United States Patent (9
Patil

[54] ASYNCHRONOUS LOGIC ARRAY
Subas S. Patil, Salt Lake City, Utah

Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No.: 110,838
[22] Filed: Jan, 10, 1980

[75] Inventor:
[73] Assignee:

Related U.S. Patent Documents

Reissue of:

[64] Patent No.: 4,068,214
Issued: Jan. 10, 1978
Appl. No.: 751,519
Filed: Dec. 16, 1976

U.S. Applications:
[63] Continuation of Ser. No. 654,943, Feb. 3, 1976,

abandoned.
[51] IRt CL? ceoeonerenenerenceseessanesessssssssssenses HO4G 5/14
[52) US. CL .oovrrrerrrenerennee 340/825.79; 340/825.03;
340/825.5
[S8] Field of Search 340/166 R, 147 LP, 147 C;

364/707, 716

(a}

it {f

BAR
L L

(11] E Re. 31,287
145] Reissued Jun. 21, 1983

[56] References Cited
U.S. PATENT DOCUMENTS
3,525,076 8/1970 Keohaneocoiienieee 340/166 R
3,601,807 8/1971 Beausoleilccceiennee 340/166 R
3,721,964 3/1973 Barrett ... 340/166 R
3,816,725 6/1974 (Greercvveeiiiemmniiccn 340/166 R
3,826,873 7/1974 SUS1 ..veiriieeriiiieniieencennn 340/166 R
4,024,352 571977 Mukaiemachi 340/166 R

Primary Examiner—Harold 1. Pitts
Attorney, Agent, or Firm—Arthur A. Smith, Jr.

[57] ABSTRACT

An asynchronous logic array capable of directly imple-
menting Petri net specification of digital systems is dis-
closed. The array can be used in general synthesis of
asynchronous digital circuits and systems. The parallel
nature of the array gives the realized systems the speed
and other characteristics of hard wired circuits even
though they are realized from a uniform logic array.
The logic array is particularly suited for implementing
control circuits and promises to extend the field of
micro programming to asynchronous and parallel com-
puters.

7 Claims, 24 Drawing Figures

'é ép DETECTORS

CRllOL
- O O

TM’E SHOWN IN
NACTIVE POSITION.

OPENS WHEN ACTIVATED.

{b)

inl

o

REJECTS l

i i il

START uyslD

|

2
-] r
GATE ACTIVE GATE INACYIVE

te

{e)

%-__A
q
2

ky»}1]

1y=]10 MEANS
I,IDU 1=} AND y=0

b X 3

FROM DETECTORS

" ¥y I

START: 10
11 '

x 3y I p
BE
I_I‘J s

P

i l
21_.'.

i3 (0|0

TO GATE G
Q v |s

..x
x] -]

EXAMPLE OF AN INDUSTRIAL CONTROL

U.S. Patent Jun. 21,1983 Sheet 1of 13 Re. 31,287

(a)

-— —

lé éy DETECTORS

BAR
_ . GATE

GATE SHOWN IN
INACTIVE POSITION. £ 2
OPENS WHEN ACTIVATED.

(b)

xy=10 MEANS
xy=00 x=] AND y=0

GATE INACTIVE

z=]

(c)

FIG 1 ExAMPLE OF AN INDUSTRIAL CONTROL

U.S. Patent Jun. 21, 1983 Sheet 2 of 13 Re. 31,287

(0) DATA-FLOW PART
MULTIPLEX UNIT

X
O - @'. D—>C
A-=X Qa XtZ—~Z o ‘ Z-=C

IDENTITY '2X=X
OPERATOR Y

Y2—Y

DATA WIRES e
DATA LINK{ —————=

— READY/ACKNOWLEDGE
+———— WIRERS

CONTROL LINK { — READY
o ACKNOWLEDGE —

(b) CONTROL SEEEIF ICATION

READY | Bor 2] |a=t P7 s= X422 %X p,,

ACKNOWLEDGE P2

FIG 2 4 MULTIPLIER

Re. 31,287

Sheet 3 of 13

Jun. 21, 1983

U.S. Patent

W£0O Y=l

a

Xt+Z==Z Y=+2—Y

2+ XX

Wel—eW
#u [z [es [e [7s |06 [er [Pa [7o [Pro[Pul e[| = | £

16 —=W

B—=Y

| DIODE ARRAY | o |

—+——-r-—1’-—+--|--
.

4 —}

_|,
| X |
R

|
-} s

|

|
_}___

I

DIODE

OF THE MULTIPLIER

FIG 3 106/C ARRAY IMPLEMENTATION OF THE CONTROL

U.S. Patent Jun. 21, 1983 Sheet 4 of 13 Re. 31,287

(a) DATA-FLOW PART

X
Ny A
DISTRIBUTOR
Y TEST
OPCODE TO
OP[S | D [ADDRESS conTrROL |P <a>

INSTRUCTION FORMAT

(b) CONTROL SPECIFICATION

START
>—"A; .
Rd; -
Rd;
A 77 I\N

=ARITH./
s LOGIC

XY I—-A; X—=D I-A I—-A;

Rd; 5 (Rd:
D =Y,

Wr - Y-=R

F/G & 4 coNVENTIONAL PROCESSOR

U.S. Patent jun. 21, 1983 Sheet 5 of 13 Re. 31,287

USERS ALLOCATION CONTROL LINK

1 2 3 4 S5 6 b bp b3

i 0 0 O | ¢
'START tg | X | | |
ty ;-;- i xi)(
2| lep X IX
s ;-i . i X xix
4 :‘} . | X :X
te '.II . I X X X
6| | ¢« X X Ix
7 } } ;' |1 | ARBITER
tg | ; | o i 1
tg : : : 0{ 1
ol (X! o 0 0| e

FIG 5 ai10carion OF SHARED RESOURCE

U.S. Patent Jun. 21, 1983 Sheet 6 of 13 Re. 31,287

(0) THE ARRAY

OUTPUT INPUT INTERNAL PLACE
Py P P3

5 I-Il-ll.

T Tl Tl [T [reensmons

t
e T Rl W TR
ke
S
e mEnln
1 -- H

| |
C p P C p p cC p P

(b) THE CELL CONFIGURATIONS

FIG. 6 4 circuir IMPLEMENTATION OF THE LOGIC ARRAY

U.S. Patent Jun. 21, 1983 Sheet 7 of 13 Re. 31,287

(a) OUTPUT PLACE CIRCUIT

JK FLIP-FLOP

Y A
QO

— e e - —
c P p THE JK FLIP FLOPS TRIGGER
- (FLIP) ON THE POSITIVE EDGE
OF INPUT C.

(b) INPUT PLACE CIRCUIT

JK FLIP = FLOP

(c) INTERNAL PLACE CIRCUIT

JK FLIP-FLOP

FIG 7 7THE PLACE CIRCUITS

U.S. Patent Jun. 21, 1983 Sheet 8 of 13 Re. 31,287

SET RESET

s | . . FLIP-FLOP
ROW comoucmns—{-—-—@ | OF THE ROW
r i r -
| T ' l

-‘

1 !

on

|

ISR I S S

4

| ELEMENTARY
| ARBITER
|

ARBITER

FIG 8 arsiTer

U.S. Patent Jun. 21, 1983 Sheet 9 of 13 Re. 31,287

i s b
—a{)_..‘_—() OUTPUT PLACE
tq X =0

INITIAL PLACE

INTERNAL PLACE

FIG 9 perri NET SPECIFICATION

a b ¢c d f X
e g h n
t | | | oy | '
o [L Ll ixd o
t * ; : Jl I X : : : | 1
AT
T I T R B> I N I
-4 - .._[_-i; x ! - —-—;1'-—-:-*- ARBITER
14 _.._Ir___'__.__l.__l._._s_:_! IR T D
, | x : S | L o
T
t5 : : X \....--"l o | X | e :

|
SEGMENTED COLUMN

FIlG 10 MATRIX REPRESENTATION

U.S. Patent Jun. 21, 1983 Sheet 10 of 13 Re. 31,287

; _illl — T
L
I"'I—llllll-ll <

I-I-IIIIII-II y
on
o Il I

SHe o s
M
« _I= =
Hlllll b xT
e —

. ___l__
g 1], II S 12
tooT

IMPLEMENTATION OF ASYNCHRONOUS LOGIC ARRAY

FIG. 11

SYMBOL O ISUSED ONLY
WITH BOULEAN COLUMNS

U.S. Patent Jun. 21,1983 Sheet 110of 13 Re. 31,287

—~MEANS DON'T
CARE OUTPUT

EDGE
TRIGGERED
FLIP FLOP

FIG 12 DEFIMTION OF THE EDGE TRIGGERED FLIP FLOP

STATE/OUTPUT o

0 1
~-MEANS DON'T
CARE OUTPUT

STATE/01 L Q5

FI/G. 13 pervition oF circuITs

U.S. Patent Jun. 21,1983 Sheet 120f 13 Re. 31,287

a)

DELAY — WHICH DELAYS O TO 1 TRANSITION
@—— DELAY — WHICH DELAYS BOTH O TO / AND
| TO O TRANSITIONS

b)

OUTPUT
@
NPT AN IMPLEMENTATION
oF
TRANSISTOR WITH TRANSISTOR WITH
LOW SATURATION HIGH SATURATION
DEL AY DELAY

FIG I4 operivirion oF THE DELAYS

U.S. Patent Jun. 21,1983 Sheet 130f 13 Re. 31,287

a)

ELEMENTARY
ARBITER

THE ARBITER HAS A LATENCY DELAY: WHEN RELEASED IT
WAITS FOR SOME PREDETERMINED LENGTH OF TIME

BEFORE BECOMING READY TO BE ENGAGED AGAIN.

b)

A TWO INPUT ELEMENTARY ARBITER WITH LATENCY
AND BIAS FOR X.

FIG. 15 arsiter

Re. 31,287

1
ASYNCHRONOUS LOGIC ARRAY

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions made
by reissue.

The Government has rights in this invention pursuant
to Grant No. DCR74-21822 and IPA-0010 awarded by
the National Science Foundation.

REFERENCE TO RELATED APPLICATION

This application is a continuation of Ser. No. 654,943
filed Feb. 3, 1976.

BACKGROUND OF THE INVENTION

The invention relates to the area of digital logic cir-
cuits in general an to the area of programmable logic
arrays in particular. The invention disclosed herein is
that of a functionally new logic array capable of di-
rectly implementing circuits specified with Petri nets (a
means similar to finite state machines for specification
of digital systems, but more powerful than state ma-
chine particularly in specifying parallel processing and
asynchronous digital logic circuits). The array is capa-
ble of both synchronous and asynchronous operation.

In comparison with asynchronous digital systems
implemented with the disclosed logic array have the

advantage that they can be analyzed for logic of prior 30

art, the systems implemented with correctness of opera-
tion using the vast theoretical results which have been
obtained for analyzing Petri nets. A very important
characteristic of the disclosed logic array is that the
Petri net specification of the digital system is faithfully
realized by the implementation in the array. The cor-
rectness of the digital system can therefore be com-
pletely analyzed by analyzing the Petri net specification
and thus eliminate the need for electronically testing the
implemented digital systems.

DESCRIPTION OF PRIOR ART

The possibility that any desired digital logic circuit
can be realized from a universal programmable logic

10

15

20

25

35

array is very attractive and has captured the interest of 45

many people. The prior art of programmable logic ar-
rays regards logic arrays as a means of implementing
Boolean expressions with possible feedback to obtain
sequential operation (Greer, U.S. Pat. No. 3,816,725,
June 11, 1974). Some have extended such logic arrays
along the classical line by introducing clocked flip-flops
in the feedback paths to form a synchronous circuit (R.
A. Wood, High Speed Dynamic Programmable Logic
Array Chip, IBM Journal or Research and Develop-
ment, July, 1975). In the logic array with direct feed-
back, the array basically implements conbinational cir-
cuits that correspond to some Boolean expressions; the
sequential circuits are obtained by providing direct
feedback from one part of the array to another. The
resulting circuits are asynchronous circuits of classical
kind and are prone to timing hazards well known to
designers of logic circuits. Potential timing hazards in
such circuits are hard to detect even with electronic
testing but are very damaging for correct operation of
the circuits.

Clocked synchronous circuits (and the clocked syn-
chronous logic arrays) are able to cope with internal
timing problems but are unable to cope with timing

50

33

65

2

problems which arise in communicating with other
systems not synchronized to the same clock.

Digital systems must often communicate with other
systems asynchronously (communication between a
control processing unit of a computer and a peripheral
input/output device is a typical example). In order for
the synchronous system to correctly handle the asyn-
chronous communication some means for synchroniz-
ing the asynchronous communication must be provided.
The need to do this increases the complexity of the
digital system and also introduces additional delay in
operation of the system. Much worse though is the fact
that theoretical research on this subject has shown that
because of critical timing problems that a synchronizer
must handle, it is not possible to guarantee correct oper-
ation of a physically implemented synchronizer no mat-
ter how cleverly it 1s designed. Asynchronous ditigal
systems have an advantage in this regard because asyn-
chronous communication poses no problem for them.

The ability to implement asynchronous systems with
logic arrays is therefore very important. The disclosed
logic array is a structured array and implements asyn-
chronous logic circuits in structured way. It is because
of its suitable structure that it is able to avoid timing
problems which often plague asynchronous logic cir-
cuits designed with the classical method of asynchro-
nous switching circuit theory.

FUNCTIONAL SPECIFICATION OF THE NEW
LOGIC ARRAY

The array can be viewed as consisting of columns and
rows. The portion of the array which is common to a
row and a column 1s called a cell. A cell can be 1n one
of several configuration and accordingly establishes one
of different possible type of connection between the
column and the row. Input/output connections from
the outside are normally connected to the columns
(they may also be connected the rows if desired).

The cells of the array can be placed in one of five
configurations which we shall symbolically denote by
dot (.), cross (x), zero (0), one (1) and null (meaning no
connection). When the cell connecting a column and
row, for example, is in the configuration dot (.) we say
that the column is connected to the row by a dot (.).
Other types of connections are defined similarly. In the
array a column can be in one of two states, § and 1.

The basic operation of the array is as follows: a row

fires when columns connected to it by either a dot or a

one are all in state 1 and columns connected by zero are
in state 0. The firing of a row complements the state of
all columns connected to it by either a dot or a cross.

The state of columns connected to the row by either
0 or 1 is not affected nor is the state of the column
connected by null affected by the firing. (the null con-
nection in fact means no connection).

Rows are also called transitions; they alter states of
the columns. Columns are called places and represents
internal states or Boolean inputs or outputs.

A logic circuit establishes a logical connection be-
tween the input and output wires and the columns.
Logic signals on the inputs produces changes in the
state of the columns. Changes in the state of column
produce logic signals on the output wires if any output
wires are connected to them. A preferred logical con-
nection is one in which each column has one input and
one output wire. A change in the logic level of the input
wire flips the state of the column and the output wire
simply reflects the state of the column.

Re. 31,287

3

Normally all rows operate in parallel independent of

each other. It is therefore conceivable that two or more
of them may fire simultaneously. This is a very destrable
feature because it leads to parallel operations. But some-
times it is desired that among a group of transitions, the
transitions should fire one at a time. This task is realized
by an arbiter. An arbiter spans a number of rows. An
arbiter ensures that rows connected to 1t fire one at a
time, in accordance with some priority scheme. A pre-
ferred priority scheme is one in which preference 1s

given to the transition closest to the top in event of

simultaneous attempts to fire by two or more transitions
covered by the arbiter.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention will be had
by now referring to the preferred embodiments thereof,
as illustrated in the accompanying drawings, in which:

In the Figures

FIG. 1a shows a pictorial view of an industrial pro-
CESS.

FIG. 1b shows a Petri net representation of a control
for the process of FIG. 1a.

FIG. 1c is a schematic representation of the array
implementation of the Petri net of FIG. 1b.

FIG. 2a is a block diagram of a multiplier.

FIG. 2b is a Petri net controller for the block diagram
of the multiplier of F1G. 2a.

F1G. 3 shows a logic array implementation of the
controller of the multiplier of FIG. 2a.

FIG. 4a shows a data flow part of a conventional
Processor.

FIG. 4b is the control specification of a conventional
Processor.

F1G. 5 shows the allocation of shared resource.

FI1G. 6a is a circuit diagram of the logic array.

FI1G. 6b is the cell configuration of the logic array.

FIGS. 7a, b, and c show the circuit diagrams of the
output, input and the internal places.

FIG. 8 is a block diagram of an ARBITER.

FIG. 9 is a Petri net showing a shared process.

FIG. 10 is a schematic of the array representation of

the Petr1 net of FIG. 9.

FIG. 11 is a preferred implementation showing an
efficient circuit embodiment of the schematic of FIG.
10. |
FI1G. 12 is a definition of the edge triggered flip-flop.

FIG. 13 is a definition of the special circuit used in the
output place of the circuit of FIG. 12.

FIGS. 14a and b are definitions of the delay elements
used in the circuits of FIG. 12.

FIGS. 15a and b respectively show a block diagram
and a circuit the ARBITER of FIG. 12.

EXAMPLE

This example implements the control circuit of an
industrial sorter for rejecting bars smaller than some
specified length d. For this purpose two detectors x and
y are placed at a distance d apart on the conveyor belt
on which the bars move. When a bar is under a detector,
the detector senses a 1 otherwise its output is a 0. If a bar
is to be rejected, a gate G can be activated to put the bar
in the box of the rejects. The gate is activated by an
input 1. FIG. 1a shows the physical set up.

FIG. 1b shows a state diagram for the control. The
diagram is expressed in the Petri net notation. It consists
places (states) drawn as circular and transitions (events)
drawn a bars. Tokens can be put in places to denote the

10

15

20

25

30

33

40

45

30

53

635

4

current state of the system. For a transition to fire, all
input places of the transition must have tokens and the
Boolean condition (e.g. x=1 MNy=1) must be satisfied.
In the act of firing transition removes one token from
each input place and puts one in each output place,
(details on Petri nets and its use in specification of state
diagrams can be found in published literature).

Interpretation of the diagram 1b is as follows: In the
beginning there is a token in place p and there 1s a token
in place r. The gate is inactive. As the bar moves under
the detector, the value of xy becomes 10, transition t)
then fires. Then place p becomes empty and place q gets
a token. Now if the bar is longer than the specified
distance x and y both become 1 as the bar moves under
the detectors. Then transition t; fires and we return {o
the initial condition. (Place q becomes empty and place
p get a token). Gate is not activated and then the bar 1s
not rejected.

On the other hand, if the bar is smaller than the speci-
fied distance, then x and y both become 0. Then transi-
tion t3 fires instead. Pleace P gets a token (q becomes
empty), and place s gets a token (r becomes empty). The
gate is now activated. The gate remains active until
another detector z detects the rejected piece. At that
time z becomes a 1 and ts fires moving the token from s
to r which deactivating the gate.

While a piece is being rejected by the gate, another
piece may start to come under the detector but the
pieces must be sufficiently apart to allow the rejection
process to complete before the next piece completely
comes under both detectors.

An asynchronous logic realization of the control
logic using the logic array is shown in FIG. 1c. The
columns in the array correspond to the inputs from the
detectors x, v and z and the places p, q, r and s. The
rows correspond to the trensitions tg is the initial transi-
tion which is automatically fired immediately after the
initialization. Its effect is to put the initial tokens in
places p and r. A dot () means input to a transition, a
cross (x) output of a transition, and 0 and 1 detect the
Boolean condition.

It is possible to follow the operation of the control
logic entirely from the logic array specification by con-
sidering the actions the logic array takes in accordance
with its functional specification.

The state of the columns x, y and z reflect the state of
the detectors. When there is no bar under the detectors,
detectors x, y and z all put out logic output 0. Accord-
ingly columns x, y and z are also in state 0 or “OFF”
state. Initially columns p, g, r and s are set to the state 0
(“OFF” state) and, the “start” row (to) is fired. Firing of
row tp causes the columns p and r to go into opposite
states because they are connected to row tg by “cross”
type of connection. Columns p and r thus turn “ON™.
This corresponds to the initial tokens being put in places
p and r. Columns x, y and z are still in “OFF” state, and
therefore, none of the rows meet the condition for fir-
ing; the logic array keeps waiting for some input to
change. As the bar moves under detector x, the input x
to the logic array becomes a 1 and column x turns “ON”
(its state becomes a 1). Column y being still “OFF”
(state 0) and column p being “ON"L the firing condi-
tion for row t; is satisfied. Row t; fires causing column
p to turn “OFF” and column g to turn “ON” (state of q
flips from “OFF” “ON”). The logic array again waits
because no further firing of row is possible until detec-
tors x and y either become 1and 1 or 0 and 0. In the first
case row 1 fires turning q “OFF”’ and p "ON" (the bar

Re. 31,287

S

had required length; the gate is not operated; the logic
circuit returns to initial condition and is ready to handle
the next bar). If the bar is short of the required length,
x and y become 0 and 0. Then row t3 fires turning q
“OFF” and p “ON” and turning column r “OFF” and
column s “ON”. As the output of column s is connected
to gate G and as the “ON" state of column s produces
a high (logical) level on the ocutput, gate G 1s activated
and the bar thus moves towards the box of rejects. As
the bar passes under the detector z on way to the reject
box, the output of detector z becomes a 1 (*ON’’} (for
the duration of the passing of the bar). As soon as output
of detector z becomes a 1 column z which is connected
to its turns “ON” and row t4 fires turning column s
“OFF” and column r “ON”. The gate is thus deacti-
vated and the control circuit is back to its initial condi-
tion ready to test the next bar.

EXAMPLES OF DIGITAL SYSTEMS

The following two examples show successively com-
plex structured asynchronous digital systems imple-
mented with the logic array performing the control
logic. Different parts used in these digital systems are
described first:

Each digital system consists of two parts, a data-flow
part and a control part. The data flow part has the
memory cells and the operators which store and manip-
ulate the data. Data manipulation may involve some
transformation on the data or just the transportation of
the data from one point to another. The data-carrying
paths are called data-links and have a pair of control
wires, called ready-acknowledge wires, in addition to
the data carrying wires. In the examples which we shall
consider here, data is first placed on the data wires and

10

15

20

25

30

then a signal is sent on the ready wire in the direction of 35

the link to signal that the data is available on the link.
The operator or the memory cell (a register) to which
the link is connected can take advantage of the signal to
initiate action. For example, 2 memory cell can update
its value and send the new data on the output data-links
of the cell. Later the cell will receive acknowledge
signals on the output-links, and when all acknowledge

40

signals are received it will return a signal on the ac-

knowledge wire of the input data-link (the link from
which it received the data).

If a link has only the ready/acknowledge wires and
no data wires, then the link is called a control link.
Many operators have such control links which originate
from the control part and are used by the control to
command the operator to perform a pre-designated
operation. If the operator is to be commanded to per-
form one of several actions then a data-link would con-
trol the operator; the data on the link will perform the
selection of the operation and the ready signal on the
link will initiate the operation. A signal on the acknowl-
edge wire will indicate that all the actions that must take
place in connection with the execution of the operation
have been completed so that the execution of other
operations may now be initiated.

45

53

Some operators such as the multiplexer unit (FIG. 2) 60

have no control link from the control part because all
control signals needed by it are available from the data
links. Such operators are called data-flow type opera-
tors. In FIG. 2 we use such a unit to take care of multi-
ple fan-in into a memory cell (register). When this unit
receives input on any of the input links, it establishes
connection between that input and the output and the
data is passed on to the output together with a ready

65

6

signal. When it receives an acknowledge signal from the
cell (register), it acknowledges on the input link; the
connection between that input link and the output link
remains established until data i1s received from some
other input. Normally, two inputs would not be sent to
it concurrently, but if that situation is possible then an
arbiter in the unit would determine which input will be
connected to the output first. The data flow part of the
system thus uses both schema-type operators and data
flow-type operators.

In the examples that are presented here, the operators
expect that the data values that are available to it on the
data wires of the input link remain at that value until
new data is presented so that the need to store the input
data in the operator is eliminated. For example, in FIG.
2 the adder returns an acknowledge signal on an input
datalink immediately after 1t receives the data (and the
ready signal) but expects the input data to be valid
throughout its operation and until a new data 1s re-
ceived on the same link. When a ready signal 1s recetved
on the control link from the control part, the adder
assumes that the input data are available at the input,
performs the addition, puts new data on the output link
and sends a ready signal on the output link. When an
acknowledge signal is received on the output link, the
adder acknowledge on the control link.

The control part is specified with a Petri net. A Petn
net consists of places (drawn as circles) and transitions
(drawn as bars) which are connected by directed arcs.
Arcs connect only places to transitions and transitions
to places. A place may contain a token (we consider
only such nets which do not have more than one token
in a place); a transition needs a token from each input
place to fire. In the act of firing, a transition removes a
token from each input place and then puts a token 1n
each output place. If a place represents a call to an
operator (FIG. 2) then placing a token in the place
results in a ready signal being sent to that operator on a
link. This signal commands the operator to perform
predesignated action, and when the action 1s completed,
an acknowledge signal is returned on the link by the
operator. The token at the place, which was frozen at
that place during this time, is then released to be used in
the firing of other transitions.

EXAMPLE OF THE MULTIPLIER

The integer multiplier shown in FIG. 2 is based on
the long-hand multiplication algorithm. Operands A
and B are placed in cells X and Y, respectively. Cell Z
is initialized to 0 and cell W to 16 (the number of bits in
the word representing the operand Y). Then the num-
bers equal to operand A multiplied by increasing pow-
ers of 2 are successively generated in cell X, and Y 1s
shifted right. If at any stage the least significant bit of Y
is a 1 then X is accumulated in Z; otherwise the compu-
tation proceeds to the next step.

The multiplier itself can be thought of as an operator,
which multiplies A and B to produce result on C. Its
operation is initiated by a ready signal which has the
effect of putting a token in place p;. When the operation
is completed a token appears in place p13. Then an ac-
knowledge signal is returned in reply to the ready sig-
nal. The pair of places p1 and pj3 represent a ready-
acknowledge hnk.

When a token is placed in pj, transition t; fires and
initiates operations A—X, B—Y, 0-Z and 16-W 1n
parallel. When these operations are performed, transi-
tion t; puts a token in ps. This token leads to the firing

Re. 31,287

7

of either transition t3 or t4 depending on the Boolean
condition of the output of predicate a. It may be noted
that in the course of performing the operation 16—W,
predicate a gets the new value of W together with a
ready signal. The predicate operator then evaluates the
predicate and sends the outcome to the control unit on
link a. When the control receives this value, an ac-
knowledge signal is sent to the predicate. The predicate
then returns an acknowledge signal to the cell W. The
cell W returns an acknowledge signal to the operator
which then acknowledges the completion of the opera-
tion 16—W. Thus we are guaranteed that before pg gets
a token the machinery to determine which way the
token should go is already established.

Firing of transition t3 puts a token p7 (which tests
whether a step of accumulating X into Z is to be per-
formed) and a token in pg (which decrements the value
of W by 1). If the lowest order bit of Y is a 0 then 8 will
be false and transition t7 will directly put tokens in
places pipand pi1 to prepare the system for the next step
in iteration. When X is shifted left (multiplied by 2), Y
is shifted right (divided by 2) and W is decremented by
1, transition tg fires putting a token in pg to start the next
step of the iteration.

After 16 steps of iteration, a becomes false. Then

transition t4 puts a token in p12 which causes the result of

computation to be sent out on the output link C. When
an acknowledge signal is received on link C, transition
to puts a token pi3 so that the multiplier can reply with
an acknowledge signal to indicate that the multiplica-
tion has been performed and that the result of the multi-
plication has been delivered to whoever was supposed
to receive it.

IMPLEMENTATION

The components of data flow part can be imple-
mented with the conventional MSI and LSI parts to-
gether with some additional circuitry to generate the
ready/acknowledge signals. It is not very important
what precise mechanism (simple delay or a more sophis-
ticated circuitry to detect the completion of the opera-
tion) is used to obtain the ready and acknowledge sig-
nals but it is important that the operators and other units
of the data-flow part when viewed from the outside
conform to their functional behavior.

It possible to systematically implement the control
part of the system (which is specified as a Petri net) in
the asynchronous logic array. In the array the row
wires represent transitions and the columns (consisting
of two wires each) represent either places, ready/ac-
knowledge links or Boolean inputs. In one implementa-
tion, two diodes at the cell in the interconnection of a
row and a column implement the type of arc that con-
nects the transition and the place; the diodes in the cell
at the intersection of a Boolean column and a transition
determine whether the firing of the transition requires
the Boolean column to be in state 1 or 0 (true or false).
At the top of the array each column is connected to a
circuit of about the same complexity as a flip flop. The
input/output wires of the control are connected to these
circuits. In the diagram of FIG. 3, which shows an
implementation of the control of FIG. 2b, an arc from a
transition to a place is represented by a cross (x) and an
arc from a place to a transition by a dot (.), and 0 and 1

10

15

20

25

30

35

45

50

55

represent the Boolean condition required for firing of 65

the transition.
One of the important features of the array is that in

order to obtain the control part of a system it is suffi-

cient to provide the Petri net specification of the con-
trol; the rest of the steps require simple mechanical
translation that is guaranteed to produce a physical

implementation consistent with the Petri net specifica-
tion.

EXAMPLE OF A SIMPLE CONVENTIONAL
PROCESSOR f

FIG. 4 illustrates a conventional processor with four
general-purpose registers Ry, . . ., Rq, program counter
P, instruction register I, address register A, data register
D and buses X and Y. It has one ALU and many (iden-
tity) transfer operators to move data from one point to
another. The multiplexer puts the contents of the regis-
ters designated by the control input into the bus register
X, and the distributor puts the contents of Y into a
designated register. This processor (which has been
composed only for the purpose of illustration) has five
types of instruction: transfer, arithmetic/logical opera-
tion, load and store and halt. FIG. 4b gives a specifica-
tion of the control of the processor in an abbreviated
notation for Petri nets. In this notation the name of the
operations are written in place of the places which
represent them and transitions are not drawn when
several operations are performed in a single sequence.
The control shows the decoding and execution of the
instructions.

DIGITAL RESOURCE ALLOCATOR

To examine the operation an arbiter, consider the
digital resource allocator described below.

Suppose there are six users who could place requests
for a common resource which can be used by at most
one user at a time. To allocate the resource on demand
from the users we can implement a digital allocator as
shown in the logic array of FIG. 5. In this figure, the
“ON?” state of the column p; will represent the availabil-
ity of the resource. Columns 1 to 6 are connected to
inputs from the users. The interconnection circuitry is
so arranged that when a signal is received on any one of
these input wires from a user, the corresponding col-
umn is turned “ON”. Thus if column 3 is “ON”" this
means that user 3 is waiting for the resource. If the
resource is available (column pj is “ON"’), row t3 can
“fire” turning “OFF” columns pi and p3 and turning
“ON" columns by and b3 and changing the state of col-
umn r. If no other user columns are “ON” then transi-
tion t3 fires without any opposition and the state of the
output wires b; b2 bz becomes 011 (the output wires
simply reflect the state of the columns to which they are
connected) indicating that it is user 3 who has been
allocated the resource and the change in level of r rep-
resents a signal to the resource to serve the said user.
When the use of the resource is completed, a signal on
input a turns on column a. Rows tg and t9 fire turning
“OFF” columns b; and b3 and when their firings are
completed row tjp fires turning p; “ON” to indicate the
availability of the resource. If there are now any waiting
users, then one of them 1s served next.

If, say, user 3 and user 5 simultaneously send request
while other users are still not asking for the resource,
then both rows t; and ts will have their condition for
“firing”” met, but because of the arbiter row 3 t3 will
“fire” first (note arbiter gives priority to the row closest
to the top) and since the firing of row t3 turns OFF
column pj, the row ts will have to wait until the re-
source becomes free again.

Re. 31,287

9
AN EMBODIMENT OF THE LOGIC ARRAY

In this embodiment of the logic array, the rows of the
array are gach made up of a group of row conductors s,
r and t, and the columns are each made up of a group of
three column conductors ¢, p and P. At the intersection
of a row and a column, diodes connect some column
conductors to some row conductors in different config-
urations to constitute different interconnection configu-
ration for the cell (FIG. 6). When conductor p is in high
state the said column is said to be in the “ON"’ state and
when conductor 1 is in low state then the row 1s said to
be in “ON” state. Firing a row involves once turning
“ON” and then turning “OFF” the row.

At the edge, the conductors of a column are con-
nected to a place circuit which in addition to providing
a means for connecting the input and output wires of the
array to the column, also determine (hold) the state of
the column and also provide a means for changing the
state of the column in response to the firings of the
rows. In this embodiment of the logic array there are
three kinds of place circuits (FIG. 7); one provides an
output wire of the array from that column of the array;
another connects an input wire to that column; and the
third is used when the column is not connected to any
input or output wires. Diagrams for these circuits are
shown in FIG. 7.

Firing a row generates a 1-to-0 change followed by a
0-to-1 change on the ¢ conductors of all columns con-
nected to that row by either the “dot” or *“cross’” con-
figuration. The changes in the level of the ¢ conductor

causes the connected place circuit to change the state of

the column (the level of p conductor; P is logical com-
plement of p) at appropriate time as shown in the dia-
grams of FIG. 7. The JK flip-flops used in these dia-
grams all operate on the 0-t0-1 edge (rising edge) of the
input c. Because J and K are both set to high level, the
flip-flop undergoes a flip (change) in state at the 0 to 1
edge of input ¢. The conductors of a row are connected
to a set reset flip-flop at one edge.

At the interconnection cell, diodes can connect row
conductors s, r and t to column conductors, p, p and ¢
respectively. In the “dot” configuration all these diodes
are present; in the ‘‘cross” configuration only the one
connecting s conductor to the p conductor is present;
and in “0” configuration only the one connecting r
conductor to the p conductor is present. In the “null”
configuration none of the diodes are present; that 1s,
there is no direct connection between the column and
the row passing through that cell.

The diodes connected to the s conductors of the rows
form AND gates whose inputs are the p conductors of
the columns; the diodes connected to the r conductors
form AND gates whose inputs are the p conductors;
and the diodes connected to the ¢ conductors of the
column form AND gates whose inputs are the t conduc-
tors of the rows. -

In fact, the s conductor of a particular row forms an
AND gate whose inputs are the p conductors of all
columns connected to that row by either a “dot” or a
“1”; r conductor of a particular row forms an AND
gate whose inputs are the p conductors of all columns
connected to that row by either a “dot” or a “0”’; the ¢
conductor of a particular column forms an AND gate
whose inputs are the t conductors of all rows connected
to that column either by a “cross” or a *‘dot”.

Now we can trace the steps in the firing of a row
starting from the condition when all columns connected

3

10

135

20

25

30

35

43

30

35

635

10

to it by “dot” are in “OFF” state. In this condition the
s and r conductors of the row will be 1n states (and 1
respectively and therefore the set-reset flip-flop con-
nected to the row conductors will be in “OFF" state,
and T conductor will be in high (1) state. When any of
the above mentioned columns turn to “ON” state either
becomes of an external input or becomes of firing of
some other row, the r conductor of the row will be-
come a 0 but s conductor must still wait to become a 1.
When the states of all columns connected to that row
becomes “ON” then s conductor state become a 1, the
said set reset flip-flop turns “ON” i.e. the row turns
“ON”. Turning “ON" of the row commences the dura-
tion of time the row goes through the act of firing.

As soon as the state of the row turns “ON" the t
conductor state changes to a 0 and thus the ¢ conduc-
tors of all columns connected to that row by either a
“dot” or a “cross” experiences a 1 to 0 change. The
columns connected to the row by “dots” are necessarily
either input or internal columns of the array, and are in
“ON” state at the time the row turns “ON". Therefore,
from the specification of the place circuits of FIG. 7 one
sees that these columns now turn “OFF”. When all of
the columns connected to the row by “dots” turn
“OFF” then the s and r conductors of the row return to
the states 0 and 1 respectively, and in response the set-
reset flip-flop of the row turns OFF; the state of t re-
turns to a 1 and the ¢ conductors connected to t conduc-
tor returns to level 1. This change in level of the ¢
conductor only affects the place circuits of the columns
connected to that row by the “cross” configuration;
these place circuit flip their state and the state of these
said columns changes from their present state to the
opposite state. This completes the explanation of the
operation of this embodiment of the array, except for
the explanation of the role played by the arbiter which
we describe below.

The need for arbiter arises because the rows fire inde-
pendently and asynchronously of one another except
for the interaction set forth by means for the connec-
tions to the columns. It may so happen that more than
one row have a column common to them to which they
are connected by a “dot” configuration and they are all
ready to fire. There is a conflict among the rows with
regard to which row fires first because firing of one row
eliminates the possibility of another row being fired
because they both need to find the columns in “ON”
state in order to fire. Such conflicting rows must not be
allowed to fire simultaneously otherwise timing prob-
lems may arise.

Arbiters are placed in between the row conductors
and the set-reset flip-flop connected to the row conduc-
tors. The function of the arbiter is as follows: If only one
row connected to the arbiter is ready to fire then to
allow the row to fire without any obstruction; If several
rows are ready to fire at the same time then to let the
row closest to the top to fire and block the firing of the
other rows until the selected row has completed firing.
If a row which is below gets ready to fire first and a row
above it gets ready to fire after a critical time, then there
is a case of genuine conflict and the arbiter may pick any
one of them to fire but not both (the firings are still
sequenced).

The arbiter exercises control over the firing of transi-
tions by controlling the propagation of the 0 to 1 level
changes from the s conductors to the s input of the
corresponding set-reset flip-flops. Even if several s con-
ductors change state from 0 to 1 at the same time (or

Re. 31,287

11

nearly the same time) only one s output of the arbiter
changes from 0 to 1 the other 0 to 1 changes are blocked
at the arbiter as long as the row whose signal on s wire
was allowed to go through the arbiter is in the process
of firing. A circuit embodiment of such an arbiter utiliz-
ing an elementary arbiter circuit is shown in FIG. 8.
Details on elementary arbiters may be found 1n an ear-
lier Patent granted to this inventor (U.S. Pat. No.
3,824,409, July 1974). The c circuit in FIG. 8 is the well
Muller’s ¢ circuit (known to designers of structured
asynchronous circuits). Basically the ¢ circuit is a kind
of flip-flop whose output changes to a 1 when both
inputs are a 1 and to a 0 when both inputs are a 0. The
elementary arbiter is one which is biased towards favor-
ing inputs closer to the top.

PREFERRED EMBODIMENT OF THE LOGIC
ARRAY

In implementation a logic array in LSI technology
the objective is to fit as large array on a single inte-
grated chip as is possible. This means one should reduce
the number of conductors for the columns and the rows
as much as possible. At the same time because the array
is all on one single integrated chip it i1s possible to know
and control signal propagation delays in some limits.

The following embodiment of the array makes use of

this fact to reduce the number of column and row con-
ductors. Even though, internally the logic array makes
use of the knowledge about timing delays, to the outside
it completely resembles like an asynchronous logic ar-
ray. Another advantage of this embodiment 1s that it can
also operate as a synchronous logic array if an approprni-
ate clock input is provided.

OVERVIEW

FIG. 11 shows the implementation of the array which
realizes the Petri net of FIG. 9. FIG. 10 shows a repre-
sentation of the net of FIG. 9 in the matrix notation.
FIG. 11 is also organized into parts which form col-
umns and rows. Some columns are split into segments.
Each column (or a column segment) has a place circuit
which is connected to the conductors of the column,
and each row has a circuit which feeds current into the
conductors of the row. Rows which need arbitration,

10

15

20

25

30

35

are connected to arbiters. Diodes at the intersection of 45

the conductors of the column and that of the row deter-
mine the cell configuration connecting the column and
the row. FIGS. 12, 13, 14 and 15 give details of the
components used in this embodiment of the logic array.
Discussion of the Components. FIG. 12 shows a state
diagram of the edge triggered flip-flop with input 1 and
output Q. The flip-flop has two states ON and OFF. In
ON state Q is 1 and in OFF state Qis 0. A 0 to 1 change
in the level of i flips the state of the flip-flop.

FIG. 13 shows a £ circuit. This circuit has outputs Q1
and Q; and input i. The 0 to 1 changes in the level of |
flip the levels of Q) and Q; alternately. When the device
is initialized, Q1 and Q; are both at level 0 and Q| is the
first one to flip.

FIG. 14a shows different types of delays used in the
circuit of the logic array. The rise time delays only the
0 to 1 (the positive edges) changes. The 1 to 0 changes
go through the delay unit without much delay. A possi-
ble circuit embodiment for such a delay is shown in
FI1G. 14b.

FIG. 15 shows an elementary arbiter. Details of ele-
mentary arbiters can be found in literature and an earlier
patent granted to this inventor (U.S. Pat. No. 3,823,409,

50

33

65

12

July 1974). The elementary arbiter has two inputs and
corresponding two outputs. Ordinarily an output wire
immediately follows the level changes taking place on
the corresponding input wires except when the change
would cause both output wires of the arbiter {(or more
than one output wires in the care of a multi input arbi-
ter) to be at level 1. In such a case the change (in level
of output) is delayed until it can be changed without
violating the above mentioned critenon.

The arbiter that is used here has latening delay. After
it is released by one input the arbiter becomes latent
(inactive) for some predetermined length of time. At the
end of this period it gets engaged to any input that
might be waiting. If no inputs are waiting then the arbi-
ter just waits for an input. Note that 1 to 0 changes go
through arbiter without any trouble. FIG. 7b shows a
circuit for a two input arbiter with latency delay and a
bias for input X. Explanation about the Embodiment of
the Array. Columns which represent input places, inter-
nal places and ready/acknowledge link have two col-
umn conductors each (conductors 1 and p). The state of
the p conductor indicates whether the column is ON or
OFF (place has a token or it is empty). State 1 (ON
state) means that place P has a token and state 0 (OFF
state) means that the place is empty. The conductor 1 1s
used to change the state of the place. The 1 conductor is
an output of the diode matrix and p conductor an input
to the matrix.

The Boolean column has two conductors one repre-
senting the value of the Boolean variable and another its
complement. Both conductors are inputs to the diode
matrix.

The column representing output place has only one
conductor i (the p conductor is not needed). The con-
ductor is an output conductor of the diode matrix.

The rows that correspond to the transitions that do
not participate in arbitration each have a single conduc-
tor. The conductors forms an AND logic of all column
conductors (inputs) connected to it. All column output
conductors connected to this output get signals from
this row conductor. A column output conductor (e.g.
conductor i) forms a logical OR of all row conductor
connected to it.

The diode matrix thus represents a combination of
AND and OR matrices.

The rows that correspond to the transition that par-
ticipate in arbitration each have two conductors. One
conductor is connected to all input column conductors
and to the input of the arbiter. The other conductor 1s
connected to the corresponding output of the arbiter
and drives all column output conductors connected to
it. When such a row gets ready to fire (all input columns
are ON and the Boolean columns have desired values),
the signal from the input conductor must reach the
output conductor by way of the arbiter in order to fire.
The arbiter has been placed there to ensure that only
one row fires at a time among the selected rows which
are connected to the arbiter. The delays which are
placed between the flip-flops in the place circuits and
the p conductors of the column essentially delay turning
on of the columns. Because the delays are only positive
edge delay, turning OFF of the column is not delayed.
This is an important mechanism to ensure that when a
row fires the input columns have sufficient time to turn
OFF before the output column turn ON.

Re. 31,287

13

OPERATION OF THE ARRAY

Let us follow the operation of the array with the aid
of the specific array of FIG. 11 which realizes the Petri
net of FIG. 9.

Initially all place circuits are reset to OFF condition
(also suppose a and ¢ are at level 0). Then suppose a
positive pulse is applied on the conductor of row tp.
This pulse will set the place h; thus h will get the initial
token. (Another way to provide the initial tokens i1s by
providing the array with an extra input place and after
the place circuits have been reset to send a signal (to-
ken) to this input place. Thus a row such as tp can fire
~and put tokens in necessary places).

The system now waits for a signal on input a and c.
Suppose a signal is received on a (Note that a signal is
just a level change, either from 0 to 1 or 1 to 0. In this
case from 0 to 1). If x is at level 0, then row t; will have
to wait for x to become a 1. Suppose this is indeed the
case.

Now suppose a signal is received on c before x be-
comes a 1. Column ¢ then turns ON and row t3 i1s en-
abled (the fact that wires p; and pj are at level 1 makes
t3' high-73 is thus enabled). Because the arbiter is not
engaged to anyone, this 0 to 1 change goes through the
arbiter and t30becomes high. t30 makes i, ijiy conductors
high. Column ¢ and h get runed OFF (the flip-flops in
the place circuits of their columns flip and make wires
pc and px0), the Q; output of the place circuit for f flips

and column 1 turns ON after some time (turning ON of 30

1 15 delayed by the positive edge delay in its place cir-
cuit). Infact, before i turns ON, conductor t3/ turns 0 and
output conductor t3? turns to 0. Now suppose x changes
to a 1. Then t{, which had been waiting for x to become
1, gets enabled (t; becomes high). Column a thus turns
OFF (because iz gets a 0 to 1 change) and column e is set
to become ON. Before e becomes ON, to returns t;a 0
and then e becomes ON. Now t; cannot become enabled
so long as h is empty (t2 has to wait for a new token in
h, h must turn ON).

Now suppose an acknowledge signal is received on f.
Then column f turns ON and row t¢ becomes enabled.
Firing of this row turns OFF columns f and i, turns ON
h and flips the state of d. Note that { turns OFF because
in this case the 0 to 1 change on isflips Q; which causes
prto become low.

Now row tz is enabled (t3' becomes high) and the
arbiter allows the high level of t2/ to propagate to tP. i,
lg, ir and iz thus become high. Columns e and h are
turned OFF and ty’ becomes 0 and then t2° becomes 0.
The 0 to 1 transitions on irand iy would have set their
column in motion to send a ready signal on f and turn
ON g respectively. These actions take place after t20has
become 0. When f acknowledges, row t4 fires and turns
OFF columns f and g and turns on column h and the
column segment j. Firing of row ts has to wait for x to
become 0. When x becomes 0, row ts fires and output b
flips (a signal is sent out on b).

OPERATION OF THE ARBITER IN CONFLICT
RESOLUTION

Suppose that in the above array, rows t an_d t3 get
enabled at the same time. The conductor t3! and t3'
change from 0 to 1 at the same time. Both inputs of the

10

135

20

25

35

43

h b

arbiter thus experience a 0 to 1 change at the same time. 65

The arbiter then performs arbitration and selects one of
the inputs. The selected input is allowed to produce a 0
to 1 change on the corresponding output conductor and

14

the other input is blocked at the arbiter. (The arbiter
generally offers its service to whichever input comes
first. But when it is presented with both inputs at the
same time, it selects the one near the top). In any case
the arbiter blocks all but one input; the row whose input
is not blocked (say the one from t; is not blocked) com-
pletes firing. In this case tz will fire. First t20 will change
from 0 to 1. This change will produce 0 to 1 changes on
le, 15 ig and 15. Columns e and h will be turned OFF;
column f will be set to produce a ready signal on link f
and column g will be set to turn ON after some time. As
soon as either e or h columns turns OFF, ty' becomes 0.
Immediately following this t;¥ becomes 0 and the arbiter
is released.

Because of the latency delay, the arbiter will not be
ready to pass any signals for some predetermined length
of time. Before this time runs out, t3 will get disabled
(t3' will become) because column h has been turned
OFF. Row t3 will thus have to wait for a new token in
place h.

IMPORTANT FEATURES OF THE ABOVE
EMBODIMENT

1. Each column consists of at most two conductors.
Columns representing internal places (columnse, j, g, h
and i), columns representing input places {(columns a
and c) and the columns representing calls to operators
(the ready/acknowledge links) need two conductors to
a column (i and p). But columns representing the output
places need just one conductor each (only the 1).

2. The polarity of all diodes is the same; they connect
the row and the column conductors in the same direc-
tion. This allows the whole diode array to be a single
diode matrix. If diodes in different directions are used,
separate diode matrices may be required. |

3. A single column can represent a ready/acknowl-
edge link such as needed in controlling an asynchronous
operator. A signal goes out on the ready wire when
signals corresponding to putting a token are applied to
the column. The column actually gets the token only
when a signal is received on the acknowledge wire In
response to the signal that was sent on the ready wire.

4. A column can be segmented Iinto many segments,
each of which is provided with its own place circuit.
When a column is split into segments, then each seg-
ment implements a distinct place. This results in consid-
erable savings in the number of columns that are needed
in realizing digital systems.

5. Only the rows which represent the transitions that
are controlled by arbiters need two wires each. Other
rows only have one wire each.

6. At most, two diodes are needed in each cell. A cell
is an intersection of a column and a row.

PROGRAMMABLE ARRAY

If a diode is replaced by a transistor in the array, then
depending on what level is applied to the base of the
transistor it behaves like either a diode or an open cir-
cuit.

Thus if the diodes in the array are replaced by transis-
tors and the base of the transistors connected to mem-
ory elements then the contents of the memory will
determine the diode pattern and hence the specializa-
tion (programming) of the array.

If it is economical, the whole array can be made
programmable. Otherwise a few rows and a few col-
umns can be made programmable. This will allow bad
rows to be inhibited and replaced by programmable

Re. 31,287

15

rows. Self repairable array can be constructed in this
manner. This can be the basis for a highly reliable digital
system. Program stop (break point) and debugging. A
break point can be placed on any transition by making
that transition have a new place as an additional input.
If the place is left blank then the break point will be in
effect; even if the other inputs are there, the transition
will not fire. Putting a token in that place will allow the
transition to fire once (allow the system to go past that
break point once). Clocked Array. If desired the flip-
flops of the array can be clocked either because a
clocked system is desired or to follow the operation of
the array. D type flip-flop (latches) can be useful for this
pUrpose.

Clocked operation can also be obtained if the clock 1s
connected to a Boolean column and all transitions
which are to fire at instances designated by the clock
are provided with 1 (or a 0) in the column of the clock
input.

If the array is to be used only as a clocked system then
the exhibits delays in the array are not needed.

What 1s claimed 1s:

1. A logic array comprising a plurality of groups of
column conductors and plurality of groups of row con-
ductors arranged in a substantially orthogonal relation-
ship, each group of column conductors being called a
column, each group of row conductors being called a
row, and each row and each column is connected by
one of at least five types of connections which are char-
acterized as a *‘dot” connection, a “‘cross’’ connection, a
1" connection, a “0’’ connection and a *‘null” connec-
tion;

each column and row being in one of two states, an
“ON?"” state and an “OFF” state;

a row “firing” when every column connected to that
row by a “dot” or a “1” connection 1s “ON" and
every column connected to that row by a “0” con-
nection i1s on “OFF’’;

means to change the state of the columns in response
to “firings” of rows, the said means turning “OFF"”
columns connected to a “‘firing” row by a “dot”

connection, and said means changing the state of

the columns connected to a “firing” row by a
**cross” connection;

a plurality of arbiters,

each arbiter being connected to plurality of selected
rows,

' the rows which are not connected to an arbiter firing
independently of another where as those rows
connected to an arbiter “fire” in succession and not
at the same time;

means for connecting inputs to selected columns to
cause the states of the selected columns to be al-

10

15

20

25

30

35

45

30

tered in accordance with changes in the state of 55

inputs, means for connecting selected columns to

provide outputs where the state of the output is

determined by the state of the selected columns.
2. A logic array comprising.

A. a set of substantially parallel row conductors, each of 60

said row conductors having a potential corresponding
to a binary stale,

B. a set of substantially parallel column conductors, said
column conductors being orthogonal to said row con-
ductors,

C. an array of cell networks, each cell network being
associated with one of said column conductors and
one of said row conductors,

65

16

D. column contact means for segmenting at least one of
said column conductors into two or more column
segments, each of said column conductors having a
potential corresponding to a binary state,

E. cell contact means for coupling selected ones of said
column segments to selected ones of said row conduc-
tors by way of cell networks associated with said se-
lected column and row segments, and

F. at least one storage element, said storage element
being associated with and coupled to at least one of
said column segments, wherein said storage element
includes means for storing a signal representative of
the binary state of said one column segment, and
includes means for coupling said stored signal to at
least one of the row conductors associated with said
one column segment.

3. The logic array according to claim 2 wherein said

storage element is an edge triggered flip-flop.

4. The logic array according to claims 2 or 3 wherein
said column contact means, said row contact means and
said cell contact means are programmable.

3. A logic array comprising:

A. a set of substantially parallel row conductors, each of
said row conductors having a potential corresponding
to a binary state,

B. a set of substantially parallel column conductors, said
column conductors being orthogonal to said row con-
ductors, each of said column conductors being
adapted to have a potential corresponding to a binary
state,

C. a plurality of cell networks, each cell network being
associated with one of said column conductors and
one of said row conductors, and first and second types
of associated cell contact means, (i) said first type of
contact means being adapted to unidirectionally cou-
ple selected ones of said column conductors to selected
ones of said row conductors by way of cell networks
associated with said selected column and row conduc-
tors, and wherein for each row conductor having col-
umn conductors coupled to that row by cell networks
and said associate cell contact means of said first type.
the binary state each of said row conductors is related
to the binary state of all of those column conductors,
(it}

said second type of contact means being adapted lo
unidirectionally couple selected ones of said row con-
ductors to selected ones of said column conductors by
way of cell networks associated with said selected
column and row conductors, therein for each column
conductor having row conductors coupled to that col-
umn conductor by cell networks and said associated
cell contact means of said second type, the binary state
of each of said column conductors is related to the
binary state of all of those row conductors and

D. arbiter means, said arbiter means having inputs cou-
pled to at least two of said row conductors having
column conductors coupled thereto by way of said cell
networks and associated contact means of said first
type, and said arbiter means having outputs coupled to
at least two of said row conductors having column
conductors coupled thereto by way of said cell net-
works and associated contact means of said second
tvpe, wherein the row conductor coupled to each of
said outputs is associated with at least one of the row
conductors coupled to said inputs, wherein said arbiter
means includes means for detecting binary staie
changes of one or more of said row conductors coupled
to said inputs, and in response thereto, changing the

Re. 31,287

17

binary state of only one of the associated row conduc-
tors coupled to said outputs for as long as its associated
row conductor coupled to said input is characterized
by said changed state.

6. A logic array according to claim J wherein said arbiter

means includes means for detecting a succession of pairs of

binary state changes of one or more of said row conductors
coupled to said inputs, and in response thereto providing
pairs of binary state changes of said associated row conduc-
tors coupled to said outpuls in a time sequence related to

3

10

13

20

23

30

35

45

50

535

63

18

the sequence of said detected pairs of state changes at said
inputs.

7. A logic array according to claim 5 wherein said arbiter
means includes means for responding to substantially si-
multaneous state changes on two or more of the row con-
ductors coupled to said inputs by changing the state of said
row conductors coupled to said outputs one at a time in a

sequence.
& Xx ¥ =

	Front Page
	Drawings
	Specification
	Claims

