0 A 0 0O

USOORE34635E

L
United States Patent (9 (11] E Patent Number: Re. 34,635
Kimura et al. (45] Reissued Date of Patent: Jun. 7, 1994
[54] METHOD AND APPARATUS FOR BIT 4135242 171979 Wardetalcceeneee 364/200
OPERATIONAL PROCESS 1{;;332 1;;}3;3 ?:I;uraym ;ﬁﬁg
212, BITIETS cevuvremorescrrnnosnssosnsvnns
[75] Inventors: Koichi Kimura, Yokohama; 4,251,864 271981 Kindelletal. 364/200
Toshihiko Ogura, Ebina; Hiroaki 4,358,826 1171982 Bodner et al.ccoccomrcrennee. 364,/200
Aotsu, Yokohama; Kiichiro Urabe, 4,454,593 6/1984 Fleming et al.c........ 364/900
Isehara, all of Japm 4,523,276 6/1985 Maejima et al. ..., 364/200
_ 4644503 271987 Bantzetal ... 364/521 X
[73] Assignee: Hitachi, Ltd., Tokyo, Japan 4648046 3/1987 Copenhaveretal. 364/518
| 4,648,049 3/1987 Dines et al oooovrccerececrnecens 364/521
[21] Appl. No.: 988,311 4654781 371987 Schwartz et al. ..occcorvconen 364/200
[22] Filed: Dec. 9, 1992 4,692,859 971987 Oh ...ccccoomicmvnnneiincisesnnanen. 364/200
FOREIGN PATENT DOCUMENTS
Related U.S. Patent Documents
Reissue of: 1938346 12/1977 19:;36 Rep. of Germany GO6F
(64] Patent No.: 5,034,900 40-24644 10/1965 Japan .
Issued: Jul. 23, 1991 $9-136831(A) 8/1984 Japan .
‘;55:1 No.. g:"?:: 1985 Primary Examiner—Heather R. Herndon
' " Attorney, Agent, or Firm—Antonelli, Terry, Stout &
[30] Foreign Application Priority Data Kraus
Oct. 5, 1984 [JP] Japancooecrmmmsuonn 59208257 [57] ABSTRACT
Oct. 5, 1984 [JP] JAPAN v 59208267 4 (0 o rocessor having a first address opera-
[51] INt, Lo oeiiiiiireerieetrnensirrescsrnnerss GO6F 9/20 tion unit for updating the address of data in units of a
[52] US.CL ..., 395/166; 364/DIG. 1; byte or mu]“ple bytes for performmg c,peration 1N units
364/243.7; 364/246.3; 364/247.2; 395/400 of a byte or multiple bytes. A second address operation
395/400; 340/703, 724, 747, 150 multiple bits, an address controller operating on the first
[56] References Cited address operation unit to advance the address in re-
he result of address advancement by the
U.S. PATENT DOCUMENTS sponse 10 1 ol add . .
second address operation unit. Fetching byte-wide data
igggggg ;:: :3’;3 ;1;111‘&3’ ------ o 33;% g}zé for operation as addressed by the first address operation
. ' urrez et al, ..oooooiiiiinian : : f
4058711 1171977 Onderecn et al. ™" 3¢4/900 X UMty whereby operation between data of any numbver o
4079451 3/1978 Woods et al 164 /200 bits at any positions in byte blocks is controlled simply
4103329 7/1978 Davis et al. 3647200 and fast.
4109310 8/1978 England et al.oceeoveenne. 3647200
4,130,868 1271978 Heuer et al.ccoocceevieenenee. 364/200 29 Claims, 23 Drawing Sheets
10]8;

|

BIT OPERATION
PROCESSOR

MAIN
MEMORY

U.S. Patent June 7, 1994 Sheet 1 of 23 Re. 34,635

FIG. |

Sheet 2 of 23

June 7, 1994

U.S. Patent

Re. 34,635

9,9,8,v,6,8,2,9,6 ¢v,¢€,2,1,0
(V) OUWN

L.
L

DU =
NQO

!

2,8,v,6,8,2,9 6v,€,2,1,0
| (V) 1S 0

1,014,3,0,02,8,v,68,.,9,6,¢,¢,¢,1,0

(8) DS (V) DS

¢ 9Ol

June 7, 1994 Sheet 3 of 23 Re. 34,635

U.S. Patent

FIG. 3

\/
3
2
3

- MFY PROCESS S5
GET NEXT BIT ADDRESS S6

SB 1

RC E NG

- & or.' "
Y
UPDATA WORD ADDRESS S8
READ WORD DATA S9

510
R T

SBZ

N Y

Y
s
i
i

SB3
“
COMPLETED

Sheet 4 of 23 Re. 34,635

June 7, 1994

U.S. Patent

4
_

SS3J0v J1lHM ON

3,0,7,8|v,6,8,2,9,6,b,€,2,1,0
vyoww 000

N o N oy
™~ ~
> CXHIp) =N
T zalJ
| ERLGIIE
" <— NS
3T0'>'\8,v6,8,2,9,6,v,€,2,1,0
A Y 9 E S

Sheet 5 of 23 Re. 34,635

June 7, 1994

U.S. Patent

SSIOW QVRI ANV SS3J0V 311UM

(v) D85S

Sheet 6 of 23 Re. 34,635

June 7, 1994

U.S. Patent

SS30JV 3I1IMM ON

N S

4,3,0,9,8,v,6,8,2.9,6,v,¢,2,1,0[3,3,0,2/8,v,6,8,2[9,6,p1€]2,1,0!
o e%ynN . 9lyw

t,0

Re. 34,635

Sheet 7 of 23

June 7, 1994

U.S. Patent

1INA JOV4HILINI AHOW 3N

Nod
1INN
z:
MOILYHIJO
zo_.pdm 1189 mmumona 1ig '
| _| v

‘ SSHAQY h_m
NOILVYNIL1S 30

¥31S1934
SS3HAQY 118

NOI LY 340 h
| — 1 — .L, - 4 N1INN OHINOD
— e /7 SS3IHAQY 118

LIND
NOILVYYH 3dO
SS3HAAY QHOM

June 7, 1994 Sheet 8 of 23 Re. 34,635

U.S. Patent

FI1G. 8

el e | Vs
BIT WIDTH
H
%I o
o
al---
2 | 3 |
| 3 [4 |
nnln--
| s [e [
o & | 7 |
| 7 | 8 |
o 8 | 9 |

U.S. Patent June 7, 1994 Sheet 9 of 23 Re. 34,635

2 NO ADDING OPERATION

* | <| ADOITION USING DNR OR SNR CONTENT

* 2 <| WITH CARRY

2 WITHOUT CARRY

*x 3 WRITING OF OPERATION RESULT INTO XA

U.S. Patent June 7, 1994 Sheet 10 of 23 Re. 34,635

FIG. 10

SET Bp, nb FOR Xg P1

SET Ap, ha FOR XA PZ
MFY PROCESS P3
GET NEXT SN FOR Xg P4

- X1
SRC XB]
N BE YOND WORD .,
l UNDARY ?
XP 1

READ WORD DATA IN Xg J
GET NEXT SN FOR Xa P

X2
DST ___xB2 I
N BEYOND wom;;

BOUNDARY

WRITE OPERATION RESULT IN Xa
L —READ WORD DATA FROM Xa _l

ALL
RAST ms COMPLETED

U.S. Patent June 7, 1994 Sheet 11 of 23 Re. 34,635

FIG. |

\/

SET Bo, nb FOR X - P 1
:

MFY PROCESS P3
GET NEXT SN FOR Xg P4
GET NEXT SN FOR XA PS.

PB 1

ALL
RASTERS

COMPI';ETED

Re. 34,635

Sheet 12 of 23

June 7, 1994

U.S. Patent

¢ 3SVO ANV | 3SVO

8)1S d

Re. 34,635

Sheet 13 of 23

June 7, 1994

U.S. Patent

v 35vD

VX SS300V J1ldM

B

V) DN

XdaH({ 3J) = ‘ll'l.*
= NG

1,0]4,3:0,0'8,v,6,8.2,9' G p.c.2:1.0

9)1S0 (v)1S0

4,3,0,2,8,v,6,8,2,9,5.b,€.2,1.0[4'3,0,0.

) JHS (V) DHS

€l 91d

Re. 34,635

Sheet 14 of 23

June 7, 1994
o

\ XdH (() =
— Ng — 1

4,3,,2,8,v.6,8,2,9,6,.v.¢,2,1,014,3,0.02,8 v 6 82 9 6 v & 2,10

il Wen Sl ol Wil SRS Sl Wt NORAEE e

(8) J4S (v) DHS

——

* !

'8 o8

vl 914

U.S. Patent

June 7, 1994 Sheet 15 of 23 Re. 34,635

U.S. Patent

BOU I1 3 e _—a
' [ooR =
= OPERAND DATA OPERATING DATA | [|
IST | sLICING CIRCUIT SLICING CIRCuUIT 152
WAR
F —ia
. L

- PROCESSING UNIT
/

|
l
|
|
|
|
l
|
l
lOPERATlON 5
| CONTROL
I
|
|
|
l
l
|
|
|
I
|

REGISTER

|/| D MERGING CIRCUIT
MERGING

ADDRESS

REGISTER .
OPERATION
RESULT REGISTER

U.S. Patent June 7, 1994 Sheet 16 of 23 Re. 34,635

U.S. Patent June 7, 1994 Sheet 17 of 23 Re. 34,635

— s

A N

-— O
— r—e
)Y, n

D)

AN

N

i
N
D

-y Py
N N
N s
¥

U.S. Patent June 7, 1994 Sheet 18 of 23 Re. 34,635

FIG. |8

ofofojofo | .

o[[1 | Arwuse pus camy
T folo] 0| awwss
O] 1| 0 | awnws & wws sommow
ol | aewst

T o [Gewst

U.S. Patent ~ June 7, 1994 Sheet 19 of 23 Re. 34,635

P

N
”
-
o o

. 3

o

ol ") ")

o - -—

'\%

o

s of

o

» Ot O O .

r |[xlex|jxc|x

|9

FIG.

U.S. Patent June 7, 1994 Sheet 20 of 23 Re. 34,635

FIG. 20

oooooooo ______ IH

U.S. Patent June 7, 1994 Sheet 21 of 23

FIG. 22

A SB

U.S. Patent June 7, 1994 Sheet 22 of 23 Re. 34,635
FIG. 23
[I2
Cofel T T T) (LI tfofofi] I
= —_— [S2=3
= wW=2
IS1=1 1 . 1 .

OPERAND DATA OPERATING DATA
SLICING CIRCUIT SLICING CIRCUIT

| |

PROCESSING UNIT. S5

| =

'
e
D=2 l

o] R3

U.S. Patent June 7, 1994 Sheet 23 of 23 Re. 34,635

FIG. 24

IO)O
* ' MAIN
I

O

BIT OPERATION
PROCESSOR

IIO

Re. 34,635

1

METHOD AND APPARATUS FOR BIT
OPERATIONAL PROCESS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions made
by reissue.

BACKGROUND OF THE INVENTION

[1. Field of the Invention]

The present invention relates to a digital processing
system and, particularly, to a method and apparatus for
bit operational process suitably used in an image pro-
cessing system having a bit-map display.

[2. Description of the Prior Art

The prior art system will be first described by taking
an example of image processing shown in F1G. 1. In the
figure,}

At first, we will provide a description of an example of

image processing intended by the present invention, as
shown in FIG. 1; and then, we will describe certain prob-
lems which result when this image processing is imple-
mented on a conventional system, with reference to FIG. 3.
Referring to FIG. 1, reference symbol M1 denotes a mem-
ory area storing image data in 1-to-1 correspondence to
a CRT (Cathode Ray Tube) screen, M2 denotes a mem-
ory area storing image data to be added to the image
data in M1, X4 and Xz denote partial areas in M1 and
M2, respectively, for which image data processing takes
place, W40, W41, W02, Wpoand W 5 denote boundarnies
of data words having a word length of 16 bits, for exam-
ple, Ro through R, represent raster lines for the partial

3

10

15

20

23

30

areas X4 and X, na and nb represent displacements of 34

the leading edges of the areas X 4and Xgfrom the word
boundaries W 40 and W po, respectively, Ag through A,
and Bg through B, represent addresses of word data in
the areas X 4 and Xz, and MFY denotes a modification
unit for implementing the alignment and processing for
the areas X4 and X g having different starting bit posi-
tions na and nb.

Since the currently available processing unit such as a
microprocessor deals with data and makes access to the
memory in vnits of a word or a byte, the memory areas
M1 and M2 shown in FIG. 1 have a word or byte struc-
ture. However, in image processing, a partial screen
area to be processed is specified from the outside of the
system without regard to the word boundary as shown
by areas X4 and Xpin FIG. 1. On this account, image
processing for combining the partial areas X4 and Wp
needs a modification unit MFY with the following three
processing functions.

(1) Rearrangement of word data so that processing
can take place on a word-wide bases between data
for areas X 4 and X g with different starting bit posi-
tions na and nb.

(2) Separation of data section from word-wide data
e.g., na bits, in each of addresses Ag, A3, ..., Ap-2
so that it is retained unchanged in the processing.

(3) Data processing in any specific number of bits (bit
width) so that monochrome display is implemented
using one bit per pixel while color display uses a
plurality of bits per pixel (generally four bits per
pixel).

The operation of the modification unit having these

functions will be described in connection with FIG. 2.
Throughout the following description, it is assumed

45

50

nh

65

2

that the image data memory is addressed in units of a
word.

FIG. 2 shows a 2-word register SRC(A) and SRC(B)
for storing data read out of the processing area Xp, a
2-word register DST(A) and DST(B) for storing data
read out of the processing area X4, and a 2-word regis-
ter [DST(A) and DST(B)] MRG (A) and MRG (B)
for storing the result of processing for the contents of
the registers SRC(A, B) and DST(A, B). The modifica-
tion unit MFY performs rotation of the register SRC(A,
B), i.e., shift of SRC content with bit 0 of SRC(A)
linked with bit F of SRC(B), depending on the values of
SN (i.e., nb) and DN (i.c., na) representing the starting
bit positions of the processing areas X4 and X3, as fol-
lows.

(a) For SN>DN: Rotate the SRC content left by a

number of bits of SN-DN.

(b) For SN < DN: Rotate the SRC content right by a

number of bits of DN-SN.

(c) For SN=DN: No operation.

In this way, bit addresses nb(SN) and na(DN) are used
to align the operation starting bit position.

Consequently, the starting bit position of the SRC
content is adjusted to that of the DST content. The bit
width of processing, WN, is set in advance, and the
remaining portion of data is left unchanged. Although
in FIG. 2 the result register MRG(A, B) is provided
independently of DST(A, B), they may be arranged 1n
common. After the subsequent processing, the original
bit position of the SRC content is restored automati-
cally.

Next, the 4-bit image processing for the areas X 4 and
X g by the modification unit MFY will be described in
connection with FIGS. 3, 4, 8 and 6. The process shown
in FIG. 3 includes step S1 of setting the starting address
Ag for the processing arez X4, step S2 of setting DN to
the starting bit position (address) na, step S3 of setting
the starting address Bg for the processing area Xp, step
S4 of setting SN to the starting bit position (address) nb,
step S§ of the process implemented by the modification
unit MFY mentioned above, steps S6-S9 for the area
X g for obtaining the next bit address (86), setting the
next SN (S87), incrementing the address in word units
(S8) and reading next word data (89), and steps S10-514
for the area Xz for obtaining the next bit address (510),
setting the next DN (S11), writing the result of process
in the register MRG(A)(S12), incrementing the address
in word units (S13) and reading the next word data
(S14). The process further includes decision steps SB1
and SB2, which implement the following operations.

(I) Decision step SB1

This step tests as to whether the next SN address of
SRC resulting from the steps $6 and S7 as in the follow-
ing expression (1) reaches beyond the word boundary as
in the following expression (2), and controls the se-
quence to fetch the next word data when the condition
(2) 15 met.

SN=SN+WN)

SNZ 10ycy (2)

(II) Decision step SB2

This step tests as to whether the next DN address of
DST resulting from the steps S10 and S11 reaches be-
vond the word boundary as in the following expression

Re. 34,635

3

(3), and controls the sequence to write data in the regis-
ter MRG(A) to the area X4 when the condition (3) 1s
met, which indicates the end of operation at the current
word boundary. ‘

DNZ 104EY (3)

The above operations for one raster (R0) will be
described in more detail in connection with FIGS. 4, §,

and 6.
FIG. 4 is the case of condition,

DN-WN=(A)yexr—(A)HEXY— () HEX<(10)HEX

10

Then, reading of the next word data and writing of (s

process result do not take place.
FI1G. 5 is the case of condition,

DN+ WN=(E)ger+ @) gex> (10 HEY

Then, reading of the next word data and writing of 20

process result take place.
FIG. 6 is the case of condition,

SN—-WN=D)gex— N xex>(10)HEX

and

DN-WN=)nex+(VOHEx<(1M)HEY

Then, reading of the next SRC word data takes place,
but writing of the process result does not take place.

[The foregoing prior art processing] Attempting to
implement the image processing of the present invention
using a conventional system involves the following
drawbacks.

(1) The conventional microprocessor of word ad-
dressing type needs register rotation and word bound-
ary check by software in implementing bit block opera-
tions, resulting in a complex system control.

(2) Fetching of data from the processing areas X 4 and
X 5 needs different access timing depending on the cur-
rent bit position with respect to the word boundary,
resulting in a complex software control.

(3) The amount of data stored in the memory areas
M1 and M2 will range as much as from 100 kilo-bytes to
several mega-bytes, and the process shown in FIG. 3
with the bit width WN being set as large as one byte (8
bits) will take a total number of steps of the order of 10°,
and therefore the number of processing steps needs to
be reduced drastically.

Furthermore, the conventional miCroprocessor
merely allows bit operations such as arithmetic shift,
Jogical shift, bit set, bit reset, etc. But as to other arith-
metic and logic operations, etc., it is impossible to carry
out the operations except only in a fixed bit length such
as a byte or word. On this account, in order to achieve
“raster operation” on a bit-map display having a mem-
ory in correspondence at each point of on/off control to
the display screen for implementing an image process
between separate rectangular areas of arbitrary size on
the screen, the above-mentioned bit operations do not
suffice the purpose, but operations of data with any bit
width at any position in each word becomes necessary.
If such operations are intended to be performed a mi-
croprocessor, input data is shifted for bit alignment, an
operation is conducted on the data, the resultant data 1S
shifted for alignment with another data to be merged,
and after the merging operation the resultant data 1s

25

30

335

45

50

33

65

4

stored in the original memory location. These sequen-
tial operations take too long a time, and fast image pro-
cessing cannot be expected.

There is a method of solving this problem, in which
there is added to the system a barrel shifter that 1s capa-
ble of multi-bit shift at the same operating speed as the
single-bit shift, and a merging circuit. However, despite
the capability of bit alignment by the barrel shifter, the
processor is limited to fixed word-length operations and
external memory access usually in 8-bit or 16-bit length,
and the restricted hardware ability for implementing
arbitrary bit width operations need to be covered by
complex software processes through the use of simple
bit operations. An example of the processor for imple-
menting the foregoing operations is Micro Processor,
model Am 29116, manufactured by ADVANCED
MICRO DEVICES.

SUMMARY OF THE INVENTION

It is an object of this invention to provide a method
and apparatus for bit operation with the intention to
simplify and speed up the computation between data
with arbitrary number of bits at arbitrary position in
each data word.

Another object of this invention is to provide a bit
processing system capable of easily accessing an exter-
nal data memory under word address control for the
internal processing under bit address control.

Still another object of this invention is to provide a bit
operation unit capable of easily executing an arithmetic
and logic operation for bits with any number of bits at
any position in each data word.

A further object of this invention is to provide a bit
operation processing system capable of bit and word
address control and external memory access control on
a hardware basis so that the overhead software process-
ing is reduced to enhance the system performance.

In order to achieve the above objectives, this inven-
tion has features as follows.

(1) Internal computations are controlled entirely on
the basis of bit addressing.

(2) A bit address operation unit is provided for bit
addressing control in addition to the word address oper-
ation unit for word addressing control.

(3) The bit address operation unit operates to add the
current operation starting bit address to the bit width of
bits to be operated.

(4) The bit address and word address operation units
have an interface through the carry signal produced by
the bit address operation unit.

(5) The carry signal of the bit address operation unit,
when seen from the internal processing control, is an
anticipation signal indicating that the current starting
bit position will reach beyond the word boundary in the
next operation cycle. Accordingly, the carry signal is
used to trigger the external memory access for fetching
word data necessary for the bit operation at the word
boundary.

(6) The bit address and word address operation units,
share the hardware components, but have the distinct
logical functions relating through the carry signal.

(7) The bit address operation unit operates cyclically
in a word period, and its output represents the relative
bit address counted from each word boundary.

(8) The carry signal produced at a certain bit position
of the bit address operation unit creates the boundary of
words of 27 bits.

Re. 34,635

S

(9) The bit address operation unit performs addition
of a operation bit width for each register independently,
allowing bit operations of arbitrary number of bits.

On the other hand, in order for the bit-map display to
achieve operation between data of rectangular screen 3
areas, i.e., raster operation, it is necessary to achieve
operation between data with any bit width at any posi-
tion in the data word. For the computation of data with
any bit width by a fixed bit-width processor, the absent
bit oppositions of input data need to be filled. In simple
arithmetic operations, a fixed bit width processor can
deal with data with reduced number of bits by filling 0’s
bits in the lower absent bit positions to obtain a correct
result including the carry bit. In the carry adding opera-
tion, lower absent bit positions must be filled with 1's
bits to obtain a correct result. Logical operations be-
tween data are implemented for each corresponding bit
separately, and the number of significant bits is arbitrary
for the processor to obtain a correct result, except for
the flags, which values are correct when absent bit
positions are filled with 0’s or 1's bits selectively. Ac-
cordingly, in carrying out an arithmetic or logic opera-
tion for data with arbitrary number of bits, input data
are placed at high order bit positions of the processor,
with absent bit positions being filled with O’s bits or 1's
bits depending on the type of operation, thereby to
obtain a completely correct result.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram for explaining the image data 30
processing intended by the present invention;

FIG. 2 is a diagram for explaining the operation of
the modification unit (MFY) shown 1n FIG. 1;

FIG. 3 is a flowchart showing the operational proce-
dure of the modification unit when the image processing 35
of the present invention, as explained with reference to
FIG. 1, is implemented in the conventional system;

FIGS. 4, 5 and 6 are diagrams for explamning the
operation shown by the flowchart of FIG. 3;

FIG. 7 is a block diagram showing the bit data pro-
cessing system embodying the present invention;

FIG. 8 is a table for explaining the bit width of com-
putation by the modification unit;

FIG. 9 is a table for explaining the relation between
the carry signal produced by the bit address operation 45
unit and the access timing;

FIG. 10 is a flowchart showing the image processing
operation carried out by application of this invention;

FIG. 11 is a flow chart showing part of the process of
FIG. 10 conducted by the memory interface unit (MIF); 50

FIGS. 12, 13 and 14 are diagrams for explaining the
operations shown in FIGS. 10 and 11;

FIG. 15 is a block diagram showing in detail the
arrangement of the bit operation unit shown in FIG. 7;

FIG. 16 is a table showing the output function of the
operand data slicing circuit 3 shown in FIG. 153;

FIG. 17 is a table showing the output function of the
operating data slicing circuit 4 shown in FIG. 15;

FIG. 18 is a table listing the types of operation per-
formed by the processing unit 5§ shown in FIG. 15;

FIG. 19 is a table showing the merged data R2 shown
in FIG. 15;

FIG. 20 is a table showing the writing mask data M
shown in FIG. 15;

FIG. 21 is a table showing the output function of the 65
operation result register 7 shown in FIG. 13;

FIG. 22 is an illustration showing the execution of
raster operation on the bit-map display;

10

15

20

25

35

6

FIG. 23 is a diagram for explaining the operation of
the bit processing system of the case with displaced bit
positions; and

FIG. 24 is a block diagram showing the system con-
figuration for implementing the image processing ac-
cording to this invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In FIG. 24 showing the image processing system, the
bit operation processor 110 is controlled by CPU 100 of
the host computer to perform image processing such as
expansion, reduction, rotation and merging of image
patterns, (@). In implementing the image processing,
the bit operation processor 110 fetches data from the
image data memory 120, processes the data, @. and
stores the resultant data in the image data memory 120
so that it is displayed on the CRT display unit 130, ((3)).

This invention is intended to provide means for 1m-
plementing the above-mentioned operations (@, @)
of reading and writing the image data memory 120 for
data of any bit width at any positions in the data word.

First, bit position control necessary for bit operation
will be described with reference to FIG. 7 showing an
embodiment of the inventive bit operation processor.

The arrangement of FIG. 7 includes a word address
operation unit ADW, a bit operation unit BOU for
accessing data in the aforementioned memory areas M1
and M2 in the image data memory 120, the bit operation
unit BOU performing the aforementioned three func-
tions (1), (2) and (3) by rotating the register contents
depending on the bit addresses SN and DN of the pro-
cessing areas X4 and Xp, a bit address operation unit
ADB, and a bit [address operation] register unit BR
including an operation bit width register WNR for
storing the value of operation bit width WN, a source
bit address register SNR for storing the operation start-
ing bit position SN for the processing area Xp and a
destination bit register DNR for storing the operation
starting bit position DN for the processing area Xyu.
Signal line AC is for the carry produced by the bit
address operation unit ADB, signal bus MA is for the
word address produced by the word address operation
unit ADW, and signal bus D is for word data, through
which buses image data is transferred with the memory
areas M1 and M2. The bit register unit BR and the bit
address operation unit ADB in combination constitute a
bit address control unit BM. The contents of the bit
register unit BR, i.e., WN, SN and DN, are used by the
bit operation unit BOU.

The bit operation unit 110 fetches data from separate
memory areas M1 and M2 within the image data mem-
ory 120 via the memory interface unit MIF. There are
two cases of reading the memory areas M1 and M2
depending on the starting bit position na (nb) of a data
segment with a bit width WN to be processed currently

in a data word with a bit width of L as follows.

(a) New word data is required for the subsequent
operation, In case,

na + Wn > 1 nb — WN

-
A = 1

(b} Current word data suffices for the subsequent
operation, in case,

Re. 34,635

7

nb — WN

"":tWN{L =

2 < 1

The above conditions are tested on a hardware basis
through the provision of an L-bit bit address operation
unit ADB for adding values na (nb) and WN, with the
decision being made depending on the presence or ab-
sence of the carry signal AC from the operation unit
ADB. The carry signal AC indicates the need of next
word data reading, and it is used to trigger the word
address operation unit ADW for addressing the next
data word. In this way, the bit operation unit 110 makes
access to the memory areas M1 and M2 only when new
word data becomes necessary for processing.

In describing operation unit 110, the operation of the
bit address control unit BM will first be explained.

The bit address control unit BM operates on the bit
address operation unit ADB to add a starting bit address
SN (DN) in the register SNR (DNR) to a operation bit
width WN in the register WNR to evaluate the starting
bit address SN (DN) for the next operation, and stores
the result in the register SNR (DNR).

Generally, image processing is conducted between
image data in two separate screen areas, and therefore
both corresponding memory areas X4 and Xp under
process have distinct starting bit addresses which need
to be stored separately, DN in DNR and SN in SNR.
The operation bit width WN is constant during the
entire process and common to both processing areas X 4
and X g, and it is stored in the single register WNR.

The bit address operation unit ADB is of four bits as

mentioned previously, providing a result in the range of

(OYyex to (F)yex. Accordingly, the output of the bit
address operation unit ADB represents the bit position
between contiguous word boundaries. However, the
operation bit width WN used by the bit operation unit
BOU requires bit range including (10)g£x beyond the
word boundary in addition to (1)g£ex to (F)gey. On this
account, the bit operation unit BOU is designed to inter-
pret the operation bit width WN as shown by the table
of FIG. 8. In this way, the bit address control unit BM
calculates the relative bit address within a 16-bit data
word.

The word address operation unit ADW operates to
increment the word address in response to a signal from
the bit address control unit BM. The following de-
scribes the interface between the ADW and the bit
address operation unit ADB in BM for the word ad-
dressing operation. The word address operation unit
ADW is notified by the ADB of the overrun of the
word boundary by use of the carry signal AC produced
by the ADB. However, the value which any of the bit
address operation unit ADB and registers WNR, SNR
and DNR, which have a capacity of four bits 1s (O)HEX
to (F)u£x, therefore, addition of WN and SN (or DN)
does not always produce the carry signal AC to meet
the purpose. For example, in case of WN=(F)yEx,
SN =(0)£x for the 16-bit operation (See FIG. 8), the
following bit address calculation does not create the
carry signal AC despite the case that the bit address will
reach beyond the work boundary in the next operation.

WN+ SN=F)yex+Onex=(FIREX

On this account, the address increment operation by the

bit address operation unit ADB must include addition of

S

10

15

20

23

30

35

40

45

50

55

60

65

one so that the carry signal AC is produced as desired,
as follows.

(WN+ D4+ SN=F)gexr+(Nrex—O)gex=(10-

YHEX (4)

As mentioned above, a necessary carry signal AC can
be produced by adding “1”, and addition of “1” be-
comes indispensable.

The aforementioned carry signal AC can be used as a
decision signal indicating whether or not the bit posi-
tion will reach beyond the current word boundary in
the next operation cycle. Accordingly, the carry signal
AC from the bit address operation unit ADB can be
used as, (1) an anticipation signal indicating the need of
fetching the next word data, and (2) a trigger signal to
the word address operation unit ADW for generating
the address of word data to be fetched. In other words,
the carry signal AC from the bit address operation unit
ADB can be used for timing the access operation of the
memory interface unit MIF to the processing areas X4
and Xz, as shown in FIG. 9. Due to separate registers
SNR and DNR for storing the starting bit addresses SN
and DN, the above-mentioned functions (1) and (2) of
the carry signal AC can reflect on the processing areas
X 4 and Xp independently.

FIG. 10 shows in flowchart the operation of the fore-
going embodiment of this invention applied to the
image processing system shown in FIG. 1. In a se-
quence of operations, a processing step P1 sets the word
address Bo and bit address nb (SN =nb) of SNR for the
operation starting bit position for the processing area
X g, step P2 sets the word address Apand bit address na
(DN =na) of DNR for the operation starting bit posi-
tion for the processing area X4, step P3 is the function
of the bit operation unit BOU, step P4 calculates the
next operation starting bit position SN for the process-
ing area Xp using the bit address operation unit ADB
and word address operation unit ADW, step PS5 simi-
larly calculates the next operation starting bit position
DN for the processing area X4, step XP1 reads a word
data in the processing area Xp, step XP2 writes the
operation result in the processing area X4, step XP3
reads a word data in the processing area X4, step PB1
tests the completion of process for each of rasters Ro-
Rm, and steps XB1 and XB2 test the results of execu-
tions in the above steps XP1, XP2 and XP3 in accor-
dance with the presence or absence of the carry signal
AC.

The decision steps XB1 and XB2 will be explained in
more detail in the following.

(1) It is tested as to whether the data segment to be
processed next ranges within the current data word or
beyond the word boundary.

(2) At the decision step XB1, if the segment is within
the current data word (case 1 in FIG. 9), the step XP1
is skipped, or if the segment reaches beyond the word
boundary (case 2 in FIG. 9), the step XP1 is executed to
read the next word data from the processing area X3p.

(3) At the decision step XB2, if the segment is within
the current word (case 3 in FIG. 9), the steps XP2 and
XP3 are skipped, or if the segment reaches beyond the
word boundary (case 4 in FIG. 9), the step XP3 1s exe-
cuted to read the next word data from the processing
area X 4.

(4) In case 4, the processing step XP2 for wnting the
processing area X 4 is executed by the following reason.
The processing area X4 is included in the memory area

Re. 34,635

9

M1 as shown in FIG. 1, and it is also written the result
of processing. When the next starting bit position calcu-
lated basing on the value of DN reaches beyond the
word boundary, it indicates that the operation for one
word data has completed.

Namely, the conventional system tests the word
boundary condition for fetching the next word data on
a software basis, whereas the inventive system employs
a bit address operation unit ADB for anticipating the
need of memory access, allowing the continuous execu-
tion of the internal bit operational process while dealing
with external word data.

Decisions made by the steps XB1 and XB2 are based
on the carry signal AC produced by the bit address
operation unit ADB as described above, and the carry
signal AC can readily be distinguished among the four
cases shown in FIG. 9 depending on the use of register
DNR or SNR. Accordingly, by implementing the deci-
sion process for the four cases as shown in FIG. 11 1n
the memory interface unit MIF, a processing step group
X1 including the steps XB1 and XP1, and a processing
step group X2 including the steps XB2, XP2 and XP3,
shown in FIG. 10, can be eliminated. In F1G. 11, steps
P1-P5 and PB1 are identical to those shown mn FI1G. 10.

The foregoing operations of four cases are shown in
FIGS. 12, 13 and 14, in which initial values are set as:
the operation starting bit address SN=(3)ygyand word
address Bo for the processing area Xp; the operation
starting bit address DN - (A)ygy and word address Ao
for the processing area X4 the operation bit width
WN=(3)yex. F1G. 12 is for cases 1 and 3, FIG. 13 is for
case 4, and FIG. 14 is for case 2 in FIG. 9.

Next, an embodiment of this invention with the inten-
tion of fast data processing between rectangular areas
on the bit-map display, i.e., raster operation, will be
described in connection with FIGS. 18 through 23.

In FIG. 15 showing in detail the bit operation unit
BOU in the bit operation processor of FIG. 7, the ar-
rangement includes an operand data register 1, an oper-
ating data register 2, an operand data slicing circuit 3, an
operating data slicing circuit 4, a processing unit 3§, a
data merging circuit 6, an operation result register 7, a
source bit address register [DNR] SNR, a destination
bit address register [SNR] DNR, an operation bit
width register WNR, a merging address register 11, an
operation control register 12, and an operation com-
mand decoder 13. In this specification, term “operating
data” is used to mean one member of an arithmetic/-
logic operation, such as X in Z=X+7Y, while term
“operand data” to mean another member of the opera-
tion, such as Y in Z=X 4 Y. The block diagram further
indicates operand data 11, operating data 12, sliced oper-
and data I3, sliced operating data 14, operand data slic-
ing address IS1, operating data slicing address IS2,
slicing bit width W, operation result R1, merging ad-
dress D, writing mask data M, merged data R2, stored
result data R3, operation command code FC, and opera-
tion decode data F. Fetching of data from the image
data memory 120 to the registers 1 and 2, and storing of

10

15

20

25

30

35

45

30

35

data from the register 7 in the memory are conducted 60

by making access to the image data memory 120
through the memory interface unit MIF as shown in
FIG. 7.

For the simplicity of the following description on the
operation of the above arrangement, the processing unit
5 is assumed to have 4 bits in relation to operand data 11,
operating data 12, mask data M and merged data R2
each having 8 bits, twice the operation bit width, sliced

63

10

operand data 13, sliced operating data I4 and computa-
tion result R1 each having 4 bits, identical to the opera-
tion bit width, and operand data slicing address 1S1,
operating data slicing address 1S2, slicing bit width W
and merging address D each having 2 bits, derived from
the 2-bit processing unit 3.

FIG. 16 is the output function table for the operand
data slicing circuit 3. In the table, 1S1p and 151, are the
high-order bit and low-order bit of the operand data
slicing address 1S1, Wo and W) are the high-order bit
and low-order bit of the slicing bit width W, 130-13; are
4-bit sliced operand data (13¢ being highest bit, 133 low-
est), I15-117 are 8-bit operand data (I1obeing highest bit,
117 lowest), and F is the operation decode data. The
operand data slicing circuit 3 produces ‘F’ at 131-133
when W equals to 0 (Wo=0, W=0), produces ‘F at
13, and 133 when W equals to 1 (Wg=0, W =1), pro-
duces ‘F’ at 133 when W equals to 2 (Wo=1, W=0),
and produces an effective data at 130-13; when W equals
to 3 (Wo=1, Wi=1).

Namely, the slicing bit width W is actually added by
one (W + 1), so that the circuit performs slicing of data
ranging from 1 bit to 4 bits. The operand slicing address
IS1 specifies the highest order bit 11p through W 4 1th
bit of operand data I1 when IS1 equals to 0 (IS1p=0,
IS1;=0), specifies the second bit I1 through W + 1th bit
of operand data I1 when it is equal to 1 (ISlp=0,
IS1;=1), specifies the third bit I11; and fourth bt I1;
when 1S1 equals to 2, and specifies the fourth bit 113 for
slicing when IS1 equals to 3.

FIG. 17 is the output function table for the operating
data slicing circuit 4, which operates identically to the
operand data slicing circuit 3 with its input and output
signals 151, I1 and 13 being replaced with 1S2, 12 and 14.

FIG. 18 is a table of operation command codes FC,
operation decode data F and types of operations. In the
table, symbol A represents an operand data, B repre-
sents an operating data, *+ signifies logical sum, *.”
signifies logical product, “—" signifies negation, “&
signiftes exclusive logical sum, “plus” signifies arithme-
tic addition, “minus” signifies arithmetic subtraction,
“carry” represents the value of carry flag, and “bor-
row” represents the value of borrow flag.

FIGS. 19 and 20 are the output function tables for the
merging circuit 6, showing merged data R2 and writing
mask data M, respectively. Each signal is suffixed to
indicate bit positions in the same way as for the signals
in FIGS. 16 and 17. The merged data R2 15 not depen-
dent on the slicing bit width W, but is a function of the
merging address D and operation result R1. With D
being equal to 0, the merged data R2 is given at bit
positions R20-R23 a 4-bit operation result R1p-R13; at
D=1, R2;-R24 are given the operation result; at D=2,
R2:;-R2s are given the operation result; and at D=3,
R23-R2¢ are given the operation result. The remaining
bit positions of the merged data R2 are filled with *“0”.

Writing mask data M is a function of merging address
D and slicing bit width W, as shown in the table of FIG.
20. With the slicing bit width W being 0, writing mask
data M has “1” at one bit position and “0” at remaining
bit positions. With W=1, data M has “1” at two contig-
uous bit positions and “0” at remaining bit positions.
With W=2, data M has “1” at three consecutive bit
positions, and with W=3, data M has “1”* at four con-
secutive bit positions and ““0” at remaining bit positions.
Bit positions of writing mask data having “1” are deter-
mined from the merging address D, i.e., with D=0,
W 41 bits from Mgbecomes *“1”; with D=1, W41 bits

"

Re. 34,635

11
from M becomes “1”; with D=2, W41 bits from M>
become “1”; and with D=3, W41 bits from M3 be-
come “1", with remaining bit positions becoming “0".

F1G. 21 shows the output function table for the oper-
ation result register 7. The 8-bit register 7 provides
outputs as a function of merged data R2 and writing
mask data M. With bit i of writing mask data M being
“0”, i.e., Mi=0, bit i of stored data R3, i.e.,, R3;, is un-
changed, while with Mi being “1”, the R3;1s OVErwrit-
ten by bit i of merged data R2, i.e., R2i, where 1 takes an
arbitrary value ranging O through 7.

FIG. 22 illustrates the execution of raster operation
on the bit-map display, in which a pair of image data in
rectangular areas SA and SB are processed to obtain the
result in a rectangular area DST. The bit-map display
has a memory which is arranged in the 8-bit or 16-bit
word length for reading and writing as in the usual
memory. The rectangular data areas SA, SB and DST
correspond to bit blocks of memory regardless of word
boundaries. Slicing of a bit block within a word or
beyond a word is treated by the bit operation processor
which operates as shown in FI1G. 23. |

In this embodiment of the bit operation processor, the
operation will be described with the following assump-
tion of settings. The operand data I1 has a starting bt
position of IS1=1, operating data 12 has 1S2=3, and
operation bit width W is 2 bits. The operand data 11 has
value ‘100’ on bits 1-3, and operating data 12 has value
‘001’ on bits 3-5.

The operand data slicing circuit 3 responds to the
values IS1=1 and W=2 to slice three bits (‘100’) from
the operand data 11, and adds “0” following the lowest
bit position to form sliced operand data I3. In the same
way, the operating data slicing circuit 4 produces sliced
operating data I4. The processing unit 5 performs oper-
ation between the sliced data I3 and I4, and provides the
result R1. In the example of FIG. 23, the processing unit
§ is instructed to execute logical summation for the
given data. The merging circuit 6 responds to the values
of W and D to merge the high-order 3 bits (‘101°) of the
operation result R1 into 3 bits of the stored data R3
starting at bit 3. By the above operations, operand data
11 and operating data 12 are sliced and, after operation
between the data, the result is merged into the stored
data R3.

Although logical summation has been explained in
the above embodiment, other logical operations such as
negation (NOT) and logical multiplication (AND) can
obviously be executed. For arithmetic operations, when
the bit width of operating data is smaller than the opera-
tion bit width (4 bits) of the processing unit 5 as in the
case of FIG. 23, lower bit(s) are filled with “0”. Arith-
metic operations between zeros results in zero without
the occurrence of the carry or borrow and does not
affect the operation result of high-order bits, and there-
fore arithmetic operations with less number of bits can
be executed. For addition of carry, the operation de-
code data F becomes 1, and the occurrence of carry is
propagated up to the effective bit position, at which the
carry bit is added.

Although in the above embodiment the operation
decode data F is used only for the sliced operand data
IS3, other operation decode data may be used for the
sliced operating data IS4 to carry out the execution
identically.

As described above, the present invention is effective
in controlling the bit position of data for bit operation,
as follows.

10

13

20

235

30

35

45

50

35

65

12

(1) By addition of a bit address operation unit ADB to
the conventional word address operation unit ADW,
control of operation between data with different start-
ing bit positions SN and DN in each word data can be
simplified.

(2) By using the carry signal AC of the bit address
operation unit ADB for incrementing the word address
operation unit ADB and by providing registers SNR
and DNR separately, the word data memory areas X
and Xp can readily be accessed independently of the
internal bit processing.

(3). By implementing bit address and word address
control and memory access control on a hardware basis,
the process can be simplified down to § or less in terms
of processing steps as compared with the conventional
system (see FIGS. 3 and 11), whereby speed-up of pro-
cess is accomplished.

(4) Since execution of operational processes for any
number of bits at any bit position in word data can be
made, speed-up of bit operation is accomplished.

We claim:

1. A bit operation processing method for processing
operand data and operating data stored in a memory
comprising:

(a) a first step of incrementing in units of an integral
number of bytes, addresses of said operand data
and said operating data to be processed in units of
an integral number of bytes independent from each
other;

(b) a second step of incrementing addresses of data of
said operand data and said operating data in units of
an integral number of bits independent from each
other;

(c) a third step of causing said first step to increment
addresses on the basis of the result of address incre-
menting in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data in units of a byte at locations in
memory designated by addresses produced in said
first step, and for performing arithmetic or logic
operations using the retrieved stored operand data
and operating data.

2. A bit operation processing method for processing
operand data and operating data stored in a memory
comprising:

(a) a first step of incrementing in units of an integral
number of bytes, addresses of said operand data
and said operating data to be processed in units of
an integral number of bytes independent from each
other;

(b) a second step of incrementing addresses of data of
said operand data and said operating data in units of
an integral number of bits;

(c) a third step of causing said first step to increment
addresses on the basis of the resuit of address incre-
menting in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data i units of a byte at locations in mem-
ory designated by addresses produced in said first
step, and for performing arithmetic or logic opera-
tions using the retrieved stored operand data and
operating data;

wherein said third step includes generating a starting
bit position for a subsequent operation based on the
result of addition of a current starting bit position
to a number of operation bits of data defined within
said unit of data implemented by said second step.

Re. 34,635

13

3. A bit operation processing method for processing
operand data and operating data stored in a memory
comprising:

(a) a first step of incrementing in units of an integral

14

trol for the starting bit position of said operand data
independently from each other.

6. A method according to claim §, wherein saxd oper-

ation bit width, said starting bit position of operating

number of bytes, addresses of said operand data 5 data and said starting bit position of operand data are

and said operating data to be processed in units of
an integral number of bytes independent from the
other;

(b) a second step of incrementing addresses of data of

identical to those treated in said step 2, and said values

are incremented by *“1”.
7. A bit operation processing method for processing

operand and operating data stored in 8 memory com-

said operand data and said operating data in units of 10 prising: -

an integral number of bits;

(c) a third step of causing said first step to increment
addresses on the basis of the result of addresses
incrementing in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data in units of a byte at locations in
memory designated by addresses produced in said
first step, and for performing arithmetic or logic
operations using the retrieved stored operand data
and operating data;

wherein said third step includes controlling the ad-
dress incrementing in said first step in response to
carry information created in said second step.

4. A bit operation processing method for processing
operand data and operating data stored in a memory
comprising:

(a) a first step of incrementing in units of an integral
number of bytes, addresses of said operand data
and said operating data to be processed in units of
an integral number of bytes independent from the
other;

(b) a second step of incrementing addresses of data of
said operand data and said operating data in units of
an integral number of bits;

(c) a third step of causing said first step to increment
addresses on the basis of the result of address incre-
menting in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data in units of a byte at locations in
memory designated by addresses produced in said
first step, and for performing arithmetic or logic
operations using the retrieved stored operand data
and operating data;

wherein memory address control is implemented in
said first step and internal data address control 1s
implemented in said second step.

§. A bit operation processing method for processing
operant data and operating data stored in a memory
comprising:

(a) a first step of incrementing in units of an integral
of bytes, addresses of said operand data and said
operating data to be processed in units of an inte-
gral number of bytes independent from each other;

(b) a second step of incrementing addresses of data of
said operand data and said operating data in units of
an integral number of bits;

(c) a third step of causing said first step to increment
addresses on the basis of the result of address incre-
menting in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data i units of a byte at locations in mem-
ory designed by addresses produced in said first
step, and for performing arithmetic or logic opera-
tions using the retrieved stored operand data and
operating data;

wherein said fourth step implements control for the
starting bit position of said operating data and con-

15

20

25

30

35

45

35

63

(a) a first step of incrementing in units of an integral
number of bytes, addresses of said operand data
and said operating data to be processed in units of
an integral number of bytes independent from each
other:

(b) a second step of incrementing addresses of data of
said operand data and said operating data in units of
an integral number of bits;

(c) a third step of causing said first step to increment
addresses on the basis of the result of address incre-
menting in said second step; and

(d) a fourth step of retrieving stored operand data and
operating data in units of a byte at locations In
memory designated by addresses produced in said
first step, and for performing arithmetic or logic
operations using the retrieved stored operand data
and operating data;

wherein said fourth step comprises

(a) a fifth step of slicing part of the operating data and
part of the operand data;

(b) a sixth step of performing an operation between
sliced operating data and sliced operand data; and

(c) a seventh step of merging resultant data of said
sixth step into said operating data or said operand
data, and storing the result in the memory.

8. A method according to claim 7, wherein said sixth
step comprises adding at least one “0” bit following the
jowest-order bit of operating data and operand data so
that both data have the same bit width as that of said
operation bit width, in response to a test result that the
slicing bit width is smaller than said operation bit width.

9. A method according to claim 7, wherein said sixth
step comprises adding at least one *0” bit following the
lowest-order bit of one of the operating data and the
operand data and adding at least one “1” bit following
the lowest-order bit of the other of operating data and
operand data so that both data have the same bit width
as of said operation bit width, in response to a test result
that the slicing bit width is smaller than said operation
bit width.

10. A method according to claim 7, wherein said sixth
step comprises adding a “‘0” bit or “1” bit following the
lowest-order bit of operand data and operating data
depending on the type of operation, in response to a test
result that the slicing bit width is smaller than said oper-
ation bit width.

11. A bit operation processing apparatus having a
memory for processing operand data and operating data
stored in said memory comprising:

(a) first means for producing addresses for addressing
stored operand data and operating data in a of an
integral number of bytes, said operand data and
said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-

15
ing data to be processed or in units of an integral
number of bits independent from each other;

(¢) third means for controlling said second means to
increment addresses and for controlling said first
means to increment addresses based on the result of
address incrementing by said second means; and

(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data.

12. A bit operation processing apparatus having a

memory for processing operand data and operating data
stored in said memory comprising:

(a) first means for producing addresses for addressing
stored operand data and operating data in units of
an integral number of bytes, said operand data and
said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-
ing data in units of an integral number of bats;

(c) third means for controlling said second means to

5

10

15

20

increment addresses and for controlling said first 25

means to increment addresses based on the result of
address incrementing by said second means; and
(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data;

wherein said third means includes means for control-
ling said second means to add a number of opera-
tion bits within the data length in said units of an
integral number of bytes to a value of a current
operation starting bit position, thereby generating
an operation starting bit position for a subsequent
operational process.

13. A bit operation processing apparatus having a
memory for processing operand data and operating data
stored in said memory comprising:

(a) first means for producing addresses for addressing

stored operand data and operating data in units of

30

35

an integral number of bytes, said operand data and 45

said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-
ing data in units of an integral number of bats;

(c) third means for controlling said second means to
increment addresses and for controlling said first
means to increment addresses based on the result of
address incrementing by said second means; and

(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data;

wherein said first means includes means for effecting
address incrementing in response to a carry signal
from said second means.

14. A bit operation processing apparatus having a
memory for processing operand data and operating data
stored in said memory comprising:

(a) first means for producing addresses for addressing

stored operand data and operating data in units of

50

53

65

Re. 34,635

16

an integral number of bytes, said operand data and
said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-
ing data in units of an integral number of bits;

(¢) third means for controlling said second means to
increment addresses and for controlling said first
means to increment addresses based on the result of
address incrementing by said second means; and

(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data;

wherein said first means performs address control for
said memory and said second means performs ad-
dress control for internal operation data registers.

15. A bit operation processing apparatus having a
memory for processing operand data and operating data
stored in said memory comprising:

(2) first means for producing addresses for addressing
stored operand data and operating data in units of
an integral number of bytes, said operand data and
said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-
ing data in units of an integral number of bits;

(c) third means for controlling said second means to
increment addresses and for controlling said first
means to increment addresses based on the result of
address incrementing by said second means; and

(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data;

wherein said fourth means comprises a first register
for storing a bit address indicating an operation
starting bit position of said operating data and a
second register for storing a bit address indicating
an operating starting bit position of said operand
data, said bit addresses of said operating data and
said operand data being controlied separately.

16. An apparatus according to claim 15, wherein said
second means includes means for storing an advanced
bit address in said first register when said second means
has calculated said advanced bit address using a content
of said first register, or stores an advanced bit address in
said second register when said second means has calcu-
lated said advanced bit address using a content of said
second register.

17. An apparatus according to claim 15, wherein said
fourth means fetches data from an external memory at a
location of an address produced by said first means
when said second means has produced the carry signal
in response to a content of said first register, or fetches
data from said memory at a location of address pro-
duced by said first means when said second means has
produced the carry signal in response to a content of
said second register, and wherein said fourth means
includes means for storing an operation result in said
memory at a location of an address prior to increment-
ing by said first means.

Re. 34,635

17

18. An apparatus according to claim 17, wherein said
number of operation bits, said operation starting bit
position of operating data and said operation starting bit
position of operand data are equal to a number of bits
which can be treated by said second means, said value 3
of a bit position being always incremented by “1” when
said second means is used.

19. A bit operation processing apparatus having a
memory for processing operand data and operating data
stored in said memory comprising:

(a) first means for producing addresses for addressing
stored operand data and operating data in units of
an integral number of bytes, said operand data and
said operating data being subjected to operation in
said units of an integral number of bytes indepen-
dent from each other;

(b) second means for producing addresses for ad-
dressing data of said operand data and said operat-
ing data in units of an integral number of bits;

(c) third means for controlling said second means to
increment addresses and for controlling said first
means to increment addresses based on the result of
address incrementing by said second means; and

(d) fourth means for fetching operand data and oper-
ating data in units of a byte from said memory at
locations of addresses produced by said first means,
and for performing arithmetic or logic operations
using said fetched operand data and operating data;

wherein said fourth means comprises:

(a) means for slicing part of said operating data and
part of said operand data;

(b) means for implementing operation between a
sliced operating data and a sliced operand data; and

(c) means for merging a resultant data from said oper-
ation means into said sliced operating data or sliced
operand data and storing a merged data in said
memory.

20. An apparatus according to claim 19, wherein said
slicing means includes a third register for storing a slic-
ing position of said operating data, a fourth register for
storing a slicing position of said operand data and a fifth
register for storing a slicing width, and wherein said
merging means includes a sixth register for storing a
merging bit position and a seventh register for stornng a
merging width.

21. An apparatus according to claim 20, wherein said
operation means appends at least one “0” bit following
the lowest order bit position of said sliced operating and
operand data so that said data have a same number of
bits as a number of operation bits when said slicing 50
width is smaller than the number of operation bits.

22. An apparatus according to claim 20, wherein said
operation means appends at least one *“0” bit following
the lowest bit position of one of said operating data and
operand data and appends at least one “1” bit following 55
the lowest bit position of the other so that said data has
the same number of bits as the number of operation bits
when said slicing width is smaller than the number of
operation bits.

23. An apparatus according to claim 20, wherein said 60
operation means appends a *“0” bit or “1” bit following
the lowest bit position of said operand data and operat-
ing data depending on the type of operation when said
slicing width is smaller than a number of operation bits.

24. An apparatus according to claim 20, wherein said 65
fifth register and seventh register comprise a common
register for implementing slicing and merging of data In
a same number of bits.

10

15

20

25

30

35

45

18

25. A bit operation processing method for processing
operand data and operating data stored in a memory,
comprising:

a first step for producing memory addresses of data to
be subjected to operation processing in units of an
integral number of bytes, including a first sub-step
of incrementing an address of said operand data
and said operating data in units of an integral num-
ber of bytes independent from each other, and a
second sub-step of incrementing an address of the
operand data and the operating data independent
from each other;

a second step of starting the address incrementing in
said first sub-step on the basis of a result of the
address incrementing in said second sub-step; and

a third step of accessing operand data and operating
data in said memory at the address produced in said
first sub-step, in units of an integral number of
bytes, and for performing arithmetic or logic oper-
ations using the operand data and said operating
data.

26. A bit operation processing method for processing
operand and operating data stored in memory, compris-
ing:

a first step for producing memory addresses of data to
be subjected to operation processing in units of an
integral number of bytes, including a first sub-step
of incrementing an address of said operand data
and said operating data in units of an integral num-
ber of bytes independent from each other, and a
second sub-step of incrementing an address of data
in units of an integral number of bits;

a second step of starting the address incrementing in
said first sub-step on the basis of a result of the
address incrementing in said second sub-step; and

a third step of accessing operand data and operating
data in said memory at the address produced in said
first sub-step, in units of an integral number of
bytes, and for performing arithmetic or logic oper-
ations using the operand data and operating data;

wherein in said second step the value of an operation
bit width defined within a range in boundaries of a
length of data operated in units of an integral num-
ber of bytes, and the value of an operation starting
bit position in a current operation process are
added to generate an operation starting bit position
in the next operation process.

27. A method according to claim 26, wherein the
range of the value of said operation bit width, the value
of said starting bit position of operating data and the
value of said starting bit position of operand data are
identical to the range treated in said second sub-step and
““1” is added in generation of the operation starting bit
using said addresses.

28. A bit operation processing apparatus, having a
memory, for processing operand data and operating
data stored in said memory, comprising:

means for producing memory addresses of said oper-
and data and said operating data to be subjected to
processing in units of an integral number of bytes
independent from each other, including first means
for producing addresses by incrementing an ad-
dress in units of an integral number of bytes, and
second means for producing addresses by incre-
menting an address of said operand data and said
operating data in units of an integral number of bits
independent from each other,;

Re. 34,635

19

third means for controlling the starting of address
incrementing in said first means on the basis of a
result of address incrementing in said second
means; and

fourth means for accessing operand data and operat-

ing data in said memory, said operand data and
operating data corresponding to the address pro-
duced by said first means and for performing arith-
metic or logic operations using the accessed oper-
and data and operating data.

29. A bit operation processing apparatus, having a
memory, for processing operand data and operating
data stored in said memory, comprising:

means for producing memory addresses of said oper-

and data and said operating data to be subjected to
processing in units of an integral number of bytes
independent from each other, including first means
for producing addresses by incrementing an ad-
dress in units of an integral number of bytes, and
second means for producing addresses by incre-

5

10

15

20

25

30

35

45

50

535

63

20

menting an address in units of an integral number of
bits;

third means for controlling the starting of address

incrementing in said first means on the basis of a
result of address incrementing in said second
means; and

fourth means for accessing operand data and operat-

ing data in said memory, said operand data and
operating data corresponding to the address pro-
duced by said first means and for performing arith-
metic or logic operations using the accessed oper-
and data and operating data;

wherein said third means includes means for adding

the value of a width of operation bits defined
within a range in boundaries of a length of data
operated in units of an integral number of bytes,
and the value of an operation starting bit position in
a8 current operation process to generate an opera-
tion starting bit position in a subsequent operation

process.
: = $ x =

	Front Page
	Drawings
	Specification
	Claims

