

US00D818046S

(12) United States Design Patent (10) Patent No.:

Benini et al.

US D818,046 S

(45) Date of Patent: ** May 15, 2018

VISUAL LANDING TARGET

Applicant: Colorado Seminary Which Owns and

Operates the University of Denver,

Denver, CO (US)

Inventors: Alessandro Benini, Denver, CO (US);

Matthew J. Rutherford, Denver, CO (US); Kimon P. Valavanis, Denver, CO

(US)

Assignee: Colorado Seminary Which Owns and (73)

Operates the University of Denver,

Denver, CO (US)

15 Years Term:

Appl. No.: 29/585,482

Nov. 23, 2016 (22)Filed:

(52)U.S. Cl.

USPC **D21/302**

(58)

Field of Classification Search 273/348, 336, 398–402, 407, 317, 371.1, 273/343, 367–369, 371, 381, 386; 244/63, 110 E, 114 R; 455/39, 521, 73, 455/575.1; 340/815.4, 286.01, 5.32, 340/426.18, 426.17, 154, 138, 601 CPC A63F 7/06; A63F 3/02; A63F 3/06; A63F 9/02; A63B 67/00; A63B 63/08; A63B 7/00; B64F 1/00; B64F 1/18; B64F 1/20; B64F 3/00; B64C 15/00; G08G 5/0026 See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

4,260,160 A	*	4/1981	Ejnell		F41J 2/02
4,346,901 A	*	8/1982	Booth	•••••	
					219/548

4,470,818 A *	9/1984	Marshall F41G 3/2611			
4 700 012 A *	10/1007	273/348.1 Corbott D64E 1/00			
4,700,912 A	10/1987	Corbett B64F 1/00 244/110 E			
4,890,802 A *	1/1990	Burgess B64F 1/125			
		244/100 R			
6,193,190 B1	2/2001	Nance			
D567,296 S *	4/2008	Kharitonova D21/302			
(Continued)					

FOREIGN PATENT DOCUMENTS

EP 10/2012 2518580 A3

OTHER PUBLICATIONS

Yang, et al., "Autonomous Landing of MAVS on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision", "Journal of Intelligent and Robotic Systems", Oct. 25, 2013, pp. 27-43, No. 74, Publisher: Springer Science+Business Media Dordrecht, Published in: GE.

(Continued)

Primary Examiner — Prabhakar G Deshmukh (74) Attorney, Agent, or Firm — Neugeboren O'Dowd PC

CLAIM (57)

The ornamental design for a visual landing target, as shown and described.

DESCRIPTION

FIG. 1 is a front elevational view of a visual landing target showing our new design;

FIG. 2 is a front elevational view of a second embodiment of a visual landing target thereof;

FIG. 3 is a left side elevational view of FIGS. 1 and 2;

FIG. 4 is a bottom plan view of FIGS. 1 and 2;

FIG. 5 is a top plan view of FIGS. 1 and 2; and,

FIG. 6 is a right side elevational view of FIGS. 1 and 2.

The broken lines which define the bounds of the claimed design form no part thereof.

1 Claim, 3 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

D599,412 S *	9/2009	Sandman
7,857,450 B1*	12/2010	Hofeldt A61B 3/022
		351/233
8,297,552 B2*	10/2012	Ying B64F 1/005
		244/110 E
D721,137 S *	1/2015	Sindaco
D781,959 S *	3/2017	Thur D21/302
2009/0306840 A1	12/2009	Blenkhorn et al.

OTHER PUBLICATIONS

Lee, et al., "Autonomous Landing System for Aerial Mobile Robot Cooperation", "Soft Computing and Intelligent Systems", Dec. 3, 2014, p. 6, Publisher: Institute of Electrical and Electronics Engineers, Published in: JP.

Cocchioni, et al., "Autonomous Navigation, Landing and Recharge of a Quadrotor Using Artificial Vision", "Unmanned Aircraft Sys-

tems", May 27, 2014, p. 12, Publisher: Institute of Electrical and Electronics Engineers, Published in: EP.

Masselli, et al., "A Cross-Platform Comparison of Visual Marker Based Approaches for Autonomous Flight of Quadrocopters", "Journal of Intelligent and Robotic Systems", Oct. 23, 2013, pp. 349-359, No. 73, Publisher: Springer Science+Business Media Dordrecht, Published in: GE.

Li, et al., "Development of an Unmanned Aerial Vehicle for Rooftop Landing and Surveillance", "Unmanned Aircraft Systems", Jun. 9, 2015, p. 7, Publisher: Institute of Electrical and Electronics Engineers, Published in: SP.

Jung, et al., "Study on Ellipse Fitting Problem for Vision-Based Autonomous Landing of an VA V", "Control, Automation and Systems", Oct. 22, 2014, p. 4, Publisher: Institute of Electrical and Electronics Engineers, Published in: KR.

Lange, et al., "A Vision Based Onboard Approach for Landing and Position Control of an Autonomous Multirotor UAV in GPS-Denied Environments", "Advanced Robotics", Jun. 22, 2009, p. 6, Publisher: Institute of Electrical and Electronics Engineers, Published in: GE.

* cited by examiner

FIG. 1

FIG. 2

FIG. 4