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ASYNCHRONOUS MAPPING OF
HOT-PLUGGED DEVICE ASSOCIATED
WITH VIRTUAL MACHINE

TECHNICAL FIELD

The present disclosure 1s generally related to virtualized
computer systems, and 1s more specifically related to sys-
tems and methods for facilitating Direct Memory Access

(DMA) operations.

BACKGROUND

Virtualization may be viewed as abstraction of some
physical components into logical objects in order to allow
running various software modules, for example, multiple
operating systems, concurrently and 1n 1solation from other
soltware modules, on one or more interconnected physical
computer systems. Virtualization allows, for example, con-
solidating multiple physical servers into one physical server
running multiple virtual machines 1 order to improve the
hardware utilization rate. Virtualization may be achieved by
running a software layer, often referred to as “hypervisor,”
above the hardware and below the virtual machines. A
hypervisor may run directly on the server hardware without
an operating system beneath 1t or as an application running
under a traditional operating system. A hypervisor may
abstract the physical layer and present this abstraction to
virtual machines to use, by providing interfaces between the
underlying hardware and virtual devices of virtual machines.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s 1llustrated by way of examples,
and not by way of limitation, and may be more fully
understood with references to the following detailed descrip-
tion when considered 1n connection with the figures, in
which:

FIG. 1 depicts a high-level component diagram of an
example computer system implementing the methods for
asynchronous mapping of a hot-plugged I/O device associ-
ated with a virtual machine, 1n accordance with one or more
aspects of the present disclosure;

FIG. 2 schematically illustrates an example of guest I/O
table, 1n accordance with one or more aspects of the present
disclosure.

FIG. 3 depicts a flow diagram of a method for asynchro-
nous mapping of a hot-plugged 1/O device associated with a

virtual machine, 1n accordance with one or more aspects of
the present disclosure;

FIG. 4 depicts a tlow diagram of a method for asynchro-
nous removal of an I/O device associated with a virtual
machine, 1n accordance with one or more aspects of the
present disclosure; and

FIG. 5 depicts a block diagram of an example computer
system operating in accordance with one or more aspects of
the present disclosure.

DETAILED DESCRIPTION

Described herein are methods and systems for asynchro-
nous mapping of a hot-plugged 1/O device associated with a
virtual machine.

A host computer system may support a virtual memory
environment in which the memory space of a wvirtual
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2

machine may be divided into memory pages that may be
allocated 1n the host RAM and swapped to a backing storage
when necessary.

Direct Memory Access (DMA) herein refers to a method
allowing an I/O device to access the system memory
directly, while bypassing the central processing unit (CPU).
I/O devices that are capable of performing DMA 1include
disk drive controllers, graphics cards, network interface
cards, sound cards, etc. In certain implementations, the host
computer system may emulate DMA to allow virtual I/O
devices to access the guest memory directly, while bypass-
ing the guest central processing units (vCPUs). The guest
memory bufler associated with a DMA-capable 1/O device
should reside 1n a pinned host memory. Pinned memory page
herein refers to a memory page which cannot be relocated to
a different physical memory location (e.g., swapped to the
backing storage or relocated to a diflerent physical memory
page 1n the system memory).

A hypervisor running on the host computer system may
emulate a guest 1/O table (e.g., a guest IOMMU) to manage
address translations for DMA-enabled virtual I/O devices.
Each entry of the guest I/O table may map an I/O device
identifier (comprising an I/O bus identifier and a device
address) to a guest physical address of the memory buller
that has been allocated to the device by the guest operating
system. In various illustrative examples, each guest I/O table
entry may further comprise access permissions associated
with the memory butler.

In certain implementations, hot-plugging a physical I/O
device to a virtual machine or removal of a previously
assigned 1/0 device from a virtual machine may lead to a
stall 1n the virtual machine due to the overhead of the
hypervisor pinning (on hot-plug) or un-pinning (on removal)
the memory bufler associated with the I/O device and
initializing (on hot-plug) or destroying (on removal) the
IOMMU mapping associated with the I/O device. The
duration of the stall may be proportional to the size of the
memory butler and the overhead of the pinming and mapping
operations, which may approach, but never reach, zero.

Aspects of the present disclosure address the above noted
and other deficiencies by providing methods and systems for
asynchronous mapping of a hot-plugged I/O device associ-
ated with a virtual machine. In accordance with one or more
aspects of the present disclosure, the virtual machine stall
caused by hot-plugging or removal of I/O devices may be
climinated by implementing a multi-threaded model, 1n
which the memory pining and IOMMU mapping are per-
formed asynchronously with respect to the execution of the
virtual processors, so that the virtual machines may enjoy
continuous execution during these pinning and mapping
operations. On /O device hot-plugging, the I/O device
would only become visible to the virtual machine after the
completion of the memory pinming and IOMMU mapping
operations, which may be signaled to the hypervisor by the
respective threads. On I/O device removal, the I/O device
may be removed from the virtual machine, but would only
be released from the hypervisor upon receiving the comple-
tion notifications of the un-mapping and un-pinning threads.

Various aspects ol the above referenced methods and
systems are described in details herein below by way of
examples, rather than by way of limitation.

FIG. 1 depicts a high-level component diagram of an
illustrative example of a computer system 100 operating 1n
accordance with one or more aspects of the present disclo-
sure. Computer system 100 may include one or more pro-
cessors 120 communicatively coupled to memory devices
130 and input/output (I/O) devices 140 via a system bus 150.
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“Processor’” herein refers to a device capable of executing
instructions encoding arithmetic, logical, or I/O operations.
In one 1llustrative example, a processor may follow Von
Neumann architectural model and may include an arithmetic
logic umit (AL U), a control unit, and a plurality of registers.
In a further aspect, a processor may be a single core
processor which 1s typically capable of executing one
instruction at a time (or process a single pipeline of mstruc-
tions), or a multi-core processor which may simultaneously
execute multiple mstructions. In another aspect, a processor
may be implemented as a single integrated circuit, two or
more integrated circuits, or may be a component of a
multi-chip module (e.g., 1n which individual microprocessor
dies are included 1n a single integrated circuit package and
hence share a single socket). A processor may also be
referred to as a central processing unit (CPU). “Memory
device” herein refers to a volatile or non-volatile memory
device, such as RAM, ROM, EEPROM, or any other device
capable of storing data. “I/O device” herein refers to a
device capable of providing an interface between a proces-
sor and an external device capable of inputting and/or
outputting binary data.

Computer system 100 may run one or more virtual
machines 170A-170B, by executing a software layer 180,
often referred to as “hypervisor,” above the hardware and
below the virtual machines, as schematically illustrated by
FIG. 1. In one illustrative example, hypervisor 180 may be
a component ol operating system 1835 executed by host
computer system 100. Alternatively, hypervisor 180 may be
provided by an application running under host operating
system 185, or may run directly on host computer system
100 without an operating system beneath it. Hypervisor 180
may abstract the physical layer, including processors,
memory, and I/O devices, and present this abstraction to
virtual machines 170A-170B as virtual devices. A virtual
machine 170 may execute a guest operating system 196
which may utilize underlying wvirtual processors (also
referred to as virtual central processing umts (vCPUs)) 190,
virtual memory 192, and virtual I/O devices 194. One or
more applications 198A-198N may be running on a virtual
machine 170 under a guest operating system 196.

In various 1illustrative examples, processor virtualization
may be implemented by the hypervisor scheduling time slots
on one or more physical processors for a virtual machine,
rather than a virtual machine actually having a dedicated
physical processor. Device virtualization may be imple-
mented by intercepting virtual machine memory read/write
and/or mput/output (I/0) operations with respect to certain
memory and/or I/O port ranges, and by routing hardware
interrupts to a virtual machine associated with the corre-
sponding virtual device. Memory virtualization may be
implementing by a paging mechanism allocating the host
RAM to virtual machine memory pages and swapping the
memory pages to a backing storage when necessary. Com-
puter system 100 may support a virtual memory environ-
ment 1 which a virtual machine address space 1s simulated
with a smaller amount of the host random access memory
(RAM) and a backing storage (e.g., a file on a disk or a raw
storage device), thus allowing the host to over-commit the
memory. The virtual machine memory space may be divided
into memory pages which may be allocated in the host RAM
and swapped to the backing storage when necessary. The
guest operating system may maintain a page directory and a
set of page tables to keep track of the memory pages. When
a virtual machine attempts to access a memory page, 1t may
use the page directory and page tables to translate the virtual
address 1nto a physical address. If the page being accessed
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4

1s not currently 1n the host RAM, a page-fault exception may
be generated, responsive to which the host computer system
may read the page from the backing storage and continue
executing the virtual machine that caused the exception.

In certain implementations, the host computer system
may emulate Direct Memory Access (DMA) to allow virtual
I/O devices to access the guest memory directly, while
bypassing the guest central processing units (CPUs). A
hypervisor running on the host computer system may emu-
late a guest 1/O table (e.g., a guest IOMMU) to manage
address translations for DMA-enabled virtual I/O devices.
The guest IOMMU may map an 1/0O device identifier (com-
prising an I/O bus 1dentifier and a device address) to a guest
physical address of the memory bufler that has been allo-
cated to the device by the guest operating system.

Guest I/O table manager component 182 running on host
computer system 100 may perform various DMA functions
in accordance with one or more aspects ol the present
disclosure. In certain implementations, guest I/O table man-
ager component 182 may be implemented as a software
component invoked by hypervisor 180. Alternatively, func-
tions of guest I/O table manager component 182 may be
performed by hypervisor 180.

FIG. 2 schematically illustrates an example of guest 1/O
table, 1n accordance with one or more aspects of the present
disclosure. As schematically 1llustrated by FIG. 2, the hyper-
visor may allocate a plurality of memory pages 210A-210N
residing 1n the guest memory 213 to store a guest /O table
220. In an 1illustrative example, guest I/O table 220 may be
represented by an emulated IOMMU. Guest 1/0 tables may
comprise a plurality of I/O table entries 230A-230N. A guest
table entry 230 may map an I/O device i1dentifier 232 to a
guest physical address 234 of the builer associated with the
I/0O device. In certain implementations, I/O device 1dentifier
232 may comprise an 1/0O bus identifier and a device address
on the bus. In certain implementations, guest table entry 230
may further comprise access permissions 236 associated
with the memory bufler.

As noted herein above, hot-plugging a physical I/O device
to a virtual machine or removal of a previously assigned /O
device from a virtual machine may lead to a stall in the
virtual machine due to the overhead of the hypervisor
pinning (on hot-plug) or un-pinning (on removal) the
memory buller associated with the I/O device and initializ-
ing (on hot-plug) or destroying (on removal) the IOMMU
mapping associated with the I/O device. The duration of the
stall may be proportional to the size of the memory builer
and the overhead of the pinning and mapping operations,
which may approach, but never reach, zero.

In accordance with one or more aspects of the present
disclosure, the virtual machine stall caused by hot-plugging
or removal of I/O devices may be eliminated by implement-
ing a multi-threaded model, 1n which the memory pinning
and IOMMU mapping are performed asynchronously with
respect to the execution of the virtual processors, so that the
virtual machines may enjoy continuous execution during
these pinning and mapping operations.

In an illustrative example, one or more virtual processors
assigned to a virtual machine may be executed by a first
processing thread, while the memory pinmng and IOMMU
mapping operations may be performed asynchronously with
respect to executing the virtual processors, by a second
processing thread (in certain implementations, the memory
pinning and IOMMU mapping operations may be executed
by two separate processing threads). The respective process-
ing threads may be programmed to signal the completion of
the pinning and IOMMU mapping operations to the hyper-
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visor (e.g., via a signal, socket, pipe, shared memory, or any
other suitable means of inter-process communication).

On I/O device hot-plugging, the I/O device would only
become visible to the virtual machine after the completion of
the memory pinmng and IOMMU mapping operations,
which may be signaled to the hypervisor by the respective
processing threads performing the IOMMU mapping and
memory pinning.

On 1I/O device removal, the I/O device may be removed
from the virtual machine, but would only be released from
the hypervisor upon receiving the completion notifications
of the respective processing threads destroying the IOMMU
mapping and performing the memory un-pinning.

FIG. 3 depicts a flow diagram of one illustrative example
of method 300 for asynchronous mapping of a hot-plugged
I/O device associated with a virtual machine, 1n accordance
with one or more aspects of the present disclosure. Method
300 and/or each of its individual functions, routines, sub-
routines, or operations may be performed by one or more
processing devices of the computer system (e.g., host com-
puter system 100 of FIG. 1) implementing the method. In
certain 1mplementations, method 300 may be performed by
several processing threads, e.g., processing thread 302
executing a virtual processor associated with a virtual
machine, processing thread 304 performing IOMMU map-
ping and memory pinning operations, and processing thread
306 executing the hypervisor. In certain implementations,
IOMMU mapping and memory pinning operations may be
performed by two separate processing threads. Each pro-
cessing thread may execute one or more individual func-
tions, routines, subroutines, or operations of the method. In
certain 1implementations, the processing threads implement-
ing method 300 may be executed asynchronously with
respect to each other.

Processing thread 302 may execute a virtual processor
associated with a virtual machine running on a host com-
puter system, as schematically illustrated by block 310.

Processing thread 304 may perform IOMMU mapping
and memory pinning operations. At block 320, the process-
ing thread may 1nitialize a table entry of a guest input/output
(I/O) table associated with the virtual machine to map a
device identifier of the I/O device to a memory buller
associated with the I/O device. In certain implementations,
the guest I/O table may be represented by an emulated guest
IOMMU. The memory address may be represented by a
guest physical address within the address space of the virtual
machine. The I/O device identifier may comprise a bus
identifier and/or a device bus address, as described 1n more
details herein above.

At block 330, processing thread 304 may pin the memory
butler associated with the I/O device.

At block 340, processing thread 304 may signal (e.g., via
a signal, socket, pipe, shared memory, or any other suitable
means of inter-process communication) the completion of
the IOMMU mapping and memory pinning operations to
processing thread 306 executing the hypervisor.

Processing thread 306 may execute the hypervisor run-
ning on the host computer system. Responsive to receiving,
at block 350, a completion signal from processing thread
304, processing thread 306 may, at block 360, notily the
virtual machine of the I/O device being hot-plugged.

FI1G. 4 depicts a tlow diagram of one illustrative example
of method 400 for asynchronous removal of an I/O device
associated with a virtual machine, 1n accordance with one or
more aspects of the present disclosure. Method 400 and/or
each of its individual functions, routines, subroutines, or
operations may be performed by one or more processing
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6

devices of the computer system (e.g., host computer system
100 of FIG. 1) implementing the method. In certain imple-
mentations, method 400 may be performed by several pro-
cessing threads, e.g., processing thread 402 executing a
virtual processor associated with a virtual machine, process-
ing thread 404 performing IOMMU mapping and memory
pinning operations, and processing thread 406 executing the
hypervisor. In certain implementations, IOMMU mapping
and memory pinning operations may be performed by two
separate processing threads. Fach processing thread may
execute one or more 1individual functions, routines, subrou-
tines, or operations of the method. In certain implementa-
tions, the processing threads implementing method 400 may
be executed asynchronously with respect to each other.

Processing thread 402 may execute a virtual processor
associated with a virtual machine running on a host com-
puter system, as schematically illustrated by block 410.

Processing thread 404 may perform IOMMU mapping
and memory pinning operations. At block 420, the process-
ing thread may delete (or otherwise render non-functional)
a table entry of a guest mnput/output (I/0) table associated
with the virtual machine to map a device identifier of the I/O
device to a memory buller associated with the I/O device.

At block 430, processing thread 404 may un-pin the
memory bufler associated with the I/O device.

At block 440, processing thread 404 may signal (e.g., via
a signal, socket, pipe, shared memory, or any other suitable
means of 1nter-process communication) the completion of
the IOMMU mapping and memory pinning operations to
processing thread 406 executing the hypervisor.

Processing thread 406 may execute the hypervisor run-
ning on the host computer system. Responsive to receiving,
at block 450, a completion signal from processing thread
404, processing thread 406 may, at block 460, release the /O
device.

FIG. 5§ schematically illustrates a component diagram of
an example computer system 1000 which can perform any
one or more of the methods described herein. In various
illustrative examples, computer system 1000 may represent
host computer system 100 of FIG. 1.

Example computer system 1000 may be connected to
other computer systems 1n a LAN, an intranet, an extranet,
and/or the Internet. Computer system 1000 may operate 1n
the capacity of a server i a client-server network environ-
ment. Computer system 1000 may be a personal computer
(PC), a set-top box (STB), a server, a network router, switch
or bridge, or any device capable of executing a set of
istructions (sequential or otherwise) that specily actions to
be taken by that device. Further, while only a single example
computer system 1s 1illustrated, the term “computer” shall
also be taken to include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
discussed herein.

Example computer system 1000 may comprise a process-
ing device 1002 (also referred to as a processor or CPU), a
main memory 1004 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM), etc.), a static memory 1006
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory (e.g., a data storage device
1018), which may communicate with each other via a bus
1030.

Processing device 1002 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, process-
ing device 1002 may be a complex instruction set computing
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(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of 1nstruc-
tion sets. Processing device 1002 may also be one or more
special-purpose processing devices such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network
processor, or the like. In accordance with one or more
aspects of the present disclosure, processing device 1002
may be configured to execute guest I/O table manager
component 182 implementing method 300 for asynchronous
mapping of a hot-plugged I/O device associated with a
virtual machine and/or method 400 for asynchronous
removal of an I/0O device associated with a virtual machine.

Example computer system 1000 may further comprise a
network interface device 1008, which may be communica-
tively coupled to a network 1020. Example computer system
1000 may further comprise a video display 1010 (e.g., a
liquad crystal display (LCD), a touch screen, or a cathode ray
tube (CRT)), an alphanumeric mput device 1012 (e.g., a
keyboard), a cursor control device 1014 (e.g., a mouse), and
an acoustic signal generation device 1016 (e.g., a speaker).

Data storage device 1018 may include a computer-read-
able storage medium (or more specifically a non-transitory
computer-readable storage medium) 1028 on which 1s stored
one or more sets ol executable instructions 1026. In accor-
dance with one or more aspects of the present disclosure,
executable 1nstructions 1026 may comprise executable
istructions encoding various functions of guest I/O table
manager component 182 implementing method 300 for
asynchronous mapping of a hot-plugged I/O device associ-
ated with a virtual machine and/or method 400 for asyn-
chronous removal of an I/O device associated with a virtual
machine.

Executable mstructions 1026 may also reside, completely
or at least partially, within main memory 1004 and/or within
processing device 1002 during execution thereof by example
computer system 1000, main memory 1004 and processing
device 1002 also constituting computer-readable storage
media. Executable instructions 1026 may further be trans-
mitted or received over a network via network interface
device 1008.

While computer-readable storage medium 1028 1s shown
in FIG. § as a single medium, the term “computer-readable
storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of VM operating instructions. The term
“computer-readable storage medium™ shall also be taken to
include any medium that 1s capable of storing or encoding a
set of mstructions for execution by the machine that cause
the machine to perform any one or more ol the methods
described herein. The term “‘computer-readable storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

Some portions of the detailed descriptions above are
presented 1n terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most eflectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
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necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent Irom the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “1dentitying,” “determining,” “storing,” “adjusting,”
“causing,” “‘returning,” “‘comparing,” ‘“creating,” “stop-
ping,” “loading,” “copying,” “throwing,” “replacing,” “per-
forming,” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories 1mto other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

Examples of the present disclosure also relate to an
apparatus for performing the methods described herein. This
apparatus may be specially constructed for the required
purposes, or it may be a general purpose computer system
selectively programmed by a computer program stored in
the computer system. Such a computer program may be
stored 1n a computer readable storage medium, such as, but
not limited to, any type of disk including optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic disk storage media, optical storage
media, flash memory devices, other type of machine-acces-
sible storage media, or any type of media suitable for storing
clectronic instructions, each coupled to a computer system
bus.

The methods and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear as set forth 1n the
description below. In addition, the scope of the present
disclosure 1s not limited to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the present disclosure.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
implementation examples will be apparent to those of skill
in the art upon reading and understanding the above descrip-
tion. Although the present disclosure describes specific
examples, 1t will be recognized that the systems and methods
of the present disclosure are not limited to the examples
described herein, but may be practiced with modifications
within the scope of the appended claims. Accordingly, the
specification and drawings are to be regarded i an illustra-

tive sense rather than a restrictive sense. The scope of the
present disclosure should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.
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What 1s claimed 1s:

1. A method, comprising:

executing, by a first processing thread running on a host

computer system, a virtual processor associated with a
virtual machine;

initializing, by a second processing thread, a table entry of

a guest mput/output (I/0) table associated with the
virtual machine to map a device identifier of an I/0
device to a memory bufler associated with the 1/O
device;

responsive to detecting hot-plugging of the I/O device,

pinning the memory bufler associated with the 1/O
device; and

responsive to receiving, by a hypervisor running on the

host computer system, a completion signal from the
second processing thread, notifying the virtual machine
of the I/O device being hot-plugged.

2. The method of claim 1, wherein pinning the memory
butler 1s performed by the second processing thread.

3. The method of claim 1, wherein pinming the memory
builer 1s performed by a third processing thread.

4. The method of claim 1, wherein the I/O device 1s
represented by a physical I/O device associated with the
virtual machine.

5. The method of claim 1, wherein the {first processing
thread 1s executed asynchronously with respect to the second
processing thread.

6. The method of claim 1, wherein the I/O table 1s
represented by an Input/Output Memory Management Unit
(IOMMU) table.

7. The method of claim 1, wherein the I/O device 1den-
tifier comprises at least one of a bus identifier or a bus
address.

8. The method of claim 1, further comprising:

deleting, by a third processing thread, the table entry

mapping the device identifier of the I/O device to the
memory bufler associated with the I/O device;

un-pinning the memory bufler associated with the 1/O

device;

responsive to recerving a completion signal from the third

processing thread, releasing the I/O device from the
hypervisor.

9. A system comprising:

a memory; and

a processing device, operatively coupled to the memory,

to:

execute, by a first processing thread runming on a host
computer system, a virtual processor associated with
a virtual machine;

initialize, by a second processing thread, a table entry
of a guest I/O table mapping a device identifier of an

I/0 device to a memory bufler associated with the
[/O device;
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responsive to detecting hot-plugging of the 1/0O device,
pin the memory bufler associated with the /O
device; and

responsive 1o receiving, by a hypervisor running on the
host computer system, a completion signal from the
second processing thread, notify the virtual machine
of the IO device being hot-plugged.

10. The system of claim 9, wherein the I/O device 1s
represented by a physical I/O device associated with the
virtual machine.

11. The system of claim 9, wherein the first processing
thread 1s executed asynchronously with respect to the second
processing thread.

12. The system of claim 9, wherein the I/O table 1s

represented by an Input/Output Memory Management Unit
(IOMMU) table.

13. The system of claim 9, wheremn the /O device
identifier comprises at least one of a bus 1dentifier or a bus
address.

14. A computer-readable non-transitory storage medium
comprising executable instructions to cause a processing
device to:

execute, by a first processing thread running on a host

computer system, a virtual processor associated with a
virtual machine;

imitialize, by a second processing thread, a table entry of

a guest mput/output (I/0O) table mapping a device
identifier of an I/O device to a memory buller associ-
ated with the I/O device;

responsive to detecting hot-plugging of the I/O device,

pin the memory bufler associated with the I/O device;
and

responsive to receiving, by a hypervisor running on the

host computer system, a completion signal from the
second processing thread, notify the virtual machine of
the I/O device being hot-plugged.

15. The computer-readable non-transitory storage
medium of claim 14, wherein the I/O device 1s represented
by a physical IO device associated with the virtual machine.

16. The computer-readable non-transitory storage
medium of claim 14, wherein the first processing thread 1s
executed asynchronously with respect to the second pro-
cessing thread.

17. The computer-readable non-transitory storage
medium of claim 14, wherein the 1/0 table 1s represented by
an Input/Output Memory Management Unit (IOMMU)
table.

18. The computer-readable non-transitory storage
medium of claim 14, wherein the /O device identifier
comprises at least one of a bus 1dentifier or a bus address.
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