

US00D639902S

(12) United States Design Patent

Ammons et al.

(10) Patent No.:

US D639,902 S

(45) Date of Patent:

** Jun. 14, 2011

(54) SEALING STRUCTURE FOR BLOCKING AN OPENING

(75) Inventors: Mark Ammons, New Albany, IN (US);

Donald W. Shepherd, Shelbyville, KY

(US)

(73) Assignee: Caldwell Tanks, Inc., Louisville, KY

(US)

(**) Term: 14 Years

(21) Appl. No.: 29/362,442

(22) Filed: May 25, 2010

(56) References Cited

U.S. PATENT DOCUMENTS

2,802,543	A	8/1957	Clark
3,419,251	A	12/1968	Eckert
3,522,000	A	7/1970	Kinney
4,211,735	\mathbf{A}	7/1980	Berlin
4,247,308	\mathbf{A}	1/1981	Calvert et al.
4,343,771	\mathbf{A}	8/1982	Edwards et al.
D310,860	S	9/1990	Delepine
D311,053	S	10/1990	Delepine
D311,054	S	10/1990	Delepine
4,980,099	\mathbf{A}	12/1990	Myers et al.
			-

(Continued)

FOREIGN PATENT DOCUMENTS

WO 98047604 10/1998

OTHER PUBLICATIONS

Shepherd, Donald W.; Fraser, Donald; Impact of Heat Rate, Emissions and Reliability from the Application of Wet Compression on Combustion Turbines; 2005; pp. 1-6; US.

(Continued)

Primary Examiner — Robin V Webster

(74) Attorney, Agent, or Firm—Robert H. Eichenberger; Scott W. Higdon; Middleton Reutlinger

(57) CLAIM

The ornamental design for a sealing structure for blocking an opening, as shown and described.

DESCRIPTION

This application is related to the following co-pending applications: U.S. application Ser. No. 12/787,243, filed May 25, 2010 and entitled Removable Misting Array for an Abatement System; U.S. application Ser. No. 12/787,374, filed May 25, 2010 and entitled System and Method for Repairing or Servicing a Misting Array Assembly of an Abatement System; U.S. application Ser. No. 12/787,372, filed May 25, 2010 and entitled Misting Array Assembly Having Adjustable Nozzles; U.S. application Ser. No. 12/787,373, filed May 25, 2010 and entitled Misting Array Assembly Having Upwardly and Downwardly Disposed Nozzles; U.S. application Ser. No. 29/362,440, filed May 25, 2010 and entitled Nozzle Tubing Having Offset Nozzles; U.S. application Ser. No. 29/362,443, filed May 25, 2010 and also entitled Nozzle Tubing Having Offset Nozzles; and U.S. application Ser. No. 29/362,444, filed May 25, 2010 and entitled Misting Array Frame Structure.

FIG. 1 is an upper front perspective view of a sealing structure for blocking an opening of the present invention;

FIG. 2 is an upper rear perspective view of the sealing structure for blocking an opening of FIG. 1;

FIG. 3 is a front plan view of the sealing structure for blocking an opening of FIG. 1;

FIG. 4 is a right side view of the sealing structure for blocking an opening of FIG. 1, the left side view being a mirror image thereof;

FIG. 5 is a rear plan view of the sealing structure for blocking an opening of FIG. 1; and,

FIG. 6 is a top view of the sealing structure for blocking an opening of FIG. 1, the bottom view being a mirror image thereof.

The broken lines showing environmental structure are for illustrative purposes only and form no part of the claimed design.

1 Claim, 6 Drawing Sheets

US D639,902 S

Page 2

IIC	PATENT	DOCH	MENTS
$ \mathbf{O}.\mathbf{O}.$	PAIDNI	レヘハラ	IMEINTO

5,065,944	\mathbf{A}	11/1991	D'Amato
D353,873	\mathbf{S}	12/1994	Schoeneman
5,387,376	\mathbf{A}	2/1995	Gasser
5,465,537	\mathbf{A}	11/1995	Fullwood
5,523,028	\mathbf{A}	6/1996	Reens et al.
5,651,502	\mathbf{A}	7/1997	Edwards
5,867,977	\mathbf{A}	2/1999	Zachary et al.
5,930,990	\mathbf{A}	8/1999	Zachary et al.
6,007,604	\mathbf{A}	12/1999	Risse
6,051,055	\mathbf{A}	4/2000	Ukawa et al.
6,076,739	\mathbf{A}	6/2000	Littleford et al.
6,230,091	B1	5/2001	McQuinn
6,344,177	B1	2/2002	Littleford
6,613,133	B2	9/2003	Piaskowski
6,719,829	B1	4/2004	Schwab

6,857,268	B2	2/2005	Stinger et al.
D503,772	S		Mody et al.
6,946,021	B2	9/2005	Aoyagi
7,096,665	B2	8/2006	Stinger et al.
D588,711	S	3/2009	Ryba
D616,110	S	5/2010	Rimsky

OTHER PUBLICATIONS

Jolly, Sanjeev; Wet Compression—A Powerful Means of Enhancing Combustion Turbine Capacity; Presented at Power-Gen International; Dec. 2002; pp. 1-12; Florida, US.

Gajjar, Hemant; Chaker, Mustapha; Dighe, Ajay; Meher-Homji, Cyrus B.; Proceedings of ASME Turbo Expo 2003; Inlet Fogging for a 655 MW Combined Cycle Power Plant-Design, Implementation and Operation Experience; Jun. 2003; pp. 1-9; Georgia, US.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6