Dec. 1, 1972 Germany 2258823

Re. 29,640

Lamm et al.

[45] Reissued May 23, 1978

6 Claims, No Drawings

2,6-DIAMI THE CORI	NO-4-METHYL-NICOTINITRILES RESPONDING NICOTINAMIDES	Dec. 2, 1972 Germany 2259103 Dec. 6, 1972 Germany 2259684 Dec. 13, 1972 Germany 2260827 Dec. 27, 1972 Germany 2263458		
		Dec. 16, 1972 Japan		
Assignee:	BASF Aktiengesellschaft, Ludwigshafen, Germany	[51] Int. Cl. ²		
Appl. No.:	711,863	[58] Field of Search		
Filed:	Aug. 5, 1976	[56] References Cited		
Related U.S. Patent Documents		U.S. PATENT DOCUMENTS		
Patent No.	•	3,433,795 3/1969 Hyden et al		
	· ·	OTHER PUBLICATIONS Karrer, Organic Chemistry, 4th Englsh Edition, p. 928, Elsevier Pub. Co., (NY), 1950.		
		Chemical and Engineering News, p. 18, Apr. 3, 1972.		
1971, aband	oned.	Primary Examiner—Alan L. Rotman Attorney, Agent, or Firm—Keil, Thompson & Shurtleff		
_		[57] ABSTRACT		
Nov. 15, 19 Mar. 10, 19 Apr. 6, 1972 Jun. 2, 1972 Oct. 21, 197	71 Germany	2,3,6- and preferably also 4-substituted pyridine derivatives bearing the radical of ammonia or a primary amine in the 2- and 6-positions. The compounds are eminently suitable as coupling components for the production of azo dyes, the coupling taking place in the 5-position.		
	2,6-DIAMII THE CORI AND DERI Inventors: Assignee: Appl. No.: Filed: Relate to of: Patent No. Issued: Appl. No.: Filed: Applications Continuation 1971, aband Foreign Dec. 19, 197 Nov. 15, 197 Mar. 10, 197 Apr. 6, 1972 Jun. 2, 1972 Oct. 21, 197	Assignee: BASF Aktiengesellschaft,		

35

65

CERTAIN SUBSTITUTED 2,6-DIAMINO-4-METHYL-NICOTINITRILES THE **CORRESPONDING NICOTINAMIDES AND DERIVATIVES THEREOF**

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This application is a reissue application of U.S. Pat. No. 3,853,895 issued December 10, 1974, from U.S. Application Ser. No. 328,459, filed January 31, 1973, which in turn is a continuation-in-part of U.S. Application Ser. No. 209,431, filed December 17, 1971 (now abandoned).

This invention relates to compounds of the formula:

where

R¹ is hyrogen, alkyl of one to seven carbon atoms or phenyl, the radicals Z independently of one another mean hydrogen or an unsubstituted or substi- 30 (CH₂)₃OC₂H₄OC₆H₅, tuted aliphatic, cycloaliphatic, araliphatic or aromatic radical and

X is cyano or carbamoyl.

More particularly, the invention relates to compounds of the formula (Ia):

in which

R¹ is hydrogen, alkyl of one to seven carbon atoms or phenyl,

X is carbamoyl or cyano and the radicals

R independently of one another are unsubstituted or substituted aliphatic, cycloaliphatic, araliphatic or aromatic radicals and one of the radicals R may be hydrogen and at least one of the radicals R contains 50 an oxygen atom.

Examples of alkyl radicals R¹ are ethyl, n-propyl, isopropyl, butyl, pentyl, a-ethylpentyl and preferably methyl.

Examples of radicals Z or R are alkyl of one to eight 55 carbon atoms which may be interrupted by oxyten atoms and which may bear hydroxy, alkoxy, cyano, cycloalkoxy, aralkoxy or aroxy as substituents, cycloalkyl and polycycloalkyl which may bear hydroxy, 60 chloro, hydroxyalkyl, chloroalkyl or alkyl as substituents, aralkyl of seven to fifteen carbon atoms, phenyl which may bear chloro, hydroxy, alkoxy, alkyl, hydroxyalkoxy or hyroxyalkyl as substituents, or alkenyl, pyrrolidonylalkyl or carboxyalkyl.

Examples of individual radicals Z or R are:

1. unsubstituted or substituted alkyl:

CH₃, C₂H₅, n-C₃H₇, i-C₃H₇, n-C₄H₉, i-C₄H₉, C₆H₁₃,

CH₂CH₂OH, (CH₂)₃OH,

(CH₂)₄OH, (CH₂)₆OH,

 ${}^{20} \begin{array}{l} (CH_2)_2O(CH_2)_2OH, \ (CH_2)_3O(CH_2)_4OH, \ (CH_2)_3OC_2H_4OC_2H_5, \\ {}^{4}OH, \ (CH_2)_3OC_2H_4OCH_3, \ (CH_2)_3OC_2H_4OC_2H_5, \end{array}$ $(CH_2)_3OC_2H_4OCH(CH_3)_2$, $(CH_2)_3OC_2H_4OC_4H_9$, $(CH_2)_3OC_2H_4OCH_2C_6H_5$, $(CH_2)_3OC_2H_4OC_2H_4C_6H_5$,

40 corresponding radicals in which the groupings

are present twice, three times or four CH₂CH₂OCH₃, CH₂CH₂OC₂H₅, CH₂C₂OC₃H₇, CH₂CH₂OC₄H₉, CH₂CH₂OC₆H₅, (CH₂)₃OCH₃, (CH₂)₃OC₂H₅, (CH₂)₃OC₃H₇, (CH₂)₃OC₄H₉,

$$(CH_{2})_{3}OCH_{2}CHC_{4}H_{9}, (CH_{2})_{3}O-\left\langle H\right\rangle$$
, $C_{2}H_{5}$

 $(CH_2)_3OCH_2C_6H_5$, $(CH_2)_3OC_2H_4C_6H_5$, $(CH_2)_3OC_6H_5$,

-continued

 $(CH_2)_2CN$, $(CH_2)_5CN$, $(CH_2)_6CN$, $(CH_2)_7ON$ or (CH₂)₃OC₈H₁₇ and C₆H₄CH₃ instead of C₆H₅

2. unsubstituted or substituted cycloalkyl or polycy- 10 cloalkyl:

For the production of compounds of formula (I), compounds of formula (II):

3. aralkyl:

and C₆H₄CH₃ instead of C₆H₅.

4. unsubstituted or substituted phenyl: C₆H₅, C₆H₄CH₃, C₆H₃(CH₃)₂, C₆H₄OCH₃, C₆H₄OC₂H₅, C₆H₄OH, C₆H₄OCH₂CH₂OH or C₆H₄Cl,

5. CH₂CH=CH₂, (CH₂)₂COOH, (CH₂)₅COOH and

in which n is 2, 3, 4, or 6.

in which

20

25

Y is chloro or a radical of the formula NHR, and X, R and R¹ have the meanings given above may be reacted with an amine of the formula:

Reaction conditions which affect the exchange of the chlorine atom(s) include the temperature, the amine component, the molar ratio of the reactants and any diluent or solvent or acid-binding agent used. Amines of low boiling point may of course be reacted under superatmospheric pressure. The reaction with the amine is conveniently carried out at elevated temperature, a temperature of from about 0° to 110° C being adequate for the exchange of the first chlorine atom depending on the basicity of the amine, while temperatures in the range from about 60° to 180° C being advantageous for exchange of the second chlorine atom.

40 Amines of high basicity react more rapidly than those of low basicity; when exchanging the second chlorine atom it is advantageous to use an excess of amine (more than 10 percent), whereas the first chlorine atom reacts 45 immediately with a molar amount of amine. Examples of suitable diluents or solvents which may be added are alcohols such as methanol, ethanol or isopropanol, glycols and glycol ethers such as methyl glycol, ethyl glycol or butyl glycol, hydrocarbons and halohydrocarbons such as benzene, toluene, ethylene chloride, chloroform, trichloroethylene or chlorobenzene, and also acetone, tetrahydrofuran, dimethylformamide, Nmethylpyrrolidone or dimethylsulphoxide. The pres-55 ence of water does not cause any disturbance.

The addition of acid-binding agents is advantageous because then the total amount of amine to be reacted is available for the exchange. Substances which do not themselves react with the chloropyridine derivatives ⁶⁰ are suitable as acid-binding agents; for example tertiary amines such as triethylamine, tributylamine, triethanolamine, ethyldiisopropylamine, caustic soda solution, sodium carbonate, magnesium oxide or calcium carbonate are suitable. In the case of inexpensive amines, an excess of the amine to be reacted may also serve as acid-binding agent.

Compounds of the formula (Ib);

in which R has the meanings given above are of particular industrial significance.

Examples of preferred radicals R containing oxygen are:

CH₂CH₂OH, CH₂CH₂CH₂OH,

(CH₂)₃O(CH₂)₂OH, (CH₂)₃O(CH₂)₄OH, (CH₂)₃O(CH₂)-6OH, (CH2)4OH, (CH2)6OH, (CH2)2O(CH2)2OH,

$$CH_3$$
 $-CH(CH_2)_2$
 $-OH, CH(CH_2)_2$
 $-OH$

CH₂CH₂OC₄H₉, CH₂CH₂OC₂H₅, CH₂CH₂OCH₃, $(CH_2)_3OC_3H_7$ (CH₂)₃OC₂H₅,(CH₂)₃OCH₃, $(CH_2)_3OC_4H_9$, $(CH_2)_3OC_6H_{13}$, $(CH_2)_3OC_8H_{17}$,

$$(CH_2)_3-O-H_4-H_2$$
, $(CH_2)_3OCH_2-H_4$, $(CH_2)_3O-H_4$,

-continued CH₂CHOC₆H₅,

(CH₂)₃OC₂H₄OCH₃, (CH₂)₃OC₂H₄OC₄H₉,

and $(CH_2)_3OC_2H_4OC_6H_5$.

Examples of preferred oxygen-free radicals which are preferably used in combination with an oxygen-containing radical R are besides H: C₂H₅, C₃H₇, C₄H₉,

$$-\left(\frac{1}{H} \right)$$

CH₂C₆H₅, C₂H₄C₆H₅, C₃H₇C₆H₅,

C₆H₅, C₆H₄CH₃, C₆H₄OCH₃.

The new coupling components are outstandingly 30 suitable for the production of azo dyes by reaction with diazotized amines. The dyes which can be obtained in this way are distinguished by excellent fastness properties and by unusual brightness for azo dyes.

The following Examples illustrate the invention. Parts and percentages referred to are by weight unless otherwise stated.

EXAMPLE 1

187 parts of 2,6-dichloro-3-cyano-4-methylpyridine is suspended in 500 parts by volume of methanol. 80 parts of 2-hydroxyethylamine is then added at 40° to 45° C followed by 100 parts of triethylamine. The mixture is stirred for five to six hours at 45° to 50° C, about 250 45 parts by volume of methanol is distilled off and the residue is diluted with 1000 parts by volume of water. After acidification with 50 parts of concentrated hydrochloric acid, the whole is stirred for 1 hour, the deposited precipitate is filtered off, washed with water until 50 neutral and dried. About 210 parts of a colorless powder of the formula:

is obtained. The powder contains a minor amount of a 60 product of the formula:

The mixture melts at 115° to 120° C.

125 parts of this powder is stirred with 300 parts by volume of methoxyethylamine for six hours under reflux.

Excess methoxyethylamine is then extensively distilled off so that the temperature may rise to 130° C and the whole is then diluted with 500 parts of water. The mixture is stirred for one hour at 0° to 10° C and the deposited precipitate is filtered off, washed with water and dried. The main product has the formula:

$$\begin{array}{c} CH_{3} \\ CH_{2} \\ CN \\ NH-CH_{2}-CH_{2}-O-CH_{3} \\ \end{array}$$

and there is a minor amount of a product having the formula:

The product is colorless and melts at 75° to 78° C.

EXAMPLE 2

A suspension of 50 parts by volume of methanol, 22 parts of norbornylamine, 37 parts of 2,6-dichloro-3- 35 cyano-4-methylpyridine and 25 parts of triethylamine is stirred for six hours at 40° to 50° C. Then about 200 parts by volume of ice-water is added, the whole acidified to pH 1, and the precipitated product of the for- 40 mula

(which still contains a small proportion of 2-chloro-3-cyano-4-methyl-6-norbornylaminopyridine isomers) is filtered off, washed with water and dried. About 45 parts of a colorless powder is obtained which melts at 55 110° to 112° C.

45 parts of the moist powder is heated at 130° C to 140° C with 50 parts of the amine of the formula:

$$H_2N-CH_2-CH_2-O-CH_2-CH_2-OH$$

the water being allowed to evaporate. After stirring for 5 hours at 130° to 140° C the reaction is completed. The whole is allowed to cool and is acidified with 130 parts by volume of acetic acid. A solution of the coupling component mixture of the formulae:

$$CH_3$$
 (I)
$$NH$$

$$NH$$

$$H-N-CH_2-CH_2-O-CH_2-CH_2-OH$$

and

is obtained, the amount of the product of formula (II) being small.

When the mixture thus obtained is coupled with pnitroaniline a dye is obtained which dissolves in dimethylformamide to give an orange solution.

EXAMPLE 3

A mixture of 300 parts by volume of N-methylpyrrolidone, 150 parts of 2,6-dichloro-3-cyano-4-methylpyridine, 115 parts of p-anisidine and 90 parts of triethylamine is stirred for from six to 7 hours at 70° C. It is then poured while stirring onto 1500 parts of ice-water and acidified with hydrochloric acid to pH 1. About 220 parts of a colorless product of the formula:

is obtained which is isolated by filtration, washing with water and drying. The powder contains a minor amount of a product of the formula:

50

60

The mixture melts at 147° to 150° C.

EXAMPLE 4

50 parts of 2,6-dichloro-3-carbamoyl-4-methylpyridine is stirred with 75 parts of propanolamine-1,3 for 10 hours at 90° C. The mixture is precipitated with water and acidified to pH <0. The insoluble residue is filtered off, washed with water and dried. The colourless powder melts at 210° C and probably has the formula (I):

(I)

The filtrate has caustic soda solution added to it until the pH is from 5 to 6. A crystalline precipitate is thrown down which probably has the formula (II)

This is filtered off, washed with water and dried. The 20 product (II) thus obtained also contains traces of the product of the formula (I) and melts at 150° to 160° C.

If the reaction mixture is precipitated at pH from 6 to 7, a mixture of the two isomers is obtained which has a melting point of about 143° C.

When 2,6-dichloro-3-carbamoyl-4-methylpyridine is treated analogously to the method described in Example 4, mixtures of substituted 2-aminopyridines and 6-aminopyridines are obtained, the amount of 2-amino-3-carbamoyl-4-methyl-6-chloropyridine derivatives 30 being only slightly greater than that of the 6-aminopyridine isomers in question.

The physical properties given in Table 1 relate to mixtures.

	TABLE 1		35
	CH ₃ CONH ₂ NH-R ¹	Melting point,	40
Number	R¹	116 100	
5	——————————————————————————————————————	115-199	45
6	-(CH ₂),O-C ₂ H ₄	120	
7	$-(CH_2)_3O-C_2H_5$ $-C_4H_9(n)$	121-122	
8 9	$-\mathbf{C}_{6}\mathbf{H}_{13}(\mathbf{n})$	89-90 140-145	50
10	-CH ₂ CH-CH ₃ OH	180-190	
	—()—OCH ₃		55
11 12 13 14 15 16 17	(CH ₂) ₃ OCH ₃ C ₃ H ₇ (n) CH ₂ CH ₂ OH (CH ₂ CH ₂ O) ₂ H CH ₃ C ₂ H ₅	105 124 130 110 >150 143 190	60
	—(\)—CI		

When 2,6-dichloro-3-cyano-4-methylpyridine is treated by a method analogous to those described in Examples 1 to 3, there are obtained (by exchange of one

chlorine atom) mixtures of 2-amino-3-cyano-4-methyl-6-chloropyridine and 2-chloro-3-cyano-4-methyl-6-aminopyridine derivatives, the proportion of the 2-chloro-3-cyano-4-methyl-6-amino isomers being clearly less.

TABLE 2 CH₃ 10 Melting point, \mathbb{R}^1 Number 85 - 91(CH₂)₅COONa 18 40 - 4779 - 83(CH₂CH₂O)₂H 90 - 100 (CH₂)₂OCH₃ **50** – **60** $C_4H_9(n)$ $C_3H_7(i)$ 95 - 10575 - 85(CH₂)₃OCH₃ $CH_2CH-C_4H_9(n)$ C_2H_5 110 - 114(CH₂)₃OH (CH₂)₂OH 145 - 154 $-CH_3$ 147 - 14929 225 - 23030 31 165 – 175 103 - 105 32 CH₂CH₂OH CH₂CH₂OH Tar CH(CH₂)₃C(CH₃)₂ 33 ÒН CH₃ 103 34 (CH₂)₂N90 - 9235 $-(CH_2)_3O-CH_2C_6H_5$ 36 37 105 - 110CH₃ 170 - 18538 147 39

	11			,	12	
	TABLE 2-continued				TABLE 2-continued	
	CI CN NH-R ¹	Melting	5		CI—CN—R¹	Melting
Number	R¹	point, C.		Number	$\mathbf{R}^{\mathbf{l}}$	point C
40	CH ₃	120 - 128	10	49 50	-CH ₂ -CH-OH	140
41	CH ₃	170	15	51 52 53 54 55	CH ₃ (CH ₂) ₃ O—(CH ₂) ₂ OH (CH ₂) ₃ O—C ₃ H ₇ (i) CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ O—C ₂ H ₄ O—C ₆ H ₅	75 - 80 Oii 118 - 123 Oii 172
	OCH,		20	56	——————————————————————————————————————	Oil
42	CH ₂ CH—C ₄ H ₉ (n)	107 - 110			——ОСН₂СН₂ОН	
43	C ₂ H ₃ CH ₂ CH ₂ —CH—C ₆ H ₃	3 2	25	57	-CH ₂ CH-C ₆ H ₅ OH	115
44	CH ₃	185		¹ Greasy product. ² Tar becoming solic ³ Viscous oil.	d on prolonged standing.	
45 46 47 48	OH CH ₂ CH ₂ COOH -C ₁₄ H ₂₉ OH	170 62 130 - 140 3	5	with aliphatic 100° or 80° Conducts are products are In the case carbamoyl grands however at otherwise hy	oducts set out in Tables 1 and cor aromatic amines at temper respectively, the correspond obtained. The of pyridine derivatives white roup the reaction has to be the lowest possible temperate rolysis and/or decarboxylatic p may take place.	ratures above ing coupling charried out ture because

T	A	BI	LE	3
T	A	BL	Æ	

•		CH ₃ CN CN NHR ¹	
Number	\mathbf{R}^1	$\frac{1}{R^2}$	Melting point, * C.
58	CH ₂ CH ₂ OH	CH ₃	125 - 130.
59	CH ₂ CH ₂ OH	(CH ₂) ₃ OH	47 - 50.
60	CH ₂ CH ₂ OH	(CH ₂) ₃ OCH ₃	104 - 105.
61	CH ₂ CH ₂ OH	CH ₂ CH ₂ OH	156.
62	(CH ₂) ₃ OH	CH ₃	215 (hydrochloride).
63	ОН	(CH ₂) ₃ OH	220 – 223.
64	(CH ₂) ₃ O(CH ₂) ₄ OH	H	Viscous oil.
65	(CH ₂) ₃ O(CH ₂) ₄ OH	(CH ₂) ₃ OH	# 1500 to 11.
66	(CH ₂) ₃ O(CH ₂) ₄ OH	(CH ₂) ₃ OCH ₃	**
67	(CH ₂) ₃ O(CH ₂) ₄ OH	(CH ₂) ₂ OCH ₃	**
68	(CH ₂) ₃ O(CH ₂) ₆ OH	(CH ₂) ₂ OCH ₃	"
69	(CH ₂) ₃ O(CH ₂) ₆ OH	(CH ₂) ₃ OH	**
70	(CH ₂) ₃ O(CH ₂) ₆ OH	$(CH_2)_2OH$	<i>t</i> 3
71	(CH ₂) ₃ O(CH ₂) ₆ OH	$(CH_2)_3^2OH$	21
72	CH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ OCH ₃	75 – 76.
73	CH ₂ CH ₂ OCH ₃	CH ₂ CH ₂ OH	108 - 111.
74	CH ₂ CH ₂ OCH ₃	$C_6^2H_{13}(n)$	Oil which has green fluorescence.
75	CH ₂ CH ₂ OCH ₃	—Ĥ	108.
76	$(CH_2)_3$ $-O-CH_3$	—H	95 – 98.
77	(CH ₂) ₃ OH	(CH ₂) ₃ OH	84 – 87 .

		I ABLE 5-continued	
		CH ₃	
		i-CN	
		$R^2-HN \longrightarrow_{N} \longrightarrow_{N} HR^1$	
78		—H	215 – 220.
	—()—och,		
70	\	CH ₂ CH ₂ OH	137.
79 80	***	-CH ₂ CH ₂ OH -CH ₂ CH ₂ OH	125 – 130.
81		—СН₂СН₂О́—С̈́Н₂СН₂О́Н —(СН₂)₃О́Н	170.
	Сн,		
92	\/ //	(CH-CH-O).H	175 - 180.
82 83		(CH ₂ CH ₂ O) ₂ H (CH ₂) ₃ OH	169 - 170.
03			
	// \		
	\ /		
	CH ₃		
84		CH ₂ CH ₂ OH	155 - 158.
•			
	СН,		
	\		
0.5		CU CU CU OU	150 (hydrochloride).
85 86	C ₆ H ₅	CH ₂ CH ₂ CH ₂ OH CH ₂ CH ₂ OH	173.
60		01170117011	
	_// \		
			126 140
87		CH ₂ CH ₂ OH	136 – 140.
	一 (
	\ /		
88	<u></u>	-CH ₂ CH ₂ OCH ₃	134 – 138.
88 89		-CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OH	134 - 138. 90 - 95 esterified with acetic acid.
		-CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OH	
	CH ₂	-CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OH	
		-CH ₂ CH ₂ OCH ₃ -CH ₂ CH ₂ OH	
	CH_2	CH ₂ CH ₂ OCH ₃	90 - 95 esterified with acetic acid. 105.
90 91	CH_2	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃	90 - 95 esterified with acetic acid. 105. 60.
90 91 92	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170.
90 91 92 93	CH_{2} $CH_{2}CH_{2}-C_{6}H_{5}$ $CH_{2}CH_{2}-C_{6}H_{5}$ $CH_{2}CH_{2}-C_{6}H_{5}$ $C_{4}H_{9}(n)$	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60.
90 91 92 93 94	CH_{2} $CH_{2}CH_{2}-C_{6}H_{5}$ $CH_{2}CH_{2}-C_{6}H_{5}$ $CH_{2}CH_{2}-C_{6}H_{5}$ $C_{4}H_{9}(n)$ $C_{4}H_{9}(n)$	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ OH CH ₂ CH ₂ OCH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence.
90 91 92 93	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence.
90 91 92 93 94 95 96 97	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence.
90 91 92 93 94 95 96 97 98	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ -OCH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. "" "" "" ""
90 91 92 93 94 95 96 97 98 99	CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence.
90 91 92 93 94 95 96 97 98 99 100	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ -OCH ₂ CH(CH ₃) ₂	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂ OCH ₂ CH ₂ OH (CH ₂ OCH ₂ CH ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " Viscous oil " "
90 91 92 93 94 95 96 97 98 99	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₅ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " Viscous oil " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ —C ₆ H ₅	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " Viscous oil " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " Viscous oil " " " "
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " Viscous oil " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅	90 - 95 esterified with acetic acid. 105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —CCH (CH ₂) ₃ —O—CH ₂ CH ₂ —CCH (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH CH ₃ (CH ₂) ₃ —O—CHCH ₂ —OCH	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH CH ₃ (CH ₂) ₃ —O—CHCH ₂ —OCH	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH CH ₃ (CH ₂) ₃ —O—CHCH ₂ —OCH	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₅ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₄ (CH ₂) ₃ —O—CH ₂ CH ₂ O—C ₄ H ₉	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₆ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₅ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH CH ₃ (CH ₂) ₃ —O—CHCH ₂ —OCH	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₅ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH ₄ (CH ₂) ₃ —O—CH ₂ CH ₂ O—C ₄ H ₉	105. 60. 167 ~ 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₃ —OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₂ OH (CH ₂) ₃ -O-CH ₂ C ₄ C ₄ C ₅ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ -C ₆ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ -CCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅	105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ CH ₂ -C ₆ H ₅ CH ₂ CH ₂ -C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₃ CH ₃ (CH ₂) ₃ -OCH ₂ CH(CH ₃) ₂ H H H H H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ —O—(CH ₂) ₄ OH (CH ₂) ₃ —O—(CH ₂) ₂ OH (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₄ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ OC ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —C ₆ H ₃ (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH (CH ₂) ₃ —O—CH ₂ CH ₂ —OCH (CH ₃) ₃ —O—CHCH ₂ —OCH	105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-CH ₂ CH ₂ OG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -C ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -CG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅	105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ CL ₄ CH ₉ (n) C ₄ H ₉ (n) C ₂ H ₃ CH ₂ CH ₂ CC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-CH ₂ CH ₂ OG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -C ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -CG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅	105. 60. 167 - 170. Oil having green fluorescence. " " " " " " " " " " " " " " " " " "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ C ₄ H ₉ (n) C ₄ H ₉ (n) C ₂ H ₅ CH ₂ CH ₂ OC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₂ OH (CH ₂) ₃ -O-CH ₂ -C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ -C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ O(CH ₂ CH ₂ O) ₂ CH ₃ (CH ₂) ₃ O(CH ₂ CH ₂ O) ₂ CH ₃ (CH ₂) ₄ O(CHCH ₂ O) ₂ CH ₃	105. 60. 167 - 170. Oil having green fluorescence. "" "" "" "" "" "" "" "" "" "" "" "" "
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	CH ₂ —C ₆ H ₅ CH ₂ CH ₂ —C ₆ H ₅ CL ₄ CH ₉ (n) C ₄ H ₉ (n) C ₂ H ₃ CH ₂ CH ₂ CC ₂ H ₅ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH CH ₂ CH ₂ OCH ₂ CH ₂ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-(CH ₂) ₄ OH (CH ₂) ₃ -O-CH ₂ CH ₂ OG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -C ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -CG ₆ H ₃ (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ -OCH (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅ (CH ₂) ₃ -O-CH ₂ CH ₂ O-C ₄ H ₅	105. 60. 167 - 170. Oil having green fluorescence. "" "" "" "" "" "" "" "" "" "" "" "" "

1= 1 		CH ₃	
		CN	
		$R^2-HN-NHR^1$	
113	CH ₃	H	**
	ĊH(CH ₂) ₂ —()—OH		
114	\/ H	(CH ₂) ₃ O(CH ₂) ₂ OH	**
115 116	H H	(CH ₂) ₂ O(CH ₂) ₂ OH	**
117	H	$(\dot{C}H_2)_3\dot{O}-(\dot{C}H_2)_6OH$ $(\dot{C}H_2)_6OH$ $(\dot{C}H_2)_3-O-\dot{C}_2H_4-O-\dot{C}_3H_7$	**
118	H	$(CH_2)_3 - O - C_2H_4 - O - C_3H_7$	Shade on coupling with
			$O_2N-N=N^{\oplus}$
119	(CH ₂) ₃ O—C ₆ H ₅	CH ₂ CH ₂ OH	Orange
120 121	$(CH_2)_3O-C_6H_5$	− CH₂CH₂OH	Orange.
122	(CH ₂) ₃ O—C ₆ H ₅ (CH ₂) ₃ OCH ₂ C ₆ H ₅	一CH₂CĤ₂OĆH₂ĊH₂OH 一CH₂CH₂OCH₂CH₂OH	"
123 124	(CH ₂) ₃ OCH ₂ C ₆ H ₃ (CH ₂) ₃ OCH ₃ C ₆ H ₄	(CH ₂) ₂ OH	"
125	(CH ₂) ₃ OCH ₂ C ₆ H ₅ CH ₂ CHOC ₆ H ₅	CH ₂ CH ₂ OH CH ₂ CH ₂ OH	**
	CH ₃		
126	CH₂CHOC ₆ H ₅	(CH ₂) ₃ OH	##
	ĊH ₃		
127 128	(CH ₂) ₃ O—CH ₂ CH ₂ C ₆ H ₅ (CH ₂) ₃ O—CH ₂ CH ₂ C ₆ H ₅	−CH ₂ CH ₂ OH (CH ₂) ₃ OH	"
129 130	(CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₅	(CH ₂) ₃ OH	"
131	(CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₅ (CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₅	CH ₂ CH ₂ OH —CH ₂ CH ₂ OCH ₃	**
132 133	(CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₅	−СH₂CH₂CH₂OCH₃ −CH₂CH₂OH	## ##
		22	
	$CH_2 - \langle H \rangle - CH_2OH$		
134	\/	(CH) OH	,,
135	12	─(CH ₂) ₃ OH (CH ₂ CH ₂ O) ₂ H ─CH ₂ CH ₂ OH	**
136	-(CH ₂) ₃ OCHCH ₂ O-C ₆ H ₅	-CH ₂ CH ₂ OH	***
	ĊH ₃		
137	-(CH ₂) ₃ OCHCH ₂ O-C ₆ H ₅	—(CH ₂) ₃ OH	**
	ĊH ₃		
138	CH ₃	-CH ₂ CH ₂ OH	**
	CH(CH ₂) ₂ —OH		
139 140	##	-(CH2)3OH -(CH2CH2O)2H	,, ,,
140	•	-(CH ₂ CH ₂ O) ₂ H	Melting point, ° C.
141	$-CH_2-CH-C_6H_5$	-сн-сн₂он	Viscous oil.
	OH	C ₂ H ₅	
142	-CH ₂ -CH-C ₆ H ₅	—(CH ₂)₃OH	"
	OH OH		
143	$-CH_2-CH-C_6H_5$	-(CH ₂ CH ₂ O) ₂ H	**
	OH		
144	$-CH_2-CH-C_6H_5$	$-(CH_2)_2OCH_3$	**
	ОН		
145	-CH ₂ CH-C ₆ H ₅	-(CH ₂) ₃ OCH ₃	**
	OH		
146	CH ₃	-CH ₂ -CH-C ₆ H ₅	J#
	-СH ₂ -СH-ОН	OH OH	
147	(CH ₂) ₆ OH	$-CH_2-CH-C_6H_5$) f
4.40		OH	
148	(CH ₂) ₂ O—CHCH ₂ OCH ₃	$-CH_2-CH-C_6H_5$	**
	ĊH ₃	ОН	

TABLE	3-00	ntinued
IADLE	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

		TABLE 3-continued	······································
 		CH ₃	
		CN	
		R ² -HN-NHR ¹ -CH ₂ -CH-C ₆ H ₅	
4.40	(CIT CIT O) II	N N N N N N N N N N N N N N N N N N N	11
149	(CH ₂ CH ₂ O) ₂ H	-CH ₂ -CH-C ₆ H ₅	
		ÒН	**
150	$-CH(CH_2)_3C-(CH_3)_2$	$-CH(CH_2)_3C-(CH_3)_2$	
	CH ₃ OH	CH ₃ OH	
151	$-(CH_2)_3O-(CH_2)_2OH$	(CH ₂) ₃ O(CH ₂) ₂ OH	;)
152	(CH2)3O(CH2)4OH	-(CH2)3O(CH2)4OH	# ************************************
153	-(CH2)3O(CH2)6OH	—(CH ₂) ₃ O(CH ₂) ₆ OH —CH ₂ CH ₂ OH	**
154	-CH(CH ₂) ₃ OC(CH ₃) ₂		
	ĊH ₃ ÒH		J #
155	$-CH(CH_2)_3OC(CH_3)_2$	$-(CH_2)_3OH$	
	CH ₃ OH		
156	-CH(CH ₂) ₃ OC(CH ₃) ₂	—СН₂СНОН	**
		CH ₃	
4	CH ₃ OH	-(CH ₂ CH ₂ O) ₂ H	**
157	-CH(CH ₂) ₃ OC(CH ₃) ₂	(011201120)211	
	CH ₃ OH		**
158	CH(CH ₂) ₃ OC(CH ₃) ₂	-(CH2)3O-(CH2)2OH	
	CH ₃ OH		
159	• • • • • • • • • • • • • • • • • • •	(CH ₂) ₃ O(CH ₂) ₄ OH	**
137	-CH(CH ₂) ₃ OC(CH ₃) ₂		
	CH ₃ OH	(CITAL) OCCITAL) OTT	*
160	-CH(CH ₂) ₃ OC(CH ₃) ₂	-(CH2)3O(CH2)6OH	
	CH ₃ OH		
161	(CH ₂) ₃ OH	-(CH2)3OH	84° bis 87° C.
162	(CH ₂ CH ₂ O) ₂ H	-(CH2CH2O)2H $-(CH2)2OCH3$	Viscous oil.
163	-CH(CH2)3-C(CH3)2	(C112)2CC113	
	CH ₃ OH		••
164	-CH(CH ₂) ₃ -C(CH ₃) ₂	-(CH2)3OCH3	
	CH ₃ OH		
165	3	$-(CH_2)_3-O-C_3H_7$	**
103	-CH(CH ₂) ₃ -C(CH ₃) ₂		
	ĊH ₃ ŎH		**
166	$-(CH_2CH_2O)_2H$	$-CH(CH_2)_3-C(CH_3)_2$	
		ĊH ₃ OH	
167	$-(CH_2)_2OH$	$-CH(CH_2)_3-C(CH_3)_2$	**
		CH ₃ OH	
168	—(CH ₂) ₃ OH	, , , , , , , , , , , , , , , , , , , ,	**
100	(0112)3011	-CH(CH2)3-C(CH3)2	
		CH ₃ OH	* *
169	—ÇHCH ₂ OH	-CH(CH2)3-C(CH3)2	•
	CH ₃	CH ₃ OH	
170	-CHCH ₂ OH	-CH(CH2)3-C(CH3)2	**
	į –		
171	C ₃ H ₇	.	***
171	−CH−CH ₂ OH	—CH—CH₂OH	
	ĊH ₃	ĊH ₃	**
172	-(CH ₂) ₃ OH	(CH ₂) ₃ O—(CH ₂) ₂ OH	***
173 174	-(CH2)3OH $-(CH2)3OH$	$(CH_2)_3O(CH_2)_4OH$ $(CH_2)_3O-(CH_2)_6OH$	**
175	-(CH ₂ CH ₂ OH	(CH2)3O-(CH2)6OH	**
176	—(CH ₂ CH ₂ OH —CH ₂ CH ₂ OH	$(CH_2)_3O - (CH_2)_4OH$ $(CH_2)_3O - (CH_2)_2OH$	***
177 178	CH ₂ CH ₂ OCH ₃	(CH2)3O-(CH2)2OH	## ##
179	CH ₂ CH ₂ OCH ₃	$(CH_2)_2O - (CH_2)_2OH$ $(CH_2)_2O - (CH_2)_2OH$	**
180 181	(CH2)3OCH3 (CH2)3O-C3H7	$(CH_2)_2O-(CH_2)_2OH$	11
182	(CH2)2OCH3	(CH2)3O-(CH2)4OH	**
183 184	(CH ₂) ₃ OCH ₃ (CH ₂) ₃ OCH ₃	$(CH_2)_3O - (CH_2)_4OH$ $(CH_2)_3O - (CH_2)_2OH$	**
104	(, · <i>L</i> 3 - · · · <i>L</i> 4	Shade on coupling with

	<u> </u>	TABLE 3-Continued	
		ÇH ₃	
		CN	
		$R^2-HN-\frac{1}{N}-NHR^1$	
			$O_2N-\langle \rangle -N=N\oplus$
105			\
185 186	-CH_CH_OCH_CH_OH	CH ₃ C ₂ H ₅ C ₃ H ₇	Orange.
187	-CH ₂ CH ₂ OCH ₂ CH ₂ OH -CH ₂ CH ₂ OCH ₂ CH ₂ OH	C_2H_5 C_2H_5	** **
188	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	C_4H_9	**
189	−CH₂CH₂OCH₂CH₃OH	$\mathbf{C_5H_{11}}$	**
190 191	—CH₂CH₂OCH₂CH₂OH —CH₂CH₂OCH₂CH₂OH	C_6H_{13}	**
• • •		CH ₂ CHC ₄ H ₉ (n))
		Ć₂H₅	
192	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	CH ₂ CH ₂ OH	**
193 19 4	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	$(C\overline{H}_2)_3\overline{OH}$	**
124	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	CH ₂ —CHOH	F#
		CH ₃	
195	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	$-(CH_2)_3O(CH_2)_2OH$	a <i>r</i>
196	-CH ₂ CH ₂ OCH ₂ CH ₂ OH		**
197	-CH ₂ CH ₂ OCH ₂ CH ₂ OH		**
		(н)	
		\ " /	
198	CH CH OCH CH OH	(6777)	
199	-CH ₂ CH ₂ OCH ₂ CH ₂ OH -CH ₂ CH ₂ OCH ₂ CH ₂ OH -CH ₂ CH ₂ OCH ₂ CH ₂ OH	(CH ₂) ₂ OCH ₃ (CH ₂) ₃ OCH ₃	## ##
200	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	(CH ₂) ₃ OC ₂ H ₃ (CH ₂) ₃ OC ₂ H ₃	**
201	-CH2CH2OCH2CH2OH	$(CH_2)_3O-C_3H_7(n)$	21
202 203	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	(CH2)3O-C3H7(i)	et et
204	-CH ₂ CH ₂ OCH ₂ CH ₂ OH -CH ₂ CH ₂ OCH ₂ CH ₂ OH	(CH ₂) ₃ O—CH ₂ CH(CH ₃) ₂	"
		(CH ₂) ₃ O—(H)	
205	CII CII OCTI	- -	Melting point, * C.
205	CH ₂ CH ₂ OCH ₃	CH ₂ CH-C ₆ H ₅	116-117.
206	-CH ₂ -CH ₂ OH	OH	190 100
		CH ₂ CH—C ₆ H ₅	188189.
207		ÓН	
207 208	$-CH_2-CH_2OH$ $(CH_2)_3-COOH$	H	> 150.
200	(CII ₂) ₃ —COOII	CH ₂ —CH—CH ₃	185-188.
		ÓН	
209	$(CH_2)_3 - O - (CH_2)_2 OH$	C ₂ H ₄	Viscous oil.
210 211	$(CH_2)_1 - O - (CH_2)_2 O H$	$C_3\tilde{H}_7(n)$	14
212	$(CH_2)_3 - O - (CH_2)_2 OH$ $(CH_2)_3 - O - (CH_2)_2 OH$	$C_4H_9(n)$	## ##
213	$(CH_2)_1 - O - (CH_2)_2 OH$	$C_6H_{13}(n)$	**
214	$(CH_2)_3 - O - (CH_2)_2 OH$ $(CH_2)_3 - O - (CH_2)_2 OH$	-613()	**
215	$(CH_2)_3 - O - (CH_2)_2 OH$		**
		СН₂ОН	
		(
216	(CH ₂) ₃ -O-(CH ₂) ₂ OH		**
	·		n v
		— (н)	
		\	
217	(CH.) (CU.) (CU.)		
	$(CH_2)_3$ — O — $(CH_2)_2OH$		**
		{ н }он	
		— (н)— он	

		I ABLE 3-Conunucu	
		CH ₃ —CN	
		R ² —HN—NHR ¹	
218	(CH ₂) ₃ —O—(CH ₂) ₂ OH		
		-(CH ₂) ₃ -O-(H)	
219		-CH ₂ CH ₂ OH	**
	$(CH_2)_3-OC_2H_4-O-\left\langle H\right\rangle$		
220 221	••••••••••••••••••••••••••••••••••••••	—(CH ₂) ₃ OH (CH ₂) ₂ O(CH ₂) ₂ OH	"
222		(CH ₂) ₂ O(CH ₂) ₂ OH (CH ₂) ₂ O(CH ₂) ₂ OH	
	CH ₂ — CH ₂ OH		
223 224	——————————————————————————————————————	(CH ₂ O(CH ₂) ₂ OH —(CH ₂) ₂ O(CH ₂) ₂ OH	**
	— (н)		
225	\/	-(CH ₂) ₃ O(CH ₂) ₂ OH	p# p#
226		(CH ₂) ₃ O(CH ₂) ₂ OH	
	— (н)—он		
227 228		-(CH ₂) ₂ O(CH ₂) ₂ OH CH ₂ CH ₂ OH	# #
	H —OCH2CH2OH		
229		-(CH ₂) ₂ OH	**
230 231		$-(CH_2)_2O(CH_2)_2OH$ $-(CH_2)_2O(CH_2)_2OH$	37
		-	
232 233		$-(CH_2)_3O(CH_2)_2OH$ $-(CH_2)_3O(CH_2)_2OH$	er
234		-(CH ₂) ₂ O(CH ₂) ₂ OH	**
	СН₂ОН		
235		(CH ₂) ₂ O(CH ₂) ₂ OH	**
236	—CH₂CH₂OH	$-(CH_2)_2O(CH_2)_2OH$ $-(CH_2)_2O(CH_2)_2OH$	
237		-CH ₂ CH ₂ OH	**
	-CH-(CH ₂) ₂ -OH CH ₃		
238	CH ₂ CH CH ₂	(CH ₂) ₂ O(CH ₂) ₂ OH	*F
239	CH ₂ CH CH ₂	$-(CH_2)_2O(CH_2)_2OH$ $-(CH_2)_3O-(CH_2)_2OH$	Shade on coupling with
			$O_2N - \sqrt{\qquad} - N = N \oplus$

	CH ₃	
	CN	
240 P	R ² -HN-NHR ¹ -C ₂ H ₅	Orange.
(CH ₂) ₂ N		
241 " 242 "	$-C_3H_7(n)$ $-C_4H_9(n)$	## ***
244 "	-(CH2)3OH	11
246 "	(CH ₂) ₂ O—(CH ₂) ₂ OH (CH ₂) ₃ O(CH ₂) ₂ OH	## ##
247 " O	$(CH_2)_3O-(CH_2)_4OH$ $-C_2H_5$	## ##
(CH ₂) ₃ N		
249	—C H (n)	**
250 " 251 "	$-C_4H_9(n)$	## ##
252 "	$-C_6H_{13}(n)$ $-(CH_2)_2OH$	**
253 " 254 "	—(СH ₂) ₂ OH —(СH ₂) ₃ OH —(СH ₂) ₂ O(СH ₃) ₂ OH	# #
255 256 "	—(CH ₂);O(CH ₂);OH —(CH ₂);O(CH ₂);OH	,, ,,
257 O	—(CH ₂) ₂ O(CH ₂) ₂ OH —(CH ₂) ₃ O(CH ₂) ₂ OH —(CH ₂) ₃ O(CH ₂) ₄ OH —C ₂ H ₅	**
(CH ₂) ₄ N		
258	—С₃H _т	##
259 "	—С,H, —СH,CH,OH	## ##
260 " 261 "	—(С Й ₂),ОН	##
263 "	─(CH ₂) ₂ O(CH ₂) ₃ OH ─(CH ₂) ₂ OCH ₃	**
264 " 265 "	一(CH ₂) ₂ OCH ₃ (CH ₂) ₃ O(CH ₂) ₂ OH (CH ₂) ₃ O(CH ₂) ₄ OH C ₂ H ₅	## ##
266 O	C ₂ H ₃	P4
(CH ₂) ₆ N		
267	C ₂ H ₂ (n)	**
267 " 268 " 269 " 270 H	C ₃ H ₇ (n) C ₄ H ₉ (n) C ₆ H ₁₃ (n)	##
270 H	C ₆ Π _{[3} (π)	Golden yellow.
	(CH ₂) ₆ N	
27 1		
<u> </u>	-CH ₂ CH ₂ OH	Orange.
(CH ₂) ₆ N		
272 "	(CH ₂) ₃ OH	**
274 "	(CH ₂) ₃ O(CH ₂) ₂ OH (CH ₂) ₃ O(CH ₂) ₂ OH	##
275 " 276 "	(CH),O(CH,),OH	**
277 "	(CH ₂) ₃ OCH ₃ (CH ₂) ₃ OCH ₃	**
278	(CH ₂) ₃ OCH ₃	Orange.
(CH ₂) ₂ N		
279	(CH ₂),OCH ₃	> 4
279 "	(CH ₂) ₂ OCH ₃ (CH ₂) ₂ OCH ₃	**
(CH ₂) ₃ N		
281	7,000 W 10 10 10 10 10 10 10 10 10 10 10 10 10	
281 "	(CH ₂) ₃ OCH ₃	##

TABLE 4

R²-HN-NH-R¹
Shade coupling with

$$O_2N$$
-N=N \oplus

				$O_2N-(Y)-N=N\oplus$
Number	\mathbf{R}^1	R ²	R ³	
282	CH ₂ CH ₂ C ₆ H ₅	CH ₂ CH ₂ OH	H	Orange.
283	CH ₂ CH ₂ C ₆ H ₅	CH ₂ CH ₂ OH	$-C_2H_3$	**
284	CH,CH,C,H,	(CH ₂) ₃ OH	$-C_2H_5$	## ***********************************
285	CH ₂ CH ₂ C ₆ H ₃	(CH2)2O(CH2)2OH	H	# #
286	CH ₂ CH ₂ C ₅ H ₅	(CH ₂) ₂ O(CH ₂) ₂ OH	C ₂ H ₅ C ₃ H ₇ (n)	** **
287	CH ₂ CH ₂ C ₆ H ₅	CH ₂ CH ₂ OH	C ₃ H ₇ (n)	
288	CH ₂ CH-C ₆ H ₅	CH ₂ CH ₂ OH	H	41
289	OH CH ₂ CH—C ₆ H ₅	CH ₂ CH ₂ OH	C ₃ H ₇ (n)	P P
290	OH CH ₂ CH—C ₆ H ₅	(CH ₂) ₃ OH	C ₃ H ₇ (n)	7#
291	OH CH ₂ CH—C ₆ H ₅	(CH ₂) ₃ OH	H	***
292	ÒH CH₂CH−C6H5	(CH ₂) ₃ OH	C ₂ H ₅	,:
293	OH CH₂CH₂OH	CH ₂ CH ₂ OH	—CHC₄H₃(n)	***
			C ₂ H ₅	47
294	CH ₂ CH ₂ OH	CH ₂ CH ₂ OH	$-C_5H_{11}(n)$	##
295	CH ₂ CH ₂ OCH ₃	(CH ₂ CH ₂ O) ₂ H	-C ₆ H ₅	#
296	(CH ₂) ₃ OCH ₃	(CH ₂ CH ₂ O) ₂ H	H	Golden yellow.
297	п	CH ₂ CH—C ₆ H ₅	4.	TOTAL JULIUM .
298	H	OH CH ₂ CH—C ₆ H ₅	$-\mathbf{C}_3\mathbf{H}_7(\mathbf{n})$	**
444		OH	T	f <i>)</i>
299	H	(CH ₂) ₃ O(CH ₂) ₄ OH	H H	***
300	H	(CH ₂) ₃ O(CH ₂) ₂ OH	<u> </u>	

TABLE 5

Shade after coupling with

			O_2N
		_	$N-N \oplus$
Number	\mathbb{R}^1	R ²	
301	-CH ₂ CH ₂ CH ₂ OCH ₃	(CH ₂) ₃ OH	Red.
302	$-CH_2CH_2-C_6H_5$	-CH,CH,OH	Red.
303	$-CH_2CH_2-C_6H_5$	—(CH ₂)₃OH	Red.
304	- -	—(CH ₂)₃OH	Red.
501	$-CH_2-CH-C_6H_5$	(44-2)3	
	о́н		
305		-(CH ₂) ₂ OH	Red.
303	$-CH_2-CH-C_6H_5$	(0112/2011	
	<u> </u>		
206	OH CH CH	—(CU) OU	Red.
306	-(CH2)3O-CH2C6H3	$-(CH_2)_2OH$ $-(CH_2)_3OH$	Red.
307	-(CH ₂) ₃ O-CH ₂ C ₄ H ₅		Red.
308	-(CH ₂) ₃ OCH ₂ CH ₂ O-C ₆ H ₃	-(CH ₂) ₃ OH	Red.
309	-(CH ₂) ₃ OCH ₂ CH ₂ OC ₆ H ₃	-(CH ₂) ₂ OH	Red.
310	-(CH ₂) ₂ O(CH ₂) ₂ OH	-(CH ₂) ₂ OCH ₃	Red.
311	-(CH ₂) ₂ O(CH ₂) ₂ OH	-(CH ₂) ₃ OCH ₃	Red.
312	-(CH ₂) ₂ OCH ₃	-(CH ₂) ₂ O(CH ₂) ₂ OH	Red.
313	-(CH ₂) ₃ OCH ₃	-(CH ₂) ₂ O(CH ₂) ₂ OH	Yellowish red.
314	— <u>Н</u>	-(CH ₂) ₂ O(CH ₂) ₂ OH	i chomish ico.
315	- Н	-(CH ₂) ₃ O(CH ₂) ₂ OH	10
316	-H	-(CH ₂) ₂ O(CH ₂) ₄ OH	Red.
317	-CH ₂ -CH ₂ OH	-CH2CH2-CH	Red.
318	$-(CH_2)_3OH$	$-CH_2CH_2-C_6H_5$	NCU.

CH₃
DONH₂

$$R^2-HN-NH-R^1$$
Shade after coupling with

			Shade after coupling with
			O_2N
Number	R ¹	\mathbb{R}^2	$-N-N \oplus$
319	-(CH ₂) ₃ OCH ₃	-CH ₂ CH ₂ -C ₆ H ₅	Red.
320	$-CH_2-CH_2-C_6H_5$	$-(CH_2)_3OCH_3$	Red.
321	$-CH(CH_2)_3C(CH_3)_2$	-CH ₂ CH ₂ OH	Red.
	CH ₃ OH		
322	•	—(CH ₂) ₃ OH	Red.
	-CH(CH ₂) ₃ C(CH ₃) ₂		
	CH ₃ OH		
323	$-CH(CH_2)_3C(CH_3)_2$	-(CH2)2O(CH2)2OH	Red.
	CH ₃ OH		
324		-CH ₂ -CH ₂ OH	Red.
		22	
	— (н)		
325	**	-(CH ₂) ₃ OH	Red.
326) t	-(CH2)2O(CH2)2OH	Red.
327 328	$-C_4H_9(n)$	$-(CH_2)_3-O-(CH_2)_2OH$ $-(CH_2)_3-O-(CH_2)_2OH$	Red. Red.
329	$-C_4H_9(n)$	$-(CH_2)_2O(CH_2)_2OH$	Red.
330 331	-(CH ₂) ₂ O(CH ₂) ₂ OH	$-C_4H_9(n)$	Red.
331	$-(CH_2)_2O(CH_2)_2OH$		Red.
		— (н)	
		\	
332		$-(CH_2)_2O(CH_2)_2OH$	Red.
		(0112/20(0112/2011	REG.
333	O.	-(CH ₂) ₃ OH	Red.
		\ -23	
	$-(CH_2)_2N$		
	(CH ₂) ₂ I		
334	 -	$-(CH_2)_3OH$	Red.
	—(CH) N		
	-(CH2)6N		
	· Ĭ		
335	O H	—(CU) OU	Th1
336		—(CH ₂) ₂ OH —(CH ₂) ₂ OH	Red. Bluish red.
		` 21	
	-(')		
	\/		
337	"	-(CH ₂) ₃ OH	**
338 339	CH ₃	$-(CH_2)_2O(CH_2)_2OH$ $-(CH_2)_2O(CH_2)_2OH$	**
337		(CH ₂) ₂ O(CH ₂) ₂ OH	
	— ()		
	\/		
340	—(CH ₂)₂OH	$-(CH_2)_2OH$	Red.
341	-(CH2)3OH	-(CH2)3OH	Red.
342 343	$-(CH_2)_3O(CH_2)_4OH$ $-(CH_2)_3O(CH_2)_2OH$	$-(CH_2)_3OH$ $-(CH_2)_2OCH_3$	Red. Red.
344	-(CH2)3O(CH2)2OH	$-(CH_2)_3OCH_3$	Red.
345	$-(CH_2)_3O-(CH_2)_2OH$	-(CH ₂) ₃ OCH ₃	Red.
346 347	—H	—(CH ₂) ₃ OCH ₃ —(CH ₂) ₂ O(CH ₂) ₂ OH —CH ₂ —CH ₂ —OH	Yellowish red. Red.
- · ·			*****
	— (н)— он		
348	***	$-(CH_2)_3OH$ $-(CH_2)_2O-(CH_2)_2OH$	Red.
349	**	$-(CH_2)_2O-(CH_2)_2OH$	Red.

The Examples described in the above Tables are prepared by always first introducing the radical R¹.

EXAMPLE 357

25 parts of the coupling component of the formula:

is stirred with 75 parts of 90 percent sulphuric acid for six to eight hours at 80° to 100° C. The reaction mixture is then precipitated on 500 parts of ice, adjusted to pH 4 to 6 by adding caustic soda solution and extracted with ethyl acetate. After the extractant has been evaporated about 20 parts of the coupling component of the formula:

is obtained as a dark oil. A red dye is obtained therefrom after coupling with diazotized p-nitroaniline

EXAMPLE 358

35 30 parts of 2,6-diamino-3-cyano-4-methylpyridine is stirred with 200 parts by volume of concentrated sulphuric acid for ten hours at 50° C. The whole is then allowed to cool, 250 parts of ice is added and it is left overnight. The deposited precipitate is filtered off and washed witht acetone. After drying, 36 parts of a colourless powder of the formula:

is obtained which melts at 250° C with decomposition. The free base of the formula:

is obtained from the salt by a conventional method.

TA	DΤ	D	~
14	DL	Æ	0

·	- <u>-</u> .	IABLE 6	
		CH ₃	5
Number	H—N—R ² ·	NH-R ¹ R ²	Melting point, ° C.
359 360	-C ₆ H ₅ -CH ₃	$-C_6H_5$ $-CH_3$	128-130 178
361 362 363 364 365 366 367	-CH ₃ -CH(CH ₂) ₂ -C ₃ H ₇ (n) -CH ₂ -CH=CH ₂ -C ₄ H ₉ (n) -C ₆ H ₁₃ (n)	-CH ₃ -CH(CH ₃) ₂ -C ₃ H ₇ (n) -CH ₂ -CH-CH ₂ -C ₄ H ₉ (n) -C ₆ H ₁₃ (n)	140-150 118-120 122-123 77 97 Oil 193
368 369	——————————————————————————————————————	——————————————————————————————————————	225 175
370 371 372 373 374 375 376 377 378	-CH ₂ -C ₆ H ₅ -CH ₂ -Ch ₂ -C ₆ H ₅ -C ₂ H ₅ -C ₆ H ₅ C ₆ H ₅ C ₄ H ₉ (n) C ₂ H ₅ -CH ₂ CH ₂ C ₆ H ₅ -CH ₂ -CH-C ₆ H ₅	-CH ₂ -C ₆ H ₅ -CH ₂ -CH ₂ -C ₆ H ₅ -C ₂ H ₅ -C ₄ H ₉ (n) H H -C ₆ H ₅ -H -CH ₂ -CH-C ₆ H ₅	170 110 1205 1 115 (2) 100 218-220 100 Ca.60
379 380 381 382	CH ₃ —H —C ₈ H ₁₇ (n) —C ₁₄ H ₂₉ —H	CH ₃ -CH ₂ -CH ₂ -C ₆ H ₅ -H -H -CH ₂ -CH-C ₆ H ₅	Ca. 100, ¹ 188 Oil Ca.90-105 Tar
383	-CH ₂ -CH-C ₆ H ₅	ĊH ₂ —Н	Таг
384 385 386 Hydrochlo	CH ₃ -CH ₂ -CH ₂ -CN -CH ₂ -CN -CH ₂ -CN -H	-CH ₂ -CH ₂ -CN -CH ₂ -CH ₂ -C ₆ H ₅ -(CH ₂) ₅ CN	170-176 Ca.120 142

Hydrochloride.

45

50

55

60

Table 7 CONH₂

Shade when coupled with \mathbb{R}^2 \mathbf{R}^1 Ex. X 387 388 389 CH₂CH₂OH (CH₂)₃OH CH₃ H CH₃ H CH₃ H CH₃ Yellowish red. CH₂-CH-C₆H₅ OH CH₂CH₂C₄H₅ CH₂CH₂OH (CH₂)₂O(CH₂)₂OH CH₃ (CH₂)₂O(CH₂)₂OH CH₃ H C₃H₇ C₆H₅ C₃H₇ C₆H₅ C₃H₇ C₆H₅ C₃H₇ 390 391 392 393 394 ** Bluish red. 395 C_3H_7 CH₂CH₂OH

Table 7-continued

X

CONH₂

R²HN

NHR¹

Ex. X R¹ R²

O₂N — N₂[⊕]

396 C₃H₇ " (CH₂)₃OH "
397 H C₆H₅ (CH₂)₃OH "

EXAMPLE 398

190 parts of 2,6-dichloro-3-cyano-4-methylpyridine, 750 parts of isopropanol and approx. 300 parts of ammo65 nia are stirred in an autoclave for 15 hours at 180° C.
The mixture is allowed to cool, excess ammonia is evaporated and 450 parts by volume of isopropanol is distilled off. The residue is mixed with approx. 600 parts of

²Tarry: becomes solid after prolonged standing.

water, the pH is adjusted to approx. 0 with concentrated hyrochloric acid and the solution filtered. Then 50 percent caustic soda solution is added until the pH of the mixture is approx. 9, the mixture allowed to cool to 0°-10° C and then filtered, and the residue is washed 5 with water and dried. 130 to 145 parts of a colorless powder of the formula

is obtained which melts at 225° C.

EXAMPLE 399

300 parts of 2,6-dichloro-3-cyano-4-methylpyridine is mixed with about 500 parts by volume of liquid ammonia and treated in an autoclave for 2 hours at approx. 80° 20 C. Excess ammonia is allowed to evaporate, the residue is diluted with approx. 2500 parts by volume of water, and the pH is adjusted to 0 to 1 with hydrochloric acid. The insoluble residue is filtered off, washed with water and dried. Approx. 260 parts of a colorless powder of 25 the formula

which contains a minor amount of the isomeric 2chloro-3-cyano-4-methyl-6-aminopyridine and melts at 10 210° C is obtained.

168 parts of this powder is mixed with about 170 parts of β -hydroxyethylamine and 170 parts by volume of isopropanol. The mixture is heated for 7 to 10 hours under reflux, the solvent is distilled off, the residue is 15 diluted with about 400 parts of water, and the pH is adjusted to 1 to 2. A deep-colored solution of about 192 parts of the coupling component of the formula

is obtained, a minor portion of which consists of 2amino-4-methyl-5-cyano-6-\beta-hydroxyethylaminopyridine.

A greenish yellow dye may be obtained by coupling 30

with diazotized 2-aminobenzonitrile.						
TABLE 8						
		R ² -NH-N	X NH-	R^1 Shade when coupled with $O_2N - N = N^{\oplus}$		
No.	R ¹	R ²	X	<u> </u>		
		CH ₃ C ₂ H ₅ C ₃ H ₇ C ₂ H ₄ OCH ₃ C ₂ H ₄ OCH ₃ C ₃ H ₆ OCH ₃ C ₃ H ₆ OCH ₃ C ₄ H ₉ (n) C ₄ H ₉ (n) CH ₂ CH=CH ₂ (CH ₂) ₆ N CH ₃ CH(CH ₂) ₃ C(CH ₃) ₂ OH	CN CN CN CONH ₂ CONH ₂ CN CONH ₂ CN CONH ₂	Golden yellow. Yellowish red. Golden Yellow. Yellow orange. Yellowish red. Golden yellow. Yellowish red. Orange.		
412	H	CH ₃ CH(CH ₂) ₃ C(CH ₃) ₂ OH	CONH ₂	Red.		
413	CH ₃ CH(CH ₂) ₃ C(CH ₃) ₂ OH	CH ₂ CH ₂ OH	CONH ₂	Red.		
414	CH ₃ CH(CH ₂) ₃ C(CH ₃) ₂ OH	(CH ₂) ₃ OH	CONH ₂	Red.		

TABLE 8-continued

No.
$$R^1$$
 R^2 X $CONH_2$ Red. (M.P. 150–153° C.)

We claim:

1. A compound of the formula

in which:

R¹ is hydrogen, alkyl of one to seven carbon atoms or phenyl;

X is cyano or carbamoyl; and

each Z, independently of one another, is hydrogen, 35 alkyl of one to eight carbon atoms, hydroxyalkyl of two to eight carbon atoms, cyanoalkyl of two to seven carbon atoms, alkoxyalkyl of two or three carbon atoms in the alkyl and one to eight carbon atoms in the alkoxy, cyclohexoxypropyl, benzylox- 40 ypropyl, β -phenyl-ethoxypropyl, phenoxypropyl, tolyloxypropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, hydroxycyclohexyl, \betahydroxyethoxycyclohexyl, norbornyl, hydroxynorbornyl, hydroxymethylnorbornyl, chlorometh- 45 ylnorbornyl, \(\beta\)-hydroxyethylnorbornyl, bicyclooctyl, phenylalkyl or tolylalkyl of one to four carbon atoms in the alkyl, phenyl, phenyl substituted by methyl, methoxy, ethoxy, hydroxy, chloro or β hydroxyethoxy, allyl, carboxyethyl, carboxypen- 50 tyl, ω-pyrrolidonylalkyl of two to six carbon atoms in the alkyl,

$$-CH_2-CH-C_6H_5$$
, $-CH_2$ $-CH_2OH$, $-CH_$

-(CH₂)₂O(CH₂)₂OH, --(CH₂)₃O(CH₂)₄OH, --(CH₂)₃O(CH₂)₆OH, 3O(CH₂)₆OH,

$$-(CH2)3 OC2H3 OT$$

30 or $-(CH_2)_3(OC_2H_4)_nOT$,

n being 1, 2, 3 or 4, and

T being hydrogen, alkyl of one to four carbon atoms, benzyl, phenylethyl, cyclohexyl, phenyl or tolyl.

2. A compound as claimed in claim 1 of the formula

in which:

Z¹ is an oxygen-containing radical selected from the group consisting of —CH₂CH₂OH, —CH₂CH₂Ch₂OH,

 $-(CH_2)_3O(CH_2)_2OH$, $-(CH_2)_3O(CH_2)_4OH$, $-(CH_2)_3O(CH_2)_6OH$, $-(CH_2)_4OH$, $-(CH_2)_6OH$, $-(CH_2)_2O(CH_2)_2OH$,

60

 $-C_2H_5$, $-C_3H_7$, $-C_4H_9$,

$$CH_2$$
 $-CH(CH_2)_2$
 $OH, -CH(CH_2)_2$
 $OH,$

-CH₂CH₂OCH₃, -CH₂CH₂OC₂H₅, -CH₂CH- 30 ₂OC₄H₉, -(CH₂)₃OCH₃, -(CH₂)₃OC₂H₅, -(CH₂)-₃OC₄H₉, -(CH₂)₃OC₃H₇, -(CH₂)₃OC₆H₁₃, -(CH₂)-₃OC₈H₁₇,

$$-(CH_3)_3O$$
 $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_2)_3O$ $-(CH_3)_3O$ $-(C$

-(CH₂)₃OC₂H₄OCH₃, -(CH₂)₃OC₂H₄OC₄H₉,

and

 $-(CH_2)_3OC_2H_4OC_6H_5$; and

Z² is hydrogen, an oxygen-containing radical as defined for Z¹ or an oxygen-free radical selected from the group consisting of

$$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

 $-CH_2C_6H_5$, $-C_2H_4C_6H_5$, $-C_3H_7C_6H_5$, 10

15 $-C_6H_5$, $-C_6H_4CH_3$ and $-C_6H_4OCH_3$.

3. The compound of the formula

4. The compound of the formula

NHCH₂CH—C₆H₅ OH

5. The compound of the formula

6. The compound of the formula

65

35

40

45

50

55

60

UNITED STATES PATENT OFFICE Page 1 of 2 CERTIFICATE OF CORRECTION

Patent No	Re. 29,640	Dated	May	23,	1978
Inventor(s)_	Lamm et al.				

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In Claim 2, col. 37, at 40, please change the formula to read:

$$-(CH_2)_3O-CH_2$$
, $-(CH_2)_3OC_2H_4$.

UNITED STATES PATENT OFFICE Page 2 of 2 CERTIFICATE OF CORRECTION

Patent No	Re. 29,640	Dated_	May 23,	1978
Inventor(s)	Lamm et al.			

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In Claim 4, col. 38, at 25, please change the formula to read:

Bigned and Sealed this

Twenty-fourth Day of October 1978

[SEAL]

Attest:

RUTH C. MASON
Attesting Officer

DONALD W. BANNER

Commissioner of Patents and Trademarks