

US00RE33834E

United States Patent [19]

[11] E

Patent Number:

Re. 33,834

Warner

[45] Reissued Date of Patent:

Mar. 3, 1992

[54]	HEART-RELATED PARAMETERS
-	MONITORING APPARATUS

Glenfield Warner, St. Laurent, [75] Inventor:

Canada

Assignees: Sylvia Warner, St. Laurent; [73]

Priyamvada Sankar, Brossard, both

of Canada

Appl. No.: 556,101

[22] Filed: Jul. 20, 1990

Related U.S. Patent Documents

Reissue of:

4,834,107 [64] Patent No.:

Issued:

May 30, 1989

Appl. No.:

105,803

Filed:

Oct. 8, 1987

U.S. Applications:

Continuation-in-part of Ser. No. 59,520, Jun. 8, 1987, [63] abandoned, which is a continuation-in-part of Ser. No. 807,693, Dec. 11, 1985, abandoned, which is a continuation-in-part of Ser. No. 608,955, May 10, 1984, abandoned.

[51] Int. Cl.⁵ A61B 5/02

U.S. Cl. 128/668; 128/666; 128/691; 128/694; 128/713

128/713

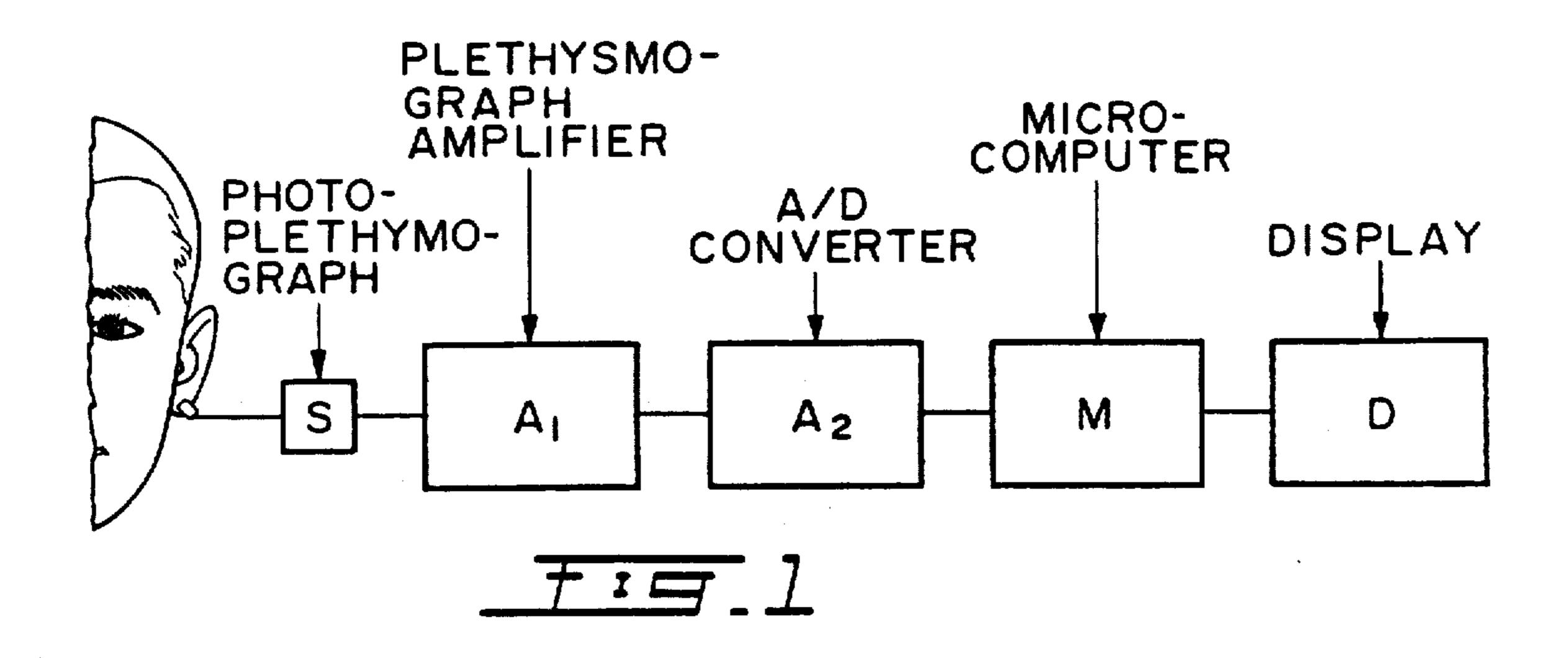
[56] References Cited

U.S. PATENT DOCUMENTS

6/1977 Warner 128/2.05 A 4,425,920 1/1984 Bowland 128/672

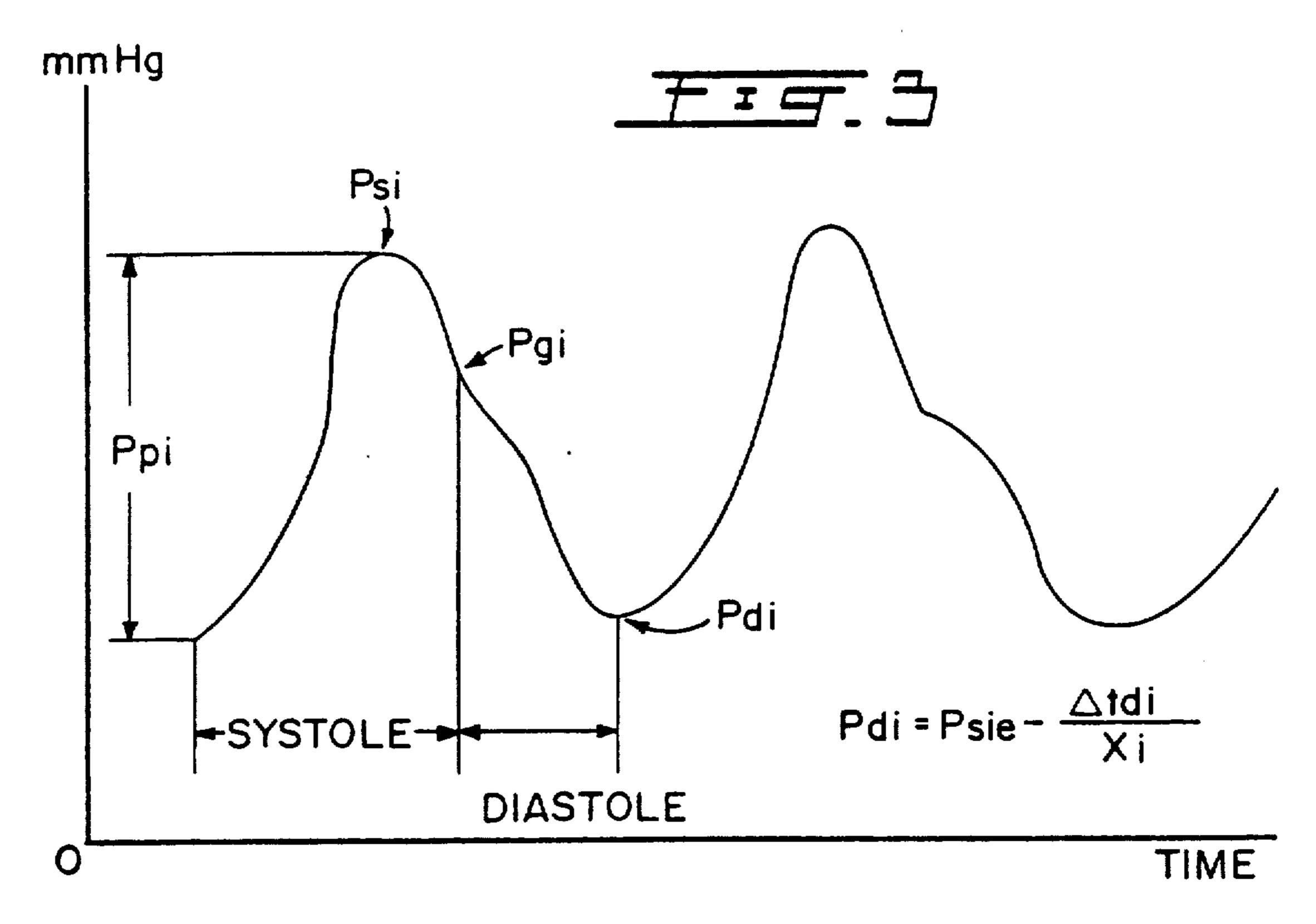
FOREIGN PATENT DOCUMENTS

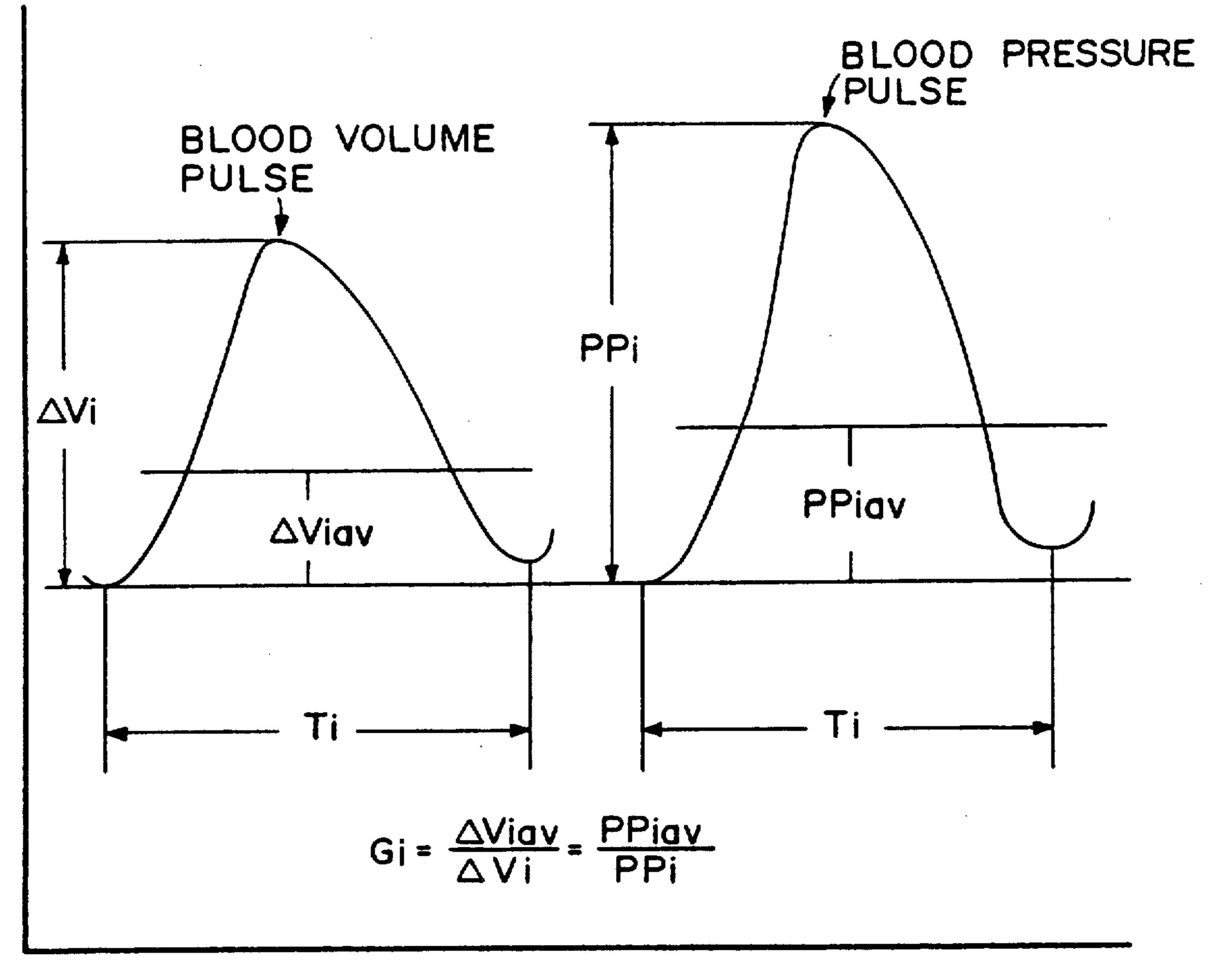
2092309 8/1982 United Kingdom 128/672

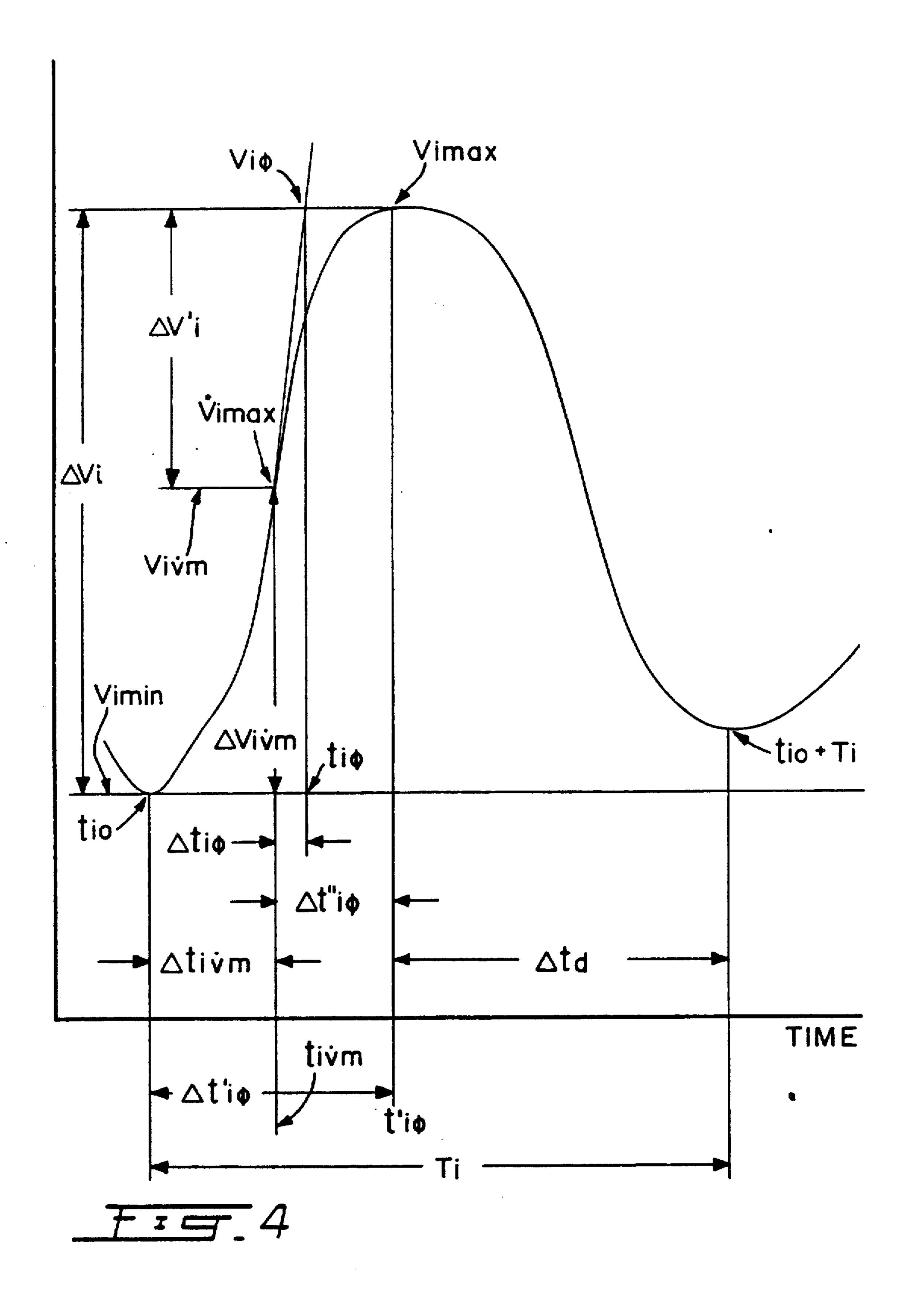

Primary Examiner—Asok Pal Attorney, Agent, or Firm-Chilton, Alix & Van Kirk

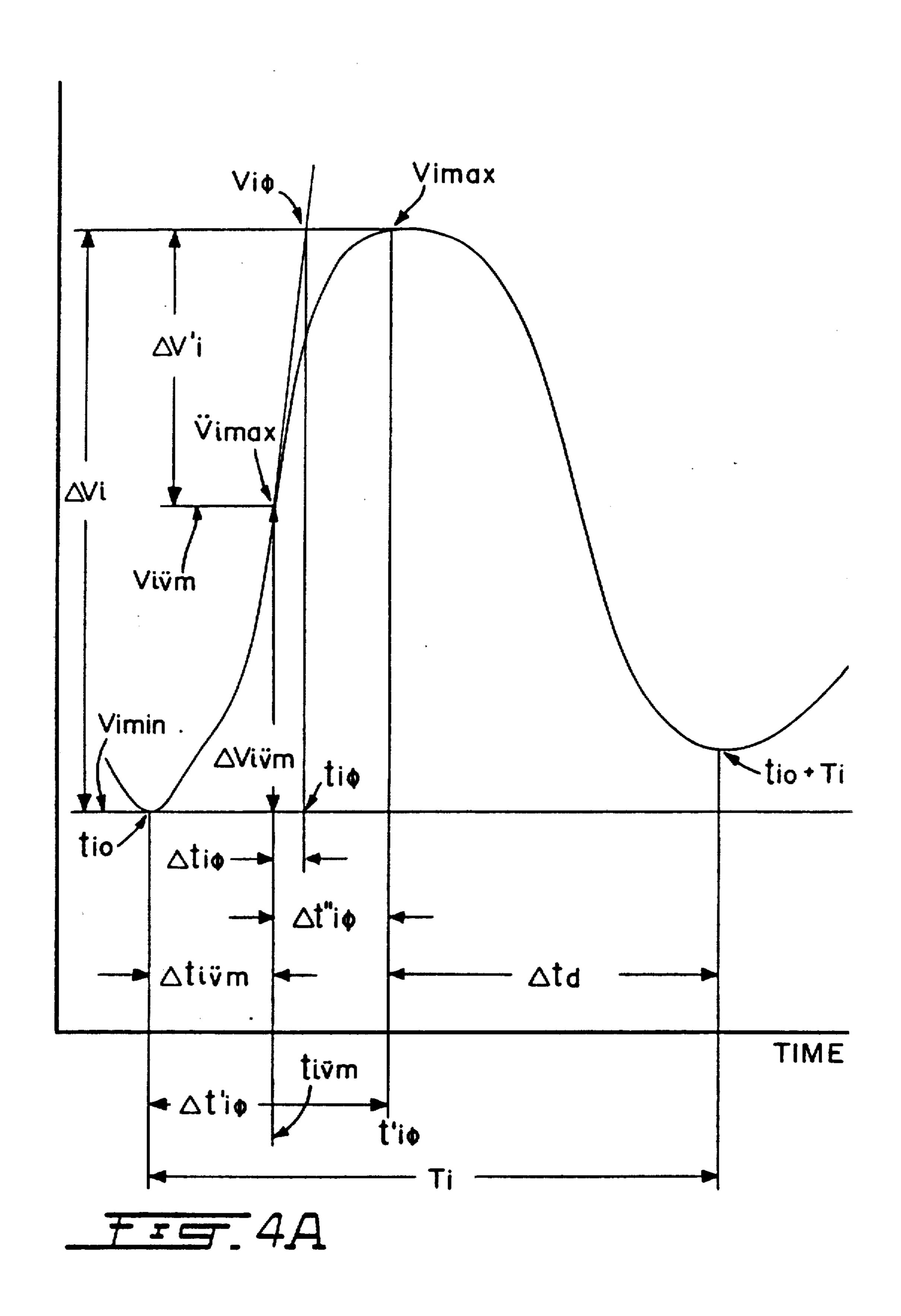
[57] **ABSTRACT**

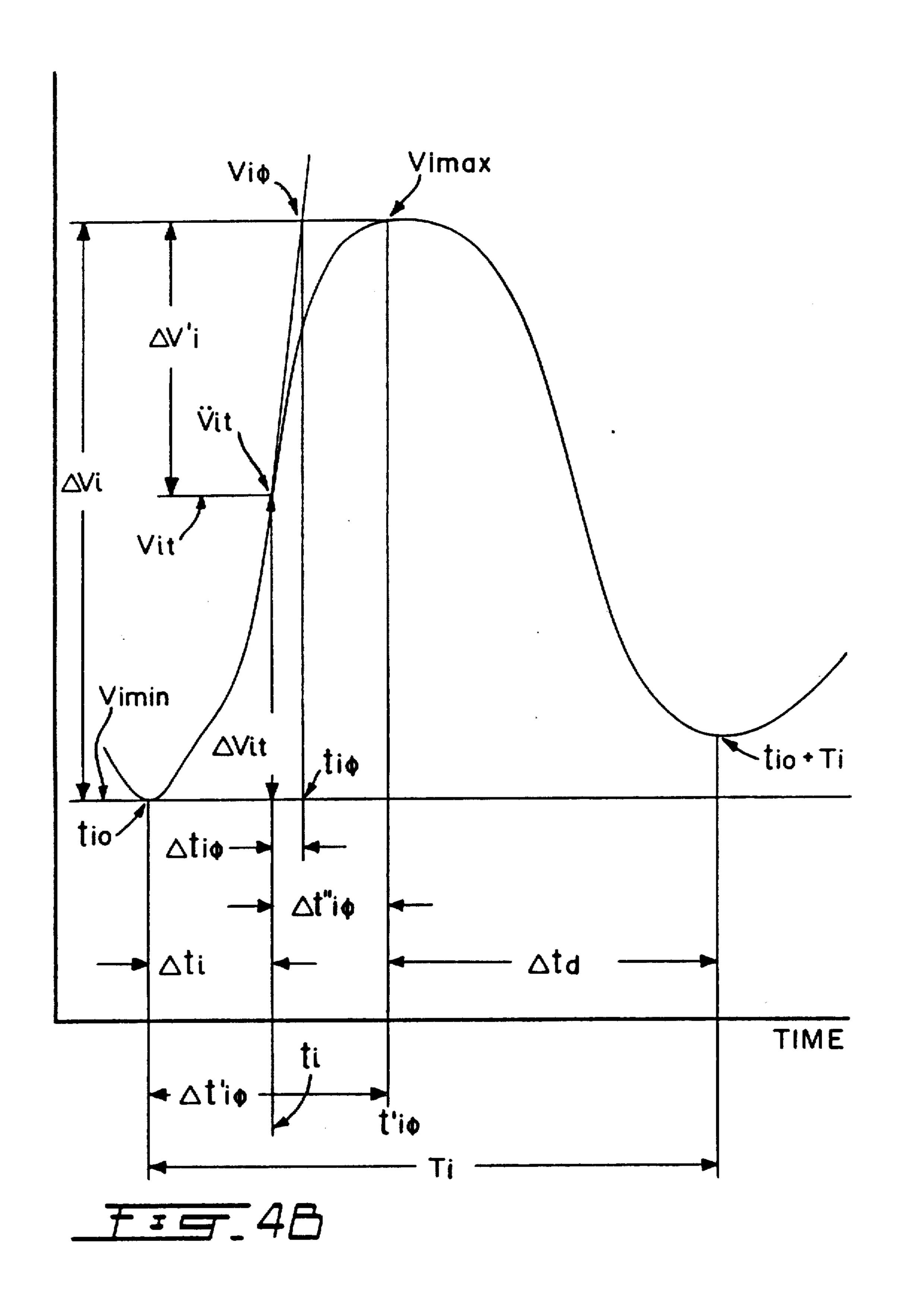
A non-invasive method, and an apparatus, for determining heart-related parameters in patients. The method and apparatus determine pulse pressure, time constant of the arterial system, systolic and diastolic pressure, peripheral resistance, cardiac output and mean arterial blood pressure.

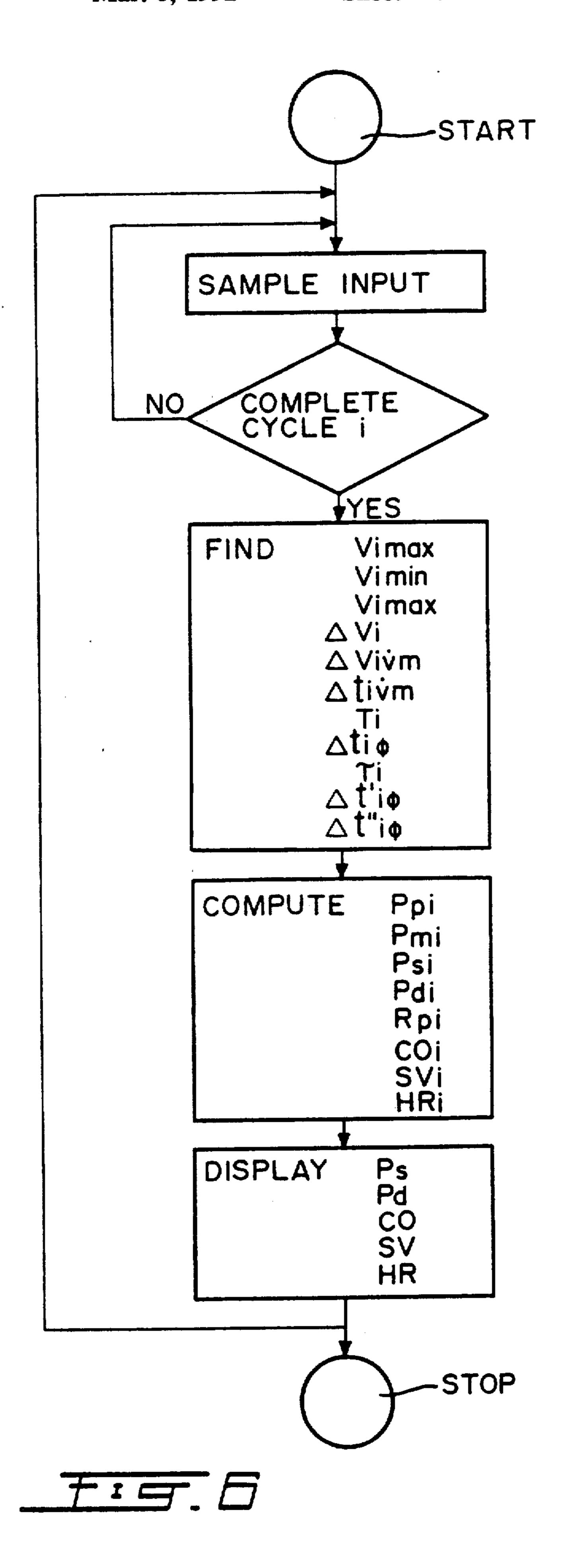

18 Claims, 6 Drawing Sheets


U.S. Patent




U.S. Patent




TIS 5

Mar. 3, 1992

HEART-RELATED PARAMETERS MONITORING APPARATUS

Matter enclosed in heavy brackets [] appears in the 5 original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a reissue of application Ser. No. 105,803, filed Oct. 8, 1987, now U.S. Pat. No. 4,834,107, which application is a continuation-in-part application Ser. No. 059,520, filed June 8, now abandoned which is a continuation-in-part application Ser. No. 807,693, filed Dec. 11, 1985, now abandoned which is a continuation-in-part of parent application Ser. No. 608,955, filed May 10, 1984, now all abandoned.

BACKGROUND OF INVENTION

1. Field of the Invention

The invention relates to a non-invasive method of measuring arterial blood pressure and cardiac output. The invention also relates to an apparatus for carrying ²⁵ out the method.

2. Description of Prior Art

Non-invasive methods and apparatus for measuring arterial blood pressure and cardiac output are known in the art. Once such method and apparatus is illustrated in 30 U.S. Pat. No. 4,030,485, Warner, issued June 21, 1977. A second such method and apparatus is taught in U.S. Pat. No. 4,418,700, Warner, issued Dec. 6, 1983. The present invention constitutes an improvement and refinement of the method and apparatus as taught in the 35 latter patent.

SUMMARY OF INVENTION

The invention relates to a non-invasive method, and an apparatus for determining heart-related parameters 40 in patients. The method and apparatus determine pulse pressure, time constant of the arterial system, systolic and diastolic pressure, peripheral resistance, and cardiac output and means arterial blood pressure.

BRIEF DESCRIPTION OF DRAWINGS

The invention will be better understood by an examination of the following description together with the accompanying drawings in which:

FIG. 1 is a block diagram of the apparatus for carry- 50 ing out the inventive method;

FIG. 2 is a typical sensor output of the system as illustrated in FIG. 1;

FIG. 3 illustrates arterial blood pressure pulses;

FIGS. 4, 4a and 4b illustrate a blood volume pulse;

FIG. 5 illustrates a blood volume pulse and a blood pressure pulse to illustrate the ratio g; and

FIG. 6 is a simplified flowchart for a computer program for performing calculations in accordance with the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

As seen in FIG. 1, an apparatus in accordance with the invention comprises a volume sensor such as a 65 photo-electric plethysmograph S, an amplifier A₁, an analog to digital converter A₂, a microcomputer M and a display device D. The plethysmograph sensor S is attached to, for example, the earlobe of a subject. The sensor could also be attached to other suitable parts of the body such as the forehead, fingertips or toes.

As is known, the plethysmograph, detects changes in blood volume of the region to which it is attached. A typical sensor output signal is shown in FIG. 2. As seen in FIG. 2, the output signal has a pulsating component and a DC component.

The output of the sensor is applied to the plethysmograph amplifier A₁ where it is amplified and filtered and the DC component is discarded. The output of A₁ has a DC component, but this is not directly related to the sensor DC component.

The output of A₁ is fed to the analog to digital (A/D) converter A₂ which digitizes the signal. In a preferred embodiment, the sampling rate is 100 per second.

Microcomputer M accepts signals from A₂ and processes them according to the instructions it contains. These instructions are schematically represented in the simplified flowchart of FIG. 6.

The computer quantities are then displayed on a CRT monitor D or other suitable display means.

THEORY

Arterial blood pressure pulses are shown in FIG. 3. The shape of these curves vary according to the site where they are measured. The highest pressure reached during a cycle i is called the arterial systolic blood pressure, P_{si} . The lowest pressure reached during the same cycle is called the arterial diastolic blood pressure, P_{di} . The pressure rise from P_{di} to p_{si} in the same cycle is the pulse pressure, p_{pi} .

By definition

$$\mathbf{p}_{si} - \mathbf{p}_{di} = \mathbf{p}_{pi} \tag{1}$$

To find P_{pi}

A plethysmographic pulse is shown in FIG. 4. The minimum value at the beginning of the pulse is V_{imin} . The maximum value of the pulse is V_{imax} . As the pulse volume rises from V_{imin} to V_{imax} , the time rate of volume change reaches a maximum \hat{V}_{imax} at time $t_i\hat{v}_m$. The pulse volume at time $t_i\hat{v}_m$ is $V_i\hat{v}_m$.

5 let

$$\frac{\mathbf{V}_{imn} - \mathbf{V}_{imin}}{\mathbf{V}_{imax} - \mathbf{V}_{imin}} = \frac{\Delta \mathbf{V}_{ivm}}{\Delta \mathbf{V}_{i}} = \mathbf{R}_{i}$$
 (2)

In addition to finding the values of \mathring{V}_{iVm} corresponding to \mathring{V}_{imax} , see U.S. Pat. No. 4,418,700, Warner, values of \mathring{V}_{iVm} are also found corresponding to \mathring{V}_{imax}^{-1} , \mathring{V}_{imax}^{-2} , ... \mathring{V}_{imax}^{-k} , where k is a function of \mathring{V}_{imax} .

All of the values of $\hat{\mathbf{V}}_{iVm}$ corresponding to the time rates of volume change lying between and including $\hat{\mathbf{V}}_{imax}$ and $\hat{\mathbf{v}}_{imax}^{-k}$ are averaged and used to compute $\Delta \mathbf{V}_{iVm}$.

The average value of Vivm is

$$\overline{V}_{ivm} = \frac{\sum_{1}^{n0} V_{iv0mn0} + \sum_{1}^{nl} V_{ivlmnl} + \dots + \sum_{1}^{nk} V_{ivkmnk}}{n0 + nl + \dots + nk}$$

where

n0 = number of values of $V_{i\nu 0}$ m corresponding to V_{imax}

10

(2) 25

nl = number of values of V_{ivlm} corresponding to $V_{imax} - 1$

... = ...

nk=number of values of V_{iVk} m corresponding to V_{imax}^{-k}

 $k = (V_{imax/m})$ (integral values only) + 1 m = constant . . a preferred value of m = 20

l=constant . . . a preferred value of l=1

$$P_{pi} = K_{pp} \left(\frac{R_i - r_1}{(1 + r_2 - R_i)} \alpha \right)$$
 (4a)

 K_{pp} =constant determined by a first calibration

 $r_1 = constant \dots preferably equal to 0$

r₂=constant . . . preferably equal to 0

0≦α≦1

 R_{ii} can now be defined, as per equation (2) above, but using the average value of V_{iVm} so that equation (2) can be rewritten

From FIG. 4

$$\Delta V'_i = \Delta V_i - \Delta V_{ivm}$$

$$\frac{\Delta V'_i}{\Delta V_i} = R' = \frac{\Delta V_i - \Delta V_{ivm}}{\Delta V_i} = 1 - \frac{\Delta V_{ivm}}{\Delta V_i} - 1 - R_i$$

wherein

$$R'_i = 1 - R_i$$

or

$$\mathbf{R}_i = 1 - \mathbf{R}'_i$$

No other calibration should be required with different subjects. However, if desired, K_{pp} can be determined for each subject.

To find mean blood pressure

The mean blood pressure P_{mi} during a cycle i is given by

$$P_{mmi} = K_4 \left[\frac{\Delta V_i}{\Delta \overline{V}_{imax}} \right]^{-b3}$$

$$P_{mi} = P_{mmi} + P_0$$
(6)

b₃=exponent . . . the preferred value of b₃ is equal to 0.5

K₄=constant determined at calibration for each subject. It is only necessary to find this constant once for each subject. The measurements carried out at 60 different times on the same subject do not require separate calibration

 P_0 =constant . . . preferred 25 mmHg

$$\Delta \hat{\mathbf{V}}_{imax}$$
 = maximum time rate of change of $\Delta \mathbf{V}_{i}$
= $\hat{\mathbf{V}}_{imax}$

-continued
$$P_{si} = P_{ml} + (1 - g_i)P_{pl}$$
(7)

where

 $g_i = (\Delta V_{iA} v / \Delta V_i)$

 ΔV_{iAV} = average value of ΔV_i over the time interval T_i

$$\mathbf{P}_{di} = \mathbf{P}_{si} - \mathbf{P}_{pi} \tag{8}$$

The variable g_i can take on a constant value g₀ whose preferred value is 0.333.

Alternatively, mean blood pressure can be determined using the following expression:

$$P_{mmi} = K_4 \left[\frac{\Delta V_i}{\Delta V_{imax}[G(t)]} \right]^{-b3}$$

$$= K_4 \left(\frac{1}{r_i} \right)^{-b3}$$

(for definition of r_i see Equation 10 below); where

G(t)=a function of t, in a particular case,

 $G(t) = (\phi_c/\phi_i)$

 $\phi_c = [(](1/\Delta t_c)]^{Y}$

 $\phi_i = [(](1/\Delta t_i)[)]^{\gamma}$

 $\Delta t_c = (\Delta t'_{i\phi c})$

 $\Delta t_i = \Delta t'_{i\Delta}$

where

[T_c=T at calibration] $\Delta t_c = \Delta t$ at calibration $\Delta t'_{i\phi}$ (-see FIG. 4B)

 $[t_c=t \text{ at calibration } \Delta t'_{i\phi c} \text{ (see FIG. 4B)}]$

 $\bar{\mathbf{L}}\phi_c = (\mathbf{T}_c/\mathbf{t}_c) = (\mathbf{T}/\mathbf{t})$ at calibration $\mathbf{J}\phi_c = (1/\Delta t)^y$ at calibration

y = constant

The remainder of the terms in equation 5' are the same as similar terms in equation 5.

Determination of ratio R (FIG. 4b)

From FIG. 4b, the ratio R is

 $R_i = (\Delta V_{it}/\Delta V_i)$

where

 ΔV_{ii} =change in volume at predetermined time ti ΔV_i =total volume change during cycle i

 $t_i = time such that <math>\Delta t_i = K_T \Delta t'_{i\phi}$

 $K_T = constant$

Estimation of pulse pressure, PP

$$\frac{1 - e^{KTkPPi}}{1 - e^{-kPPi}} = R_i$$

55 where

 PP_i =pulse pressure= p_s - P_d P_s =systolic blood pressure

 P_d =diastolic blood pressure

k = constant

 $K'_T = constant \simeq K_T$

In FIG. 4B

$$\Delta V'_i = \Delta V_i - \Delta V_{it}$$

$$\frac{\Delta V_i}{\Delta V_i} = \frac{\Delta V_i - \Delta V_{il}}{\Delta V_i} = 1 - \frac{\Delta V_{il}}{\Delta V_i} = 1 - R_i = R'_i$$

$$\frac{\mathbf{E} \Delta \mathbf{V}_{i}^{\prime}}{\Delta \mathbf{V}_{I}} = \frac{\Delta \mathbf{V}_{I} - \Delta \mathbf{V}_{it}}{\Delta \mathbf{V}_{i}} = 1 - \frac{\Delta \mathbf{v}_{it}}{\Delta \mathbf{V}_{I}} = 1 - \mathbf{R}_{I} = \mathbf{R}^{\prime}_{I}$$

wherein from the above equation:

$$1 - \frac{1 - e^{-KTkPPi}}{1 - e^{-kPPi}} = 1 - R_i$$

$$\frac{1 - e^{-kPPi} - (1 - e^{-KTkPPi})}{1 - e^{-kPPi}} = 1 - R_i$$

$$\frac{-e^{-kPPi} + e^{-KTkPPi}}{1 - e^{-kPPi}} = .1 - R_i$$

multiply numerator and denominator by ekPPi

$$\frac{-1 + e^{kPPi} e^{-KTkPPi}}{e^{kPPi} - 1} = 1 - R_i$$

$$\frac{e^{kPPi} (1 - KT) - 1}{e^{kPPi} - 1} = 1 - R_i = R'_i.$$

Determination of r From FIG. 4

$$\mathbf{r}_i = (\mathbf{\hat{V}}_{imax}/\Delta \mathbf{V}_i)\mathbf{G}(\mathbf{t})$$

where

 V_{imax} = maximum time rate of volume increase in cycle i

 ΔV_i =total volume increase during cycle i From FIG. 4b

$$[r_i = (\mathring{\mathbf{V}}_{it} \Delta \mathbf{V}_i) \mathbf{G}(t)]$$

$$r_i = (V_{it} / V_i) \mathbf{G}(t)$$

 V_{it} =time rate of increase of volume $V_{i(t)}$ at time t_i $[\Delta V_i = \text{total volume increase of volume during}]$ $\Delta V_i = \text{total increase of volume during time interval}$ $\Delta t_{i\phi}$

Estimation of Mean Blood Pressure

 $(1) P_{mi}' = K_1 r_{ic}^a$

 K_1 =calibration constant

 $P_{mi}' = (P_s + P_d)/2 - P_o$

 P_{si} =systolic blood pressure, in cycle i $P_{mi}=(P_s+P_d)/2$

 P_{di} =diastolic blood pressure, in cycle i a=constant

 $P_o = constant$

 $[(2) e^{kp} mi = K_2 R_{ic}^{b}] (2) e^{kp} mi = K_2 r_{ic}^{b}$ where

 K_2 =constant (calibration)

b = constant

$$(K_3) \frac{e^{-k(Pmo-j\Phi_1i)} - e^{-k(Pmo+\Phi_2i)}}{e^{-k(Pmo-\Phi_1i)} - e^{-k(Pmo+\Phi_2i)}} = r_i$$

where

 P_{mo} = constant at calibration

 $\phi_{1i} + \phi_{2i} = PP_i = \text{pulse pressure during cycle i}$

k = constant

j = constant

. I

solve equation by making LHS=RHS by varying ϕ_{1i} and $\phi_{2i}(\phi_{2i}=PP_i-\phi_{1i})$

then

$$\mathbf{P}_{si} = \mathbf{P}_{mo} + \mathbf{\Phi}_{2i} + \mathbf{P}_0$$

$$\mathbf{P}_{di} = \mathbf{P}_{mo} - \boldsymbol{\phi}_{1i} + \mathbf{P}_{o}$$

$$\mathbf{P}_{mi} = (\mathbf{P}_{si} + \mathbf{P}_{di})/2$$

 $P_0 = constant$

 r_i =ratio of exponentials

K₃=coefficient (variable or constant)

Correction for r_i

 r_i (corrected)= $r_{ic}=r_i e^{m(\phi_0-\phi_i)}$

m = constant

 $\phi_0 = PP_i$ at calibration

 ϕ_i =current value of PP_i.

Equation (9) above is only one form which this particular equation can take. By simple mathematical manipulations, the invention may take two other forms as per (10) and (11) below. What follows is the manipulations as well as the two other forms of the equation:

As above noted

$$\phi_{2i} + \phi_{1i} = PP_i = P_{si} - P_{di}$$

$$\phi_{2i} + \phi_{1i} = (P_{si} - P_o) + (P_{di} - P_o)$$

Let

25

30

35

45

55

(9)

$$P'_{si} = P_{si} - P_o$$

$$\mathbf{p}'_{di} = \mathbf{P}_{di} - \mathbf{P}_0$$

 $\phi_{2i} + \phi_{1i} = \mathbf{P'}_{si} - \mathbf{P'}_{di}$

add and subtract Pmo on RHS above

$$\phi_{2i} + \phi_{1i} = P'_{si} - P_{mo} + P_{mo} - P'_{di}$$
 (A)

 ϕ_{2i} and ϕ_{1i} can take on any values in satisfying the above equation (A)

Put
$$\Phi_{2i} = P'_{si} - P_{mo}$$

and
$$\phi_{1i} = P_{mo} - P'_{di}$$
 in equation (9)

40 then

$$K_{3} \left[\frac{e^{-k(Pmo-j(Pmo-Pdi))} - e^{-k(Pmo+j(Psi-Pr10))}}{e^{-k(Pmo-(Pmo-Pdi))} - e^{-k(Pmo+(Psi-Pr2o))}} \right] = r_{i}$$
(10)

simplifying the denominator

$$K_{3} \left[\frac{e^{-k(Pmo-f(Pmo-Pdi))} - e^{-k(Pmo+f(Psi-Pri0))}}{e^{-kPdi} - e^{-kPsi}} \right] = r_{1}$$
(11)

To solve equation 11:

(1) Set $P'_{di} = P'_{si} - PP_i$ and solve for P'_{si}

$$P_{mi} = (P_{si} + P_{di})/2 - P_o$$

(2) Set $P'_{si} = P'_{di} - PP_i$ and solve for P'_{di}

Although particular embodiments have been illustrated, this was for the purpose of describing, but not limiting, the invention. Various modifications, which will come readily to the mind of one skilled in the art, are within the scope of the invention as defined in the appended claims.

$$P_{mi} = (P_{si} + P_{di})/2$$

I claim:

1. Apparatus for determining the magnitude of heart-related parameters in a patient;

comprising;

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve 10 having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval 15 between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the 20 time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between 25 the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum aplitude, said maximum rate of change of said signal, said first difference, said second different, said first time interval, and said second time interval; and

means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating calculates the magnitude of the pulse pressure parameter in accordance with the following expression;

$$P_{pi} = K_{pp} \left[\frac{R_{il} - r_1}{(1 + r_2 - R_{il})} \right]$$

wherein

 P_{pi} = pulse pressure during cycle i

 K_{pp} = constant determined by a first calibration

 $r_1 = constant$

 $r_2 = constant$

 $\mathbf{R}_{il} = (\Delta \hat{\mathbf{V}}_{i} \mathbf{V}_{m} / \Delta \mathbf{V}_{i})$

where $\Delta V_i v_m = \text{volume change at time } t_i v_m$ during cycle i corresponding to maximum rate of volume change, V_{imax}

 $\Delta V_i = \text{maximum volume change during cycle i}$ $\Delta t_i v_m = \text{time interval from start of cycle i to } 60$ time of maximum rate of volume change V_{imax} .

2. Apparatus for determining the magnitude of heart-related parameters in a patient;

comprising;

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum [aplitude,] amplitude, said maximum rate of change of said signal, said first difference, said second [different,] difference, said first time interval, and said second time interval; and means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating [calculates] calculates the magnitude of the mean arterial blood pressure, P_{mi} parameter in accordance with the following expression:

$$P_{mi} = P_o + P_{mmi}$$

$$P_{mmi} = \left[\frac{\Delta V_i}{\Delta V_{imax}[G(t)]} \right]^{-b3}$$

$$\mathbf{E}_{\mathbf{P}_{mmi}} = \mathbf{K}_{4} \left[\frac{\Delta \mathbf{V}_{i}}{\Delta \mathbf{V}_{imax}[\mathbf{G}(t)]} \right] - \mathbf{b}_{3}$$

where

45

50

K₄=constant determined for each subject b₃=constant

P_{mmi}=pseudo mean arterial blood pressure during cycle i

 $[\Delta_i] \Delta V_i = \text{maximum volume change during cycle}$

$$\Delta \hat{\mathbf{V}}_{imax} = \text{maximum time rate of change of } \Delta \mathbf{V}_{i}$$

$$= \hat{\mathbf{V}}_{imax}$$

where

$$G(t) = \frac{\phi_c}{\phi_t}$$

10

-continued

$$\phi_c = \left[\frac{1}{\Delta t_c} \right]^y$$

$$\phi_i = \left\lceil \frac{1}{\Delta t_i} \right\rceil^{\nu}$$

where

 $\Delta t_c = \Delta t$ at calibration = $\Delta t_{i\phi c}$

 $\Delta t_i = \Delta t_{i\phi}$

y = constant.

3. Apparatus for determining the magnitude of heartrelated parameters in a patient;

comprising;

means for detecting blood volume, and thereby 20 blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said 25 patient to thereby detect said blood volume, and thereby said blood volume variation;

said volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable 30 slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maxi- 35 mum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said sig- 40 nal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal 45 being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum [aplitude,] amplitude, said maximum rate of change of said signal, said first difference, said second [different,] difference, said first 55 time interval, and said second time interval; and means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating calculates the magnitude of the systolic pressure (Psi) parameter in accordance with the following expression:

$$\mathbf{P}_{si} = \mathbf{P}_{mi} + (1 - \mathbf{g}_0)\mathbf{P}_{pi}$$

wherein

 $g_0 = constant.$

4. Apparatus for determining the magnitude of heartrelated parameters in a patient;

comprising:

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first-difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum [aplitude,] amplitude, said maximum rate of change of said signal, said first difference, said second [different,] difference, said first time interval, and said second time interval; and means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for de-

tecting and means for measuring; wherein means for calculating calculates the magnitude of the systolic pressure (P_{si}) parameter in accordance with the following expression:

$$\mathbf{P}_{si} = \mathbf{P}_{mi} + (1 - \mathbf{g}_i)\mathbf{P}_{pi}$$

wherein:

 $\mathbf{g}_i = (\Delta \mathbf{V}_{iA} \mathbf{v} / \Delta \mathbf{V}_i)$

 P_{pi} = pulse pressure during cycle i

 ΔV_i =represented by said first difference

 ΔV_{iAV} = represented by the difference between said minimum amplitude and an amplitude equal to the average value of a pulse in a cycle i.

5. Apparatus for determining the magnitude of heartrelated parameters in a patient;

comprising;

60

65

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being [cycle] cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a 5 minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maxi- 10 mum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said mini- 15 mum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of 20 blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum [aplitude,] amplitude, said maximum rate of change of said signal, said first difference, said second [different,] difference, said first time interval, and said second time interval; and means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating calculates the magnitude of the arterial blood pressure, P_{mi} parameter in accordance with the following expression:

$$P_{mmi} = P_{0} + P_{mmi}$$

$$P_{mmi} = \left[K_{4} \frac{\Delta V_{i}}{\Delta V_{imax}[G(t)]} \right]^{-b3}$$

$$\mathbb{E}_{P_{mmi}} = K_{4} \left[\frac{\Delta V_{i}}{\Delta \overline{V}_{imax}[G(t)]} \right] - b_{3}$$

where

K₄=constant determined for each subject b₃=constant

 P_{mmi} = pseudo mean arterial blood pressure during cycle i

 ΔV_i =maximum volume change during cycle i

$$\hat{\mathbf{V}}_{imax}$$
 = maximum time rate of change of \mathbf{V}_{i}
= $\hat{\mathbf{V}}_{imax}$

 $P_o = constant$ where

G(t)=a function of t.

6. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume 65 variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

calculating the magnitude of the pulse pressure parameter in accordance with the following expression:

$$\mathbf{P}_{pi} = \mathbf{K}_{pp} \left[\frac{\mathbf{R}_{il} - \mathbf{r}_1}{(1 + \mathbf{r}_2 - \mathbf{R}_{il})} \right]$$

wherein

40

45

50

60

 P_{pi} =pulse pressure during cycle i

 K_{pp} =constant determined by a first calibration

 $r_1 = constant$

 $r_2 = constant$

 $\mathbf{R}_{il} = (\Delta \mathbf{V}_i \mathbf{\hat{v}}_m / \Delta \mathbf{V}_i)$

where

[ΔV_{iVm} =volume change at time t_{iVm} during cycle i corresponding to maximum rate of volume change, V_{imax}]

 ΔV_{iVm} = volume change at time t_{iVm} during cycle i corresponding to maximum rate of volume change, V_{imax}

 $\Delta V_i = \text{maximum volume change during cycle i}$ $\Delta t_i \vec{v}_m = \text{time interval from start of cycle i to time}$ of maximum rate of volume change V_{imax} .

7. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said mini-

mum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

calculating the magnitude of the mean [artial] arterial pressure P_{mi} in accordance with the following expression:

$$P_{mi} = P_{o} + P_{mmi}$$

$$P_{mmi} = \left[K_{4} \frac{\Delta V_{i}}{\Delta V_{imax}[G(t)]} \right]^{-b3}$$

$$\mathbb{E}_{P_{mmi}} = K_{4} \left[\frac{\Delta V_{i}}{\Delta V_{imax}[G(t)]} \right] - b_{3}$$
30

where

K₄=constant determined for each subject b₃=constant

P_{mmi}=pseudo mean arterial blood pressure during cycle i

 $\Delta V_i = \text{maximum volume change during cycle i}$ $\Delta \dot{V}_{imax} = \text{maximum time rate of change of } \Delta V_i = \dot{V}_{imax}$

$$G(t) = \frac{\phi_c}{\phi_i}$$

$$\phi_c = \left[\frac{1}{\Delta t_c}\right]^{\nu}$$

$$\phi_i = \left[\frac{1}{\Delta t_i}\right]^{\nu}$$
50

where

$$\Delta t_c = \Delta t$$
 at calibration = $\Delta t_{i\phi c}$

$$\Delta t_l = \Delta t_{i\phi}$$
55

y = constant.

8. A method for determining the magnitude of heartrelated parameters in a patient; comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable

slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

calculating the magnitude of the systolic pressure $(P_{si}$ parameter in accordance with the following expression:

$$P_{si} = P_{mi} + (1 - g_0)P_{pi}$$

wherein

 $g_0 = constant.$

9. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representive of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second differ-

ence, said first time interval, and said second time interval; and

calculating the magnitude of the systolic pressure (P_{si}) parameter in accordance with the following expression:

$$\mathbf{P}_{si} = \mathbf{P}_{mi} + (1 - \mathbf{g}_i)\mathbf{P}_{pi}$$

wherein:

 $g_i = (\Delta V_{iAV}/\Delta V_i)$

P_{pi}=pulse pressure during cycle i

 ΔV_i =represented by said first difference

 ΔV_{iAV} =represented by the difference between said minimum amplitude and an amplitude equal to the average value of a pulse in a cycle 15

10. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume ²⁰ variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve 25 having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval 30 between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the 35 time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between 40 the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of 45 change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

calculating the magnitude of the arterial blood pressure, P_{mi} parameter in accordance with the following expression:

$$P_{mi} = P_o + P_{mmi}$$

$$P_{mmi} = \left[K_4 \frac{\Delta V_i}{\Delta V_{imax}[G(t)]} \right]^{-0.5}$$

$$\mathbf{E}_{\mathbf{p}_{mmi}} = \mathbf{K}_{4} \left[\frac{\Delta \mathbf{V}_{i}}{\Delta \mathbf{V}_{imax}[\mathbf{G}(t)]} \right] - \mathbf{b}_{3}$$

where

K4=constant determined for each subject

 $b_3 = constant$

P_{mmi}=pseudo mean arterial blood pressure during cycle i

 ΔV_{i} =maximum volume change during cycle i $\Delta \dot{V}_{imax}$ =maximum time rate of change of V_{i} =- V_{imax}

 $P_o = constant$

G(t)=a function of t and T.

11. Apparatus for determining the magnitude of heart-related parameters in a patient;

comprising:

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum [aplitude,] amplitude, said maximum rate of change of said signal, said first difference, said second [different,] difference, said first time interval, and said second time interval; and means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating calculates the magnitude of the pulse pressure parameter in accordance with the following expression:

$$P_{pi} = K_{pp} \left[\frac{R_{ii} - r_1}{(1 + r_2 - R_{ii})} \right]$$

wherein

55

65

 P_{pi} = pulse pressure during cycle i

 K_{pp} =constant determined by a first calibration

 $r_1 = constant$

 $r_2 = constant$

 $\mathbf{R}_{i1} = \Delta \mathbf{V}_i \hat{\mathbf{p}}_m / \Delta \mathbf{V}_i$

where

17

 ΔV_{iVm} = volume change at preselected time t_{iVm} during cycle i

 ΔV_i =maximum volume change during cycle i $\Delta t_i v_m$ =time interval from start of cycle i to preselected time of $t_i v_m$.

12. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable 13 slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval 20 between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of [charge] change of blood volume, a second time interval between the minimum am- 25 plitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the 30 amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, 35 and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second 40 time interval; and

calculating the magnitude of the pulse pressure parameter in accordance with the following expression:

$$P_{pi} = K_{pp} \left[\frac{R_{il} - r_1}{(1 + r_2 - R_{il})} \right]$$

wherein

 P_{pi} =pulse pressure during cycle i

 K_{pp} = constant determined by a first calibration

 $r_1 = constant$

 $r_2 = constant$

 $\mathbf{R}_{i1} = (\Delta \mathbf{V}_i \hat{\mathbf{v}}_m / \mathbf{V}_i)$

where

 $\Delta V_i \tilde{v}_m$ = volume change at preselected time $t_i v_m$ during cycle i

 ΔV_i =maximum volume change during cycle i $_{60}$ $\Delta t_i \nu_m$ =time interval from start of cylcle i to predetermined time of $t_i \nu_m$.

13. Apparatus for determining the magnitude of heart-related parameters in a patient;

comprising;

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood 18

volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

means for measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second different, said first time interval, and said second time interval; and

means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein the means for calculating calculates the magnitude of the mean pressure parameter in accordance with the following expression:

(1) $P'_{mi} = K_1 r_{ic}^a$

where

 $K_1 = calibration constant$

 $[P'_{mi}=(P_s+P_d)/2-P_o]$

P_{si}=systolic blood pressure, in cycle i

 $[P_{mi}=(P_s+P_d)/2]$

 P_{di} =diastolic blood pressure, in cycle i

a=constant

 $P_o = constant.$

14. A method for determining the magnitude of heartrelated parameters in a patient;

comprising:

45

55

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal [representation] representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time

interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between 5 the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of 10 change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second differ- 15 ence, said first time interval, and said second time interval; and

calculating the magnitude of mean pulse pressure in accordance with the following expression:

In accordance with the following expression:

[(1)
$$P_{mi} = K_1 r_{ic} a$$

(1) $P'_{mi} = K_1 r_{ic} a$

where

 $K_1 = \text{calibration constant}$
 $[P'_{mi} = (P_s + P_d)/2 - P_o]$
 $P'_{mi} = (P_{si} + P_{di})/2 - P_o$
 $P_{si} = \text{systolic blood pressure, in cycle i}$
 $[P_{mi} = (P_s + P_d)/2]$
 $P_{mi} = (P_{si} + P_{di})/2$
 $P_{di} = \text{diastolic blood pressure, in cycle i}$
 $a = \text{constant}$

 P_o =constant. 15. Apparatus for determining the magnitude of heart-related parameters in a patient;

comprising;

means for detecting blood volume, and thereby 35 blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said 40 patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable 45 slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maxi- 50 mum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said sig- 55 nal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum rate of change of said signal 60 being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period; 65

means for measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said

second [different,] difference, said first time interval, and said second time interval; and

means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein the means for calculating calculates implicitly the magnitude of the mean pulse pressure in accordance with the following expression:

$$(K_3) \frac{e^{-k(Pmo-j\Phi li)} - e^{-k(Pmo+\Phi 2i)}}{e^{-k(Pmo-\Phi li)} - e^{-k(Pmo+\Phi 2i)}} = r_i$$
(3)

$$\mathbf{E}_{\mathbf{K}_{3}\mathbf{i}} \frac{-\mathbf{k}(\mathbf{P}_{mo} - \mathbf{j}\phi_{li}) - \mathbf{e}^{-\mathbf{k}(Pmo + \phi_{2}i)}}{\mathbf{e}^{-\mathbf{k}(Pmo - \phi_{li})} - \mathbf{e}^{-\mathbf{k}(Pmo + \phi_{2}i)}} = \mathbf{r}_{1}$$

where

 P_{mo} = constant at calibration

 $\phi_{1i} + \phi_{2i} = PP_i = pulse pressure during cycle i$

k = constant

j=constant

 $\mathbf{P}_{si} = \mathbf{P}_{mo} + \mathbf{\phi}_{2i} + \mathbf{P}_{o}$

 $\mathbf{P}_{di} = \mathbf{P}_{mo} - \mathbf{\phi}_{1i} + \mathbf{P}_{o}$

 $\mathbf{P}_{mi} = (\mathbf{P}_{si} + \mathbf{P}_{di})/2$

 $P_o = constant$

 r_i =ratio of exponentials

K₃=coefficient (variable or constant).

16. A method for determining the magnitude of heart-30 related parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation:

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and the said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

wherein the means for calculating calculates implicitly the magnitude of mean pulse pressure in accordance with the following [expressure] expression:

$$(K_3) \frac{e^{-k(Pmo-j\Phi li)} - e^{-k(Pmo+\Phi 2i)}}{e^{-k(Pmo-\Phi li)} - e^{-k(Pmo+\Phi 2i)}} = r_i$$
(3)

$$\mathbb{E}_{\mathbf{K}_3} \frac{e^{-k(Pmo-j\Phi li)} - e^{-k(Pmo+\Phi 2i)}}{e^{-k(Pmo-\Phi li)} - e^{-k(Pmo+\Phi 2li)}} = r_l$$

where

 P_{mo} = constant at calibration

 $\phi_{1i} + \phi_{2i} = PP_i = pulse pressure during cycle i$

k = constant

j=constant

 $[P_{2i}=P_{mo}+\phi_{2i}+P_{o}]$

 $P_{si} = P_{mo} + \phi_{2i} + P_o$

 $\mathbf{P}_{di} = \mathbf{P}_{mo} - \mathbf{\phi}_{1i} + \mathbf{P}_{o}$

 $\mathbf{P}_{mi} = (\mathbf{P}_{si} + \mathbf{P}_{di})/2$

 $P_o = constant$

 r_i =ratio of exponentials

K₃=coefficient (variable or constant).

17. Apparatus for determining the magnitude of heart- 20 related parameters in a patient;

comprising:

means for detecting blood volume, and thereby blood volume variation, in said patient, and for providing a signal representative of said blood volume, and thereby said blood volume variation;

said means for detecting being attachable to said patient to thereby detect said blood volume, and thereby said blood volume variation;

said blood variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said minimum amplitude and said maximum amplitude, a maximum rate of change of said signal being representative of the maximum rate of increase of blood volume, a second time interval be-tween the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the 45 amplitude at the time of maximum rate of change of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition 50 period;

means for measuring said maximum amplitude; said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time 55 interval; and

means for calculating the magnitude of selected ones of said parameters, said means for calculating being connected to both said means for detecting and means for measuring;

wherein means for calculating calculates the magnitude of the pulse pressure parameter in accordance with the following expression;

 $\frac{1 - e^{-KTPP_i}}{1 - e^{kPP_i}} = R_i$

where

 $PP_i = Pulse Pressure - P_s - P_d$

 P_s =Systolic blood pressure

 $P_d = diastolic blood pressure$

k = constant

K' = constant.

18. A method for determining the magnitude of heart
related parameters in a patient;

comprising:

detecting blood volume, and thereby blood volume variation, in said patient and providing a signal representative of said blood volume, and thereby said blood volume variation;

said blood volume variation being cyclic in nature whereby said signal comprises a cyclic curve having, in each cycle of variation, a variable slope, a maximum amplitude representative of the maximum amount of blood volume, a minimum amplitude representative of the minimum amount of blood volume, a first time interval between said maximum amplitude and said minimum amplitude, a maximum rate of change of said signal being representative of the maximum rate of change of blood volume, a second time interval between the minimum amplitude and the time of the maximum rate of change of said signal, a first difference in amplitude between said maximum amplitude and said minimum amplitude, a second difference in amplitude between the maximum amplitude and the amplitude at the time of maximum change of rate of said signal being representative of the difference in volume between the maximum amount of blood volume and the volume at the time of maximum rate of change of said blood volume, and a pulse repetition period;

measuring said maximum amplitude, said minimum amplitude, said maximum rate of change of said signal, said first difference, said second difference, said first time interval, and said second time interval; and

calculating the magnitude of the mean arterial pressure P_{mi} in accordance with the following expression:

$$\frac{1 - e^{-KT'PP_i}}{1 - e^{kPP_i}} = R_i$$

where

 $PP_i = Pulse Pressure = P_s - P_d$

 P_s =Systolic blood pressure

 $P_d = Diastolic blood pressure$

k = constant

K' = constant.