BEST AVAILABLE COPY

United States Patent (o)

Matsumoto et al.

(1] E
(45] Reissued Date of Patent:

Re. 32,493
Sep. 1 _,_1331

Patent Number:

(54) DATA PROCESSING UNIT WITH
PIPELINED OPERANDS

Hideaki Matsumoto; Tadaaki
Bandoh; Hideo Maejima, all of
Ibaraki. Japan

[75] Inventors:

(73] Assignee: Hitachl, Ltd., Tokyo. Japan

[21] Appl. No.: 873,174

4.270.18) $/198) Tanakuraetal 164 /200
4,298,927 11/198! Berglund et al. BT 364 /200
4.305.124 1271981 Marrcetal ... e, 164/200
4.320,454 371982 Suzuki et al .t Lo 1647200

OTHER PUBLICATIONS

“B1700 Cobol/RPG-S-Language™, 1973, Burroughs
Corp., (1058823-015)
“VAX 11 Architecture Handbook™,

Equipment Corp.

1879, Dagital

[22] Filed: Jun, 11, 1986
.. Primary Examiner—Archie E. Williams, Jr.
Related U.S. Patent Documents Assistan! Examiner—William G. Niessen
Reissue of Attorney. Agent, or Firm—Antonelh, Terry & Wands
[64] Patent No.: 4,454,578 (57) ABSTRACT
[ssued: Jun, 12, 1984 . , 1 *
Appl. No.: 265,168 A dam'procrc-ssmgl unit for executing vanable angth
Eiled. May 19, 1981 Instructions in which operand spcmﬁers for specifying
addressing modes of operands are independent from
(51] Int CL* s, . GOGF 9/42; GO6F 9/34; gperation codes for ascertaining operations 1s disclosed.
GO6F 9/36 An instruction fetch unit includes an instruction bufler
[52] US.Cl o e 364/200 f(or prefetching and retaining instructions from a mem-
(58] Field of Search ... 364/200 MS File, 900 MS File 5ry and alignment means for aligning the instructions
(56) References Clted from the inlstruction buffer such lpat the instruc;ion
includes at least one operand specifier in one machine
U.S. PATENT DOCUMENTS cycle, and provides it to a decoding unit. The decoding
1,331,056 7/1967 Lethinet al oiniionann, . 364/200 unit includes an operation code decoder and two oper-
3739382 671973 Packardoooiiiiininnee. 3047200 and specifier decoders to decode two operand specifiers
4025771 571977 Lynch. Jr. et al. ooovvveenern. 3647200 gimultaneously when the last operand specificr is a reg-
4,109.310 8/1978 England et al. ... 364 /200 ister designation mode. Each of the units executes in-
4115242 171979 Ward et al i 364 /200 + . Y |
4200927 471980 Hughes €t &l -orrrmrers, 3647200 StTUCTIONS N B pipelined fashion and processes operands
4236206 1171980 Stirecker et al ..oriniieren, 3647200 in a pipelined fashion.
4.241,397 1271980 Strecker et al.ccocrvnreenree. 3647200
4,241,199 1271980 Strecker et al. ..oierieen. 3047200 23 Clsims, 28 Drawing Figures
¥y 320 302 340
22 | y~323

324

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheet | of 12 Re. 32,493

FIG A

(SHORT LITERAL) -LENGTH LITERAL VALUE

b|obe 2 ste— 3 —=te- LENGTH x 4ICR 8 }—=

FI1G IB

ol oo 2 b F —epo—— 8 ——4=— LENGTH x 4({0OR 8} —

FI1 G IC

(DESCRIPTOR INDEX | |:lmﬁ¥;m

plobe—— 5 —=

FI1G 1D

s cosnrrn [o[ovwo0] e

bo| d—e & ——fpronr———— 57 —

BEST AVAILAB|E COPY

U.S. Patent Sep.1,1987 Sheet2of12 Re 32,493

FI1G 2A

I) K

o 2 —oo— & —of

FI1G 2B

(REGISTER) DIOI! Rn |

el K |

fom § —atem § —pe—— § ——
FIG 2F

(ABSOLUTE | mn A bso l

o § e &} e 32—

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheet3 of 12 Re. 32,493

FI1G 3A

o 3 —te—— §

F1G 3B

(LONG LITERAL) ‘ LITERAL V.&LUE ‘

e 3, et § —opr————— [FNGTH x 8 ———————

F1G 3C

{ REGISTER) 0! O RN

oo 3 o § ———a]

F1G 3D

. DLS

I——3-—-+-——4-—-4-2—-P—D splen x 8 ———=

FI1G 3E

b 3 —eder— 2 —epa— O 5p N & B —

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheetd of 12 Re. 32,493
FIG 4
P 0 302 340

D
D) | 323

330 l
I 00 I
|FU DU AU OFU L.
00 e
337 338
0 347

*ST AVALABLE copy

C. ,4 '
1987 Sheet 5 of 12 Re. 32.493
] |

tent Sep. 1,

U.S. Pa

U.S. Patent

SEST AVAILABLE copy
Sep. 1, 1987

Sheet 6 of 12

Re. 32,493

U.S. Patent

337

BEST AVAILABLE COPY

Sep. 1, 1987 Sheet7 of 12 Re. 32,493
FI1 G 4D |
_/@
A —t 338
10C 70| 0D]
b= DER)
|5 120 |
702 . ot
11C H H i
OFCR p=—=10F - DEC 120 }
200 DM B
12C D3 :
) 210 04]
e 22D
s 332
705 :
14 C 330
I /33

SEST AVAILABLE copy

U.S. Patent Sep. 1, 1987 Sheet8 of 12 Re. 32,493

338

1ap

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheet9 of 12 Re. 32,493

FI1G 3

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheet 10 of 12 Re. 32,493

FI1G 7

[(3)

2

|

t
| | 3 [¥ 1)

{ 3}

17 3
| tas

- Dz A3

BEST AVAILABLE COpy

U.S. Patent Sep.1,1987 Sheet1l of 12 Re. 32,493
FI1 G 8
OPECODE /1D DL E RO JA
(x 10) ; ' :
< 10 READ b 8&TS, 0 | | , x40
(NO | OPERAND | 1 q
1 J <
(NO 2 éé%mo WRITE . B BTS| 1| 0
I I
n | |

203

BEST AVAILABLE COPY

U.S. Patent Sep. 1, 1987 Sheet 12 of 12 Re. 32,493

FIG 10

BEST AVAILABLE COPY

Re. 32,493
1 2
i : variable length instructions in which the operand speci-
DATA PROCESSING UNIT WITH PIPELINED fiers for specilying the addressing modes of operands
OPERANDS are independent from the operation codes for ascertain-

t .

Matter enclosed {a heary brackets [] sppears in the §
original pateut but forms no part of this relssue specifics-
tion; matter printed In Italics indicates the additions made
by reissue. ;

BACKGROUND OF THE INVENTION 10

The present invention relates to a data processing unit
with pipeline control, and more particularly 10 a data
processing unit which executes variable lengthiinstruc-
tions having operand specifiers for specifying address-
ing modes of operands issued independently from oper- 13
ation codes (or ascertaining operations. :

In a variable length instruction srchitecture, the in-
struction length varies even if the length of the opera-
tion code is fixed. The leading ficld of the instruction is
an operation code but the other ficlds have various 20
meanings. Accordingly, the meanings of the fields in the
instruction are not uniquely defined. Furthermore, since
the operand specifiers in the instruction have variable
lengths depending on the addressing mode, the instruc-
:_ion jength is varisble even if the operation code is 23

tned. :

In an instruction decoding unit which handles such
variable length instruction architecture, if an instruction
is fetched and decoded parallelly, a large scale hard-
ware is required and & complex control is necessary. ¥

In & system in which an instruction is fetched and
decoded one or a plurality of predetermined lengths of
units at & time, a long time is required (o decode the
instruction and hence high speed processing can not be
attained. For example, if a basic unit comprises eight 33
bits (byte), a basic lastruction has a three to seven-byte
length. If the instruction is decoded in synchronism
with a machine cycle, the machine cycles which ate
equal in number 10 the number of bytes of the instruc.
tion are necessary 10 decode the instruction. 40

Thus, in the data’processing unit which handles the
varisble length lastruction architecture, it is an lmpot-
tant factor 10 increase the speed of the processing of the
instruction decoding operation to attasin an_efficient
pipeline processing. 45

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a
data processing unit which can carry out the decoding
of the variable lastructions st a high speed. 50

It is another object of the present lavention to pro-
vide a datzs processing unit which can carry out the
decoding of the lastructions regardless of the number of
operand specifiers the Instructions may have.’

It is a further object of the present invention to pro- 33
vide s pipeline controlied data processing wait which
prepares one operand per machine cycle regardiess of
the length of the specifier. |

It is a sdll further object of the present inveation to

provide a data processing unit in which if the addressing 60

mode of the last operand specifier in an instruction is a
register mode, the operand specifier of the last operand
is also decoded in’'the decode cycle for the operand
specifier of the operand immediately precediag to the
last operand so that the instructions are executed at & 63
hisli lpoed. . :

. According to one aspect of the present fnvention,
there 18 provided 4 data processing unit for executing

ing operations, and in which not only the instructions
but also the operands of the respective instructions are
pipeline-controlled.

In accordance with another aspect of the present
invention, if the last operand specifier of an instruction
is the register mode, the operand specifier of the last
operand is decoded in the decode cycle for the operand
specificr of the operand immediately preceding to the
last operand.

In sccordance with a further aspect of the present
invention, at least one operand specifier of an operand s
decoded in ecach machine cycle to prepare diflerent
operands in order 1o process & plurality of operands in

pipeline.
BRIEF DESCRIPTION OF THE DRAWINGS

The other objects and features of the present inven-
tion will be apparent from the following description on
preferred embodiments when taken in conjunction with
the accompanying drawings, in which:

[FIGS. 110 3] FIGS. 1A 10 1D. 2A 10 2F, and 3A o
JF show examples of formats of operand specifiers of
varisble length instructions used in the present inven-
tion,

FIG. 4 shows & block diagram of one embodiment of
a dala processing unit canstructed in accordance with
the present invention.

FI1IGS. 4A to 4E show block diagrams illustrating
exemplary details of the respective blocks shown in
F1G. 4,

F1G. S shows s chart for explaining functions of
signals in the circuit shown in FIG. 4B,

FI1GS. 6 and 7 show flow chants for the operation of
the data processing uait shown in F1G. 4, |

FIG. 8 shows & chart for illustrating & signal for a
specific instruction in the circuit shown in FIG. 4B, and

FI1GS. 9 and 10 show flow charts for the operation
for a specific Instruction in the data processing unit
shown in FIG. 4. ' |

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Before explaining the embodiments of the present
invention, an instruction set having variable length op-
erand specifiers is first explained. Such an instruction st
has been known. The following are two representative
examples thereol. |

One is an instruction format for a Burroughs Corp.
computer B1700 implemented for a« COBOL/RPG ar-
chitecture. It is disclosed in *B1700 COBOL/RPG-S-
Language™ 1058823-015, Copyright 1973, Burroughs
Corp.

The other Is an lastruction architecture having vari-
able Jength operand specifiers for & Digital Equipment
Corp. computer VAX 11/780. It is disclosed in “VAX
11 Architecture Handbook™ Copyright 1979, and U.S.
Pat. No. 4,241,399,

FIGS. 1A to 1D show four representative addressing
modes In the example of the Burrough Corp. B1700.

FIG. 1A shows an operand specilier for specifying an
operand for the short literal mode. A Type field speci-
fics the type of data (presence or absence of sign and
identification of basic length of a Literal Value ficld (4
bits or § bits)), and s Length field together with the

BEST AVAILABLE COPY

Re. 32.493

3

Type ficld specifies the length of the Literal Value field.
Thus, the Literal Value ficld length may vary from 4
bits to a maximum of 56 bits (when the Type field speci-
fies 8 bits with sign and the Length fizid is 7).

FI1G. 1B shows an operand specifier which specifies
an operand for the long literal mode. It is used to pro-
duce a literal data having a length longer than that
specified by the short literal mode.

FIG. 1C shows an operand specifier which specifies
an operand address for the descriptor index mode. The
data at an address specified by an index value from an
entry address of a descriptor table is used as an operand.

F1G. ID shows an operand specifier for specifying an
operand address for the inline descriptor mode. The
data at an address specified by a Descriptor field is used
as an operand.

It should be understood that the four addressing
modes descnbed above are only representative exam-
ples and other modes also exist. :

As shown in FIGS. 1A 1o 1D, the operand specifiers
have vanable lengths. In the short literal mode of FIG.
LA, the length | (bits) occupied by the instruction field
of the operand specifier is 1424 3+"Length™ X4 (or
8). and in the long literal mode of FIG. 1B, the length ¢
is 14+243+8+"Length™ X4 (or 8), and in the descrip-
tor index mode of FIG. 1C, the length | is 6, and in the
inline descriptor mode of FIG. 1D, the length | is 63.

In the instruction architecture described above, the
portion which specifies the type of operand or the ad-
dressing mode is defined by the operand specifier and it
ts independent from the operation code. While only the
literal modes and the descriptor modes are considered
tn the above instruction architecture, any other address-
ing modes may be included. |

FIGS. 2A to 2F show formats of operand specifiers
for six representative addressing modes in the example
of the DEC VAX 1. FIG. 2A shows a format of an
operand specifier for the literal mode. The six-bit data in
& Literal field is used as an operand. FIG. 2B shows the
format of an operand specifier for the register mode.
Four bits in an Rn ficld specify an address of a register
used as an operand. FIG. 2C shows the format of an
opecrand specifier (or the displacement mode. The data
at & memory address equal to the sum of the content of

10

i5

20

25

33

& rcgister specified by an Ra field and a displscement 43

specified by a Displacement ficld Is used ss an operand.
The length of the displacement may be 8-bits as shown
in F1G. 2C or it may be 16 bits or 32 bits. FIQ. 2D
shows an opcrand specifier for displacement with {ndex
mode in which an index modifier is added to the ad-
dressing mode of FI1G. 2C. A register at an address
specified by an Rx field is used as an index register the
content of which is added to an address when it is calcu-
lated. F1G. 2E shows the format of an operand specifier
for the relative mode. The data at an address equal to a
sum of the content of the program counter and a dis-
placement specified by a Displacement ficld is used as
an operand. FIQ. 2F shows the format of an operand
specifier for the absolute mode. An Absolute field speci-
fics a memory address at which an operand s Jocated.

The VAX 11 Architecture is characterized in the fact
that the length of the operand specifiers are multiples of
a basic length of 8 bits (byte). -

As 8 repertoire of the addressing modes, the B1700 is
suitable for COBOL or like languages and the VAX 11
is suitable for FORTRAN and PL/1. FIQS. 3A to 3F
show examples of Instruction formats which adopt the
repertoire of the addressing modes of the VAX |1 and

33

60

63

4

which have bit-variable operand specifier lengths in
order to enhance the effliciency of the operand specifi-
ers.

FIGS. 3A and 3B show formats of operand specifiers
when operands are presented by literal data. When the
literal data is no longer than five bits, a short literal
format as shown in FIG. 3A is used. and when the
literal data is no shorter than six bits. a long literal for-
mat as shown in FIG. 3B is used.

FIG. 3C shows the format of an operand specifier for
the register mode. A register at an address specified by
an Rn ficld presents an operand. FIG. 3D shows the
format of an operand specifier for the displacement
mode. It comprises a register at an address specified by
an Rn field, a Displacement Length field for specifying
the length of displacement and a Displacement field.
FIG. JE shows the format of an operand specifier for
the relative mode. It comprises a Displacement Length
field and a Displacement field. FIG. 3F shows the for-
mat of an operand specifier for the absolute mode. An
Absolute ficld specifies a memory address at which an
operand is located.

The formats of the operand specifiers shown in
FIGS. 3JA 10 3F are only examples of a number of ad-
dressing modes and many other operand specifiers exist
although they are not explained here because they are
not necessary to the understanding of the present inven-
tion.

[n the instruction formats shown in FIGS. 1 to 3.
since the addressing mode is defined for each operand.
the independency of the addressing mode is maintained
for the operation code and the respective operands.
However, the limitation to the access type of the oper-
and such as read operand, write operand or read and
write operand is defined by the operation code (depen-
dency to the operation code). Accordingly, the operand
must be an addressing mode which satisfies the depen-
dency to the operation code. It should be understood
that other access types than the read, write and read and
write operands exist.

The length of the operand (data length) may be con-
sidered 10 depend on the operation code or it may be
considered to be specified by the operand specifier.
Since the difTerence therebetween does not aflect the
present invention, the handling of the data length is not
explained here.

An embodiment of the present invention is now ex-
plained in detail. While a bit is used as a minimum unit
10 sccess & memory in the following description, it
should be understood that the unit of access may be four
bits (nibble) or cither bits (byte).

F1G. 4 shows a block diagram of one embodiment of
& pipeline controlled data processing unit which embod-
ics the present invention. Abbreviations shown in FIG.
4 and their formal names are listed below.

Reference Abbrevis-

Numerals Formal Names Lo
301 Msin memory Mh{
302 Memary control unit MCU
303 High speed dbuller memony BM,
JO4 High speed buller memory BM»
400 lastruction fetch unit IFU
300 lesteuction decode unit DU
600 Addresi calculation unit AU
00 Operand fetch unit OFU
$00 Execution ynit EU

LLY I AVAILABLE LUPY

Re. 32,493

o
In FI1G. 4, the main memory (MM) 301 stores vari-

able length instructions and operands to be executed by
the instructions, and it exchanges data with the high
speed buffer memories (BM), BM;) 303 and 304 under

) n .l.,'-.'._Lil
E gL o

Specific embodiments of the respective units of the
dats processing unit shown in FIG. 4 are explained with
reference to FIGS. 4A to 4E.

FI1G. 4A shows the configuration of the IFU 400.

the control of the memory control unit (MCU) 302. 3 Abbreviations shown therein and their formal names
The MCU 302 provides addresses through signal arc listed below.
lines 320 and transfers data through signal lines 321.
Signal lines 340 form an address bus among the MCU —E;———_——T—T_'-
302 and the BM; 303 and the BM3 304, and signal lines e Foemal Name Avorevis
341 form a data bus. The BM, 303 provides addresses to 10 ——————————"20"™— 1w
the address bus 340 through signal lines 323 and transfer @02 hﬂm: di‘:ﬂ ALIG
data through signal lines 324. [40} Coatrol circuit IE-CONT
The BM; 304 provides addcesses to the address bus 404 Fetch pointer L
340 through signal lines 342 and transfers data through o peiector SEL
signal lines 343. Scrially coanccted blocks .from the s &
“instruction fetch unit (IFU) 400 up to the execution unit
(EU) 800 constitute the pipeline controlled (data pro- The fetch pointer (FP) 404 points to an address of an
 cessing unit. ki instruction to be fetched from the BM 303, |
The instruction fetch unit (IFU) 400 provides instruc- Thé instruction buffer (IB) 401 stores prefciched
tion addresses to the BM; 303 through signal lines 327 20 data. |

and receives read-out instructions through signal lines
328 10 prefetch the instructions. Signal lines 326 xre
interface signal lines for control signals between the
IFU 400 and the BM,; 30J. :

The instruction decode unit (DU) $00 receives in-
structions (etched by the IFU 400 and decodes them for
each operation code and each operand specifier. Signal
lines 329 are interface signal lines between the DU §00
and the IFU 400, :

The address calculation unit (AU) 600 calculates an
effective sddress of an operand in accordance with an
operation code decoded by the DU 500 and decoded
information of an operand specifier and provides the
effective address to the operand fetch unit (OFU) 700.
Signal lines 336 are interface signal lincs between the
DU 500 and the AU 600. }

The OFU 700 provides the opcrand address pres-
ented by the AU 600 to the BM2 304 through a signal
line 330 and receives a corresponding operand through
s signal line 335, a data bus 334 and signal lines 331
Signal lincs 332 are interface signal lines for conatrol
signals between the OFU 700 and the BM3 304.

When the BM31 304 contains data on the address pres-
ented by the OFU 700, it immediately provides the
corresponding data 10 a data bus 334 through the signal
lines 338 and the OFU 700 receives the dats on the data
bus 334 through the signal lines 331. When the BM; 304
does not contain the data on the corresponding address,

it accesses the MM 301 theough the MCU 302 to read $0

out the data on that address and presents it to the OFU
700. :

X
The coastruction and the function of the high specd
buller memory are known, for example, see “A Guide

23

35

43

The contro! circuit (1IF-CONT) 403 controls the
memory access to the BM | 303 through signal lines 326.
instructs write locations in the [B401 of the data fetched
from the BM 303 and permission or inhibition of writ-
ing, through a signal line 21A, and indicates il ali data to
be decoded in the DU 500 have been fetched to the 1B
401, through the signal line 12A. |

The incrementer (INC) 406 is used to update the
content of the FP &44.

The selector (SEL) 405 selects data to be loaded to
the FP 404. The output 23A of the SEL 405 provides
the output 22A of the INC 406 when the instruction is
to be prefetchied and provides a branch address on sig-
nal lines 344 connected with an interunit bus 410 when
a branch address is to be loaded duiring the execution of
a branch instruction. *

The instruction aligner (AL1G) 402 functions to align
the operand specifier bit by bit in a sequence of decode
by the address 11A. It may comprise a multi-bit shifter
which can shift a plurality of bits simultaneously.

Numera! 14A denotes signal lines which provides the
output of the ALIG 402 to the DU $00. It has a signal
line width equa! to the number of bits which includes at
feast one set of operand specifiers and one set of opera-
tion codes and one sct of the operand specificrs for the
register mode. |

Numeral 13A denotes signal lines which carry the
number of bits of data necessary to decode in the DU
$04.

Those are major elements of the IFU 400. It should
be understood that maay other elements are included.

F1G. 4B shows the specific configuration of the in-
struction decode unit (DU) 500, The abbreviations used
therein and their formal names are listed below.

t0 the IBM System/370 Model 168", copyright 1972, s3
International Business Machines Corp.
The execution unit (EU) 800 receives the

M

operands

Relerence Abbrevis-
from the OFU 700 to execute the instructions. Signal Numersh Formal Namer tions
lines 338 arc interface :lgnn.l lines between the EU 800 $01 Microprogram sddress gencra- ECSAG
and the OFU 700 for transferring the operands. 60 - won circut

An interunit bus 410 is a data transfec bus between the 501 Selecror SEL
units IFU 400, DU 500, AU 600 and Eu 800. It is con- o Operand Wnformation memory, 0 CTG
nected with the IFU 400 through signal lines 344, with 03 Opcrand w‘mw 0S-DEC
the DU %00 through signal lines 343, with the AU 600 $06 et mode detector RD-DEC
through signal lines 346 and with the EU 800 through €3 507 Number of decode bits DBNC
ignal lines 347 :; o e

Those units operate essentially independently to $09 Coateol clecuit D-CONT
carry out pipelined processing of the operands. $10 Decode polnter pe

BEST AVAILABLE copy

Re. 32,493

continued

Relcrence Abbrevia-
Numerals Forms! Namen fhons

18 Selector SEL

512 Incrementer INC

51 Number of necessary decode NBNC

bits calculstor
514 Address calculation program TPCC

counier value calculator

The microprogram address generation circuit (EC-
SAG) 501 generates a leading microprogram address
10B 10 be executed 1n the EU 800 by an operation code
provided from the 1FU 400 through the signal lines
14A.

The operand information memory (DCS) 503 stores
informtion on operands in an operation code provided
from the signal lines 14A through the selector (SEL)
502, 3

The operand specifier decoder {(OS-DEC) 505 de-
codes an operand specifier in the signal lines 14A. -

The control data generation circuit (ACIG) 504 gen-
crates & control data 18B for calculating an address of
an operand in the address calculation unit (AU) [301]

600 by the output 20B of the DCS 503 and the outpul
23B of the OS-DEC $505.

The register mode detector (RD-DEC) 8506 detects if
an operand specifier (OS) immediately following the
operand specilier (OS) decoded by the OS-DEC 505 is
the register mode or not. If it is the register mode and
the signal lines 34B permits the simultanecous decode of
two operand specifiers, the RD-DEC 506 loads the
address 12B of that register to a register (ARR) 610 in
the AU 600 10 be described later and informs it to the
D-COUNT 509, the ECSAG 501 and the DBNC %07
through the 1ignsal Jines 26B.

The number of decode bits calculator (DBNC) 507
receives the output 25B of the OS-DEC 508, the output
26B of the RD-DEC 506 and the output 21B of the
- DCS 303 and calculates the number of bits which are to
be read out of the 1B 401 and decoded in the same cycle.

The data aligner (D-ALIQ) 508 receives the output
29D of the OS-DEC 8508, the output 14A of the ALIG
402 and the output 21B of the DCS 8303 and realigns the
literal data, the displacement ficld or an sbsolute ad-
dress il it is included in the OS to be decoded.

The control clrcuit (D-CONT) 509 receives the sig-
nal 1A from the IF-CONT 403, the output 21B of the
DCS $03, the output 268 of the RD-DEC 806 and the
output 15B of the A-DEC 603 10 control the overall
operation of the DU $00.

The decode pointer (DP) 510 points to a leading
address to be decoded in that machine cycle. -

The selector (SEL) 811 selects data to be loaded 1o
the DP 510. In the execution of & branch Instruction,
when a branch address is set, a branch address provided
on the interunit bus 410 is loaded to the DP 510 thmugh
the SEL §511.

The incrementer (INC) 512 sdds to the content llA
of the DP 510 the number of bits 17B of the instruction
decoded in that cycle to produce a leading address 33B
1o be decoded in the next sequential machine cycle,

The number of necessary decode bits calculstor

(NBNC) 512 receives the output 24B of the OS-DEC 6%

$0S and the outputs 21B and 34B of the DCS §0) and
calculates the number of bits which must have been
fetched In the IB 401 to be decoded In that cycle and

10

i3

20

25

30

a3

45

35

8

provides the result 10 the IF-CONT 403 through the
signal lines 1JA.

The address calculation program counter value cal-
culator (TPCC) 8§14 receives the output 21B of the DCS
503 and the output 24B of the OS-DEC 505 to calculate
a value of the program counter to use the effective
address calculation in the addressing mode correspond-
ing to the program counter {the value of the program
counter indicating a next sequential address to that of
the operand specifier for which the address is 10 be
calculated) and loads the result 1o a register (TPC) 613
through the signal lines 16B.

F1G. 4C shows the configuration of the address cal-
culation unit {(AU) 600 shown in FIG. 4. The abbrevia-

tions used therein and their formal names are listed
below.

Abbhreviu-

Reference |

Numerals Farmal Names Hions

60! [6i0]) Register AER
602 Register ACR
60) Decoder A-DEC
& Flap ACVF
60§ Register ARAR
606 Repister file ARF
07 Selector SEL
608 Sclector SEL
609 Addcer A-ADR
610 Repister ARR
ol Register DR
612 Bus dniver DV
61) Register TPC

In FIG. 4C, the register (AER) 601 retains a leading
address 10B of a microprogram generated in the
ECSAG 501 of FIG. 4B.

The register (ACR) 602 retains control data 18B
which is the output of the ACIG 504 of F1G. 4B.

The decoder (A-DEC) 603 controls the overall oper-
ation of the AU 600 by the combination of the outputs
of the ACR 602 and the flag (ACVF) 604,

The flag (ACVF) 604 functions 1o indicate the excu-
tion of the operation of the AU 600. The ACVF 604 is
sct when a decoded result is presented to the AU 600 by
the output 14B of the D-CONT $09 and is reset by the
output 22C of the A-DEC 603 when the address calcu-
lation based on the decoded result is completed.

The register (ARAR) 605 stores an address 11B of &
register to be referred to when the operand address is
calculated.

The register file (ARF) 606 {3 a group of registers (o
be referred to when the operand address is calculated.
The output 24C which is the output of ARF 606 corre-
sponding to the address output 23C from the ARAR
608 is supplied to the selectors (SEL) 607 and 608.

The selectors (SEL) 607 and 608 sclect inputs to the
adder (A-ADR) 609.

The adder (A-ADR) 609 calculates the address of the

operand based on the signals selected by the SEL 607
and 608 and Joads the result 1o a register (MAR) 70§
through the signal lines 14C or provides the result to the
interunit bus 410 through the bus driver (DV) 612.

The register (ARR) 610 retains the address 12B of the
register which is contained in the operand specifier
(OS).

The register (DR) 611 retains the displacement. abso-
lute address or literal data which is contained in the
operand specifier (OS), and presents it to the SEL 608
through the signal lines 26C.

BEST AVAILABLE COpPY

9
The register (TPC) 613 retains the value'of the pro-
gram counter t0 be used in the relative/addressing
mode, and supplies the output’ 25C to the SEL 607
corresponding 10 the program calculated.
F1G. 4D shows the configuration of the opcrand
fetch unit (OFU) shown in FIG. 4. The abbreviations
used thercin and their formal names are listed below.

H
-]
"

Reference

Abbrevis-
Numerala Formal Mames tions .
701 Register {OER] DER
701 Register OPCR .
701 Flag OFCVF
04 Decoder OF-DEC
NS Reguter MAR |
Wo Selector SEL
07 Register OnR
708 ¢ Daw Aligner OALIG
i Regster ORR

3

15

n FIG. 4D, the register [(OER)] (DER) 701 retains 20

a leading address 10C of a microprogram.
The register (OFCR) 702 retains the output 11C of
the A-DEC 603 of FIG. 4C.

The flag (OFCVF) 703 indicates the execution of the

operation of the OFU 700. It is sct by the output 12C of 33

the A-DEC 603 when the result of the address calcula-
tion is presented to the OFU 700 and reset by the output
22D of the OF-DEC 704 when the operation of the
OFU 700 to the address is completed.

The decoder (OF-DEC) 704 coatrols the overall
operation of the OFU 700 by the combination of the
output 20D of the OFCR 702 and the output 21D of the
OFCVF 703. When alf operands have been fetched, it
provides the signal 13D to the exccution unit 800,

The register (MAR) 705 retains the address 14C of 33

the operand and provides the address to the BM; 304
through the signal line 330.

The sclector (SEL) 706 sclects data to be loaded to
the register (OBR) 707 which retains the operand 23D
to be loaded through the SEL 706.

The data sligner (OALIG) 706 receives the data 24D
from the OBR 707 and aligns it to generate the data
format 14D.

The register (ORR) 709 retains the address 13C of the
register provided from the ARR 610 of FIG. 4C.

FIG. 4E shows the configuration of the execution
unit (EU) 800 shown la F1G. 4. The abbreviations used
therein and thelr formal names are listed below.

Reference . Abbcevis-

Numenhs Formal Namas tions
801 Microprogram controller MPC
02 Microprogram memory ECS
) Microinstruction regiuter MIR
$04 $clecior $EL
803 $elector SEL
804 ALU EALV
0t Memory data regliter MDR
09 Bilatera! bus driver BDV
112 Ocneral purpose regwster Nle ERF
§t) Register ERAR
s14 Selector 'SEL

F1Q. 4¢E shows only major elements of the EU 800
and many other elements are Included therein although
they are not explained here because they are immaterial
to an understanding of the present invention.

In F1G. 4E, the microprogram coatroller (MPC) 801
controls the memory address of the microprogram

40

43

-4

60

63

Re. 32,493 « -4

10

memory (ECS) 802, which [receives] provides the
microprogram 20E from the address 21E specified by
the MPC 801 and loads it to the microinstruction regis-
ter (MIR) 803,

The outputs of the MIR 803 are provided to the OF-
DEC 704 of FIG. 4D through the signal lines 12D, to
the MPC 801 through the signal lines 22E and to the
sclectors 804 and 814 through the signal lines 23E and
[23E,] 24E. respectively. The outputs of the MIR 803
are also provided to many other clements although they
are not shown nor explained here because they are
immaterial to an understanding of the present invention.

The selectors 804 and 805 select input data to the
ALU (EALU) 806.

The memory data register (MDR) 808 temporarily
stores the data 35E from the bus 2SE and provides it o
the BMi 304 through the signal lines 333. the bus 334
and the signal lines 335.

The general purpose register file (ERF) 812 is a
group of general purpose registers used by the EALU
§06. 1t provides data read out by the address from the
output 33E of the SEL 814 to the SEL 804 and B80S
through the signal lines 28E.

The register (ERAR) 813 retains the register address
11D which is transferred from the ORR 709 of FIG.
4D. |

The sclector (SEL) 814 selects cither the output 32E
of the ERAR 813 or the output 24E of the MIR 803 and
provides it to the ERF 812 through the signal line 33E.
The bilateral bus driver (BDV) 809 functions (o inter-
connect the internal bus 25E of the EU 800 and the
interunit bus 410, transfer the data generated in the EU
800 (o the other unit and provide the data transferred
from the other unit to the EU 800.

An example of an instruction execution sequence in
accordance with the present embodiment is now ex-
plained with respect to a basic instruction.

The IFU 400 accesses the BM 303 by the address
contained in the FP 404 to prefetch the instruction. If
the 1B 401 has a vacant area to accommodate the data
read out of the BM 303, it reads in the data. If it has no
vecant ares, it neglects the data, The presence or ab-
sence of the vacant area is determined by the IF-CONT
403 by the content 327 of the FP 404 and the output 11A
of the DP 514. In the present embodiment, the data read
out from BM 303 is stored in the 1B 401 when the IB
401 has a larger area than the readout width of the data
from the BM, 303. _

The ALIG 402 aligns the data in the 1B 401 in the
sequence of address with the position at the correspond-
ing address of the 1B 401 being at the top while using
the output 11A of the DP 510 as the address. In the
present embodiment, the data is sligned bit by bit al-
though it may be aligned byte by byte when the basic
fength of the instruction is & byte. In the first decode
cycle of the instruction, the DP 510 indicates the ad-
dress of the operation code. Accordingly, the leading
data from the ALIG 402 corresponds to the operation
code field snd the operand specifier of the next sequen-
tial ficst operand is read. In the intermediate decode
cycle of the instruction, the DP §10 may indicate the
address of the operand specifier. In this case, a series of
data with the operand specifier corresponding to said
sddress being at the top Is read. The output 329 from the
ALIG 402 has a width wide enough to accommodate at
feast one set of operand specifiers and an operation
code.

BEST AVAILABLE copy

11 .
The DU 500 decodes the instructions provided by the
. ALIG 402. The DU 500 always decodes the output 329
of the ALIG 402. Conditions for completing the decod-
ing are explained below. ;
The effective data length to be available to decode in
the 1B 401 is determined by a difference between the FP
404 and the DP 510. The FP 404 indicates an address 1o

be read from the memory at the next memory Access,
and the DP 510 indicates a head memory address to be

decoded. Thus, the FP 404 is equal to or in advance of 10

the DP 510. When the DP $10 is equal to the FP 404,
there is no effective data in the 1B 401. When the DP
510 is not equal to thé FP 404, the difTference between
the FP 404 and the DP 510 indicates the effective data
length. The DU 500 calculates the length necessary for
decoding by the NBNC 513 and informs the result to
the IF-CONT 403 in'the IFU 400 through the, signal
lines 13A. The IF-CONT 403 compares the content on
the signal lines 13A with the difference between FP 404
and the DP 510, and when the former is equal to or
smaller than the latter it determines that the length
necessary for decoding is contained in the IB 401 and
informs this to the D-CONT 509 in the DU $00 through
the signal lines 12A. When the D-CONT 09 is in-
formed through the signal lines 12A that the necessary
data for decoding is contained in the IB 401 and is in-
formed through the signal lines 15B that the AU 600 is
ready to receive the decode resull, it presents the de-
. code result of the DU $00 1o the AU 600 to complete
- the operation of the decode cycle. If the data necessary
for decoding is not contained in the IB 401, or if the AU
600 is not ready to receive the decoded result, the D-
CONT 509 invalidates the process in that decode cycle
and repeats the same process in the next scquential cy-

cle. -
The output 17B of the DBNC 507 is represented by a
formula (1): ._" ‘
ITBma+ 84y {1)
" and the output 13A of the NBNC 513 is represented by
& formula (2): - ‘
BAwa+g+8 i §)

where a and 8 are déﬂncd s follows: 1

(i) When the DP 810 indicates the address of the
op<ration code,

a=the number of bits of the operation code
A =the number of bits of the leading operand speci-
fier following sald operation code. :

(if) When the DP 510 indicates the sddress of the
operand specifier, . |

am() * s

A =the number of bits of said operand specifler, v is

defined as follows: -

(i) When two operand specifiers are simultaneously
dCCOdCd. _. :

¥ = the number of bits of the operand specifier for the

register mode .

(i) When only one operand specifier is decoded.,

Y =0 : ‘

5 is defined as follows:]

() When simultaneous decoding of two ¢operand
specifiers is permitted (as indicated) by the output 34B
of the DCS 803), . ,

& = the number of bits of the operand specifier for the
register mode r

Re. 32,493

>

b3

20

23

35

43

$5

63

12

(it} When simultancous decoding of two operand
specifiers is not permitted,

Y=0

In the first decode cycle of the instruction, a leading
ficld provided from the ALIG 402 corresponds to the
operation code. Thus, the leading field is used as the
address of the DCS 503 in accessing to the DCS 503.

In the DCS 503, a one-word address is allocated to
onc opcrand specifier of each instruction. As shown in
FIG. 5, each one-word in the DCS 503 comprises a field
(AD) indicating a type of access (read, write or read
and write) of one of a plurality of opecrand specifiers
defined by the operation code of the instruction, a field
(DL) indicating the data length, a field (JA) indicating
an address in the DCS 503 corresponding to the oper-
and specifier following said operand specifier il it is
included, a ficld (E) indicating the last operand specifier
of the instruction and a field (RD) indicating the permis-
sion lor simultancous decoding of 1wo opcrand specifi-
ers. Other ficlds are also included but they are not ex-
Mained here because they are not directl y related to the
present invention. A number of words in the DCS 503
cqual to the number of operand specifiers contained in
each instruction are allotted 10 each instruction. For
example, three words are allotied to a threec-operand
instruction. It is possible (0 recuce the memaory size of
the DCS $03 by sharing the same address by diflerent
instructions i such sharing is permitted. In & first de-
code cycle (1) of an instruction, the operation code is
used as the address of the DCS 503, and 2 first operand
information specified by the operation code, an address
(JA) on the DCS 503 of 2 second operand and other
information are read out of the DCS $03. The operand
specifier of the first operand is read out from the IB 401
by the ALIG 402 and decoded by the OS-DEC 505. If
the operand specifier includes a displacement, an abso-
lute address or literal data, the D-ALIG $08 reads them
out and aligns the daw format, which is then stored in
the DR 611. The DU $00 loads the decoded results to
the registers in the AU 600 and sets the ACVF 604 to
start the address calculation for the operand specilied
by the operand specifier in accordance with the de-
coded result. The number of bits of the instructions
decoded in that cycle (the number of bits of the opera-
tion codes and the operand specifiers for the first oper-
ands) is calculated by the DBNC 507 and it is added to
the content of the DP §10 by the INC $12 to update the
content of the DP $10.

When the instruction has two or more opetapnd speci-
ficrs, the information of the second operand specified by
the operation code is read out of the DCS %03 in the
next cycle (12) to the first decode cycle (1) for the in-
struction while using the field JA in the information
read out of the DCS 503 in the cycle () as an address.
Simultancously, the operand specifier -for the second
operand is read out of the 1B 401 by the ALIG 402 and
it is decoded by the OS-DEC 50S in a similar procedure
to that of decoding of the operand specifier for the ficst
operand. If the AU [310] 600 has received the de-
coded result of the operand specifier for the first oper-
and and completed the address calculation for the oper-
and by that time and is ready 10 accept the address
calculation for the next address, the DU $00 loads the
decoded result of the operand specifier for the second
operand to the registers in the AU 600 and sets the
ACVF 604 10 cause the AU 600 to start the address
calculation of the operand specified by the operand
specifier for the second operand. The number of bits of

BEST AVAILABLE COpY

13
the instruction decoded in that cycie (the number of bits
of the operand specifier for the second operand) is cal-
culated by the DBNC 507 and it is added 10 the content
of the DP 510 to update the content of the DP 510.

As is apparent from the above description, the DU
500 desodes one operand specifier in each machine
cycle and loads the decoded result to the registers in the
AU 600 and instructs the AU 600 to calculate the ad-
dress of the operand based on the decoded result. In the
first decode cycle of the instruction, the operation code
is used as the address of the DCS 503 and in the subse-
quent cycles the information specified by the operation
code is read out. The'leading address of the micropro-
gram is determined by the ECSAG 501 based on the
operation code and it’is loaded to the AER 1.

When the decoded result for the operand specifier is
loaded to the registers in the AU 600 from the DU 500
and the ACVF 604 is set, the AU 600 calculates the
address of the operand based on the decoded result,
loads the calculated operand address to the MAR 705 in
the OFU 700, loads the operation controt information
. for the OFU 700 to the OFCR 702, and sets the OFCVF
703 to cause the OFU 700 to start the memory access to
the address specified by the MAR 705. When the ad-
dress calculation ‘of the operand specifier for the oper-
and has been completed, the AU 600 receives the next
operand specifier following said operand specifier from
the DU 500 and calculstes the address of the next oper-
and specifier. In this manner, the AU 600 sequentially
calculates the addresses of the operands specified by the
operand specifiers, one operand specifier at & time. The
address calculation for each operand specifier s not
always completed in one machine cycle, but {t may
sometimes take a plurality of machine cycles. After the
sddress calculation for one operand specifier is com-
pleted, the sddress calculation for the next operand
specifier is carried out. 1t Is not necessary that the next
operand specifier belong to the same instruction as that
of the foregoirig operand specifier. When the sddress
calculation for the leading (first) operand specifier in
the instruction is completed, the AU 600 transfers the
leading address of the microprogram of the instruction
stored in the AER 601 to the [OER] DER 701 of the
OFU 700. '

In order to transfet the address calculated by the AU
600 to the OFU 700, the OFU 700 must be ready to
receive the data from the AU 600. The OFU 700 indi-
cates through the signal line 1SC if it is ready to receive
the data from the AU 600. In the data transfer cycle to
the OFU 700, the AU 600 checks the signal line 15C and
only when it determines that the OFU is ready, the AU
600 loads the data generated therein to the registers in
the OFU 700. When the OFU 700 is not ready to re-
ceive the data, the AU 600 invalidates the of
th::l cycle and repests the same process in the nrext
cycle.

The OFU 700 starts its operation when the calculated
address of the operand specificr is losded to the MAR
705 from the AU 600, the operation control signal for

the OFU 700 is loaded to the OFCR 702 and the &

OFCVF 703 is set. J '

A primary function of the OFU 700 is to access the
memory based on the address presented by the AU 600
to fetch the operand. In an addressing mode (e.g. tmme-

diate mode orc literal mode) in which the operand has 65

been prepared by the AU 600, the operand (to be pres-
ented 10 the MAR 70%5) is losded to the OBR 707
through the SEL 706 and the memory is not accessed.

10

135

23

33

43

33

Re. 32,493 e

SRy 14

In scveral modes which need the memory access. the
BM3 304 is accessed through the signal lines 332. The
data read out of the BMj 304 is loaded o the OBR 707
through the SEL 706. The operands in the OBR 707 arc
alighed by the OALIG 708 and then trans{erred 10 the
EU 800.

In the memory access or transfer of the leading (first)
operand specifier of the instruction, the leading address
of the microprogram stored in the OER 701 is trans-
ferred to the MPC 801,

In order to load the operand prepared in the OFU 700
to the OBR 707, the OBR 707 must contain no data
prior to said operand, that is, the OBR 707 must be
vacant. The EU 800 indicates through the signal linc
12D if the operand in the OBR 707 has been used. In the
toading cycle of the operand to the OBR 707. the OFU
700 determines if the OBR 707 is ready to receive the
operand. If it is ready.-the OFU 700 loads the operand,
and if it is not ready the OFU 700 invalidates the pro-
cess of that cycle and repeats the same process in the
next cycle.

As described above, the information (operation code
and operand specifier) on the instruction decoded by
the DU 500 is transferred to the EU 800 through the

‘AU 600 and the OFU 700.

The EU 800 accesses the ECS 802 by the leading
address of the microprogram presented to the MPC 801
to fetch the microprogram to initiate the execution of
the instruction. The operand specified by the operand
specifier is presented from the OBR 707, or from the
ERAR 813 as a register address. If the opcrand is 2
destination, the address of that operand is loaded to the
MAR 70S. The EU 800 executes the instruction using
the operands presented from the OFU 700. When the
result it 1o be stored in & register, it is stored in the ERF
812 through the bus 25E and the signal lines 29E. When
the result is to be stored in a memory, it is temporanly
stored in the MDR 808 and supplied to the BM; 304
through the signal lines 333. When the operands pres-
ented by the OFU 700 have been processed, it is indi-
cated to the OFU 700 through the signal line 12D to
make the OFU 700 ready for the receipt of the next
operand.

F1G. 6 shows a stage flow illustrating an instruction
flow and a process for executing the instructions, in
which three instructions 1{1), 1{(2) and [{3) are shown.
Each of the instructions 1(1) to 1(3) has two operand
specifiers. In the first cycle (). the instruction (1) ts
fetched (IFU). In the next cycle (t2), the operatioa code
and the © specifier of the first operand are de-
coded (DIU1). In the next cycle (t3), the effective ad-
dress of the first operand is calculated (A(11) in accor-
dance with the decode result and the operand specifier
of the second operand is decoded (Df112). In the next
cycle (W), the first operand is fetched (OF()1) and the
effective address of the second operand is calculated
(A(112). In the same cycle, the operation code and the
operand specifier of the first operand of the instruction
1(2) are decoded (D). In the next cycle. (is), the
second © d of the instruction 1(1) is fetched
(OF1112) and the effective address of the first operand of
the instruction 1(2) is calculated (Af2)11) and the operand
specifier of the second operand of the tnstruction 1(2) is
decoded (D). In the next cycle (L), the instruction
1(1) is executed (E(1Y), and the first opcrand of the in-
structic.s 1(2) is fetched (OF2I1), the effective address
of the -~econd operand is calculated (A(212) and the
operation code and the operand specifier of the first

BEST AVAILAB|E COPY

)

: 18)
opcrand of the instruction I(3) are decoded (D).
Similar processes are carried out in the cycles Li-t1.]
I7-ti0. The fetches (IFQ2) IFOY) of the instructions 1(2)
and I(3) shown by broken lines in FIG. 6 indicate that
Instruction prefetches are carried out even when vacant

arcas in the IB 401 exceed a predetermined number of
bits. . |

While FIG. 6 shows an cxample where the effective

address calculation cycle for the operand and the oper-
and and feich cycle are completed in one cycle, respec-
tively, the effective address calculation cycle may not
be completed in one cycle depending on the addressing
mode, or the operand may be fetched by twice referring
t0 the memory in the indirect addressing mode \(in
which an operand is presented by the first memory
reference). Accordingly! the instruction flow and:the
execution vary depending on the addressing mode.!
FIG. 7 shows a stage flow illustrating an instruction
flow and the execution of the instructions when three-
opcrand instructions are sequentiall y executed, in which
three instructions I(1), 1(2) and (3) are shown, as in'the
casc of FI1G. 6. The execution of the instructions in each
cycle is similar to that for the sequential two-operand
instructions explained in FI1G. 6. In the three-operand
instruction, however, the third operand is not fetched
because it is usually not & source operand but a destina-
tion operand. A stage flow for the instructions having
more than three operands is essentially the same as the
-stage flows for the two-operand and three-operand
- Instructions described above in connection with FIGS.
6 and 7. A combination of instructions having different
numbers of operand specifiers may also be executed in s
similar manner. :_ i
While the two-operand and three-operand instruc-
tions have been illustrated, it should be understood that
the stage flows for one-operand instructions and the
than three operands are essen-

subsequent processes in an instruction
- which permits simultaneous decoding of the two oper-
and specifiers are now explained. :

Re. 32,493

3

10

15

20

b

The simultancous decoding of the two operand speci-

fiers is carried out only for the instruction which per-
mits the simultancous decoding of the two operand
specifiers although it may be carried out for all of the
instructions. { {
The simultaneous decoding of the two operand speci-
fiers is carried out on:condition that the addressing
mode of the last operand specifier is the register mode
when an operand specifier preceding the last operand
specifier is decoded. If the addressing mode is not the
register mode, the simultaneous decoding is not carried
out but only the operand specifier preceding thae last
operand specifier is decoded. As an example, an add
Instruction having two Operand specifiers is explained.
In the add instruction, the content of the first operand is
added to the content of the second operand and the sum
of them s stored at the location of the second operand.
Thus, the first operand is a read operand and the second
operand is a read and write operand. Patterns of the
DCS 503 for the add instruction are shown in FIG. 8,in
which information of the first operand and the address
of-the second operand on the DCS 503 are contained at
the address of the DCS 803 corresponding to the con-
tent of the operation code. Since the first operand is the
opcrand preceding the last operand, the field RD of the
DCS 503 contains 1" (indicating the permission of the

43

35

6]

16

simultaneous decode of the two opcrand specifiers).
Information of the second operand is stored at the ad.
dress of the DCS 503 for the second operand and the
field E contains *1" indicating that the second operand
is the last operand of the instruction. FIG. 9 shows a
stage flow when add instructions having the same lype
of operand specifiers are sequentially executed and the
sccond operands are of the register mode. When the
sccond operands are not of the register mode, the stage
low is not as shown in FIG. 9, but the stage flow is
similar to that shown in FIG. 6.

Referring to FIG. 9, the execution of the instructions
is explained. In the first cycle (1), the data (instruction)
on the address containing the instruction I(1) is fetched
(IF1). In the next cycle (12), the operation code and the
opcrand specifier of the first operand of the instruction
1(1) are decoded. If the field RD of the DCS 503 con-
tains *1" and the RD-DEC 506 in the DU 500 delects
that the addressing mode of the operand specifier of the
sccond operand following the operand specifier of the
first operand is the register mode, the RD-DEC 506
reads out a register address from the operand specilier
of the second operand and loads it 10 the ARR 610 in
the AU 600 10 simultancously decode the two operand
specifiers (D1 & D2(M). In the next cycle, (ta). the AU
600 calculates the address of the first operand of the
instruction I{1) (A1) based on the decoded result and
transfers the calculated address 10 the OFU 700 and
transfers a register address of the second operand of the
instruction I(1) to the ORR 709 in the OFU 700. In the
same cycle 13, the DU 500 decodes the instruction 1(2)
(D1 & D2?) in the same manner ss in the cycle t3. In
the next cycle (), the OFU 700 feiches the first oper-
and of the instruction (1) (OFI‘") and transfers the
register address of the second operand of the instruction
(1) to the EU 800. In the same cycle i, the AU 600
calculates the address of the first operand of the instruc-
tion I(2) (A1) and transfers the address to the OFU
700 and transfers the register address of the second
operand of the instruction I(2) to the OFU 700. In the
same cycle ty, the DU 500 decodes the instruction 1(3)
(D1 & D20)) in the same manner as in the decode for
the instruction I(1) in the cycle t;. In the next cycle (ts),
the EU 800 receives the register addresses of the first
operand of the instruction 1(1) and the second operand
of the instruction I(1) from the OFU 700 (o exccute the
instruction I(1) (E(1). In the same cycle ts, the OFU 700
fetches the first operand of the instruction 1(2) (OF1Q)
and trans{ers the register address of the second operand
of the instruction 1(2) to the EU 800. In the same cycle
ts, the AU 600 calculates an address of the first operand
of the instruction 1(3) (A10)) and transfers the address
to the OFU 700 and transfers a register address of the
second operand of the instruction 1(3) to the OFU 700.
In the following cycles 14 and 19, similar processes are
carried out. While the effective address calculation
cycle of the operand and the operand fetch cycle are
completed in one cycle, respectively. in the example of
F1G. 9, the effective address calculation cycle may not
be completed in one cycle depending on the addressing
mode or a plurality of cycles may be required when the
required data is not contained in the BM; 304 in the
operand fetch cycle and it has 10 be fetched from the
MM 301. Accordingly, various instruction flows and
execution processes may be included. |

FIG. 10 shows a stage flow {llustrating an instruction
flow and the execution of the instructions when same
type of three-operand instructions are sequentially exe-

BEST AVAILABLE COPY

17
cuted. Similar to FIG. 9. three instructions 1(1}, I(2).
and 1(3) are shown in'FIG. 10. Also similar to FIG. 9,
each of the instructioris permits simultaneous decoding
of two operand specifiers in a decode cycle of aa oper-
and preceding the last'operand when the last operand is
of the register modes FIG. 10 shows the stage flow
when the last operand (which cotresponds to the third
operand) is of the register mode. When the third oper-
and is not of the register mode, the stage flow is not the
same as shown in FIG. 10, but the stage flow is similar
to that shown in FIG. 7. In the two operand instructions
shown in F1G. 9, two operand specifiers are decoded 1n
the decode cycle for the operand specifier of the first
operand, but in the three-operand instructions shown in
FIG. 10, two operand specifiers are decoded .in the
decode cycle for the operand specifier of the second
operand. This difference is due to the {act that the oper-
and preceding the last operand is the first operand in the
two-operand instructions while it is the second operand

10

15

in the three-operand instructions, and it is not an essen- 20

tia! difTerence. i
While the processes for the two-operand instructions

and the three-operand instructions have been shown in

FI1GS. 9 and 10, respectively, it should be uaderstood

that for the instructions having four or more. operands

the two operand specifiers can be simultaneously de-
coded in the decode cycle of the operand specifier of
the operand preceding .the last operand of the instruc-

tion when the last operand is of the register mode. A

combination of instructions having different numbers of

operands may be similarly executed.

What is claimed is:.

1. A data procesting unit for exccuting variable
length instructions in which operand specifiers (or spec-
ifying addressing modes of operands are independent
from opcration codes for ascertaining operations, com-
prising: "

(A) instruction fetch means connected to memory
means for storing Instructions and operands, said
instruction fetch meants including.

(1) instruction prefetch means for prefetching and
retaining instructions from said memory means,
and =' :

(2) instruction alignment means for aligning bit
sequences of fnstructions including st least one
operand specifier prefetched from sald memory
mcans; ‘

(B) instruction decoding means connected (o said
instruction fetch means, said instruction decoding
means including,

(1) a Gicst operand specifier decoding means and a
second operand specifier decoding means both
connected (0 gaid instruction slignment means,
said second operand specifier decoding means
being capable of decoding & next sequential oper-
and specifier received from said instruction
dlignment means in the same machine cycle as a
first operand specifier; and

(2) operation code decoding means connected to
waid instruction alignment means for ascettalning
the operand specifiers included in the instruction
from said Instruction alignment means and ascer-
wining the function of said instruction, said [op-
crand] operation code decoding means including
s simultancout decode permission mesns for
issuing 2 signal to permit simultancous decoding
of two operand specifiers within the same ma-
chine cycle, sasld permission signal being pro-

23

30

33

43

33

60

63

Re. 32,493

18
vided 10 said second operand specifier decoding
means. said second operand specifier decoding
mecans decoding the next sequential operand
specifier to the operand specifier decoded by
said (irst operand specilier decoding means only
when said permission signal is provided thereto;
and
(C) address calculation means connected to said in-
struction decoding means for calculating an effec-
tive address of the operand in accordance with
information of an operation code and operand
specifiers decoded by said instruction decoding
means in the previous machine cycle,
whereby said instruction fetch means, said instruc-
tion decoding means and said address calculauon
means carry out their processes in parallel, and
said instruction decoding means and said address

 calculation means carry out their process for
cach operand specifier.

2. A data processing unit according to claim 1
wherein said simultancous decode permission means
provides said permission signal only when said second
opcrand specifier decoding means is in a register desig-
nation mode.

3. A data processing unit according o claim 1.
wherein said instruction prefetch means includes:

(1) instruction buffer means connected to said mem-
ocy means, said instruction buffer means retaining
instructions prefetched from said memory means,
and | |

(2) a fetch pointer connected 10 said memory means
for applying to said memory means an address of
an instruction 1o be prefetched to szid instruction
buffer means.

4. A dau processing unit according to claim 3,
whercin said instruction decoding means further in-
cludes a decode pointer means for pointing 10 a leading
sddress to be decoded, and whercin said instruction
fetch means includes alignment means connected (o an
instruction buffer means and seid decode pointer for
aligning scquential data from the address of said instruc-
tion buffer means pointed to by said decode pointer
such that said data includes at least one operand speci-
fier.

§. A data processing unit according to claim 3,
wherein ssid instruction prefetch means further in-
cludes: "

instruction fetch control means connected to said
memory means. said instruction fetch control
means prefetching an instruction from said mem-
ory when said instruction buffer means has 2 va-
cant area. |

6. A dsta processing unit according to claim 2,
wherein said instruction decoding means further in-
cludes:

a decode pointer means for pointing to a leading
address to be decoded, and wherein said instruction
{etch means includes

alignment means connected 1o an instruction bufler
means and said decode pointer, said alignment
means aligning sequential data from the address of
said instruction bulfer means pointed to by said
decode pointer such that said data includes opera-
tion codes and at lesst one operand specifier in a
first decode cycle of an instruction, and at least onc
operand specifier in & subsequent decode cycle of
~ the tnstruction.

BEST AVAILABLE COPY

19

1. A data processing unit for executing variable

length instructions in which operand specifiers for spec-
ifying addressing modes of operands are independent
from operation codes for asceriaining operations, com-
prising: .

(A) instruction fetch means connected to memory
means for storing linstructions and operands, said

© tnstruction fetch means including:

(1) instruction buffer means connected o said
memory means, for retaining instructions pre-
fetched from said memory means, |

(3} 8 fetch pointer connected to said memory
means for applying to said memory means an
eddress of an instruction to be prefetched into
said instruction buffer means, and

(3) instruction alignment means connected to said
instruction buffer means, for aligning bit sequen-
ces of instructions prefetched (rom said memory
means in the order of their address, for output-
ting a bit sequence including an operation code
and at least one operand specifier in a first ‘de-
code cycle. and for outputting a bit sequence
including at least one operand specifier in a suc-
ceceding decode cycle:

(B) instruction decoding means connected to said
instruction fetch means, said instruction decoding
means including:

(1) operation code decoding means connected to
said instruction alignment means for ascertaining
the operand specifiers included in instruction
aligned by said Instruction alignment means and
ascertaining the function of wid instruction, and

(2) operand specifier decoding means connected to
said instruction alignment means for decoding
one or more operand specifiers aligned by said
tnstruction slignment means in the same machine
cycle, and

(C) address calculation means connected to sald de-
coding mecans for calculating an effective address
of the operand In accordance with an operation
code and operand specifiers decoded by said de-
coding means in the previous machine cycle,
whereby said instruction feich means carries out

instruction fetching independently of the jastruc-
tion decoding means and of the address calcula-
tion means. said Instruction decoding means op-
crates, utilizing an operand specifier as a basic
processing unit of, independently of the lastruc-
tion fetch means and of the address calculation
means, and said sddress calculstion means oper-
ates, utilizing an operand specifier as a basic unit
of processing, independently of the instruction
fetch means and of the instruction decoding
Mmeans, thereby carrying out pipelined process-
ing based on 4 unit of one or more than one
simultancously processed operand specifiers.

8. A data processing unit according to claim 1,
wherein said instruction fetch means includes instruc-
ion fetch coatrol means connected to said memory
means and said instruction decoding means for fetching
an instruction from said memory means whea there
occurs & vacant area’in said instruction buffer means.
comparing the effective data length of the vacant ares
in said instruction buffer means with the data length
necessary 10 a decoding operation, and giving permis-
sion for decoding 10 gaid decoding means.

|

_Re. 32,493

3

10

15

20

35

43

33

63

20

9. A data processing unit according to claim 8,
wherein said instruction decoding means further in-
cludes:

(1) a decode pointer connected 10 said Instruction
fetch control means for applying a leading address
to be decoded to said instruction fetch control
mcans and to said instruction alignment means,

(2) instruction decode length calculation means con-
nected Lo said instruction fetch control means for
calculating the length of instruction to be decoded
and providing the calculated tength to said instruc-
tion fetch control means, and

(3) decoding control means connectad 10 said instruc-
‘tion fetch control means and said address calcula-
tion means for receiving signals from said instruc-
tion fetch control means and said address calcula-
tion means to control the overall opcration of said
decoding means.

10. A data processing unit according to claim 8.
wherein said decode length calculating means calcu-
lates the sum of the length of the operation code and the
length of the operand specifier of the first operand fol-
lowing the operation code when the operation code is
included in the decoding process, and calculates the
length of an operand specifier when the operation code
1s not included in the decoding process, and provides
the calculated length to said instruction fetch control
means.

11. A data processing unit according to claim ¢
wherein ssid instruction diode length calculation means
includes means operative, when the simultaneous de-
code of two operand specifiers is permitted, to further
add the length of an operand specifier of » register
designation mode and provide the resulting sum to said
instruction control means.

12. A data processing unit according to claim 9,
wherein said instruction decoding means further in-
cludes: address calculation program counter value cal-
culation mcans connected to said instruction fetch
mceans and said address calculation means, said address
calculation program counter value calculation means
calculating a program counter value used in the address
calculsation in a program relative mode of an operand
specifier to be decoded, based on the decode results
from said operation code decoding means and said oper-
and specifier decoding means and the information of the
lcading address to be decoded from said decode pointer,
and providing the calculated count to said address cal-
culation,means.

13. A data processing unit according to claim 9,
wherein said alignment means includes & multi-bit
shifter capable of shifting a plurality of bits simulta-
neously, the number of times of shift being indicated by
said decode pointer.

14. A data processing unit according to claim 9,
wherein sald address calculation means includes:

(1) decode result retaining means connected to said
instruction decoding means, said decode result
retaining means retaining information decoded by
said instruction decoding means.

(2) calculation means connecled to said decode result
retaining means, said calculation means calculating
an execution address of an operand, based on the
information from said decode result retaining
means., and

(3) address calculation control means connected to
said decoding control means. said address calcula-
tion control means being operative when a decode

21 §
result for at least one opcrmd specifier fs loaded to
said decode result retaining means for causing said
calculation means to calculate the effective address
of the operand based on the decode fesult and
providing to said decoding control m informa-
tion indicating whether the decode ruult can be
loaded 10 said decode result retaining means.

15. A data processing unit according tolclum 14,
wherein said decode result retaining means includes:

(1) control data latch means for latching control data 10

nccessary to calculate the address, 3

(2) regisser addoess bsach means for basching n:;m
addresses included in an operand specificr,

(3) displacement latch means for latching displace-
ment, literal data and absolute address information
included in an operand specifier and !

(4) address calculation start signal latch theans for
laching a signal indicating the start of the address
calculation of an operand based on the decode
result. 8

16. A data processing unit according to claim 9

wherein gaid instruction decoding means furthcr in-

cludes:

(1) decode pomltf updating means mnncctcd to said
decode pointer, said decode pointer i updating
means adding to the content of said decode pointer
the length of an instruction decoded in the decode
cycle and sending the resulting sum to said decode
pointer as a leading address to be decoded next, and

(2) instruction decode length calculation means con-
nected to said operation code decoding means and
said first operand specifier decoding means, said
instruction length calculation means calculating s
sum of the length of the operation code and the
length of an operand specifier of a first operand
following to the operation code In a decode cycle
including the operation code and cllculltmg the
length of the operand specifier in a decoding cycle
including no operation code and presenting the
calculated length to said decode pointer updating
means as & decoded instruction length. {

17. A data processing unit according to, claim 16

wherein said {astruction decode length calculation

15

23

33

BEST AVAILABLE COPY

22
each operand specifier, and for retaining the fetched

operands.

Jourth means for controlling said third means so that
said decoding and sald address calculating are exe-
cuted independently and at different times for each
operand specifier. with one operand specifier being
decoded while an ¢ffective address for an operand
corresponding lo another preceding operand specifier
Is being calculated; and

fifth mecans for executing the instruction in accor-
dance with the decoded operation code and the

Re. 32,493

rctamcd operaad.

19. A data processing unit according to claim 18.
wherein said fourth means includes means for controlling
the decoding by said third means so as 1o decode two oper-
and specifiers simulianeously in case of a last operand
specifier of the instruction having a register mode and for
controlling said address calculation by said third means so
as (o not calculate the effective address for the operand
corresponding 1o the register mode operand specifier. the
decoded data of the register mode operand specifier being
treated as the effective address for the register directly.

20. A date processing unit according to clatm 18.
wherein said third means Includes means for providing a
iwo operand specifier decoding permission signal in re-
sponse to ceriain operation codes, and said fourth means
includes means for controlling the decoding by said third
means so as {o decode two operand specifiers simulia-
neously when said two operand specifier decoding permis-
sion signal lIs provided and the last operand speclfier of the

Instruction Is in a register mode, and for controlling said

address calculation by said third means so as to not calcu-
late the ¢ffective address for the operand corresponding to
the register mode operand specifier, the decoded data of the
register mode operand speclfier being treated as the effec-
tive address for the register directly. |
21. A data processing unit for executing variable length
instructions in which operand speclfiers for speclfying ad-
dressing modes of operands are independent from operc-
tion codes for ascertalning operations, comprising:
Jirst means for storing data including variable length
{astructions and certain of the operands to be executed
by certaln of the instructions:

means includes means operative, when the simultancous 44
decode of the two operandl is permitted, to further add
the length of the operand specifier of the register desig-
nation mode and pmvidc the resulting sum to said de-
code pointer updating means.

18 A data processing unit for executing mdab!c length
{nstructions in which operand spec{fiers for specifying ad-
dressing modes of operands are independent from opera-
tion codes for ascertalning operations. comprising:

Jirst means for storing data including varlable length
{nstructions and certain of the operands to be executed ss
by certain of the instructions: {

second means for prefetching an instruction from sald

second means for accessing sald first means to exchange
data with sald first means;

third means for prefeiching an instruction from said
second means, for retalning the prefeiched instruction,
and for aligning a predetermined sequence of ele-
ments of the instruction including at least one operand
specifier;

Jourth means for decoding an operation code and eack
operand specifier of an aligned Instruction received
Jrom sald third means, for calculating the effective
address for the operand specified by each operand
specifier in accordance with the decoded operation

first means, for retaining the prefetched Instruction,
and for aligning a predetermined sequence of ele-

ments of the instruction including at least one operand 60

- spec{fier;)
third means for decoding an operation code and each

operand specifier of an aligned instruction received
Jrom sald second means, for calculating the ¢ffective
address for the operand spec{fied by each operand 65
spec({fier In accordance with the decoded operation
code, for fetching the operand from sald first means in
accordance with the calculated ¢ffective address for

i
g,

L
'

code, for fetching the operand from sald second means
in accordance with the calculated effective address for
cach operand specifler. and for retaining the feiched
operands;

JUth means for controlling said fourth means so that said
decoding and sald address calculating are executed
independently and at d{fferent times for each operand
spec{fier, with one operand spec{fier being decoded
while an effective address for an operand correspond-
{ng 10 another preceding operand specifier is being
calewlated: and

BEST AVAILABLE COPY

Re. 32,493

23

sixth means for executing the instruction in accordance

with the decoded operation code and the retained

operand.

22. A data processing unit for executing variable length
instructions in which operand specifiers for specifying ad-
dressing modes of operands are independent from operand
codes for ascertaining operations. comprising:

(A} instruction fetch means connected to memory means
for storing instructions and operands, said instruction
Sfetch means including,

(/) instruction preferch means for prefetching and
reigining instructions from said memory means.
and ‘

(2) instruction alignment means for aligning bit se-
quences of instructions including at least one oper-
and spectfier prefetched from said memory means;

(B) instruction decoding means connected to said in-
struction fetch means, said instruction decoding
means including,

(1)} operand specifier decoding means connected to
said instruction alignment means for decoding o
next sequential operand specifier received from said
instruction alignment means simultaneously with a
preceding operand specifier and |

(2) operation code decoding means connected to said
instruction alignment means for decoding the oper-
ation code included in the instruction from said
instruction alignment means and ascertaining the
SJunction of said (nstruction. said operation code

3

10

15

20

28

30

35

4}

33

63

24

decoding means irc/uding a simultaneous decode
permission means for issuing a signal to permir
simultaneous decoding of two operand specifiers
within the same machine cycle, said permission
signal being provided 1o said operand specifier de-
coding means 1o permit the decoding of the next
sequential operand specifier simultaneously with
decoding of the preceding operand specifier, and

(C) address calculation means connected to said instruc-

tion decoding means for calculating an effective ad-
dress of the operand in accordance with information
of an operation code and operand specifiers decoded
by said instruction decoding means in the previous
machine cycle.

whereby said instruction fetch means, said instruction

decoding means and said address calculation means
carry out their processes in parallel. and said instruc-
tion decoding means and said address calculation
means carry out their process for each operand speci-
fier. -

23. A data processing unit according to claim 22 wherein
said operand specifier decoding means operaies to decode
the next sequential operand specifier simultaneously with
the decoding of the preceding operand specifier only when
said permission signal is provided thereto and the address-
ing mode of said next sequential operand specifier is a

register mode.
B L L . L

—_— —— mmaTe A b L,

	Front Page
	Drawings
	Specification
	Claims

