United States Patent [
Harper et al.

(11] E
[45] Reissued Date of Patent:

A 0 O O

USOORE35110E
Patent Number:

Re. 35,110
Dec. 5, 1995

[54] SYSTEM FOR OPTIMIZING DATA
TRANSMISSION ASSOCIATED WITH
ADDRESSABLE BUFFER DEVICES

[75] Inventors: Thomas A. Harper; Carol R. Harper,
both of Sugarland, Tex.

[73] Assignee: BMC Software, Inc., Houston, Tex.

[21] Appl. No.: 433,531

[22] Filed: Nov. 6, 1989
Related U.S. Patent Documents
Reissue of:
[64] Patent No.: 4,750,137
Issued; Jun. 7, 1988
Appl. No.: 827,767
Filed: Feb. 7, 1986
[51] Int. CL® ... GO6K 15/00; HO4L 11/00
(52] US.CL ... 364/514 R; 341/173; 395/200.15
[58] Field of Searchccorenveernen, 364/148, 150,
364/514, 518; 340/345, 365 R; 341/20,
173
[56] References Cited
U.S. PATENT DOCUMENTS
4,587,633 5/1986 Wang et al.o.ooovevreerenn, 364/514
4,620,289 10/1986 Chauvelooeeeerenreercnennnns 364/514

FOREIGN PATENT DOCUMENTS

0117281 10/1983 European Pat. Off. .
59-89056 5/1984 Japan .

60-239143 11/1985 Japan .

60-238976 11/1985 Japan .

OTHER PUBLICATIONS

Simware SIM3278/VTAM materials (ca. 1984): letter from
L. Shepardson to D. Kollsky dated Sep. 22, 1989 (Bates
Nos. BP04576-BP04577); source code extracts (Bates Nos.
BPO4578—-BP04581); SIM 3278 User’s Guide (Bates Nos.
BP04582-04583; promotional materials (Bates Nos.
BP04584-BP04587), and Data Communications news item
(Bates No. BP04588).

HOST UNIT
HOST UNIT

20, HOST
COMPUTER

OPTIMIZER

’;"7 = PERIPH EI‘;AL DEVICE
L]

SIGNAL ROUTING
UNIT

-IE

Nagel et al., “Programmable Communications Subsystem
Having . .. ", from IBM Technical Disclosure Bulletin, vol.
21, No. 7, Dec. 1978, pp. 2633-2645.

Hydra II materials (ca. 1982): Affidavits of Mark E. Brown
(Dec. 6, 1988 and Jul. 12, 1989); descriptive materials, Bates
Nos. 00008-00013; source code extracts Bates Nos.
00041-00043.

DatalLynx materials (ca. 1984), Bates Nos. 00050-00067.
IBM Structured Programming Facility (SPF/TSO) manual
extracts, Bates Nos. 00097-00115; Version 2.2 Program
Logic Manual, pp. 20-21 (1978), Bates Nos. 00882-00889.
IBM 5740-XT8 source code (1977), Bates Nos.
0020000478 (separately bound).

IBM SPF/MYVS description and source code extracts (1980),
Bates Nos. 0034-00039.

CURSES.TXT Source code listing (ca. 1979), pp. 1-52,
Mar. 24, 1989 9:40a (the date on which the listing was
printed).

UNIX CURSES materials (Bates Nos.
00087-00096 (1986)).

00017-00031,

(List continued on next page.)

Primary Examiner—Joseph L. Dixon
Attorney, Agent, or Firm—Amold, White & Durkee

(57] ABSTRACT

A method and a computer program for performing the
method are disclosed for optimizing signals being
exchanged between a host unit and an addressable-buffer
peripheral device. The program optimizes an outgoing sig-
nal from the host unit by (1) creating an updated-state map
representing the statc of the peripheral device buffer
expected to exist after processing by the peripheral device of
the outgoing signal, (2) performing an exclusive-or (XOR)
operation using the updated-state map and a present-state
map representing the existing state of the buffer, and (3)
constructing and transmitting a substitute outgoing signal
which represents only changes to the buffer, and in which all
premodified field flags are turned off. Position-dependent
characters, such as attribute bytes are translated into nondata
characters prior to incorporation into a map, and are retrans-
lated into their original form for use in the substitute signal.

2 Claims, 5§ Drawing Sheets

Re. 35,110
Page 2

OTHER PUBLICATIONS

Sarch, “Protocol Conversion—Product Of Profusion,” Data
Communications, Jun., 1981, p. 65 et seq.

Siegel, “The Little Handshake Machines,” Datamation, Jun.
15, 1984, at p. 102.

Special Report, Data Communications, Nov., 1984, pp. 74 et
seq.

Wallace et al., “Data—driven operating concepts for
real-time simulation systems,” IEEE 1985 National Aero-

space and Electronics NAECON 1985, vol. 1, pp. 156-163.

Ovsyannikov et al., “A method of avoiding duplication of
documentary information in enterprise management sys-
tems,” Soviet Instrumentation and Control Journal, No. 4,
Apr. 1971, pp. 6-8, Oxford, G.B.

IBM System Productivity Facility Dialog Management Ser-
vices manual, Order No. SC34-2036-1, File No. S37(/
4300-39, second edition, Mar. 1981.

U.S. Patent Dec. 5, 1995 Sheet 1 of 5 Re. 35,110

NOW IS THE
TIME FOR

ALL GOODMEN

1]21314[5(6]7[8]90[11f12
HIHNEEEEREEEN

CONTENTS N[OIW]| Ji{SINJOfT|T]I[M]E
ADDRESS 1021314]5[6]7{8 9]0t [12]13

CONTENTS __ aINjoiw] TofisT TTIHTE[T[([M[E]
ADORESS 11213 j4]s[6]7[8]9 w01f12[13[ia[1s]16]17

- X

I o [

1INN 431NdWOO
ONILNOY TVNOIS ISOH ‘02

74
LINN 1SOH

_
-

43ZINI1dO

e
Ciuay
-
o
b
>
b
~—
s »)

R LINN ¥3LNINGO
= ONILNOY TVYNOIS ﬁ 1SOH '02
I g
3
= 34
— LINN 1SOH
IOA30 VHIHIINID %
W
—_— =
o

L

U.S. Patent

U.S. Patent

Dec. 5, 1995 Sheet 3 of 5 Re. 35,110

ng‘lﬁA

PARSE OQOUTGOING
DATA STREAM,
LOCATE APPROPRIATE
PRESENT-STATE

26

IMAGE
PRESENT- UPDATED:
COPY PRESENT- MAGE
STATE IMAGE TO
CREATE BASE FOR
UPOATED STATE
IMAGE
n So
CONTINUE PARSING
OUTGOING DATA STREAM
DIFFERENCE
IMAGE
TRANSLATE ANY
CONTROL CODES INTO
UNIQUE SYMBOLS, g OF

MOOIFY UPDATED
STATE IMAGE

XOR PRESENT-STATE
& UPDATED-STATE
IMAGES TO DERIVE
DIFFERENCE IMAGE

50

U.S. Patent

Dec. §, 1995

REMOVE
£ RASE
COMMAND

Sheet 4 of 5

SCAN DIFFERENCE
IMAGE FOR NON-NULL

YES

SCAN DIFFERENCE
IMAGE FOR NULL

SAVE STARTING
ADDRESS AND LENGTH

OF NON NULL
CHARACTERS

GENERATE SET BUFFER

ADDRESS ORDER (N
OPTIMIZED OUTBOUND

DATA STREAM

SWITCH TO
CORRE SPONDING

ADDRESS IN UPDATED-
STATE IMAGE

SCAN UPDATED-STATE
IMAGE FOR SAVED
LENGTH,CONVERTING
ANY EMBEDDED
FIELD ATTRIBUTE TO
PROTOCOL SYMBOLS

Re. 35,110

U.S. Patent

O

PARSE INCOMING
DATA STREAM,LOCATE
APPROPRIATE PRESENT-
STATE IMAGE

CONVERT THE SET
BUFFER ADDRESS
ORDER IN THE IN-

COMING DATA STREAM
TO A POSITION IN THE

PRESENT- STATE IMAGE

BACK UP ONE POSITION
IN THE PRESENT-STATE
MAGE AND TURN ONTHE
MOT BIT IN THE FIELD

ATTRIBUTE BYTE

UPDATE PRESENT-
STATE IMAGE WITH
DATA FROM INCOMING
DATA STREAM

WAS
ENTIRE FIELD
FILLED?

YES

INSERT IN-DOUBT
CHARACTERS IN
REMAINDER OF FIELD
IN PRESENT- STATE
IMAGE

Dec. 5, 1995

Sheet 5 of 5

Fig. 7

SCAN PRESENT-STATE
IMAGE FOR ATTRIBUTE
BYTES

NO

YES

GENERATE A SET
BUFFER ADDRESS

ORDER FOR THE NEW IN-
COMING DATA STREAM

MOVE DATA FROM
PRESENT-STATE IMAGE
FIELD,EXCEPTING IN
DOUBT CHARACTERS TO
NEW INCOMING. DATA
STREAM

IF ANY IN-DOUBT
CHARACTERS WERE
PRESENT IN PRESENT-
STATE IMAGE FIELD FiLL
THE ENTIRE PRESENT

STATE IMAGE FIELD WITH
IN-DOUBT CHARACTERS

Re. 35,110

20

Re. 35,110

1

SYSTEM FOR OPTIMIZING DATA
TRANSMISSION ASSOCIATED WITH
ADDRESSABLE BUFFER DEVICES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

The present invention relates to a system for optimizing
the telecommunication of formatted data streams between a
host computer, on the one hand, and a device that notes the
data stream content in an addressable buiffer, on the other
The device may be, for example, a screen-type display
terminal, a printer, or other apparatus. The host and device
may be in close physical proximity, as in the case of a local
terminal at the site of the host, or they may be physically
remote, as in the case of a dial-up terminal used to commu-
nicate with the host.

Addressable-Buffer Devices

In many on-line computer applications, end-users utilize
terminal devices to view selected data and sometimes to
enter or update the data. A travel agent in Los Angeles, for
example, might use a remote terminal to send a data stream
to an airline reservation host computer in Dallas requesting
a display of all flights from Houston to New York. The host
computer responds with a series of data streams containing
the desired information.

A number of common terminal devices use an addressable
buffer associated, e.g., with a screen display or a printer.
Generally speaking, a “buffer” is an organized group of
updatable electronic memory cells reserved for a particular
use. A display or print buffer is typically a buffer that holds
information displayed on a terminal screen or a hard-copy
printout. It could be said that the screen or printer serves as
a “viewer”’ for examining the contents of the device buffer
in much the same way that a microfiche viewer can be used
to examine back issues of newspapers stored on fiche.

PIG. 1 shows a greatly simplified representation of a
typical device buffer arrangement. The host computer sends
a data stream to the terminal device over a telecommunica-
tions line. The device, preprograrnmed with its own internal
software of a kind well known to those skilled in the art,
updates the contents of the display buffer in response to data
streams generated ecither by the host computer or by the
terminal user (e.g., through a keyboard). The display shows
the updated contents of the device buffer.

Communications Protocols

The effectiveness of a communication system such as that
represented in FIG. 1 is commonly enhanced by program-
ming the host computer and the terminal device to handle
data streams in accordance with a pre-specified convention.
Such a convention is known as a “protocol.” Protocols
typically include specifications for treating some portions of
a data stream as data and other portions as embedded
commands.

The protocol used in U.S. long-distance telephone dialing
is a familiar example. Any time the number “1” is received
by the telephone company switching computer as the first
digit in an initial dialing sequence, the computer automati-
cally treats it as a command for a special call, e.g., to enter

5

10

15

20

25

30

35

40

45

50

35

60

65

2

the long-distance network. The next three digits are then
treated as the area code, and the final seven digits as the
actual telephone number. Anyone wishing to place a long-
distance call must observe this convention or a similar one,
depending on which long-distance service is used.

A number of sophisticated data communications protocols
operate in a basically similar manner. Some portions of a
data stream are treated as commands, like the “1” in a
long-distance dialing sequence. Other portions are treated as
data, like the telephone number. How a portion of the data
stream is treated can vary with its position within the data
stream. Depending on the protocol used, the treatment of a
portion of a data stream can also vary with the position of
that portion with respect to characters or character sequences
in the data stream that function as order representing buffer
control information. The general operation of several types
of such order (e.g., start-field orders, set-attribute orders,
set-buffer-address orders) are discussed below.

Addressing Buffer Memory

The command sets available in communications protocols
typically include commands for specifying where outgoing
data from the host computer should be placed in the device
buffer when received by the device. This is known as
specifying the buffer address at which the new data should
be written into the buffer.

In the example represented in FIGS. 1 and 2, an out-going
data stream from the host computer might include a com-
mand for the terminal device to prepare to write new data
into the display buffer beginning at buffer address 8. The
outgoing data associated with this command might then
consist of the characters “n o t”. The terminal would process
this command and modify the device buffer in accordance
with the associated data. The display, which acts as a
window on the buffer, would then read “Now is not time . .
. 7 instead of “Now is the time . . . ”

Buffer-Embedded Character Attribute Data

Some communications systems embed codes within the
buffer itself that indicate to the terminal’s internal software
just how subsequent characters in the buffer should be
presented on the display screen or printout. The IBM 3270
system 1s an example of such a system. In the simplified
example shown in FIG. 3, the character at buffer address 1
1s assumed to be a code that causes a terminal screen to
display all subsequent characters (i.e., the characters stored
at buffer addresses 2, 3, and so forth) extra bright on the
screen. The code itself is displayed as a blank on the screen.
All subsequent “real” characters are displayed extra bright
until the brightness is turned off by another embedded code.
In FIG. 3, a code representing “normal” display is shown at
buffer address 6. The terminal causes subsequent “real”
characters in the buffer (e.g., at addresses 7, 8, and so on) to
be displayed on the screen at normal intensity.

In such a system, the data characters that occupy the
elements of a device buffer between any two such control
codes are commonly referred to as a field. The control code
that occupies the buffer address immediately prior to the first
character in a field is known as the field attribute character,
or ficld attribute byte, for that field. In the simplified
example of FIG. 3, the field attribute byte for the field

containing the characters “N o w” is located at buffer address
1.

Techniques for controlling the field attribute byte are well
known. Those skilled in the art will recognize that the IBM

Re. 35,110

3

3270 system, for example, utilizes known bit masking and
shifting techniques to encode a number of different field
attributes (brightness, etc.) into a single field attribute byte.
One field attribute byte can thus control several attributes for
any given field.

Premodified Fields

One of the field attributes provided for in some telecom-
munications systems, for example the IBM 3270 system, 1s
known as a “modified data tag” (MDT) attribute. The MDT
attribute works in conjunction with the terminal device’s
internal software or other control system: if the terminal
notes that the MDT attribute flag for a given field is set, it
includes the contents of the field in the next inbound data
strean.

A host application can pre-set the MDT flag for a given
field to ensure that the associated field data is transmitted
inbound, whether or not it has been modified. Such a field is
known as a “pre-modified” field. This technique may be
useful, e.g., in a data base system where a host computer
serves a number of devices, each of which is examining a
particular record in a data base, by forcing each device to
transmit certain portions of its buffer, e.g., the identifying
number of the data base record.

Host Applications

The pre-modified field technique just discussed is an
example of data streams that can be sent and received by a
software program on the host computer known as an apph-
cation or an applications program. A travel agent querying
an airline reservation computer, for example, may have his
request processed by an applications program that searches
the computer’s data files; identifies flights corresponding to
the travel agent’s request; and causes the host computer’s
communications device to send a data stream back to the
travel agent’s remote terminal. A simplified representation
of this process is shown in FIG. 4.

Outgoing Transmissions

Some methods of managing outgoing data transmissions
used by applications programs can result in unnecessary
transmission and ineffective use of telecommunications
resources. In some systems, for each outgoing transmission
the host application might cause the entire terminal device
buffer to be erased with a data-stream erase command
conforming to the protocol in question, then to be com-
pletely refreshed with outgoing data. To the extent that the
refreshed buffer is unchanged from the original buffer, the
outgoing data represents wasted transmission time.

Many applications involve data fields that remain
unchanged throughout an online session. In an insurance
claim-adjustment application, the name and address of the
insured might be such a field; on the other hand, details

concerning payment of a claim might change several times
during an online sess1on.

Some screen-management systems keep track of which
fields have been modified since the previous outgoing trans-
mission and send data streams causing only the modified
fields to be refreshed. This task is complicated, however, by
the fact that the beginning and ending points of fields in the
device buffer may be altered as a result of a data transmis-
sion. Once again moreover, to the extent that the device
buffer remains unchanged after a data transmission, the
transmission represents a waste of system resources.

10

15

20

25

30

35

45

50

55

60

65

4

Incoming Transmissions

The same inefficient use of system resources can be seen
in some systems for managing inbound data transmissions.
As noted above, some host applications cause pre-modified
attributes for each device served to be set. The entire
contents of the affected fields are thus included in each
inbound transmission, regardless of whether the affected
fields have been modified. While this can help reduce the
risk of data base corruption, it also increases the time needed
for the transmission.

Transmission Speed Limitations

Minimizing the use of transmission resources is important
becanse the effectiveness of any communications system
such as described above will be subject to limitation by the
rate at which data can be transmitted. Many common
systems that transmit data streams over normal telephone
lines, for example, cannot handle data speeds faster than
9600 bits per second (bps) or even as low as 1200 bps.

Special dedicated telephone lines can be used to increase
the possible transmission speed. Nevertheless, the data
speed, sometimes known as the “baud rate,” can cause data
to take undesirably long to transmit.

Queue Delays Arising from Slow Speeds

The waste of telecommunications resources referred to
above, arising from unnecessary transmission of unmodified
data, can drastically impair system effectiveness in a multi-
user system. If an airline reservation computer is equipped
to handle, say 100 remote terminals at once, the time
required to transit data increases the system access time
required by any single user. This can in turn increase the
changes that a subsequent caller will be unable to access the
system at all because the system is already busy servicing
previously s ent messages. The subsequent caller will thus
be forced to wait in a “queue” to be able to transmit his
request or to receive the information desired.

SUMMARY OF THE INVENTION

In accordance with the present invention, an optimizer
system is interposed between a host computer application
program and a telecommunications link connecting the host
computer with an addressable-buffer terminal device such as
a screen-display terminal, a printer, or other apparatus.

The optimizer includes a computer program that remains
resident in the host computer’s memory. The program causes
the computer (a) to divert outgoing data streams that would
normally be transmitted to the device by the host; (b) to
generate new optimized outgoing data streams conforming
to the communications protocol in use; and (c) to hand back
each optimized data streamn back for further outgoing trans-
mission in place of the corresponding original data stream.

Each incoming data stream reflects only the contents of
the fields in the device buffer that have actually beed
modified. If the host has previously instructed the device to
transmit all fields, however, whether or not modified, the
host might attempt to retransmit the instruction or even take
improper action. To prevent this, the optimizer creates a new
incoming data stream conforming to the host’s previously-
noted expectations about the incoming data stream.

The contents of an optimized outgoing data stream reflect
the result of a comparison by the optimizer of (1) an image
in random-access memory (RAM) of the “up-dated state” of
the device buffer, namely the state assumed by the host

Re. 35,110

S

application to exist in the device buffer after reception by the
device of the original outgoing data stream; with (2) a
similar RAM image of the assumed present state of the
device buffer. The comparison is achieved by performing an
exclusive-or (XOR) operation to generate a RAM image that
indicates which characters in the updated-state image reflect
changes from the present-state image. In some systems, this
XOR operation can be achieved by destructively superim-
posing the updated-state RAM image over the (no longer
needed) present-state RAM image, thus eliminating the need
for additional RAM for a third image.

The optimizer also removes any “erase” commands from
the outgoing data stream. This preserves the device buffer
contents and allows the optimized outgoing data stream to
transform the buffer, and thus the display, printout, or other
presentation, to the desired new state.

The optimized data stream “handed back” by the opti-
mizer thus represents the differences between the assumed
present and updated states of the device buffer. Conse-
quently, it is normally shorter than the usual display-refresh-
ing data stream which represents the entire updated state of
the buffer, and it thus requires correspondingly less trans-
mission time.

As part of the optimization of outgoing data streams, the
optimizer negates any order in the original outgoing data
stream that would cause the terminal device to transmit
inbound the entirety of any portion of the device buffer
regardless of whether that portion had been modified. Of
course, subsequent inbound transmissions from the device
would reflect the fact that its premodified field attributes had
been turned off in this manner. To conform to the expectation
-of this application program in this regard, the optimizer
additionally modifies each inbound data stream to supply
any fields expected by the host application.

Control codes contained in the device buffer, such as field
attribute bytes, are represented in the updated-state and
present-state images by unique characters. The optimizer
consults a translation table to generate these characters. The
purpose of the translation is to ensure that the XOR com-
parison of the two images will not result in an incorrect
no-change-required conclusion for a particular device buffer
address if a control code in one image is identical to a data
character at the same address in the other image.

The optimizer programming includes the capability to
deal with null suppression in some terminal devices. The
internal programming of some devices causes them to
suppress nulls in transmitting inbound data. For example, a
ten-character field with three nulls interspersed throughout
would be transmitted to the host as seven characters. Null
suppression systems typically do not incidate where the
nulls were suppressed, and so it would be difficult or
impossible to reconstruct the exact content of the associated
fileld in the device buffer. Consequently, in parsing an
incoming transmission, the optimizer can detect null sup-
pression in a field by noting when the field length does not
match the corresponding field length in the image generated
during the previous outgoing transmission, but the optimizer
cannot reliably update the present-state image of the device
buifer in that field.

In such a situation a simple way of ensuring that the next
outgoing transmission properly updates the null-suppressed
field is to transmit the entire content of that field. When the
optimizer detects null suppression in a field during an
incoming transmission, it fills the associated portions of the
present-statc 1mage with a unique “in-doubt” character sig-
nifying that the exact content of the null-suppressed field is

10

13

20

25

30

35

45

50

33

60

63

6

not known. When the XOR comparison is performed, a
mismatach occurs at those addresses, since the unique
in-doubt character in the present-state image does not match
any character in updated-state image. The characters from
the updated-state image are therefore superimposed on the
in-doubt characters by the XOR comparison and are rou-

tinely included in the next optimized outgoing data stream as
described above.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 is a simplified block diagram representing typical
data telecommunications arrangements.

FIGS. 2 and 3 are representation of maps of the contents
of a display buffer.

FIG. 4 is a simplified block diagram of a typical host
application program as used in a telecommunication system.

FIG. § is a simplified block diagram of the same system
with an optimizer in accordance with the present invention
interposed between the application program and the host
communications device. |

FIGS. 6A and 6C are flow charts of the operation of the
optimizer in processing an outgoing data stream.

FIG. 6B is a block diagram of one of the operations
represented in FIG. 6A.

FIG. 7 1s a flow chart of the operation of the optimizer in
processing an incoming data stream.

Throughout the following detailed description, similar
reference numerals refer to similar elements in all Figures of
the drawings,

DETAILED DESCRIPTION OF THE
INVENTION

As shown in FIG. 5, a telecommunications system 10
includes a terminal device 15 in communication with a host
computer 20. The programming of the host computer 20
includes one or more application program 25 which
exchange data streams, indicated by arrows 26 and 27, with
a communications program 30. These programs 25 and 30
may be of any type appropriate to the particular host
computer 20; they are not disclosed herein and are described

only generally for purposes of explanation. The application
programs 25 are sometimes referred to herein as host

applications or host units. Similarly, the communications
program 30 is sometimes referred to herein as a signal
routing unit. It will be appreciated by those of ordinary skill
having the benefit of this disclosure that, while the host unit,
the signal routing unit, and the optimizer described below
are described herein as being implemented on a single
computer, the invention disclosed and claimed herein is not
limited to such implementations.

Data streams to and from the host application 25 are
intercepted by an optimizer program 35 in accordance with
the present invention. As shown in FIG. §, the optimizer
program 35 is interposed between the host application
program 235 and the communications program 30. The
optimizer 35 pre-processes outgoing data streams to the
device 15 before the data streams are actually transmitted by
the communications program 30. The optimizer 35 addi-
tionally pre-processes incoming data streams received by the
communications program 30 before the data streams are
delivered to the host application 28.

As will be appreciated by those skilled in the art, the
details of the optimizer program 35 will of course vary with
such things as the design of the host computer 20 upon

Re. 35,110

7

which the optimizer program 35 is implemented, the oper-
ating system program used for the host computer 20, the
communications protocol in use, and so forth. FIGS. 6A and
6C show the general sequence of operations of an optimizer
in accordance with the present invention in processing an
outgoing data stream, and FIG. 7 shows the corresponding
general sequence in processing an incoming data stream.

The optimizer 35 remains resident in the memory of the
host computer 20. Using techniques known to those skilled
in the art, when the host application 285 initiates a call to the
communications program 30 in the case of an outgoing data
stream, or vice versa in the case of an incoming data stream,
the call is stolen by the optimizer 35, in effect diverting the
data stream for preprocessing.

General Sequence for Outgoing Data Streams

Referring to FIGS. § and 6A, when the host application 25
generates an outgoing data stream 26, the optimizer 35 steals
the data stream 26 as described above. As shown in FIG. 6A,
the optimizer 35 parses the outgoing data stream 26 to
determine which device 15 is the intended destination of the
data stream 26. It locates the RAM image of the present state
of the selected device 15, or if none exists (such as in a log-in
or sign-on situation), creates one. It makes a copy of this
present-state image; an updated-state image discussed below
will be based upon the copy.

It should be noted that the term “present state” of the
device buffer refers to the state which is assumed to exist by
the host application 25. As is seen below, the actual state of
the device buffer differs from this assumed state because of
the operation of the optimizer 35.

The optimizer 35 parses the outgoing data stream 26 1n the
same general manner as is done by the device 15 when a
protocol data stream is received. If any portion of the data
stream 26 represents a control code, €.g., a field attribute, in
the protocol in question, that portion is translated into a
unique character to avoid any possible confusion with data
characters. The optimizer 35 applies the parsed data stream,
including any translated portions, to the copy of the RAM
image in a simulation of the action of the device 15 upon the
device buffer. The copy thus becomes an updated-state
image of the device buffer that represents the state of the
buffer to be expected when the outgoing data strcam 26 1s
ultimately received by the device 18.

The optimizer program 35 then destructively super-im-
poses the updated-state RAM image upon the present-state
RAM image in an exclusive-or (XOR) operation indicated 1in
FIGS. 6A and 6B by the reference numeral 50. The present-
state image is thereby transformed into a pattern of binary
zeros or nulls (where the present- and updated-state images
were identical) and non-nulls (where they differed), referred
to herein as the “difference image.”

The address of any non-null character found in the
difference image, by the action of the XOR operation,
corresponds to the address of a character in the updated-state
image required to update the corresponding position in the

buffer of the device 15, referred to as an “updating charac-
ter.”

Referring now to FIG. 6C, the optimizer 35 begins
constructing an optimized data stream to be transmitted to
the device 15. The optimizer 35 scans the difference image
in search of non-null characters. When a non-null character
is encountered, the optimizer 35 notes its address and adds
to set-buffer-address order, corresponding to that address, to

the optimized data stream.

10

15

20

235

30

35

45

50

55

60

65

The optimizer 35 then switches to scanning the difference
image in search of a null character. When a null character is
encountered, the optimizer 35 notes its address as well.

The optimizer 35 returns to the updated-state image with
the starting and ending addresses of a sequence of updating
characters, which correspond to the starting and ending
addresses of the previously referred-to-non-null character
sequence in the difference image. Each such updating char-
acter in the updated-state image is examined to determine if
it is an encoded control character such as a field attribute
byte. If so, the character is decoded in a translation table and
an appropriate control order is added to the optimized data
stream. If the updating character is a data character instead
of a control character, the optimizer 35 adds the character to
the optimized data stream.

When all updating characters in the sequence have been
processed in this manner, the optimizer 35 returns to scan-
ning the difference image again for non-null characters. The
above steps are repeated until the entire difference image has
been processed. The resulting new data stream refiects only
the updating characters instead of the entire contents of the
updated-state image.

Some systems 10 may provide for sending an “erase”
code to the device 15 independent of the contents of the
outgoing data stream 26. In such systems, the optimizer 35
is programmed to remove the erase code.

The new optimized outgoing data stream is handed to the
communications program 30 for transmission to the device
15. The updated-state image is retained for use as the new
present-state image.

General Sequence for Incoming Data Streams

FIG. 7 shows the general sequence of program instruc-
tions for the optimizer 35 for handling incoming data
streams.

Using techniques similar to those described above, the
optimizer 35 intercepts incoming data streams from the
communications program 30. The optimizer 35 parses each
incoming data stream to determine which device 13 origi-
nated the data stream. The present-state image for that
particular device (i.e., the image of the state assumed to exist
by the host application 25) is located.

The optimizer’s next task is to update the present-state
image with the incoming data. Incoming data streams 1n
some systems consist of the contents of a series of data
fields, each preceded by the address in the device buffer of
the first data (as opposed to control) character in the field
because the embedded control code delimiting the beginning

of the field (e.g., the field attribute byte) is not included 1n
the data stream.

In such a situation the optimizer 35 finds the correspond-
ing address in the present-state image, namely the address of
the first data (as opposed to control) character in that
particular field. The optimizer backs up one character in the
present-state image, namely to the address of the control
character that marks the beginning of the field. 1t decodes
that control character (which is represented in the present-
state image by a unique symbol), turns on the MDT flag to
indicate that the data in that field have been modified, and
re-encodes the control code into the corresponding unique
symbol. (In some cases the MDT flag will already be set
because the present-state image reflects the host application
25’s assumptions about the state of the device buffer, and
those assumptions may include the pre-setting of the MDT

flag for the field in question.)

Re. 35,110

9

The data from the incoming data stream, reflecting the
contents of modified fields in the device buffer, are then
copied into the succeeding positions in the present-state
image. Failure to fill a field in the present-state image
completely with incoming data indicates that the terminal
device 15 suppressed nulls in the field during transmission.
In such event, the image field is filled out with a unique
“in-doubt” character to indicate the suppression of nulls.

Each succeeding portion of the incoming data stream, i.e.,
each modified-field transmission from the device 15, is
parsed and added to the present-state image in the same way
until the entire data stream has been parsed.

The original incoming data stream is then discarded and
the optimizer 35 begins constructing a new incoming data
stream to hand back to the host application 25. The optimizer
35 scans the present-state image for the unique symbols
indicating control characters such as field attribute bytes.

Each such control character is decoded and examined to
determine whether the host application 25 should treat the
corresponding data field as having been modified. This will
occur either if the corresponding field at the device buffer
was actually modified, in which case the new data was
received and processed as just described and the MDT flag
was turned on by the optimizer 35; or if the host application
25 assumes that the MDT flag for that field was pre-set to
begin with.

In either case, a set-buffer-address order corresponding to
the address of the field in question is added to the new
incoming data stream, followed by the data characters in that
field in the present-state image (but not by any trailing
in-doubt characters). If the present-state image field contains
any trailing in-doubt characters, the entire field is filled with
the in-doubt character to ensure that the entire field will
cause a mismatch on the next outgoing XOR comparison
(FIGS. 6A and 6B) and therefore be transmitted back to the
device 15.

When the entire present-state image has been processed in
this way, the new data stream, which simulates an unopti-
mized incoming data stream, is handed to the host applica-
tion 25.

It will be appreciated by those skilled in the art having the
benefit of this disclosure that this invention is believed to be
capable of application in other situations. Accordingly, this
description is to be construed as illustrative only and as for
the purpose of teaching those skilled in the art the manner of
carrying out the invention.

It 1s also to be understood that the form of the invention
shown and described is to be taken as the presently preferred
embodiment. Various modifications and changes may be
made without departing from the spirit and scope of the
invention as set forth below in the claims.

For example, the computer could be programmed to
perform its imaging comparison on specified portions of the
updated- and present-state buffer images instead of on the
images as a whole. This might prove useful in situations
where the contents of some portions of the remote device
buffer are known to be fixed and not subject to modification
either by the host or by the device, e.g., where unchanging
information is displayed on a terminal screen to prompt the
terminal user.

The optimuzer can also be used in conjunction with local

devices such as those “hard-wired” into the host as well as
with remote devices connected to the host by telephone.

A similar imaging technique can be used if the device uses
additional buffers to contain other control characters such as

5

10

15

20

25

30

35

40

45

50

25

60

65

10

character attributes or extended field attributes. The imaging
concept can also be extended to devices that support parti-
tioning of a display screen by creating present- and updated-
state 1mages for each partition. This could be accomplished,
for example, by partitioning the RAM images discussed
above. The imaging technique can be adapted for use with
programmed symbol buffers for graphics users, for imple-
menting outboard formatting applications, or to handie
devices that utilize light pens or magnetic-strip readers
attached.

It is intended that the following claims be interpreted to
embrace all such modifications and changes.

What is claimed is:

[1. An optimizing system for a telecommunications sys-
tem that includes

a host unit which exchanges data streams with a periph-
eral device, said data streams being routed between
said host unit and said peripheral device by a signal
routing unit,

said peripheral device having an addressable buffer whose

information contents are modifiable in response to data
streams from said host unit,

said buffer contents including data characters and further

including control codes,
said optimizing system comprising:

an optimizer connected to control said signal routing unit
and programmed

to read the information content of a data stream from the
host unit prior to the routing of the data stream to the
peripheral device;

to generate an updated-state image representing the infor-
mation contents of the peripheral device buffer that

would be expected to exist after processing by the
peripheral device of said data stream:;

{0 generate a data stream representing any differences in
data characters, as well as any differences in control
codes, between said updated-state image and a present-
state image representing the information available to
the optimizer about the present information contents of
the peripheral device buffer, and

to cause said signal routing umnit to route the data stream
s0 generated to the peripheral device in lieu of the data
stream from the host unit.]

[2. The optimizing system of claim 1, wherein said

optimizer is programmed

to translate any control code, normally represented in a
data stream by an original symbol that is also useable
to represent a data character, into a translated symbol
that is not used to represent any data character;

to utilize said translated symbol in generating the
updated-state image and the present-state image; and

to retranslate any translated symbol so that any control
code contained in the data stream routed to the periph-
eral device is represented by its corresponding original
symbol.]

3. [The] An optimizing system [of claim 1,] for a tele-
communications systems, said telecommunications system
including:

(A) a host unit which exchanges data streams with a
peripheral device, said data streams being routed
between said host unit and said peripheral device by a
signal routing unil,

(B) said peripheral device having an addressable buffer
whose information contents are modifiable in response

to data streams from said host unil,

Re. 35,110

11

(C) said data streams conforming to a protocol that
supports the use of a field-attribute character sequence
in a data stream to delimit a field in said addressable
buffer, and that further supports premodification of a
modified-data tag (MDT) in a field atiribute character
sequence in a data stream, whereby a set MDT indi-
cates a field in said addressable buffer that has been

modified, a premodified MDT being referred to here-
inafter as a “premodified field flag,”
(D) said buffer contents including data characters and
further including control codes,
said optimizing system comprising:
(a) an optimizer connected to control said signal routing
unit and programmed: |

(1) to read the information content of a data stream
from the host unit prior to the routing of the data
stream to the peripheral device;

(2) to generate an updated-state image representing the
information contents of the peripheral device buffer
that would be expected to exist after processing by
the peripheral device of said data stream,

(3) to generate a data stream representing any differ-
ences in data characters, as well as any differences
in control codes, between said updated-state image
and a preseni-state image representing the informa-

tion available to the optimizer about the present
information contents of the peripheral device buffer;

and

(4) to cause said signal routing unit to route the data
stream so generated 1o the peripheral device in lieu
of the data stream from the host unit;

(b) [wherein said optimizer is programmed] said opti-
mizer being programmed so that all premodified ficld
flags in the data stream routed to the peripheral device
are tumed off.

[4. An optimizing system for a telecommunications sys-
tem, said telecommunications system including

a host unit which exchanges data streams with a periph-
eral device, said data streams being routed between
said host unit and said peripheral device by a signal
routing umit,

said peripheral device having an addressable buffer whose

information contents are modifiable in response to data
streams from said host unit,

said buffer contents including data characters and further
including control codes,

said optimizing system comprising:

a control-code translation table stored in a storage device
and containing, for each control code normally repre-
sented in a data stream by an original symbol that 1s

also usable to represent a data character, a translated
symbol that is not used to represent any data character;

an optimizer connected to control said signal routing unit
and to read said translation table and programmed

to read the content of an original data stream emanating
from the host prior to the routing of the original data
stream to the peripheral device;

to generate an updated-state image,
said updated-state image representing the information
contents of the buffer that would be expected to exist
after processing by the peripheral device of said
original data stream,

said optimizer utilizing in said updated-state image gen-
eration the translated symbol for any control code
having a translated symbol instead of the corresponding

12

original symbol for said control code;

to generate a modified data stream,

said modified data stream representing any differences
in data characters, as well as any differences in
3 control codes, between said updated-state image and
a present-state image representing the information
available to the optimizer about the present informa-

tion contents of the peripheral device buffer,
the optimizer utilizing in said modified data stream
generation the original symbol for any control code

having a translated symbol; and

to cause said signal routing unit to route the modified data
stream to the peripheral device in lieu of the original
data stream from the host unit.]

[5. The optimizing system of claim 4, wherein said
optimizer is programmed to incorporate a device-control
message in the modified data stream that when processed by
the peripheral device, causes a data stream subsequently
initiated by the peripheral device to be sent as a data stream
20 representing changes to the peripheral device buffer that

were caused at the device since the last data stream initiated
by the peripheral device.]

[6. A method for optimizing the exchange of data streams
between a host unit and a peripheral device,

said data streams being routed between the host unit and
the peripheral device by a signal routing unit,

said peripheral device having an addressable buffer whose
information contents are modifiable in response to data
streams from said host unit,

said buffer contents including data characters and further
including control codes,

said method comprising the steps of:

reading the information content of a data stream from the
host prior to the routing of the data stream to the device;

generating an image representing the updated state of the
buffer, said updated-state being the state that would be
expected to exist after processing by the peripheral
device of said data stream,;

generating a substitute data stream representing both any
differences in data characters and any differences in
control codes between said updated-state image and an
image representing the information available to the
optimizer about the present information content of the
peripheral device buffer; and

sending the substitute data stream so generated to the
peripheral device in lieu of the original data stream.]

[7. An optimizing system for a telecommunications sys-
tem, said telecommunications system including

a host unit which exchanges data streams with a periph-
eral device, said data streams being routed between the
host unit and the peripheral device by a signal routing
unit,

said peripheral device having an addressable buffer whose
information contents are modifiable in response to data
streams from said host unit,

said buffer contents including data characters and further
including control codes,
said optimizing system compnsing:
a control-code translation table, said translation table
containing, for each control code normally represented
in a data stream by an original symbol that is also

usable to represent a data character, a translated symbol
that is not used to represent any data character;,

an optimizer connected to control said signal routing unit

10

15

25

30

35

40

45

50

55

60

65

Re. 35,110

13

and to read said translation table and programmed
to read the content of an original data stream emanating
from the host unit prior to the routing of the data
stream to the peripheral device;
to generate an updated-state image,
said updated-state image representing the informa-
tion contents of the buffer that would be expected
to exist after processing by the peripheral device
of said data stream,
said optimizer utilizing in said updated-state image
generation the translated symbol for any control
code having a translated symbol instead of the
corresponding original symbol for that control
code;
to generate a modified data stream,;
said modified data stream representing any differ-
ences in data characters as well as any

differences in control codes, between said updated-state
image and a present-state image representing the infor-
mation available to the optimizer about the present
information content of the peripheral device buffer,
the computer utilizing in said modified data stream
generation the original symbol for any control
code having a translated symbol instead of the
corresponding translated symbol;
to cause said signal routing unit to route the modified
data stream to the peripheral device in lieu of the
original data stream from the host unit;
to read an incoming data stream from said peripheral
device; and
to update said present-state image to reflect changes
signified by said incoming data stream.}
[8. A method for optimizing the exchange of data streams
between a host unit and a peripheral device,

said data streams being routed between the peripheral
device and the host unit by a signal routing unit,

said peripheral device having an addressable buffer whose
contents are modified in response to data streams from
said host unit,

said buffer contents including data characters and further
including control codes,
said method comprising the steps of:

reading the content of a data stream from the host unit
prior to the routing of the data stream to the peripheral
device;

generating an image representing the updated state of the
buffer, said updated state being the state that would be
expected to exist after processing by the peripheral
device of said data stream;

generating a substitute data stream representing both any
differences in data characters and any differences in
control codes between said updated-state image and an
image representing the information available to the
opltimizer

about the present information content of the peripheral
device buffer,

sending the data stream so generated to the peripheral
device in lieu of the original data stream;

reading an incoming data stream from said peripheral
device; and

updating said present-state image to reflect changes sig-
nified by said incoming data stream.}
[9. A modified data stream for transmission in a telecom-
munications system, said system including:

a host unit which exchanges data streams with a periph-

10

15

20

30

35

45

50

55

60

65

14

eral device,

said data streams being routed between the host unit and
the peripheral device by a signal routing unit,

said peripheral device having an addressable buffer whose
contents are modifiable in response to data streams
from the host unit,

said buffer contents including data characters and further
including control codes,
said modified data stream produced by a process comprising

the steps of:

reading the information content of a data stream from the
host unit prior to the transmission of the data stream to
the peripheral device;

generating an image representing the updated state of the
buffer, said updated state being the state that would be
expected to exist after processing by the peripheral
device of said data stream: and

generating a modified data stream representing both any
differences in data characters and any differences in
control codes between (a) said updated-state image and
(b) an image representing information known about the
present information content of the peripheral device
buffer.]

[10. The modified data stream of claim 9 wherein said step
of reading the information content of a data stream from the
host unit prior to the transmission of the data stream to the
peripheral device is performed by a programmed computer.]

[11. The modified data stream of claim 9 wherein said step
of generating an image representing the updated state of the
buffer is performed by a programmable computer.]

[12. The modified data stream of claim 9 wherein said step
of generating a modified data stream representing both any
differences in data characters and any differences in control
codes between (a) said updated-state image and (b) an image
representing information known about the present informa-
tion content of the peripheral device buffer, is performed by
a programmed computer.]

[13. The modified data stream of claim 9 wherein said
modified data stream is sent to the peripheral device in lieu
of the data stream from the host unit.}

14. An optimizing system for a telecommunications sys-
tem, said telecommunications system including:

(A) a host unit which exchanges data streams with a
peripheral device, said data streams being routed
between said host unit and said peripheral device by a
signal routing unit,

(B) said peripheral device having an addressable buffer
whose information contents are modifiable in response
to data streams from said host unit,

(C) said data streams conforming to a protocol that
supports the use of a field attribute character sequence
in a data stream to delimit a field in said addressable
buffer, and that further supports premodification of a
modified-data tag (MDT) in a field attribute character
sequence in a data stream, whereby a set MDT indi-
cates a field in said addressable buffer that has been
modified, a premodified MDT being referred to here-
inafter as a “premodified field flag,”

(D) said buffer contents including data characters and
Jurther including control codes,

said optimizing system comprising:
(a) a control-code translation table stored in a storage
device and containing, for each control code normally

represented in a data stream by an original symbol that
is also usable to represent a data character, a trans-

Re. 35,110

15

lated symbol that is not used to represent any daia
character,

(b) an optimizer connecied to control said signal routing
unit and to read said translation table and pro-
grammed. 3
(1) to read the content of an original data stream

emanating from the host unit prior to the routing of
the original data stream to the peripheral device;

(2) to generate an updated-state image, said updated-
state image representing the information contents of 10
the buffer that would be expected to exist after
processing by the peripheral device of said original
data stream, said optimizer utilizing in said updated-
siate image generation the translated symbol for any
control code having a translated symbol instead of 13
the corresponding original symbol for said control
code;

(3) to generate a substitute data stream, said substitute
data stream representing any differences in data
characters, as well as any differences in control 20
codes, between said updated-state image and a

16

present-state image representing the information
available to the optimizer about the present injor-
mation contents of the peripheral device buffer, the
optimizer utilizing In said substitute data stream
generation the original symbol for any control code
having a translated symbol; and

(4) to cause said signal routing unit io route the
substitute data stream 1o the peripheral device in lieu
of the original data stream from the host unit,

(¢) wherein said optimizer is programmed to turn off all
premodified field flags in the substitute data stream and
thereby to incorporate a device-control message in the
modified data stream that, when processed by the
peripheral device, causes a data stream subsequently
initiated by the peripheral device to be sent as a data
stream representing changes to the peripheral device
buffer that were caused at the device since the last data
stream initiated by the peripheral device.

¥ ¥ ¥k ¥ %

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE 35,110

DATED . December 5, 1995

INVENTOR(S) - Thomas A. Harper, Carol R. Harper

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 10, line 59 del -
r , ete “he word "systemsg, " -
the word --system,-- before the word ”said"? S+ 7 and insert

Signed and Sealed this
Thirtieth Day of April, 1996

IS wce Tedman—

BRUCE LEHMAN

Attest:

Attesting Officer Commissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

