United States Patent [

Hester et al.

[S4] DATA PROCESSING SYSTEM WITH CPU
REGISTER TO REGISTER DATA
TRANSFERS OVERLAPPED WITH DATA

TRANSFER TO AND FROM MAIN STORAGE

[75] Inventors: Phillip D. Hester, Austin; William M.
Johnson, Leander, both of Tex.
International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 285,827

[73] Assignee:

[22]) Filed: Dec. 16, 1988
Related U.S. Patent Documents
Reissue of:
[64] Patent No.: 4,630,195
Issued: Dec. 16, 1986
Appl. No.: 615,984
Filed: May 31, 1984
[51] Imt. CL5 ., GO6F 7/00; GOOF 9/38;
GO6F 9/34
[52] US.ClL oo 395/375; 364/231.8;
364/232.22
[58] Field of Search ... 364/200 MS File, 900 MS File
[56] References Cited
U.S. PATENT DOCUMENTS
3,401,376 1171965 BaInesccccccerrreersicenreneerss 364/200
3,447,135 571969 Caltaetal.co.ceeevreerreennn 364/200
3,588,829 6/1971 Roland et al. ..cccovvvnrinrnrnnnnn, 364,/200
3,949,379 4/1976 Balloaeriverirnriverrenriene 364/200
3,962,706 6/1976 Dennisetal.cocoivninnann. 364/200
3,967,247 6/1976 Andersenetal. 364/200
3,997,866 12/1976 C(Cassarino, Jr. et al. 364/200
4,062,059 12/1977 Suzukietal.coceevrvennreen. 364/200
4,063,078 12/1977 Gupta et al. .oooevrreereveennen. 364/200
4,005,269 6/1978 Kawabe et al.cccevvvvennn 364/200
4128882 12/1978 Denniscooeevvreiriirerisereneen, 364,/200
4. 130,885 12/1978 Denniscceoricverinenriennsiensn: 364/900
4,153,932 5/1979 Dennisetal. ...cooomeineemiieencas 364,/200
4181,934 1/1980 Marenincooovrvverivemrivencrans 364/200
4,232,366 11/1980 Levyetalorricernvecnnneenn 364/200
4.370,710 1/1983 Kroftriricrricerrciverieens, 364/200
4,376,976 3/1983 Lahtietal ...cocoorreernnnnneee. 364,200
4,675,806 6/1987 Uchidaccvreiveccmniieeee 364/200

OTHER PUBLICATIONS

“The Piecewise Data Flow Architecture: Architectural
Concepts” by Joseph E. Requa, pp. 425-437.

[11] E
[45] Reissued Date of Patent:

IO O

USOORE34052E

Patent Number: Re. 34,052

Sep. 1, 1992

“A Data Flow Multiprocessor” by J. Rumbaugh, pp.
138-146.

“A Preliminary Architecture for a Basic Data-Flow
Processor” by J. B. Dennis and D. P. Misunas, pp.
126-132.

“Data-flow IC makes short work of tough processing
chores” Electronic Design, pp. 191-206.

“The 801 Minicomputer” by George Radin, pp.
212-221.

“The Control Data 6600” by Thornton p. 6 and pp.
124-140.

Primary Examiner—David Y. Eng
Attorney, Agent, or Firm—Thomas E. Tyson; Julius B.
Kraft

(57} ABSTRACT

The present invention is directed to a conventional data
processing system having a CPU and at least one exter-
nal unit such as the main storage unit acquiring data
from or providing data to the CPU and 1/0 bus for the
transfer of data between the CPU and the external unit.
The apparatus of the present invention provides for
transfers to and from this external unit, e.g., main stor-
age bemng overlapped with a register to register data
transfer routinely carried out in the CPU to implement
vartous CPU operations and computation functions.
The CPU includes apparatus for transferring data to or
from said external unit over the 1/0 bus during syn-
chronized time cycles. The CPU also includes local
storage apparatus which comprise a plurality of regis-
ters as well as expedients for transfernng data from
register to register. Control apparatus controls the reg-
ister to register data transfer so that such transfers are
conducted during time cycles coincident with the trans-
fer of data to or from the external storage unit. Thus, the
register to register data transfers within the CPU are
overlapped with the data transfers over the 1/0 bus to
main storage. The data transfers to and from main stor-
age are generally considerably longer than the simpler
register to register data transfer. The apparatus may be
operated so that several register to register transfers
may take place during the time required for a transfer of
data to or from the external storage unit. The present
invention further includes means for dynamically deter-

mining data dependencies between the register to regis-
ter transfers and the 1/0 bus transfers.

36 Claims, 6 Drawing Sheets

U.S. Patent Sep. 1, 1992 Sheet 1 of 6 Re. 34,052

81 10
——-[Tac S - / ——————
pecope &0 |
82

28

29
22 41

| |
| |
} {
| |
a 81 L-83 24 |
| |
l INSTRUCTION FORMATTER ' |
: BUFFER 15 25 '
; — 29 78 — :
i !
| INSTRUCTION - :
j MUX - 16 STORAGE DATA | ALU DATA ,
| 1ST SOURCE REG |
| 24 I
l 33 I
. 31 2ND SOURCE REG |
| REGISTER ;
| 34 ARRAY |
| DESTINATION REG .
|| “loaic I '
, LOGIC ,
| 17 I .
| I '
' ; G e 74 — '
' CONTROL LOGIC 78 !
| REG 42 e I
| = ’q 27 |
| 20 l
| EXECUTE 82 -B INPUT -A INPUT ,
: CONTROL — 28 !
| |
| i
| |
| |
| |
| |
| |
| |
| |
| |
I |

2%
29 29 29
<o) s16.0aTA] |STG. ADDRESS ALU OuUTPUT |«L
23
DATA/TAG 29
FROM DATATO ADDRESS
STORAGE TO STORAGE TO STORAGE _L STORAGE e
CONTROLLER }—{ STORAGE

12

11
- j——+3 TOIu
FlG. 1 4 DEVICES

U.S. Patent Sep. 1, 1992 Sheet 2 of 6

70 TAG CONTROL
LOGIC

73

TAGO ' FMT TAG 1

5 71

FMT
76

74

LOAD
W= 1 DEST.

55 ADDRESS

COMPARE COMPARE 77
45
78
FORMAT-
TER
CONTROL

110

SOURCE
REG

b

4 COMPARE COMPARE

SOURCE
REG

N
2
§ lI
I I

47 COMPARE COMPARE CANCEL TAG 1
TION 109
REG CANCEL TAG 0

ECEER

HOLD-OFF

FIG. 2

U.S. Patent

Sep. 1, 1992 Sheet 3 of 6

TAG OPERATION FOR LOAD INSTRUCATIONS

EXECUTE LOAD
INSTRUCTION

ANY
TAG AV»; ILABLE

Y

62

LOAD
REGISTER =
TAG 0
?

Y
|

LOAD
REGISTER =
TA'(?:‘n 1

Y

ALLOCATE TAG 1. ALLOCATE TAG 0.
SAVE REG #, SAVE REG #,
FORMAT DATA FORMAT DATA

END

Re. 34,052

WAIT FOR
TAGOORTAG 1

TO RETURN

61

CANCELTAGO

PREVIOUS

NSTRUCTION

63

CANCEL TAG 1

PREVIOUS

INSTRUCTION
65

67

U.S. Patent Sep. 1, 1992 Sheet 4 of 6 Re. 34,052

HOLD-OFF COMPARE OPERATION

START INSTRUCTION
EXECUTION

WAIT FOR
TAG 0
TO RETURN

SOURCE
REG#=TAGO
REG

101

FIG. 4

SOURCE
REG#=TAG 1
REG

Y WAIT FOR
TAG 1

T .
O RETURN 107

DESTINATION COMPARE OPERATION ("CANCEL LOGIC")

EXECUTE
INSTRUCTION

DES-
TINATION
REG # = TAG
0 REG?

CANCELTAGO

DES-
TINATION

REG # = TAG
1 REG

CANCELTAG 1

FIG. 5

END

U.S. Patent Sep. 1, 1992 Sheet § of 6 Re. 34,052

TAG RETURN LOGIC
TAG
RETURNS
& % [USETAGOREGS,
Y TAG 0 N | FORMAT DATATO
CANCELLED WRITE REGISTER
? 8/
N Y
SET TAG 0
TO AVAILABLE
STATE "
%0 . USE TAG 1 REG #
TAG = Y TAG 1 FORMAT DATA TO
TAG 1 CANCELLED WRITE REGISTER
? 7 Q2
N Y

SET TAG 1
TOAVAILABLE

93

STATE

END

U.S. Patent Sep. 1, 1992 Sheet 6 of 6 Re. 34,052

31 33 34 35

REGISTER TO REGISTER

FIG. 7

38 39 40

MAIN STORAGE TRANSFER

FIG. 8

Re. 34,052

1

DATA PROCESSING SYSTEM WITH CPU
REGISTER TO REGISTER DATA TRANSFERS
OVERLAPPED WITH DATA TRANSFER TO AND
FROM MAIN STORAGE 5

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions made
by reissue. 10

TECHNICAL FIELD

The present invention relates to data processing sys-
tems and particularly to data processing systems having
a primary 1/0 bus to main storage and other 1/0 de- 13
vices.

BACKGROUND ART

In the data processing art including present day mi-
croprocessor technology, it is a known expedient to use 20
pipelining on the primary 1/0 bus or channel between
the CPU and external units such as main storage and the
various 1/0 devices, e.g., disk, display or printer. Such
pipelining involves overlapped transactions on the 1/0
bus, i.e., a plurality of data transfers to and from various 23
1/0 devices or units or main storage may be overlapped
on the pnmary 1/0 bus. In other words, the I/0 bus
needn’t be locked into a single transaction; a first trans-
action may be initiated and before it is completed a
second and a third transfer transaction involving the 30
I/0 bus may be initiated. Some typical patents describ-
ing such pipelining are Calta et al, U.S. Pat. No.
3,447,135, Peripheral Data Exchange; Dennis, U.S. Pat.
No. 4,130,885, Packet Memory System for Processing
Many Independent Memory Transactions Concur- 35
rently; Levy et al, U.S. Pat. No. 4,232,366, Bus for a
Data Processing System with Overlapped Sequences;
Dennis, U.S. Pat. No. 4,128,882, Packet Memory Sys-
tem with Hierarchical Structure; and Cassarino, Jr. et
al, US. Pat. No. 3,997,866, Data Processing System 40
Providing Split Bus Cycle Operation.

While the art has recognized the need to overlap such
data transfers and external units over 1/0 buses to speed
up data processing operations, there appears to have
been little consideration given to the overlapping of 45
such external transfers with storage transfers that take
place within the CPU itself. The CPU in carrying out its
operational and computing functions must conduct ex-
tensive register to register transfers within the local
storage means in the CPU. In present day microproces- 50
sor technology, such local storage means may custom-
arily comprise a plurality of RAM registers in which
the data fetched from the external main storage is tem-
porarily stored while it is being manipulated in the
CPU. Such data manipulation normally requires a great 55
number of register to register transfers within CPU.
Such register to register transfers are relatively short in
duration, normally requiring an effective throughput
one CPU time cycle to complete. In contrast, transfers

over the I/0 bus to main storage or other 1/0 devices 60

are much longer, normally requiring three or more
CPU time cycles to complete. In a great many conven-
tional data processing systems, it has been customary to
employ a memory cache expedient in the CPU so that a
substantial number of data transfer transactions from 65
the 1/0 bus to main storage or other 1/0 devices may
be carried out during time periods previous to their use
in the CPU and stored or buffered in the storage cache

2

associated with the CPU. In systems utilizing such a
cache, the relatively long times required to transfer data
from storage or other 1/0 devices may not present a
problem in that a great many of the instructions or other
data required from main storage to carry out CPU oper-
ations or computations have been prestored in the CPU
cache and are immediately available.

However, with the development of microprocessors,
there has been a trend to eliminate or greatly curtail the
size of CPU caches because of technology space limita-
tions resulting from the size of the semiconductor sub-
strate in which the various microprocessor circuits are
formed. Accordingly, technology presents a problem of
how to eliminate the need for cache space and yet main-
tain the high operational speeds required of micro-
pProcessors.

DISCLOSURE OF THE INVENTION

LThe present invention provides a solution to the
microprocessor problem of maintaining high processing
speeds while eliminating or substantially reducing CPU
storage caches by providing apparatus in which the
register to register data transfers required for CPU
computations and other operations are conducted coin-
cidentally or overlapped with transfer of data to and
from main memory storage or other I/0 units.

The invention is directed to data processing systems
comprising a CPU, at least one external unit such as
main storage requiring data from or providing data to
the CPU, and 1/0 bus for the transfer of data between
the CPU and the external unit. The present CPU com-
prises means for transferring data to and from the main
storage or other external unit over the 1/0 bus during
synchronized CPU time cycles. CPU further includes
local storage means which comprises a plurality of reg-
isters, means for transferring data from register to regis-
ter 1n such local storage means, and control means for
controlling the register to register data transfer so that it
Is conducted during time cycles coincident with the
transfer of data to or from the external units.

Because there 1s often a data dependency between the
data transferred between CPU and external unit and
said register to register transfer data, control means
further include means for dynamically determining this
data dependency.

In carrying out the present invention in order to
dynamically determine data dependencies, the means
for transferring data to and from the external storage
unit includes means for generating data transfer com-
mands, means for assigning a register in said local stor-
age to and from which data is to be transferred, and
means for storing a tag identifying the assigned register.
The system further includes means for comparing sub-
sequent data transfer commands and register to register
transfer commands to the stored tags.}

The present invention is directed to a conventional
data processing system having a CPU and at least one
external unit such as the main storage unit acquiring
data from or providing data to the CPU and 1/0 bus for
the transfer of data between the CPU and the external
unit. The apparatus of the present invention provides
for transfers to and from this external unit, e.g., main
storage being overlapped with a register to register data
transfer routinely carried out in the CPU to implement
various CPU operations and computation functions.
The CPU includes apparatus for transferring data to or
from said external unit over the 1/0 bus during syn-

Re. 34,052

3

chronized time cycles. The CPU also includes local
storage apparatus which comprise a plurality of regis-
ters as well as expedients for transferring data from
register to register. Control apparatus controls the reg-
ister to register data transfer so that such transfers are
conducted during time cycles coincident with the trans-
fer of data to or from the external storage unit. Thus, the
register 1o register data transfers within the CPU are
overlapped with the data transfers over the 170 bus to
main storage. The data transfers to and from main stor-
age are generally considerably longer that the simpler
register to register data transfer. The apparatus may be
operated so that several register to register transfers

may take place during the time required for a transfer of

data to or from the external storage unit. The present
invention further includes means for dynamically deter-
mining data dependencies between the register to regis-
ter transfers and the 1/0 bus transfers.

BRIEF DESCRIPTION OF DRAWINGS

Referring now to the drawings, wherein a preferred
embodiment of the invention is illustrated, and wherein
like reference numerals are used throughout to desig-
nate like parts;

FIG. 1 15 a logical block diagram showing the CPU
apparatus involved in the present invention in a general-
ized form.

FIG. 2 1s a logic block diagram more specifically

showing the logic units involved in the tag logic unit of

FIG. 1.

FI1G. 3 is a flow chart of the tag operation for load
instruction involved in the present invention.

FI1G. 4 is a flow chart of the operations involved in
the hold-off tag compare operation involved in the
present invention.

FIG. 5§ is a flow chart of the operations involved in
the destination compare operation of the present inven-
tion.

FIG. 6 is a flow chart of the operations involved in
the tag return procedure of the present invention.

FIG. 7 1s a diagram of a register to register transfer
mstruction.

FIG. 8 is a diagram of a main storage transfer instruc-
tion.

BEST MODE FOR CARRYING OUT THE
INVENTION

With reference to FIG. 1, a generalized diagram of

the apparatus which may be used to carry out the pres-
ent invention is shown. The pertinent elements of the
present invention are shown to be contained within

CPU 10 which communicates over 1/0 bus or channel
.11 with main memory storage 12 through storage con-
troller 13 and with various I/0 devices such as diskette
drives, printer or display (not shown) via 1/0 bus con-
troller 14. The CPU 10 may be implemented using any
conventional microprocessor. Before describing the
particulars of the present invention, general operation
of the CPU insofar as pertinent to the present invention
will now be described. When the CPU is operational,
instructions to be carried out are fetched from storage in
the conventional manner and temporarily stored in an
instruction buffer 1§. As will be hereinafter described,
instruction multiplexer 16 breaks up the instruction, a
portion of which goes to control logic 17 to control
CPU operations as will be hereinafter described and a
portion to various registers in the register array 18
which provides the local storage means for the CPU.

10

15

25

30

35

40

45

50

55

65

4

From register array 18, data may be transferred through
the ALU/Shifter 21 where various computorial opera-
tions may be carried out or to main storage via register
22, bus 23 and 1/0 bus 11. Data from main storage may
be returned to the CPU via bus 11, bus 24, formatter 25
which will be subsequently described in greater detail
back to register array 18. In addition, data may be re-
turned from the ALU/Shifter 21 back to register array
18 via ALU output register 26 and bus 27. It should be
understood that a great many transactions within the
CPU may nvolve operations on the contents of the
registers in array 18. These will be referred to as register
to register data transfers. Other transfers will be to and
from main storage 12 or 1/0 bus controller 14 via 1/0
bus 11.

Transfers to and from main storage 12 or 1/0 devices
via 1/0 bus 11 take considerably longer than register to
register transfers. In this connection, it should be noted
that the operation of the CPU 10 is a synchronous oper-
ation under the control of clock 28 which produces a
regular cyclic output on clock line 29 which is applied
to all of the major elements in CPU 10 as well as to
storage controller 13 and 1/0 controller 14 so that the
overall data processing system is synchronized based
upon CPU time cycle determined by the clock. The
clock 1s a conventional circuit for producing standard
CPU time cycle or synchronized operations. In such
operations, a register to register data transfer within
register array 18 of CPU 10 will take in the order of one
CPU cycle while a transaction involving transfers to
and from main storage 12 or 1/0 devices could take
three or more of such CPU time cycles.

At this point we will describe the operation of the
pertinent logic in the CPU of FIG. 1 as well as the
details of the tag logic in FIG. 2 with respect to transac-
tions involving both register to register transfers and
transfers to and from storage on the 1/0 bus 11.

Instructions, either already in CPU 10 or obtained
from main storage are stored in instruction buffer 15.
The instruction may be for a register to register transfer
in which case it will have the format shown in F1G. 7 or
it will be a transfer to or from main storage or other 10
external unit devices in which case it will have the
format shown in FIG. 8. Let us first consider a register
to register transfer instruction having the format shown
in FIG. 7. Instruction multiplexer 16 will divide the
instruction as follows. The OP code 31 which indicates
the type of instruction to be performed is applied to
control logic 17 which will control the execution of the
function by applying execute instructions through con-
trol register 32 (FIG. 1). For the purpose of this illustra-
tion, let us assume that we have an add function. The
next two sections 33 and 34 of the instruction in FIG. 7
indicate the contents of the source registers. In the
instruction shown in FIG. 7 R3 and R4 are the two
source registers which are to be involved in the compu-
tation. Finally, the last section 35 indicates the destina-
tion register. Thus, in the illustrated instruction in FIG.
1, contents of register 3 and register 4 are to be added
and placed in destination register 3. As a result, signals

are applied along lines 33 and 34 resulting in the reading
of the contents of the first and second source registers

which will result in R3 and R4 being read. The control
register 32 will contain the add function resulting from
the reading of the operational code. This add opera-
tional code will be applied to the ALU/Shift via exe-
cute control output from register 32 to have the ALU to
have the contents of the first and second source regis-

Re. 34,052

S

ters, 1.e., R3 and R4 latched in input registers 35 and 36
to ALU 21. We are now at the end of the fetch phase.

During the next phase, the execute phase, the control
information, i.e,, the add function, in control register 32
1s used to control the operation to be carried out. Con-
trol code from control register 32 is applied to the
ALU/Shifter via input 37. The operation in the ALU is
performed in the conventional manner, and results of
the operation are latched in ALU output register 26.
During the next phase (which may be referred to as
write back), the result of the ALU operation is written
back or returned via bus 27 to the destination register, in
the present example, R3 as indicated by the destination
register input 49,

Each of these operations, i.e., fetch, execute and write
back is performed in a single CPU time cycle. While we
have illustrated the carrying out of a single instruction,
it should be noted that consecutive instructions are
overlapped so that when a first instruction is in its exe-
cute phase, a second instruction may be initiated into its
fetch phase, and when a first instruction is in its store
back phase, the second instruction may be in its execute
phase and a third instruction may be in its initial fetch
phase. As a result, because of the overlapping of three
instructions, while the normal internal CPU operation
involving register to register transfers take three CPU
time cycles to complete, the actual throughput of the
CPU is one complete operation per cycle,

A transaction involving a transfer to or from main
storage is carried out in a similar fashion in so far as
CPU operations are concerned. It is controlled by the
main storage transfer instruction shown in FIG. 8. The
instruction involves an OP code which is divided out by
instruction multiplexer 16 through control logic 17 and
applied 1o control register 32 indicating the type of
storage operation, i.e., either store (write into main
storage) or load (read out of main storage) This OP
code is applied to the ALU/Shifter 21 as previously
described via input 37. Section 39 of the main storage
transfer instruction indicates that the contents of regis-
ter R2 in register array 18 is to be stored or written into
main storage or in the case of a load operation, the
destination register into which data read from main
storage is loaded. Consequently, at the end of the fetch
CPU time cycle, in a store operation this data to be
written will be latched in register 36. At the end of this

same fetch time cycle, the storage address section 40 of
the instruction is latched in A input register 35. Next,

during the execute phase, the contents of register 36,
i.e., the data to be stored, is transferred to the storage
data register 22 while ALU/Shifter 21 calculates the
storage address from the contents of A input register 35
and puts this storage address in storage address register
41. Then, during the store back time cycle, the storage
data contents of register 22 and the storage address
contents of register 41 are transferred along 1/0 bus 11
to storage controller 13. Thus, the transfer of data from
the CPU to storage controller 13 has taken three CPU
time cycles. Because of the operation of main storage
with respect to the storage controller it will take an-
other three CPU time cycles to either write the data
into main storage in a store operation or read the data
from main storage 12 back to a designated register in
register array 18 in CPU 10 in a load operation.

As will be described hereinafter in greater detail,
with the equipment of the present specific embodiment,
it is possible to overlap two transfers to or from main
storage with each other since it takes six CPU time

5

10

15

20

25

30

35

435

30

33

63

6

cycles to complete a transfer to or from main storage,
with the overlap of two of these transfers, the effective
throughput 1s one complete transfer to or from main
storage in three CPU time cycles. Since, as we have
indicated above, the effective throughput of an internal
register to register transfer within the CPU is one regis-
ter to register transfer per CPU time cycle, the effective
throughput of the apparatus is such that while one
transfer to or from main storage is taking place, three
register to register transfers within the CPU may coinci-
dentally take place.

We have indicated above that the apparatus of the
present invention is capable of dynamically determining
data dependencies, determining whether sufficient pre-
vious operations have been completed to provide the
data required in the subsequent operation. An example
of this situation can occur when in a sequence of opera-
tion, an execution of an instruction is requested before
the execution of a previously commenced but over-
lapped instruction which would provide data required
by the subsequent instruction has been completed. This
occurs on a main storage transfer instruction (FIG. 8)
which 15 a load instruction whereby section 39 will
indicate a destination register in array 18 to which data
read from main storage will be loaded. Thus, when data
required by a subsequent instruction is not as yet avail-
able in the destination register because the previous
overlapping instruction has not as yet been completed,
there must be a “hold off” or waiting of the execution of
the subsequent instruction until the previous instruction
is completed. This function is carried out by the tag
logic 42 of FIG. 1 which is shown in detail in FIG. 2.
This tag logic function will now be described with
respect to FIGS. 1 and 2.

The tag logic shown in FIG. 2 has two tag registers,
tag 0 and tag 1 which will keep track of registers in
register array 18 and will function as destination regis-
ters for keeping track of load transfers from main stor-
age 12 back to the designated array register which is
respectively identified by either the tag 0 register or the
tag 1.register. Accordingly, after multiplexing, the first
and second source registers which will be used to deter-
mine the storage address (FIG. 8) are applied to array
18 via lines 33 and 34 and are also respectively applied
to the tag logic shown in FIG. 2 via lines 48 and 46. This
input will be used to determine hold-offs in a procedure

to be subsequently described. Likewise, contents of
destination register section 39 (FIG. 8) is applied to tag

logic (F1G. 2) via line 47. The destination register num-
ber is stored in either tag 0 register 43 or tag 1 register
44 depending on the availability of either the tag 0 or
the tag 1 registers. In any event, because of the avail-
ability of only two registers, tag 0 and tag 1 in the pres-
ent embodiment, only two load transfers from main
storage may be overlapped or carried on simulta-
neously. The transaction to main storage is then carried
on as described hereinabove. However, with such a
load instruction, during the execute phase, the control
logic 17 through control register 32 and execute control
line (FIG. 1) applies to either the respective tag 0 or tag
1 register format data along lines 50 and 51. This format
data which is stored in the FMT portion of respective
tag 0'and tag 1 registers will be used to properly format
the data which 1s to be loaded when it returns from main
storage. Conveniently, the format (FMT) data will indi-
cate what portions of the data received from main stor-

age are to be loaded into the appropriate register in
array 18 designated by either the tag 0 or tag 1 register.

Re. 34,052

7

Tag 0 register 43 has associated therewith compare
units 52, 53 and $4 for respectively comparing the two
source register lines 45 and 46 as well as the destination
register line 47 with the destination register stored in tag
0 register 43. Likewise tag 1 register 44 has associated
therewith compare units 55§, §6 and 57 but likewise
comparing the inputs on lines 45, 46 and 47 with the
contents of tag 1 register 44.

Now with reference to the logic shown in FIG. 1 and
particularly in FIG. 2, there will be described with
reference to the flow charts of FIGS. 3-6 a series of
operations involving the tag logic with respect to situa-
tions in which one or more of the overlapped instruc-
tions being executed involves a main storage transfer
instruction involving a load into one of the registers of
register array 18. With respect to the flow chart of FIG.
3, during the execution of a load instruction, a determi-
nation is made, step 60, as to whether a tag register (0 or
1) is available. If none is available, then step 61, the
instruction awaits the availability of a tag 0 or tag 1
register. On the other hand, if a register is available,
then a determination 1s made, step 62, as to whether the
tag 0 register has already been used for a previous load
instruction that is not as yet complete which designates
the same destination load register in array 18. If this is
the case, then, step 63, the whole previous instruction
involving tag 0 is cancelled. After the cancellation of
the previous instruction involving tag 0 or if the tag 0

register has not been used to designate a load register,
then, step 64, a determination is made as to whether the

tag 1 register has already been used for a previous load
instruction which is not as yet complete which desig-
nates the same destination load register in array 18. If
this is the case, then, step 65, the whole previous in-
struction involving tag 1 is cancelled. At this point, a
determination 1s made, step 66, as to whether the tag 0
register is available. If it is, then tag 0 register is allo-
cated to save the load register number of the current
instruction and the format information is applied via line
50 (F1G. 2) to tag register 0. On the other hand, if the
tag 0 register is not available, then the tag 1 repgister
must be available. Consequently, it is allocated to the
load register of the current instruction and the format
data is applied via line 51. The tag operation 1s set forth
in step 60-68 is carried out under the control of tag
control logic 70 which communicates with the tag 0 and
the tag 1 registers via lines 72 and 73.

The outputs of tag 0 register 43 is applied to multi-
plexer 71 via line 72 while the output of tag 1 register 44
is apphed to multiplexer 71 via line 73. This multiplexed
output of multiplexer 71 is applied to register array 18
over line 74 to provide to register array 18 the destina-
tion register address where data returned from main
storage over line 24 1s to be loaded in register array 18.
Lines 75 and 76 similarly apply to multiplexer 77. The
format control data (FMT) respectively is stored in
association with tag register 0 and tag register 1 so that
multiplexer 77 can provide an output along line 78 to
formatter 25 indicative of the format of the data to be
loaded in the designated register.

With respect to FIG. 6, we will now consider the
procedure involved in decoding the tag that accompa-
nies the data returned from storage, particularly the tag
indicative of the tag 0 or tag 1 register. The data re-
turned from storage along bus 24 15 monitored by tag
decode logic 80 which determines whether the tag is
one of several conventional tags indicating an instruc-
tion fetched from storage or one of the pair, tag 0, tag 1.

10

15

20

25

30

35

45

50

55

65

If the tag 1s indicative of an instruction, the tag code
logic signals the instruction buffer 15 via line 81 to load
the instruction in the instruction buffer via line 83. On
the other hand in the case of tag 0, tag 1, the logic of tag
decode 80, performs the procedure shown in FIG. 6 in
determining if the tag is a tag 0 or tag 1 indicator. First,
step 83, a determination is made as to whether the tag is
indicative of the tag 0 register. If it is, then, step 86, a
further determination is made as to whether tag 0 has
been cancelled. A tag is cancelled when its associated
register has been overwritten so that the load associated
with the tag is no longer valid. Thus, if the tag has not
been cancelled, then, step 87, the data is loaded into the
register of array 18 indicated in the tag 0 register. This
1s done by having the tag decode 80 issue a signal on line
82 (FIG. 1) to tag logic which in turn causes tag control
logic 70 in FIG. 2 to have the tag 0 register 43 put out
its contents on line 72 which in turn passes through
multiplexer 71 from which the appropriate load register
destination which has been stored in the tag 0 register is
applied over line 74 to register array 18. Similarly the
format data in tag register 0 is applied via line 75
through multiplexer 77 and line 78 to provide the requi-
site format control. At this point, (F1G. 6) or if a deter-
mination has been made in step 86 that the tag 0 had
been cancelled then, the tag 0 register is set to an avail-
able state, step 88.

On the other hand, if a determination was made in

decision step 85 that the tag associated with the data
from storage is not a tag 0, a determination is then made

in step 90 of whether the tag is a tag 1. Then, steps 91,
92 and 93 respectively the same as steps 86, 87 and 88
are carried out with respect to the tag 1 register.

Now with reference to FIG. 4 and with the logic of
FI1G. 2 there will be described compare function carried
out by the compare logic for all instructions including
both register to register as well as transfers to and from
main storage and I/0 units. First, step 100, FIG. 4, a
determination is made as to whether either source regis-
ter equals the register in tag 0. This comparison is made
using compare units 52 and 53 in FIG. 2. If there is such
a comparison, then it indicates that there is a data de-
pendency on the contents of the register indicated by
tag 0 and, step 101, the system is put into a wait state. In
FIG. 2 this is accomplished by an output on either line
102 or 103 respectively resulting from a compare on
either compare unit 52 or compare unit 53 causing OR
gate 104 to produce a hold output on line 108 to control
logic 17.

If 1t 1s determined in step 100 (FIG. 4) that neither
source register equals a tag 0 register, then, the opera-
tion proceeds to step 106, and the above procedure is
repeated with respect to the tag 1 register 44 (FIG. 2)
using compare units 58 and 56.

A compare leads to step 107 resulting in a wait or
hold off until the register indicated in the tag 1 register
is finally loaded by return from main storage.

With respect to FIG. 2, it should be noted that in
addition to comparing source registers in a given in-
struction as described with respect to the procedure of
FIG. 4, the destination register in the instruction ap-
plied via line 47 is also compared to tag 0 register 43 and
tag 1 register 44 respectively by compare unit 54 and
compare unit 37 resulting in either an output cancelling
the tag 0 register on line 109 to control logic 17 or
cancelling the tag 1 register on line 110 control logic 17.
This procedure is shown in the flow chart of FIG. §.
The cancel procedure shown with respect to FIGS. §

Re. 34,052

9

and 2 covers the situation where a subsequent command
transfers data to the load destination register indicated
by a previous command before the transfer involved in
the previous command is completed. In such a case, the
assigned destination of the previous command is can-
celled thereby, in effect, cancelling the previous com-
mand.

While the invention has been particularly shown and
described with reference to a preferred embodiment it
will be understood by those skilled in the art that vari-
ous other changes in form and detail may be made with-
out departing from the spint and scope of the invention.

We claim:

1. In a data processing system including a CPU, at
least one external unit requiring data from or providing
data to said CPU and an 1/0 bus for the transfer of said
data between said CPU and external unit, said CPU
comprising:

means for executing a sequence of instructions includ-

ing a first instruction;

means connected to the executing means for transfer-

ring data to or from said external unit over said bus
during synchronized CPU time cycles,
means connected to the executing means for storing
data in a plurality of registers within said CPU,

means connected to the transferring means and stor-
ing means for internally transferring data within
said CPU registers concurrently during the transfer
of data to or from the external unit, and

control means connected to the executing means,

transferring means and storing means for control-
ling the transfer of data wherein the transfer of data
between CPU registers coincides with the transfer
of data to or from the external unit, said control
means further including means for
determining when data required for execution of a
first of a sequence of instructions in said CPU has
not been stored in one or more of the CPU regis-
ters as required by the first instruction and
delaying the execution of the first instruction until
such data is stored 1n the one or more registers
while permitting the execution of other nstruc-
tions of said sequence that do not require any
data resulting from the execution of said first
instruction.

2. The data processing system of claim 1 wherein said
external unit is an external data storage unit.

3. The data processing system of claim 2 wherein said
control means includes

means for generating data transfer commands to the

external unit transfer means,

means for assigning a register in said CPU storing

means to which data is to be transferred, and

means connected to said assigning means for storing a

tag identifying said assigned register in a tag regis-
ter in the control means, for comparnng subsequent
data transfer commands to the stored tags to deter-
mine if data for these subsequent data transfer com-
mands includes data resulting from the external
unit transfer command, for clearing said tag in the
tag register when the external unit data transfer is
complete, and for delaying the execution of any
subsequent data transfer commands requiring data
from the result of this external unit data transfer
until the tag has been cleared.

4. The data processing system of claim 3 wherein said
control means further includes

3

10

15

25

35

45

33

65

10

means for cancelling a previous data transfer com-
mand in the event that a subsequent data transfer
command assigns the same register assigned by the
previous command before the previous command
transfer 1s completed.

5. The data processing system of claim 4 wherein

said storing means includes means for generating

register to register transfer commands, and

said control means further includes means for com-

paring said register to register transfer commands
to said stored tags and for cancelling a previous
data transfer command in the event that a subse-
quent register to register transfer command trans-
fers data to the same register assigned by the previ-
ous command before the previous command trans-
fer is completed.

6. The data processing system of claim § wherein said
transfers to and from said external unit require a greater
number of CPU time cycles than do said register to
register transfers.

7. The data processing system of claim 6 wherein said
control means further includes

means for delaying the execution of any subsequent

instruction requiring the assignment of a register when
there are no tag registers available.

8. In a data processing system including a CPU, at least
one external unit requiring data from or providing data to
said CPU and an 1/0 bus for the transfer of said data
between said CPU and external unit, said CPU compris-
ing:

means for executing a sequence of instructions;

means connected to the executing means for transferring

data to or from said external unit over said bus;
means connected to the executing means for storing data
in a plurality of registers within said CPU;

means connected to the transferring means and storing

means for internally transferring data within said
CPU registers concurrently during the transfer of data
to or from the external unit; and

control means connected 1o the executing means, trans-

Jferring means and storing means for controlling the

transfer of data wherein the transfer of data between

CPU registers coincides with the transfer of data to or

Jrom the external unit, said control means further

including means for

determining when data to be loaded into first one or
more of the CPU registers by execution of a first of
a sequence of instructions in said CPU has not been
loaded in first one or more of the CPU registers as
required by the first instruction

determining when data to be loaded into second one or
more of the CPU registers by execution of a second
within the sequence of instructions in said CPU has
not been loaded in second one or more of the CPU
registers as required by the second instruction and

simultaneously waiting for completion of execution of
the first and second instructions while permitting
the execution of other instructions of said sequence
that do not require any data resulting from the
completion of execution of said first or second in-
structions.

9. The data processing system of claim 8 wherein said
external unit is an external data storage unit.

10. The data processing system of claim 9 wherein said
control means includes

means for generating data transfer commands to the
external unit transfer means,

—_—— e

Re. 34,052

11

means for assigning a register in said CPU storing

means to which data is to be transferred, and

means connected to said assigning means for storing a

tag identifying said assigned register in a tag register
in the control means, for comparing subseguent dara 5
transfer commands to the stored tags to determine if
data for these subsequent data transfer commands
includes data resulting from the external unit transfer
command, for clearing said tag in the tag register
when the external unit data transfer is complete, and 10
Jor delaying the execution of any subsequent data
transfer commands requiring data from the result of
this external unit data transfer until the tag has been
cleared.

11. The data processing system of claim 10 wherein said 13
control means further includes

means for cancelling a previous data transfer command

in the event that a subsequent data transfer command
assigns the same register assigned by the previous
command before the previous command transfer is
completed.

12. The data processing system of claim 11 wherein

said storing means includes means for generating regis-

ter to register transfer commands, and

said control means further includes means for compar-

ing said register to register transfer commands to said
stored tag and for cancelling a previous data transfer
command in the event that a subsequent register to
register transfer command transfers data to the same
register assigned by the previous command before the
previous command transfer is completed.

13. The data processing system of claim 12 wherein said
transfers to and from said external unit require a greater
number of CPU time cycles than do said register to register 35
transfers.

14. The data processing system of claim 10 wherein said
control means further includes

means for assigning each one of the plurality of registers

in said CPU storing means to which data is to be 4,
transferred,

a plurality of tag registers,

means for storing a tag identifying each of said assigned

registers in one of the plurality of tag registers, for
comparing subsequent data transfer commands to 4«
each of the stored tags to determine if data for these
subsequent data transfer commands includes data
resuiting from one of the external unit transfer com-
mands, for clearing one of the plurality of tags in the
tag register when its respective external unit data s
transfer is complete, and for delaying the execution of
any subsequent data transfer commands requiring
data from the result of this external unit data transfer
until the tag has been cleared, and

means for delaying the execution of any subsequent ss

instruction requiring the assignment of @ register when
there are no tag registers available.

15. The data processing system of claim 14 wherein said
control means further includes means for clearing any one
of the plurality of tags in the tag register when its respective 60
external unit data transfer is complete, irrespective of the
order in which the tags were assigned.

16. A data processing system comprising:

means for executing a sequence of instructions;

means connected to the executing means for storing data 65

in a plurality of registers;

means connected to the executing means and storing

means for transferring data between registers concur-

20

25

12

rently during the transfer of data to or from an exter-
nal unit, and

control means connected to the executing means, trans-

ferring means and storing means for controlling the

transfer of data and further including means for

determining when data to be loaded into one or more
registers by execution of at least two instructions in
a sequence of instructions has not been loaded in
one or more of the registers as required by the at
least two instructions, and

waiting for completion of execution of the at least two
instructions while permitting the execution of other
instructions of said sequence that do not require any
data resulting from the completion of execution of
either of said at least two instructions.

17. The data processing system of claim 16 wherein said
control means includes

means for generating data transfer commands to the

external unit transfer means,

means for assigning a register in said CPU storing

means to which data is to be transferred, and

means connected 1o said assigning means for storing a

tag identifying said assigned register in a tag register
in the control means, for comparing subsequent data
transfer commands to the stored tags to determine if
data for these subsequent data transfer commands
includes data resulting from the external unit transfer
command, for clearing said tag in the tag register
when the external unit data transfer is complete, and
Jor delaying the execution of any subsequent data
transfer commands requiring data from the result of
this external unit data transfer until the tag has been
cleared.

18. The data processing system of claim 17 wherein said
control means further includes

means for cancelling a previous data transfer command

in the event that a subsequent data transfer command
assigns the same register assigned by the previous
command before the previous command transfer is
completed.

19. The data processing system of claim 18 wherein said
storing means includes means for generating register to
register transfer commands, and

said control means further includes means for compar-

ing said register to register transfer commands to said
stored tags and for cancelling a previous data transfer
to the same register assigned by the subsequent com-
mand before the previous command transfer is com-
pleted.

20. The data processing system of claim 17 wherein said
control means further includes

means for assigning each one of the plurality of registers

in said CPU storing means to which data is to be
transferred,

a plurality of tag registers,

means for storing a 1ag identifying each of said assigned

registers in one of the plurality of tag registers, for
comparing subsequent data transfer commands to
each of the stored tags to determine if data for these
subsequent data transfer commands includes data
resulting from one of the external unit transfer com-
mands, for clearing one of the plurality of tags in the
lag registers when ils respective external unit data
transfer is complete, and for delaying the execution of
any subseguent data transfer commands requiring

data from the result of this external unit data transfer
until the tag has been cleared, and

Re. 34,052

13

means for delaying the execution of any subsequent
instruction requiring the assignment of a register when
there are no tag registers available.

21. The data processing system of claim 20 wherein said
control means further includes means for clearing any one 5
of the plurality of tags in the tag register when its respective
external unit data transfer is complete, irrespective of the
order in which the tags were assigned.

22. A data processing system comprising:

means for executing a sequence of instructions;

means connected o the executing means for storing data

in a plurality of registers;

means connected to the executing means and storing

means for transferring data between registers concur-
rently during the transfer of data to or from an exter-
nal unit, and

control means connected to the executing means, trans-

ferring means and storing means for controlling the

transfer of data and further including means for

determining when data to be loaded in one or more of 20
the CPU registers by execution of an instruction in
a sequence of instructions has not been loaded in
said one or more of the registers as required by the
instruction and

waiting for completion of execution of the instruction
until either data required by said instruction is
stored in said one or more registers or until a subse-
quent instruction in said sequence is encountered
which will result in data being loaded in the same
one or more registers, while permitting the execu-
tion of other instructions of said sequence that do
not require any data resulting from the completion
of execution of the instruction.

23. The data processing system of claim 22 wherein said
control means includes

means for generating data transfer commands to the

exiernal unit transfer means,

means for assigning a register in said CPU storing

means to which data is to be transferred, and

means connected to said assigning means for storing a 40

tag identifying said assigned register in a tag register
in the control means, for comparing subsequent data
transfer commands to the stored tags to determine if
data for these subsequent daia transfer commands
includes data resulting from the external unit transfer 45
command, for clearing said tag in the tag register
when the external unit data transfer is complete, and
Jor delaying the execution of any subsequent data
transfer commands requiring data from the result of
this external unit data transfer until the tag has been 50

cleared.
24. The data processing system of claim 23 wherein said

control means further includes:
means for cancelling a previous data transfer command
in the event that a subsequent data transfer command 55
assigns the same register assigned by the previous
command before the previous command transfer is

completed.
25. The data processing system of claim 24 wherein said
storing means includes means for generating register to 60

register transfer commands, and
said control means further includes means for compar-
ing said register to register transfer commands to said

stored tags and for cancelling a previous data transfer
command in the event that a subsequent register 10 65
register transfer command transfers data 1o the same
register assigned by the previous command before the
previous command transfer is completed.

10

15

25

35

14

26. The data processing of claim 23 wherein said control
means further includes

means for assigning each one of the plurality of registers

in said CPU storing means to which data is to be
transferred,

a plurality of tag registers,

means for storing a tag identifying each of said assigned

registers in one of the plurality of tag registers, for
comparing subsequent data transfer commands to
each of the stored tags to determine if data for these
subsequent data transfer commands includes data
resulting from one of the external unit transfer com-
mands, for clearing one of the plurality of tags in the
tag registers when its respective external unit data
transfer is complete, and for delaying the execution of
any subseguent data transfer commands requiring
data from the result of this external unit data transfer
until the tag has been cleared, and

means for delaying the execution of any subseguent

instruction requiring the assignment of a register when
there are no tag registers available.

27. The data processing system of claim 26 wherein said
control means further includes means for clearing any one
of the plurality of rags in the tag register when its respective
external unit data transfer is complete, irrespective of the
order in which the tags were assigned.

28. A data processing system comprising:

means for executing a sequence of instructions;

means connected to the executing means for storing data

in a plurality of registers;

means connected to the executing means and storing

means for transferring data within registers concur-
rently during the transfer of data to or from an exter-
nal unit, and

control means connected to the executing means, trans-

ferring means and storing means for controlling the

transfer of data and further including means for

determining when data to be loaded into one or more
of the CPU registers by execution of at least two
instructions in a sequence of instructions has not
been stored in one or more of the registers as re-
quired by the at least two instructions and

waiting for the completion of execution of the at least
two instructions until either data required by said
instructions is stored in said one or more registers or
until a subseguent instruction in said sequence is
encountered which will result in data being loaded
in the same one or more registers, while permitting
the execution of other instructions of said sequence
that do not require any data resulting from the
completion of execution of said at least two instruc-
tions.

29. The data processing system of claim 28 wherein said
control means includes

means for generating data transfer commands to the

external unit transfer means,

means for assigning a register in said storing means to

which data is to be transferred, and

means connected fo said assigning means for storing a

tag identifying said assigned register in a tag register
in the control means, for comparing subsequent data
transfer commands to the stored tags to determine if
data for these subsequent data transfer commands
includes data resulting from the external unit transfer
command, for clearing said tag in the tag register
when the external unit data transfer is complete, and
for delaying the execution of any subsequent data
transfer commands requiring data from the result of

Re. 34,052

15

this external unit data transfer until the tag has been
cleared.

30. The data processing system of claim 29 wherein said
control means further includes:

means for cancelling a previous data transfer command

in the event that a subsequent data transfer command
assigns the same register assigned by the previous
command before the previous command transfer is
completed.

31. The data processing system of claim 30 wherein said
storing means includes means for generating register to
register transfer commands, and

said control means further includes means for compar-

ing said register to register transfer commands to said
stored tags and for cancelling a previous data transfer
command in the event that a subseguent register to
register transfer command transfers data to the same
register assigned by the previous command before the
previous command transfer is completed.

10

15

32. The data processing system of claim 29 wherein said 20

control means further includes

means for assigning each one of the plurality of registers
in said CPU storing means to which data is to be
transferred.

g plurality of tag registers,

means for storing a tag identifying each of said assigned
registers in one of the plurality of tag registers, for
comparing subsequent data transfer commands to

each of the stored tags to determine if data for these
subsequent data transfer commands includes dara

resulting from one of the external unit transfer com-
mands, for clearing one of the plurality of 1ags in the
tag registers when its respective external unit data

transfer is complete, and for delaying the execution of

any subsequen! data transfer commands reguiring
data from the result of this external unit data transfer
until the tag has been cleared, and

means for delaying the execution of any subsequent

instruction requiring the assignment of a register when
there are no tag registers available.

33. The data processing system of claim 32 wherein said
control means further includes means for clearing any one
of the plurality of tags in the tag register when its respective
external unit data transfer is complete, irrespective of the
order in which the rags were assigned.

34. A dara processing system, comprising:

means for executing a sequence of instructions;

means connected lo the executing means for storing data

in a plurality of registers;

means connected to the executing means and the storing

means for transferring data between registers concur-

rently during transfer of data to or from an external

unit; and
control means connected to the executing means, trans-
ferring means and storing means for controlling the

23

30

35

45

30

33

65

16

transfer of daia, said control means including means

for

determining when data to be stored in at least a first
register by execution of a first instruction in said
sequence of instructions has not been stored in said
first register,

determining when data 1o be stored in at least a sec-
ond register by execution of a second instruction in
said sequence of instructions has not been stored in
said second register,

waiting for the completion of execution of said first
instruction until data is loaded in said first register,
while permitting the execution of other instructions
of said sequence that do not require any data result-
ing from the completion of execution of said first
instruction,

concurrently waiting for the completion of execution
of said second instruction until data is loaded in
said second register, while permitting the execution
of other instructions of said sequence that do not
require any data resulting from the completion of
execution of said second instruction, and

cancelling the execution of either of said first or sec-
ond instructions if any of said other instructions of
said sequence designate either said first or second
registers as a destination register before completion
of execution of said first or second instruction,
respectively,

33. The data processing system of claim 34 wherein said
control means further includes
means for assigning each one of the plurality of registers
in said CPU storing means to which data is to be
transferred,

a plurality of tag registers,

means for storing a tag identifying each of said assigned
registers in one of the plurality of tag registers, for
comparing subsequent data transfer commands to
each of the stored tags to determine if data for these
subsequent data transfer commands includes data
resulting from one of the external unit transfer com-
mands, for clearing one of the plurality of tags in the
tag registers when its respective external unit data
transfer is complete, and for delaying the execution of
any subsequent data transfer commands requiring
data from the result of this external unit data transfer
until the tag has been cleared, and

means for delaying the execution of any subseguent

Instruction requiring the assignment of a register when
there are no tag registers available.

36. The data processing system of claim 35 wherein said
control means further includes means for clearing any one
of the plurality of 1ags in the tag register when its respective
external unit data transfer is complete, irrespective of the

order to which the tags were assigned.
P ¥ * L »

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : Re. 34,052

DATED . Sep, 1, 1992
INVENTOR(S) : Phillip D. Hester and William M. Johnson

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Col. 11, line 27, please delete "tag'" and insert —--tags--:; and

Col. 14, line 1, after "processing" please insert --system—-—,

Signed and Sealed this
Twenty-third Day of August, 1994

VS uce Tedomare

BRUCE LEHMAN

Attest:

Atresting Officer Commissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

