution means includes and adder which pro-
duces a single adder result in response to three operands.

14. The apparatus of claim 13, wherein the adder includes
a carry save adder which produces two outputs in response
to the three operands and a carry lookahead adder connected
to the carry save adder which produces one output in
response to the two outputs of the carry save adder.

15. The apparatus of claim 13, wherein the interlock-
collapsing execution means further includes logic means
connected to the operand means and to the adder for
performing a logic function on the operands to produce a
logic result, the adder producing the single adder result in
response to the logic result and one of the operands.

16. The apparatus of claim 13, wherein the interlock-
collapsing execution means further includes logic means
connected to the operand means and to the adder for
performing a logic function on a first operand and a second
operand to produce a logic result, the interlock-collapsing
execution means producing the single result in response to
the logic result and the single adder result.

17. The apparatus of claim 12, wherein the first instruction
1s a logical instruction and the second instruction is an
arithmetic instruction and the interlock-collapsing execution
means includes logical means for combining first and second
operands to produce a logic result required by the logical
instruction and arithmetic means for combining the logic
result with a third operand to produce the single result, the
single result representing exectution of the arithmetic
instruction.

18. The apparatus of claim 12, wherein the first instruction
1s an arithmetic instruction and the second instruction is a
logic mstruction and the interlock-collapsing execution
means includes arithmetic means for combining first and
second operands to produce an arithmetic result required by
said arithmetic instruction and logic means for combining
the arithmetic result with a third operand to produce the
single result, the single result representing execution of the
logical instruction.



Re. 35,311

21

19. The apparatus of claim 12, wherein the first instruction
is an arithmetic instruction and the second instruction 1s an
arithmetic instruction and the interlock-collapsing execution
means includes arithmetic means for combining three oper-
ands to produce a single arithmetic result, the three operands
including two operands used in the execution of the first and
second instructions.

20. The apparatus of claim 12, wherein the first instruction
is a first logic instruction and the second instruction is a
second logic instruction and the interlock-collapsing execu-
tion means includes logic means for combining first and
second operands to produce a first logic result, the first logic
result being required by the first logic instruction, and
second logic means for combining the first logic result with
a third operand to produce a second logic result, the second
logic result representing execution of the second logic
instruction and the second logic result being provided as the
single result.

21. In a computer architected for serial execution of a
sequence of scalar instructions in a succession of execution
cycles, an execution apparatus for, in a single execution
cycle, producing a result representing simultaneous execu-
tion of a first scalar instruction and a second scalar instruc-
tion in which the second scalar instruction requires a result
produced by execution of the first scalar instruction, the
execution apparatus comprising:

an instruction register means for receiving the first and
second scalar instructions;

an operand means for substantially simultaneously pro-
viding a plurality of operands, at least two of the
plurality of operands being used in executing the first
and second scalar instructions:

a control means connected to the instruction register
means for generating control signals which indicate
execution of the first scalar instruction and the second
scalar instruction;

a first execution means connected to the operand means
and to the control means and responsive to the control
signals and to the two operands for producing, in an
execution cycle, a result corresponding to the execution
of the first instruction; and

a second execution means connected to the operand
means and to the control means and responsive to the
control signals and to a plurality of operands including
the two operands for producing, in said execution
cycle, a single result corresponding to the execution of
the first and second instructions.

22. The apparatus of claim 21, wherein the first execution
means includes an adder which produces a single adder
result in response to two operands.

23. The apparatus of claim 21, wherein the second execu-
tion means includes an adder which produces a single adder
result in response to three operands.

24. The apparatus of claim 23, wherein the adder includes
a carry save adder which produces two outputs in response
to the three operands and a carry lookahead adder connected
to the carry save adder, which produces one output in
response to the two outputs of the carry save adder.

25. In a computer system, an apparatus for supporting
parallel execution of a plurality of instructions in a single
execution cycle, the apparatus compnsing:

an instruction means for receiving a plurality of instruc-
tions, a first of the instructions producing a calculation
result used as an operand by a second of the instruc-
tions,

an operand means for substantially simultaneously pro-
viding a plurality of operands;

10

15

20

25

30

35

40

45

30

55

60

65

22

a control means connected to the instruction means for
generating control signals to indicate operations which
execute the plurality of instructions; and

an execution means connected to the operand means and
to the control means and responsive to the control
signals and to the plurality of operands for producing
a single result corresponding to the performance of
said operations, including execution of the first and
second of the instructions, on said plurality of operands
in a single execution cycle.

26. The apparatus of claim 25, wherein the execution
means includes an adder which produces a single adder
result in response to three operands in the single execution
cycle.

27. The apparatus of claim 26, wherein the adder includes
a carry save adder which produces two outputs in response
to the three operands and a carry look ahead adder, con-
nected to the carry save adder, which produces one output
in response to the two outputs of the carry save adder.

28. The apparatus of claim 26, wherein the execution
means fuher includes logical means connected to the oper-
and means and to the adder for performing a logic function
on the operands to produce a logic result, the adder pro-
ducing said single adder result in response to the logic result
and one of the operands.

29. The apparatus of claim 26, wherein the execution
means further includes logic means connected to the oper-
and means and to the adder for performing a logic function
on a first and second operand to produce a logic result, the
execution means producing the single result in response to
the logic result and the single adder result.

30. The apparatus of claim 25, wherein the first instruc-
tion is a logical instruction and the second instruction is an
arithmetic instruction and the execution means includes
logical means for combining first and second operands to
produce a logical result required by said logical instruction
and arithmetic means for combining the logical result with
a third operand to produce said single result, said single
result being required by the arithmetic instruction.

31. The apparatus of claim 25 wherein the first instruction
Is an arithmetic instruction and the second instruction is a
logical instruction and the execution means includes arith-
metic means for combining first and second operands to
produce an arithmetic result required by said arithmetic
instruction and logical means for combining the arithmetic
result with a third operand to produce said single result, said
single result being required by the logical instruction.

32. The apparatus of claim 25, wherein the first instruc-
tion is an arithmetic instruction and the second instruction
is an arithmetic instruction and the execution means
includes arithmetic means for combining the three operands
to produce a single arithmetic result, said single arithmetic
result being provided as said single result.

33. The apparatus of claim 25, wherein the first instruc-
tion is a logical instruction and the second instruction is a
logical instruction and the execution means includes logical
means for combining first and second operands to produce
a first logical result, said first logical result required by said

first logical instruction, and second logical means for com-

bining the first logical result with a third operand to produce
a second logical result, said second logical result being
required by the second instruction and said second ogical
result being provided as said single result.

34. In a computer system, an interlocking-collapsing
apparatus for supporting simultaneous parallel execution of
a plurality of instructions, the apparatus comprising:

an instruction register means for receiving a plurality of
instructions for simultaneous execution, a first instruc-



Re. 35,311

23

tion of the plurality of instructions producing a result
used as an operand by a second instruction of the
plurality of instructions;

an operand means for substantially simultaneously pro-
viding a plurality of operands used in executing the 3
plurality of instructions;

a control means coupled to the instruction register means
for generating control signals to indicate operations
which execute the plurality of instructions; and "

an interlock-collapsing execution means coupled to the
operand means and to the control means and respon-
sive to the control signals and to the plurality of
operands for producing a result corresponding to the
simultaneous execution of first and second instructions
in a single execution period.

35. The apparatus of claim 34, wherein the interlock-
collapsing execution means includes a carry save adder
which produces two oulputs in response to receiving three
operands and a carry look ahead adder connected to the
carry save adder which produces a single adder result in the
execution period.

36. The apparatus of claim 35 further including logic
means connected to the operand means and to the interlock-
collapsing execution means for performing a logic function
on the operands to produce a logic result, the interlock-
collapsing execution means including an adder which pro-
duces the single adder result in response to the logic result
and one of the operands.

37. The apparatus of claim 35 further including logic
means connected to the operand means and to the interlock-
collapsing execution means for performing a logic function
on a first operand and a second operand to produce a logic
result, the interlock-collapsing execution means producing
the result in response to the logic result and the single adder
result.

38. The apparatus of claim 34, wherein the interlock-
collapsing execution means includes a carry save adder
which produces two outputs in response to receiving three
operands and a carry look ahead adder connected to the
carry save adder which produces one output in response to
the two outputs of the carry save adder.

39. The apparatus of claim 34, wherein the first instruc-
tion is a logical instruction and the second instruction is an
arithmetic instruction and the interlock-collapsing execu-
tion means includes logic means for combining first and
second operands to produce a logic result required by the
logical instruction and arithmetic means for combining the
logic result with a third operand to produce a single result,
the single result representing execution of the arithmetic
instruction.

40. The apparatus of claim 34, wherein the first instruc-
tion is arithmetic instruction and the second instruction is a
logic instruction and the interlock-collapsing execution
means includes arithmetic means for combining first and
second operands to produce an arithmetic result required by
said arithmetic instruction and logic means for combining
the arithmetic result with a third operand to produce a single
result, the single result representing execution of the logical
instruction.

15

20

25

30

35

45

30

55

24

41. The apparatus of claim 34, wherein the first instruc-
tion is an arithmetic instruction and the second instruction
IS an arithmetic instruction and the interlock-collapsing
execution means includes arithmetic means for combining
three operands to produce a single arithmetic result, the
three operands including two operands used in the execution
of the first and second instructions.

42. The apparatus of claim 34, wherein the first instruc-
tion is a first logic instruction and the second instruction is
a second logic instruction and the interlock-collapsing
execution means includes logic means for combining first
and second operands to produce a first logic result, the first
logic result being required by the first logic instruction, and
second logic means for combining the first logic result with
a third operand to produce a second logic result, the second
logic result representing execution of the second logic
instruction and the second logic result being provided as the
single result.

43. In a computer system, an execution apparatus for, in
a single execution cycle, producing a result representing
stmultaneous execution of a first instruction and a second
instruction in which the second instruction requires a result
produced by execution of the first instruction, the execution
apparatus comprising:

an instruction register means for receiving the first and

second instruction;

an operand means for substantially simultaneously pro-
viding a plurality of operands, at least two of the
plurality of operands being used in execution of the first
and second instructions;

a control means connected to the instruction register
means for generating control signals which indicate
execution of the first instruction and the second instruc-
tion,

a first execution means connected to the operand means
and to the control means and responsive to the control
signals and to the two operands for producing, in an
execution cycle, a result corresponding to the execution
of the first instruction; and

a second execution means connected to the operand
means and to the control means and responsive to the
control signals and to a plurality of operands including
the two operands for producing, in said execution
cycle, a single result corresponding to the execution of
the first and second instructions.

44. The apparatus of claim 43, wherein the first execution
means includes an adder which produces a single adder
result in response to two operands.

45. The apparatus of claim 43, wherein the second
execution means includes an adder which produces a single
adder result in response to three operands.

46. The apparatus of claim 45, wherein the adder includes
a carry save adder which produces two outputs in response
to the three operands and a carry look ahead adder con-
nected to the carry save adder, which produces one output
in response to the two outputs of the carry save adder.

* S ¥ S *



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : Re. 35,311

DATED . Aug. 6, 1996
INVENTOR(S) : Stamatis Vassiliadis et al.

it is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Col. 11, line 23 "Wile" should be --While--.
Col. 22, line 20 "fuher" should be —--further--.
Col. 22, 1line 61 "ogical" should be --logical--.

Column 18, line 43, change "apptratus' to —-—apparatus--.

Column 19, line 39, change '"restruction" to —--instruction--.

Column 20, line 7, change ''mstrucnons' to —-instructions--;

Column 22, line 20, change '"fuher" to —— further--.

Signed and Sealed this

Eighteenth Day of February, 1997

VS e Tedman

BRUCE LEHMAN

Anest:

Antesting Officer Commissioner of Paitents and Trademarks



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

