US009986020B2

a2y United States Patent (10) Patent No.: US 9,986,020 B2

Yunten 45) Date of Patent: May 29, 2018
(54) YUNTEN’S WEB APPLICATION (56) References Cited
METHODOLOGY AND WEB _ﬁ
PROGRAMMING LANGUAGE (YWAM AND u.5. PALENT DOCUMENIS
WPL) 8356.100 B2* 1/2013 ZhU wovveoeooeonn HO4I, 67/02
. o 709/203
(71) Applicant: Tamer Yunten, Christiansburg, VA 9,350,763 B1* 5/2016 McHughcooo........ HO4L. 65/00
(US) 2010/0281107 ALl* 11/2010 Fallows eoeveeevvvivnnn. GOG6F 9/54
709/203
(72) Inventor: Tamer Yunten, Chris‘[iansburgj VA 2012/00096116 A1* 4/2012 Mislove HO0O4I. 67/2814
(US) 709/217
2012/0324358 AL* 12/2012 JOOSte oevevomosoi GO6F 9/54
X . - . - 715/733
(*) Notice: Subject to any disclaimer, the term of this 2013/0097239 AL* 4/2013 BrOWN eeoveooeoorooeon H041, 67/02
patent 1s extended or adjusted under 35 209/204
U.S.C. 154(b) by O days. days. 2013/0290516 Al* 10/2013 Eaton GOGF 17/3089
709/224
(21) Appl. No.: 14/797,289 2013/0318148 Al* 11/2013 Atamel GO6F 17/3089
709/203
(22) Filed: Jul. 13, 2015 2014/0075486 Al* 3/2014 Wang HO4L, 67/2823
725/68

(65) Prior Publication Data
US 2016/0006795 Al Jan. 7, 2016

* cited by examiner

Primary Examiner — Daxin Wu

(57) ABSTRACT

L L This mnvention introduces a structured software engineering
(63) Contimuation of application No. 14/045,811, tiled on methodology for developing interactive network application

Oct. 4, 2013, now Pat. No. 9,116,706. systems that use a web browser as a user-dialog engine. The

methodology uses two server types: an Application Server
(51) Int. CI. for instantiating and executing an application instance 1in

Related U.S. Application Data

H04L 29/08 (2006'();‘) binary code, and an HTTP Server for delivering to the user’s

GO6F 9/44 (2018'0;*) browser the textual HTML+Javascript user-dialog docu-

HO4L 29/06 (2006.01) ments used by this application instance during its execution.
(52) U.S. Cl. An application 1s accessed by executing at the user’s

CPC HO4L 67/10 (2013.01); GO6F 8/34 browser an Application Instantiation Page (AIP) which 1s a

(2013.01); HO4L 67/42 (2013.01) part of this mvention. The methodology 1s built into a

(58) Field of Classification Search notational programming language.

None

See application file for complete search history. 39 Claims, 11 Drawing Sheets

:Spepr"“"’““” BROWSER SERVERS
1 HTTP Server
URL for Application Instantiation Page {AIP) Al

2 X
AlIP AlP |

Connect to Application Server :

ws= new websocket{ ”ws:serveris_urf& Application Server

WS.ONMessage; - LOOP: At‘.:ept néew user as below
- Listen and accept connection;
- Create Application Instance

/0pen the new thread window:
Newwin = openfDCdoc_uri);

and pass websocket connection.

Connect the new window to the OC thread: 5
Mewwin.ws = new websocket {“ws: DCLS uri®);

L
Application I
6 Instance

Thread

- .y
'F" ‘*-
=

Application =
user mm——————— : - Create DC Listening Socket (DCLS);
1 Conventional | - Compute & Construct DCLS_uri
dialogue : WWw : string “fPaddress:Port#”;
=== . - Send message via websocket:
' Any HTML Dialogue Page f </{DC>[DCLS_uri, DCdoc_uri] ;
* M Accept thread’s dialogue connection:
threadsocket = DCLS. accept{);
CONVENTIONAL W3C PART - Execute the application S5
shown as a triangle below:

APPLICATION MESSAGE PROCESSOR (AMP)

PART A B P e e

AMP messages for modifying
display

Application §5

Example instantiation and execution of a web application. ’a

U.S. Patent May 29, 2018 Sheet 1 of 11 US 9,986,020 B2

.2 4. HTTP Server
Dialogue document /A’pplicatiun HTML dialogue pages \
requested
by application
. e P
Application T
user S

T Application Server

\

Dialogue p

l l 3 T Application instance

7
NG Dialogue . Non-dialogue
dialogue
Browser <: _ w> functions*r"id & ~— Application
dialogue data 313 functions

/ N

N /

Figure 1. A high-level view of execution of a WEB application.

U.S. Patent May 29, 2018 Sheet 2 of 11 US 9,986,020 B2

HTTP Server
Dialogue document /Application HTML dialogue pages
requested
by application
by application |
Application) mu
user \ L J
Dialogue Functional
l I Lo AT Behavior
7 Stru:ture (FBS})
user input |
Browser Dialogue | Computation
% . ‘display messages Functions | Functions

Application Supervisory Structure

Figure 2 . Execution of a WEB Application Program constructed as a Supervisory Structure.

U.S. Patent May 29, 2018 Sheet 3 of 11

VAR

o

X

VARRE

S

US 9,986,020 B2

Figure 3. Supervisory structure composed of supervisory cells.

-

Supervisory Function

~\

<

\.

Supervised Flow Diagram

Figure 4. Supervisory cell of a supervisory structure.

U.S. Patent

Figure 5. An example supervisory cell and its SFD.

o

DC
function

May 29, 2018 Sheet 4 of 11
A
SFD for A
e az___
i SR
B —* C —>

Computation

function

@

Dialogue
function

(]

clientDC
function

Figure 6 . Function symbols of a WEB application program.

US 9,986,020 B2

@

//DC
function

U.S. Patent May 29, 2018 Sheet 5 of 11 US 9,986,020 B2

SYSTEM > Concurrent STRUCTUREs | STRUCTURE

{ || OR E vavavava : OR r‘
STRUCTURE —» * : |
i ; Nl

D » SFD of any combination of U Q O Q E
L b o e e e -
except any combination of only E [or only Q
L.

R
Q » Same as the expansion rule for Q above

ek ssle s sk .l

HE 4B BA O SE | -4

E E » SFD of any combination of E

Except SFD of only

» SFD of

» Code for Internal Code Block

Q 3 Code for place-holder dialogue function

Q ——p Code for place-holder clientDC function

Figure 7. The grammar for the notational language for application server programs.

U.S. Patent May 29, 2018 Sheet 6 of 11 US 9,986,020 B2

Lser
_ dialogue 7t
Hh"“-‘.,_ Window for the SS of function A.
/SFD for A Opens with the document for function
:_-_d_l._- - - g4 - A and communicates with dialogue
=] functions in the SS of function A (i.e.,
"‘"’ ""’@ the functions B, D, and F).
. e
/ : d2 d3 \
d1: T R . A d4
y ! | v :
E | ™ G User
\ dialogue (]
__SFD for C @ %
_f Window for the S5 of function H
Supervisory . Opens with document for function H
4 Structure and communicates with dialogue
for H functions in the SS of function H

{not shown).

Figure 8. An example graphical interactive application program.

U.S. Patent May 29, 2018 Sheet 7 of 11 US 9,986,020 B2

Application
user
- = == == == = -y
o www
R , [N
. | v
CONVENTIONAL W3C PART user inputs o
““ :*'; I"..H
|I|Ii!Ilr I:III.I'!
APPLICATION MESSAGE PROCESSOR {AMP) .
<//DC> [DCLS_uri, DCdoc_uri} | "-1
< e 'Ir" -!1‘,
<doc> [document_uri] , |
Message-event driven processing loop: N ;‘ |
. <window> [document_uri] ¢
socket.onmessage j \
{ . <data> [iSfunction_id, data] | ‘.H
Process message; f E‘x
} ; e <code> [{J5 codej]] eat ~
application |
ccloses | instance |
-+ j

[SR SRS A PR S PR SR EDr SV ELp S0 S U S S S PR A S g A S g M U g S S S Sy P SR S S S SR S S S S S P S P S S S S S S U g S S i S S R i P SR S S S S R S T S S

An Application Dialogue Document

.........

Figure 9. Dialogue document parts that communicate with an application instance.

U.S. Patent May 29, 2018 Sheet 8 of 11 US 9,986,020 B2

Application BROWSER SERVERS

o o user
1 HTTP Server
el — S _

URL for Application Instantiation Page (AIP)

AlP AlP

Connect to Application Server :
ws= new websocket{“ws:serverLS uriy.

Application Server

ws.onmessage: ——7—— LOOP: Accept new user as below
- Listen and accept connection;
- Create Application Instance

/Open the new thread window:
Newwin = open(DCdoc uri);

and pass websocket connection.

Connect the new window to the DC thread:
Newwin.ws = new websocket (“ws: DCLS uri”);

Application
Instance
Thread

Create DC Listening Socket (DCLS);

Compute & Construct DCLS uri

string “IPaddress:Port#”;

Send message via websocket:

Any HTML Dialogue Page <//DC>[DCLS uri, DCdoc uri] ;

Accept thread’s dialogue connection:

threadsocket = DCLS.accept(),

- Execute the application 5§

o o \ Application
~~/ user |m———————

dialogue !

CONVENTIONAL W3C PART

shown as a triangle below:

APPLICATION MESSAGE PROCESSOR (AMP)
PART

AMP messages for modifying
display

Application SS

Figure 10. Example instantiation and execution of a web application.
28

U.S. Patent May 29, 2018 Sheet 9 of 11 US 9,986,020 B2

{Jser
dialogue 7
.r’ "“-.__ \'
oo CTtee L Window for the SS of function A.

BEGIN \

Get
Websocket
Message

Send MSG to identified N
PIDO thread SR EEN @

SFD for A i /

Figure 11. An example non-blocking //DC function loop-operation serving three document PIDO’s.

U.S. Patent May 29, 2018 Sheet 10 of 11 US 9,986,020 B2

Client Machine Server Machine

Behavioral Structure

Y
computation

data |

m— e s AR S Bl nk el mnk sy EE En, S A% e Fal min dem wem pmy mge wew

Figure 12. Dual 5SS application architecture.

U.S. Patent May 29, 2018 Sheet 11 of 11 US 9,986,020 B2

Client Machine Server Machine

Interpreted client SS Javascript document Server SS instance in execution

JuirdinrdinnsAbhrdAsrdbhsndhsndR AR s AR diadAR sl nsd b AR Al R F AR N AN N EAN A
u

44

Functional Behavioral Structure

e e e

'-‘-
;
i
i
i
[
[
i
i
[
i
i
i
i
[

44

i
* |
E - - - - ‘ = — - :. l =
‘ Y B - = L i: . i
t c . I % ¥ B ;
I

E . ' : ;
it - ! 1 "
¥ - 1]
¥ a 1 j

= o <Y prmtaTmiaTaTaTm e T e TeTe =T A0 Tt T T T T T T T T

" LI L

| |

2 :

u ‘

u .

* .. N

..'.I_“" .,..* ."-
» *i
'- n
s,

Browser =4
window

A N

R Application

Figure 13, Execution of an application with Dual SS architecture.

US 9,986,020 B2

1

YUNTEN’S WEB APPLICATION
METHODOLOGY AND WEB

PROGRAMMING LANGUAGE (YWAM AND
WPL)

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/045,811, filed on Oct. 4, 2013, which claims

the benefit of U.S. Provisional Application No. 61/795,065
filed on Oct. 9, 2012.

Currently, there 1s not a comprehensive solftware engi-
neering methodology for developing web applications. Most
developers use ad-hoc approaches to application develop-
ment and 1gnore the structured life-cycle based approaches
of the software engineering discipline. For example, Micro-
soit’s ASPNET MVC recommends an application develop-
ment technique called “scaflolding” for initially “generating,
a basic outline of your software that you can then edit and
customize”, and Microsoft MVC documentation comments
on scatfolding as: “It saves you from the trauma of looking
at a blank page and having no i1dea where to start!” This
statement alone shows that developing a web application
without an effective methodology may be a traumatic expe-
rience even for skilled software developers. Also, scaflold-
ing may be an acceptable prototyping technique for small
web applications but certainly will not help 1n developing
large complex distributed applications such as multi-user-
type enterprise applications, and, 1s not necessarily the best
technique even for small web applications. Hence, a com-
prehensive methodology for developing web applications 1s
needed.

In addition, the root cause of ditliculties in most current
web-application development practices 1s using the stateless
HTTP document transter protocol as a means for interacting
with state-dependent computer-programs that utilize state-
dependent user dialogue. The consequences are: (a) sophis-
ticated and costly hacker-type approaches to application
development, (b) ad-hoc development, or (¢) cannot do it!
On the other hand, HTTP 1s very much liked and 1t is
everywhere, and all browsers use it. The solution then 1s: let
the browser use the HTTP simply to serve its original
purpose (1.¢., for transierring user-dialogue documents), but
let the browser use another channel for exchanging dialogue
data with a stand-alone separate application program that
manages 1ts own state, and let this application program
manipulate the contents of these dialogue documents
through the browser while the browser by 1ts nature (1.e.,
without even trying) preserves the state of the dialogue
documents that 1t renders. This 1s exactly what YWAM of
this invention does—it builds web application programs that
implement the above-said operational model by using two
different server types: HI'TP server(s) and Application Serv-
er(s). This invention also integrates said methodology into a
notational programming language specifically designed for
developing web application systems.

SUMMARY OF THE INVENTION

The Yunten’s Web Application Methodology (Y WAM)
develops interactive web application programs that use a
web browser as a user-dialogue engine. FIG. 1 shows a
high-level view of the execution of a web application
developed by YWAM. As FIG. 1 shows, a client web
browser interacts with two separate server types: Applica-
tion Server 1 for mstantiating an application instance 3, and
HTTP Server 2 for delivering to the browser 4 the dialogue
documents used by this application instance during its
execution. These two servers can be in the same network

10

15

20

25

30

35

40

45

50

55

60

65

2

machine or in different machines. When they are both on a
user’s personal computer, an application program becomes
a PC program using the web browser as a GUI

FIG. 1 1s a generic operational view and a web application
can also utilize a plurality of HT'TP servers and a plurality
of said application servers. This generic dual-server-type
application program architecture illustrated 1n FIG. 1 will be
referred to as Yunten’s Web Application Program Architec-
ture (YWAPA). Throughout this specification, the terms
“YWAM application” and “YWAM application program”™
refer to a web application program developed by using this
YWAPA.

FIG. 1 shows that the dialogue functions of application
program 3 are separated from the rest of the application
program. Contrary to conventional practice, the dialogue
functions of a YWAM application program do not directly
communicate with the user; they communicate with the user
indirectly through the browser dialogue documents retrieved
from the HTTP server 2. The dialogue functions send
application-to-user data to the browser dialogue documents
and recerve user-to-application data from the browser dia-
logue documents. In the embodiment presented in this
description, the browser documents and the application
dialogue functions communicate through websocket con-
nection(s). For each direction of data flow, the dialogue
functions also transparently perform the required translation
between “text data” used by browser documents and the
“binary data” used by the application instance. The dialogue
functions also manage the form and content of the browser
display via the messages that they send to the browser
documents.

The browser dialogue documents served by an HTTP
server are text documents written 1n HTML and a scripting
language such as Javascript. On the other hand, the appli-
cation programs hosted and instantiated by an application
server can be written 1n any programming language based on
the object oriented paradigm and/or a conventional func-
tional decomposition approach. Typically, just like 1n con-
ventional program development process, the source code for
an application program i1s developed and compiled nto
binary machine language code, instantiated by the applica-
tion server, and executed 1n binary machine code. However,
if desired, an application program can also be written 1n an
interpreted language. It should be obvious to the reader that
Y WAM can develop a large spectrum of web applications by
using a casual operating system and may not require spe-
cialized platforms to support web application development.

It 1s important to see that the application instance 3 1n FIG.
1 does not contain any HITML code or markup language
code. When the application uses a web browser as a user-
dialogue engine as 1n this description, the dialogue functions
serve as dialogue placeholders 1n the application program
structure and serve as a bridge between the application and
the web browser documents that implement the actual user
dialogue. It must also be noted that an application-program
hosted at an application server may be a stand-alone pro-
gram whose dialogue functions can be implemented using
any user interface technology. With such applications,
because application functionality 1s totally independent of
and knows nothing about HI'TP, HTML, and related script-
ing languages, the developer of a web-application who 1s not
involved 1n user-dialogue design does not need to know
these technologies.

A user accesses a Y WAPA application via executing at
his/her browser an Application Instantiation Page (AIP)
retrieved from a HTTP server. An AIP 1s also called Service

US 9,986,020 B2

3

Access Page (SAP) and these two terms are used inter-
changeably throughout this specification.
The AIP knows (or finds out) the URL of the application

server listening socket 1t will connect to. The AIP connects
to the application server which 1n response instantiates (e.g.,
at the server machine) an interactive program instance. This
program 1nstance and AIP together open at the client
machine the user’s 1nterface to said program instance. This
program 1nstance can be the totality of the application
program or 1t can be a part of the application program. The
application server on the other hand can be a very simple
program loop listening for AIP connection requests and
creating a running copy of said interactive program instance
for each connection request.

Any developer can install and serve an application on any
network machine(s), even on his/her own PC, and an appli-
cation 1s free to use any HI'ML document 1n any machine(s)
in the world accessible by a browser. Publishing an appli-
cation then 1s simply publishing the URL of 1its AIP.

A YWAM application-program instance can run at the
application server machine, 1t can run at the client machine,
or iI the dual-program architecture described later in the
detailed description below 1s used, 1t can simultaneously run
at both the client and the server machines. If the developer
wishes, he/she can develop an application as a mix of the
YWAM’s program architecture and current W3C technolo-
gies.

Separating the stateless HI'TP protocol from application
design also opens the doors for application design via
established disciplined software engineering practices and
methodologies rich with features for developing high quality
software. The detailed YWAM embodiment in the descrip-
tion below extends with the concepts outlined above the
“SUPERvisory Methodology And Notation (SUPERMAN)
tor Developing Human-Computer Systems”. (SUPERMAN
1s the inventor’s doctoral dissertation—see references: 1, 2).

BRIEF DESCRIPTION OF THE DRAWINGS

Following 1s the list of figures used 1n this description:

FIG. 1. A high-level view of execution of a WEB appli-
cation.

FIG. 2. Execution of a WEB Application Program con-
structed as a Supervisory Structure.

FIG. 3. Supervisory structure composed of supervisory
cells.

FIG. 4. Supervisory cell of a supervisory structure.

FIG. 5. An example supervisory cell and 1ts SFD.

FIG. 6. Function symbols of a WEB application program.

FIG. 7. The grammar for the notational language for
application server programs.

FIG. 8. An example graphical interactive application
program.

FIG. 9. Dialogue document parts that communicate with
an application instance.

FIG. 10. Example mnstantiation and execution ol a web
application.

FIG. 11. An example non-blocking //DC function loop-
operation serving three document PIDO’s.

FIG. 12. Dual SS application architecture.

FIG. 13. Execution of an application with Dual SS
architecture.

DETAILED DESCRIPTION

The detalled YWAM embodiment presented in this
description extends SUPERvisory Methodology And Nota-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion (SUPERMAN) for Developing Human-Computer Sys-
tems [1, 2]. As such, YWAM inherits a full lifecycle meth-
odology built mto a Graphical Programming Language
(GPL). For clarity of presentation, this description will also
utilize the GPL notation which will be briefly described
below. Other embodiments of the invention will be apparent
to those skilled in the art from consideration of the speci-
fication and practice of the invention disclosed herein. The
specification and examples are as exemplary only, with a
true scope and spirit of the invention being indicated by the
claims submitted with this description.

For clarity of presentation, the remainder of this descrip-
tion 1s divided into the following subsections:

Application Program Structure;

Browser-Document Structure and Dialogue Data Flow;

Application Instantiation Page (AIP);

Details of Creating and Executing an Application;

Accessing an Application within an Application With

Parameter Passing User Friendly Responsiveness;

Scalability For Serving Large User Population;
Function Allocation Between the Client and the Server:;
YWAM and MVC(C:;
Publishing/Registering an Application;
YWAM’s Dual SS Architecture;
Wider Scope of the Invention Obvious to Persons of
Ordinary Skill in the Art;
REFERENCES.
Application Program Structure

FIG. 2 shows the execution of an application program
developed via this YWAM embodiment that inherits and

extends SUPERMAN. In FIG. 2, the generic application
structure 3 of FIG. 1 1s replaced with the interactive Super-
visory Structure (SS) 1 of the parent methodology. As
observed 1n FIG. 2, an SS 1s a tree structure consisting of a
Functional Behavior Structure (FBS), dialogue functions,
and computation functions. The FBS supervises the
sequencing of and data communication among the dialogue
and the computational functions, and the dialogue functions
communicate with the browser dialogue documents which 1n
turn communicate with the user. The FBS part of an SS 1s
developed 1n the Requirements Specification phase of the
software lifecycle. The dialogue and computational struc-
tures of an SS are developed 1n the design phase of the
soltware lifecycle. It the developer develops the SS via the
graphical programming language of the methodology, the
whole SS 1s graphical code that 1s compiled 1nto executable
binary code. Hence, an application-program’s supervisory
structure 1ntegrates nto a single representation the products
of the Requirements Specification, Design, and Coding
phases of the software lifecyle and eliminates costly and
error-prone specification transformations through these
phases.

To fully understand this Y WAM embodiment, 1n addition
to the SS components brietly described 1n the above para-
graph, the reader needs to know some other parent meth-
odology characteristics inherited by this embodiment. These
are outlined 1n the following eight short paragraphs preced-
ing the paragraph that starts with “Dialogue function”. The
material discussed after that 1s new and 1s specific to Y WAM
(unless 1t 15 stated otherwise).

FIG. 3 shows that an interactive software program 1s
constructed as a tree structure of supervisory cells called a
Supervisory Structure (SS), and an application may be
composed of a plurality of communicating supervisory
structures.

FIG. 4 shows that a supervisory cell, the building block of
an SS, consists of a supervisory function (which specifies the

US 9,986,020 B2

S

function’s goal) and a Supervised Flow Diagram (SFD) that
specifies the operation of the supervisory function in achiev-
ing its goal.

FIG. 5 shows an example supervisory cell consisting of
the supervisory function A and a very simple SFD.

The SFD 1n FIG. 5 shows the procedure executed by the
supervisor A, and also shows both control flow and data
flow. The solid arrows 1n the SFD show the sequence 1n
which the supervisor A calls the functions B, C, and D. The
dashed arrows show the data that the supervisor receives
from the SFD functions (1.¢., d1 from B, d2 from C) and the
data that the supervisor passes to the SFD functions (1.e., d1

to C, d2 to D). The Graphical Programming Language
compiler of YWAM would translate this supervisory cell
nto:

Function A() {
B(out:d1);
C(in:d1; out:d2);
D(1n:d2);

}.

The example 1n FIG. 5 showed a typical supervisory cell
that corresponds to what 1s conventionally known as a
procedure, a method, or a function object. In a broader
context however, a supervisory function 1s a placeholder for
the designer’s mind, and the SFD 1s meant to represent the
operations the designer envisions in his/her mind. Hence,
this ability for notational representation of operations envi-
sioned by a designer makes possible the development of a
highly expressive graphical programming language. For
example, the notation for a function might indicate that the
function will execute asynchronously. Likewise, the nota-
tion for a function may imply that the function will do
certain things before executing its SFD and/or after execut-
ing its SFD.

A conventional (1.e., pre-WWW) 1nteractive-software
supervisory structure may contain three function types:
Dialogue-Computation (DC), computation (C), and dialogue
(D). YWAM extends this list with new function types:
clientDC function, parallel DC (//DC) function. FIG. 6
shows the graphical symbols for these functions. These
functions types are discussed below.

Dialogue-Computation (DC) Function—

A DC function 1s an 1mteractive function performed by the
user and the computer together. It 1s a high-level software
function, the SFD of which may contain other lower-level
DC functions, dialogue functions, and computation func-
tions. A structure of DC function supervisory cells show the
functional cooperation of the user and the application
through abstract levels, and specily user requirements
through functional decomposition. As indicated 1n supervi-
sory structure 1 of FIG. 2, this upper portion of a supervisory
structure 1s called the Functional Behavioral Structure or
FBS. A conventional FBS 1s a tree structure of DC functions
the bottom of which 1s bounded by the calls to dialogue and
computational functions.

Computation Function—

This 1s a function which will perform only a computation.
A computation function cannot communicate with the user.
It can communicate with the DC functions of the FBS and/or
with the computation functions of the same or other super-
visory structures. Typically 1t receives its mputs from a DC
function that invokes it (e.g., calls 1t) and gives the compu-
tation results back to the same DC function or to another
computation function. Typically, in a client-server environ-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ment, the computation functions reside and execute at the
server machine. A computation function can be a supervi-
sory computation function or a worker computation func-
tion. The SFD of a supervisory computation function can
call lower-level supervisory and/or worker computation
functions. A worker computation function does not call any
other function but does some computation.

Dialogue Function—

In the eyes of an observer of a program’s supervisory
structure, this function provides for the communication
between the user and the application program (e.g., between
the user and the DC functions). However, because Y WAM
uses browser documents for user interaction, this SS func-
tion does not commumicate with the user. It serves as a
dialogue placeholder 1n the SS and it provides for dialogue
data tflow between 1ts supervisory function in the SS and a
browser document that performs the actual commumnication
with the user. In this embodiment, a dialogue function
communicates with the browser documents via websocket
messages. A dialogue function also performs data type
conversion for data exchanged with the browser documents.
Because Javascript 1s a typeless language and uses strings,
a dialogue function does type conversion for both data-tlow
directions (e.g., converts an application data of a given type
to a text string before sending to the browser, and converts
the text string data received from the browser to the corre-
sponding application data type before passing it to the
calling supervisor). A dialogue function can also perform
dialogue-related server-side-processing of dialogue data.
The SFD of a supervisory dialogue function can call lower-
level supervisory or worker dialogue functions.

clientDC Function—

This 1s a new function type specific to Y WAM. It has the
same semantics as a DC function but it runs at the client
machine. The main purpose of this function is to reduce the
work load of the server machine. This function type 1s used
for mteractive computations which can be performed at the
client machine without the need for external information. At
the serve machine however, just like a dialogue function,
this function 1s a placeholder in the application program
structure. When 1t 1s called at the server, this placeholder
version receives 1its input parameters form the caller, acti-
vates the actual function at the client machine, receives the
output parameters from the client machine, and passes them
to its caller at the server.

Parallel DC (//DC) Function—

This 1s a new DC function type specific to YWAM. An
example of this function 1s the top-most DC function of an
interactive SS object that executes (e.g., at the server) as a
thread (or a process). The dialogue functions of a //DC
function commumnicate with the user through this function’s
private user iterface (e.g., a browser window). A //DC
function can contain lower level //DC functions in 1ts
structure. During execution of an application, an encounter
of a //DC function results 1n creation of an executable thread
object whose entry point 1s the encountered //DC function.
The mtent of a //DC function 1s to execute i1ts own super-
visory structure but first 1t must create and connect to its
browser user interface. For this, it opens a listening socket
and sends to 1ts creator’s browser window a “//DC” message
that specifies this listening socket and also carries the
specification for the function’s browser user interface (e.g.,
window specs and the document URL—{for simplicity, this
document will assume that the browser user 1nterface for a
//DC function 1s a standard browser window). In response to
a //DC message, the creator’s browser window opens a new
window for the //DC function’s thread and connects this

US 9,986,020 B2

7

window to the thread via the thread’s listening socket. After
the socket connection 1s established, the //DC function
executes 1ts supervisory structure. The dialogue functions 1n
the SS of this function communicate with the documents of
this private window using this socket connection.

The reason a //DC function 1s named as such 1s that 1t 1s
a stand-alone execution unit and more than one of these
functions might be running in parallel (e.g., as a thread or a
process) while each one 1s communicating with 1ts own
private window on the display screen. Hence, the //DC
functions are used to provide the application user with
multiple concurrent interfaces (e.g., browser windows, wire-
less devices, etc.) that interact with corresponding concur-
rent application supervisory structures.

The SFDs 1n the SS of a //DC function can contain (and
hence create) other //DC functions. Each of these //DC
functions behave as described above (1.€., each one executes
as a thread and creates and communicates with 1ts own
private window).

The regular DC functions 1n the SS of //DC function are
for organizing the FBS part of the SS thorough abstract
levels of functional decomposition.

FIG. 7 shows the grammar for Y WAM’s notational Web
Programming Language (WPL) for speciiying the operation
of interactive server programs. The function expansion rules
in the grammar ensure that the system representation pre-
serves the semantics of the functions described above.
(Note: a dashed-line box represents a supervisory compu-
tation function, whereas a solid-line box represents a worker
computation function. Also, a box with two bottom lines 1s
called an Internal Code Block (ICB) and used to embed
textual code 1n an SFD—e¢.g., data declarations, assignment
statements, object creation, etc.).

It 1s mmportant to see that the totality of a program
structure dertved from the grammar of FIG. 7 1s binary code
that runs at the application server machine(s). During execu-
tion of this structure, the dialogue place-holder functions
and the clientDC place-holder functions of this structure
activate via websocket messages theiwr actual function
equivalents at the client machine. These place-holder tunc-
tions send their mput parameters to actual client functions
and receive their output parameters from these client func-
tions. Hence, although the tasks of these functions are
actually performed at the client machine, the program struc-
ture running at the server does not know this and would care
less. Hence, during development of the program structure at
the application server, these place-holder functions can also
be used as temporary stubs.

FIG. 8 contains an example supervisory structure that
conforms with the rules of the graphical grammar of FIG. 7.
In FIG. 8, functions “A” and “H” are //DC functions and the
SS of each of these functions executes as a thread (hence the
term ““parallel DC”). For example, the supervisory structure
of “A” consists of two supervisory cells and executes as a
thread. This thread creates its own private browser window
and the dialogue function of the SS (1.e, functions B,D,F)
communicate with the documents displayed in this private
window. Of course, these documents are provided by the
HTTP server(s) used by the application.

As FIG. 8 shows, the SS thread for function “H” 1s created
during execution of the SS of function “A”. The dialogue
functions of the thread for function “H” communicates with
the user via the private window of this thread. The window
of a //DC thread opens with a home document for the SS 1t
executes. However, during execution, the dialogue functions
of the thread can replace and/or modify this window’s
document as needed.

10

15

20

25

30

35

40

45

50

55

60

65

8

In FIG. 8, the creation of the thread for function “H” 1s
also an example of activation of an asynchronous non-
blocking concurrent function. Here, as its SFD shows, the
function “C” first calls functions “E” and “F” 1n sequence,
then creates the asynchronous concurrent thread for function
“H”, and continues with calling function “G”.

Following 1s a list of example Y WAM application struc-
tures 1n the order of 1increasing level of structural complex-
ity:

A single //DC function supervisory structure performing

simple computations and displays.

A program that starts executing as a //DC function struc-
ture and, as needed according to the logic flow of the
program, creates other //DC function-threads. When a
//DC function completes 1ts task (e.g., terminated by
the user), its thread and window and 1its connection to
the window die. If 1t needs to be recreated, both the
thread and 1ts window and 1ts socket connection are all
recreated.

A user interface that begins with multiple windows each
with 1ts own thread. (Example: An instrument control
panel 1n which each window controls a different instru-
ment).

An distributed enterprise system with multiple user types
(1.e., a system that identifies and authenticates the user
and 1instantiates the //DC function designed for the
identified user type).

Browser-Document Structure and Dialogue Data Flow

YWAM extends a conventional W3C browser document
with a new part called the Application Message Processor
(AMP). FI1G. 9 shows the two parts of a YWAM browser
document. The conventional W3C part 1, in addition to
performing all its well known standard activities, handles
the document-to-application data flow (i.e., the user iputs).
The programmer implements this document-to-application-
program data flow via Javascript functions that send this
data via the document’s websocket connection to the appli-
cation-program. The AMP 2 on the other hand 1s only for
handling the application-program-to-document data flow
that modifies the display. The AMP has access to a plurality
of built-in, programmed, or imported Javascript functions
that 1t uses 1 1implementing the display directives that 1t
receives 1n websocket messages sent by the application-
program. FIG. 9 includes a sample subset of these messages
on arrows flowing from the application instance 3 to AMP
2.

The AMP is event driven and the events processed by the
AMP are the websocket messages that come from an appli-
cation thread or application dialogue functions. An AMP
message consists ol a message type followed by the [mes-
sage body]. In FIG. 9, as the text on arrows that flow from
the application-program instance 3 to the AMP 2 show, some
message types are: “//DC”, “doc”, “window”, *“data”,
“code”, and “close”. The AMP processes these messages as
described below.

A //DC message 1s sent to the browser from a newly
created //DC thread (e.g., created by the application server
or created by an existing application thread). The message 1s
sent by the //DC root function of the new thread. A //DC root
function, before sending this message, first creates a listen-
ing socket to accept a forthcoming websocket connection
request from the browser, then 1t sends with a //DC message
the 1identity of this listening socket (1.e., DCLS_uri1) and the
URI of its home dialogue document (1.e., DCdoc_uri). The
message 1s sent to the browser window of the thread’s
creator. The receiving AMP processes a //DC message as
follows: 1t opens the new thread’s user-interface window

US 9,986,020 B2

9

with the new thread’s home document 1dentified 1n the //DC
message (e.g., via Javascript code: Newwin=open(DC-
doc_ur)), and connects this window to the new thread via
the thread’s listening socket identified 1n the //DC message
(e.g., via Javascript code: Newwin.ws=new websocket (“ws:
DCLS_ur1”);). After the websocket connection 1s set up, the
//DC function thread starts executing the program SS. Dur-
ing this execution, using the websocket connection estab-
lished above, the thread’s dialogue functions communicate
only with the documents 1n the thread’s dialogue window.

All other application messages 1n the figure (e.g., doc,
window, data, code, close) come to an AMP from the
dialogue functions of the SS of a thread. Upon receiving a
“doc” message, the AMP replaces the window document
with the document whose URL 1s specified in the message
(e.g., via Javascript code: location.replace(DCdoc_ur1)).
Upon recerving a “window” message, the AMP opens a new
window with the document specified 1n the message. The
“data” message brings the name of a Javascript function
which will modify the DOM and the display using the data
(if any) that comes as a part of the “data” message, and, the
AMP simply calls this function by passing to it the recerved
data. For the “code” message, the AMP executes the
Javascript code that comes with the message. The “close”
message simply directs the AMP to close the thread’s
window. It 1s important to state that the list of AMP
messages 1s open-ended and 1s not bounded by the messages
exemplified above. An example addition to the above list 1s
a “ping” message—a //DC Tunction can perodically send a
“ping” message to check 11 1ts window 1s still there (e.g., not
closed by the user).

As FIG. 9 shows, the user mputs are processed via the
conventional W3C part of a document. However, the
designer decides whether these user inputs are processed via
conventional W3C techniques or they are sent over the
window’s websocket to the Y WAPA application for process-
ing. When the latter option 1s used, document objects that
appear as web document hyperlinks are no longer HIML
hyperlinks but are user inputs that a document uses itself or
sends over the websocket to the application SS thread which
can use this dialogue data in a way 1t 1s programmed to do
s0. A YWAM dialogue document sends 1ts data via in-line
Javascript code or via event-driven Javascript code (e.g.,
sending FORM data to an application thread through a
websocket).

Application Instantiation Page (AIP)

As stated earlier in this description, a user accesses an
application or a service by executing at the browser an
Application Instantiation Page (AIP) which 1s also called a
Server Access Page (SAP). The main purpose of an AIP 1s
to connect a user to the application program/system and
open this program’s user interface. As mentioned earlier, the
use of an AIP results 1n instantiation of an interactive
application program instance (e.g., at the server machine)
and this interactive program instance and the AIP together
set up at the client machine the user’s mterface to said
interactive program instance. In some cases, this interactive
program 1nstance may be the totality of the application
served to the user by the application server (e.g., a text
editor). In some other cases, this interactive program
instance may be the user’s interaction interface to an already
up-and-running application system such as an enterprise
network system, an airline reservation system, a banking,
system, social networking system, etc. Yet, in some other
cases, this interactive program instance may serve as the
application’s front-end that authenticates the user and then
instantiates an iteractive program instance that matches the

10

15

20

25

30

35

40

45

50

55

60

65

10

user type. These user-type-specific interactive programs can
be instantiated by a central application server or there may
be a separate application server for each user-type.

An application can also offer a plurality of separate
services each with 1ts own entry function that will be
invoked as a thread or a process by the application server.
Each such service may be accessed via executing 1ts own
AIP. Hence, an application can have a plurality of SAPs (1.¢.,
AlPs) providing for service selection capability.

An AIP has the same Y WAM dialogue document structure
that F1G. 9 shows (1.e., it consists of a W3C part and an AMP
part). An AIP that does not interact with the user 1s invisible.

An AIP may or may not interact with the user. It 1t does,
such AIP interaction may include user authentication and
identifving the user’s role in the system (e.g., an adminis-
trator, an agent, a manager, etc.). While performing these
activities, the AIP may commumnicate with the application
SErver.

An AIP can open multiple parallel windows for an appli-
cation, and, 1f needed, it can open multiple parallel appli-
cations.

An AIP can be accessed via a hyperlink 1n a document, 1t
can be requested by an application 1n execution via a
document request it sends to the browser, or for applications
that do not want their AIPs accessible via above methods the
AIP can be 1n a portable storage device as a “.html” file
which can be opened and executed by the user.

ctails of Creating and Executing a Y WAM Application

FIG. 10 1s a detailed version of FIG. 1 and shows a

process of creating and executing an example application-
program 1nstance. FIG. 10 also contains an example AIP.
(Obviously setting up a websocket connection requires
compliance with the websocket protocol handshaking, etc.
For simplicity, the figure does not show these activities
which can be implemented via manual programming or
automatic code generation.)

The numbered arrows of FIG. 1 show the sequence of
events that takes place during this process. The strings typed
in 1talics represent sample program code or data that can be
utilized during these events and are included for program-

ming-oriented reader. These events are:

1. The application user clicks on an application hyperlink
that links to the application’s AIP stored at an HTTP
server. (Of course, the AIP 1s previously developed and
stored at the HITP server. This server may also store
other previously developed application dialogue docu-
ments).

. The browser receives the AIP and starts executing it.

. The AIP sends a connection request to the application

server (not to the HT'TP server) via creating a web-
socket object. This connection request 1s sent to the
listening socket of the application server (1.e., 1dentified
as serverLLS_ur1), the IP address and the port# of which
may be built into the AIP. The application server
accepts the connection, and handshakes with the
browser. At this point, the AIP becomes the application
server’s browser page, and the AMP of AIP 1s at
“waiting for websocket message” state.

4. The application server creates an application instance
as a child thread and passes to it his websocket con-
nection his browser page (i.e., to AIP).

5. The newly created child //DC thread creates a Listening
Socket (DCLS), constructs the “IPaddress:port#” URI
string for this listening socket, and sends to his parent’s
browser page a //DC message that contains this URI

o

(s

US 9,986,020 B2

11

string for the listening socket (e.g., called DCLS_ur1)
and the URI of the opening document for the thread
(e.g., called DCdoc_uri).

6. The browser page of the parent receives the child
thread’s //DC message, and opens a new dialogue 5
window for this //DC child thread (e.g., via Javascript
code: Newwin=open(‘DCdoc_ur1’)).

7. The same browser page of step 6 above starts the
websocket connection protocol for this new window
(e.g., via Javascript code: Newwin.ws=new websocket 10
(‘ws: DCLS_ur1’)). The child thread accepts the con-
nection request and identifies the connection as
“threadsocket” and handshakes with the browser. After
the handshake, the thread executes 1ts application code
(e.g., the supervisory structure shown as a triangle 1in 15
FIG. 10))

8. During the execution of the SS, all thread dialogue
functions use the “threadsocket” to communicate with
the documents 1n thread’s window, and any application
document loaded into this window uses the same 20
websocket connection to communicate with the appli-
cation thread that owns this window.

9. If and when the execution of the SS in the thread
encounters a //DC function, just like the application
server did 1n step 4 above, it creates a //DC thread for 25
the underlying SS and passes to it the connection to the
current browser page/window. Then, steps 5, 6, 7, and
8 above apply to the new thread.

FIG. 10 also shows that a dialogue HITML document may
also contain parts that talk to conventional WWW servers 30
while utilizing various W3C technologies (e.g., AJAX).
Hence, as mentioned before, a web application designer
using Y WAM can also utilize conventional W3C technolo-
gies as a part of his/her design.

The above protocol for creating and executing an appli- 35
cation 1nstance 1s based on the paradigm that a websocket 1s
a property of the window object and can be accessed as a
window property by all documents loaded 1nto the window.
However, some browsers may implement a websocket not as
a window property but as a document property. In this case, 40
cach dialogue HTML document has to setup its own web-
socket connection with the application. This can be achieved
by moditying the protocol of FIG. 10 as 1n the remainder of
this paragraph. Each //DC message sent by each thread, in
addition to containing the DCLS_unn and DCdoc_uri as 45
betfore, also contains the identifier of the //DC function
(denoted as DCid) that umiquely 1dentifies the thread. The
receiving instantiation page or AMP now stores DCLS_uri
in a sessionStorage associative array (named sessionStor-
age.DCLS_uris) accessible by DCid, and opens the new 50
thread window with DCdoc_uri. Then, the AMP of every
document loaded in this window first retrieves from ses-
sionStorage the DCLS_un for the thread, and uses 1t to
connect to the thread via a new websocket. Of course, each
time 1t sends a new-document message to the browser, the 55
sending thread should listen on 1ts DCLS for a forthcoming
websocket connection request.

An alternative approach to “websocket for each docu-
ment” approach of the above paragraph stores the websocket
of a thread-window 1n sessionStorage when the window 1s 60
first created. Then, using the DCid as the access key, the
thread’s documents can retrieve 1t and use it. This session-
Storage approach, unlike the “websocket for each docu-
ment” approach of the previous paragraph, does not require
websocket creation for every document of a thread. 65

Instead of directly connecting to browser documents, each
application instance may communicate with the browser

12

through a Websocket Relay Station (WRS) object. The
browser views the WRS as the application, and the appli-
cation views the WRS as the browser. The WRS relays the
data flow between the browser and the application. The
browser connects to a WRS via a websocket and an appli-
cation mstance thread connects to a WRS via a conventional
TCP socket. The advantage of using a WRS 1s that the WRS
encapsulates the websocket creation and management pro-
cess and hence simplifies the application code.

Accessing an Application within an Application with Param-
cter Passing

A user of an application-A document can mvoke a sepa-
rate application-B via an hyperlink 1n an application-A
document that retrieves and executes an AIP of application-
B. When this 1s done, the retrieved dialogue pages of
application-B become part of the same browser session
serving application-A. Hence, before invoking application
B, 1f application-A writes 1nto session store the data 1t wants
to pass, then after 1t 1s 1nstantiated, application-B browser
dialogue pages can read this data from the browser’s session
store. Of course, the designer of application-A can do this 1f
he knows what the parameter passing protocol 1s. One viable
method 1s using a string that lists parameters in [name,value]
pairs. Hence, the designer of application-B would then
publish a list of services with a Service Access Page (SAP)
for each service and a list of parameter-names for each
service.

An example use of this parameter communication fol-
lows: an e-mail that a vendor sends to a customer displays
the tracking number of a shipment as a hyperlink so that the
customer can examine the shipping status. The e-mail user’s
click action on this hyperlink stores this tracking number 1n
the browser’s session store and executes an AIP for the
tracking web service of the shipping company. The service
instance of the shipping company so instantiated reads the
tracking number from session store and displays for the user
a shipment status page for that tracking number.

It must be noted that although the discussion above
addressed data tlow from one application to another, the data
flow can be bidirectional (e.g., application-B above can pass
back data to application-A using the same session store).
User Friendly Responsiveness

User iriendly responsiveness 1s achieved by serving user
requests 1n parallel without blocking. Obviously, because
cach //DC function by defimition serves a separate parallel
window, each of these windows interact with the user in
parallel.

For further parallelism of intra-window user 1nteractions,
the supervisory cell for the //DC function of a window may
be designed to selectively process mtra-window user inputs
synchronously and/or asynchronously. In a program driven
by user-input events, being able to choose between synchro-
nous and asynchronous processing of user-inputs 1s 1mpor-
tant. This 1s because user-iriendly program behavior might
require synchronous sequencing of some functions, and
asynchronous processing of some user mputs may not
always be the best choice. For example, finalizing a hotel
reservation prior to finalizing an airline flight reservation
might not make much sense. Likewise, some mission spe-
cific systems might require strict sequencing of some system
functions. The graphical programming language of Y WAM
contains notation that identity synchronous and asynchro-
nous functions as well as the notation that identifies prece-
dence relationships to be realized while executing concur-
rent functions. Using this notation, one can specily an
event-driven //DC function behavior that properly sequences
the user-input events. Also, using this notation, the language

US 9,986,020 B2

13

compiler (a human or a program) or the interpreter generates
the appropriate “spawn”, “fork”, and “wait” instructions.

Another tool for in-document parallelism 1s the use of
Parallel Interactive Document Objects (PIDO) introduced
by this invention. A PIDO 1s a collection of HTML elements
in a dialogue document which interacts with 1ts own appli-
cation-server thread. A document can contain plurality of
PIDO’s each of which can interact with the user 1n parallel.
A PIDO definition 1n a document can be identified 1n one of
many ways including: (a) each element of a PIDO contains
the PIDO_identifier attribute; (b) the elements of a PIDO are
placed between “begin PIDO_identifier” and “end PIDO_i-
dentifier” statements; and (c¢) an iframe constitutes a PIDO.

FIG. 11 shows an example graphical application-server
code for a function named “A” serving a document with
three PIDO’s symbolically named as “C”, “D”, and “E”
whereas each PIDO interacts with a thread that has the same
identifier as 1ts own. In this example, the code for function
“A” 1s simply a non-blocking loop which gets a user mput
in a websocket message and passes it to the thread of PIDO
identified in the message. As the FIG. 11 notation shows,
cach PIDO thread is a concurrent DC function. Each such
function interacts with the user via manipulating its PIDO
definition via dialogue documents.

Scalability for Serving a Large User Population

When the user population i1s larger than what a single
server can handle, Y WAM uses multiple application servers.
Typically, one of these servers 1s a supervisory server that
keeps track of the number of users served by each of the
other worker servers. An AIP mitially connects to the
supervisory server, and the supervisory server either serves
the user itself or tells AIP to connect to another server that
it chooses—e.g., by sending to the AMP of the AIP a
CONNECT message that carries the URL of the application
server that it chooses. The AIP then connects to this server
(1.e., as 1n FIG. 10) and the user 1s served by the interactive
program 1nstance created by this server. Obviously, the
worker servers inform the supervisory server when their
users exit such that the supervisory server can keep track of
the user population on each of these servers.

The above paragraph defines a server structure consisting,
ol a supervisory server administering a set of worker servers.
However, just like a supervisory function can call a lower
level supervisory function, a supervisory server can redirect
the connection process described above to another supervi-
sory server 1n its domain. Then this latter server performs the
activity described in the above paragraph, and may also
repeat the activity described 1n this paragraph. Hence there
may be a network of hierarchically organized supervisory
Servers.

The scalability of Y WAM applications can be elevated via
currently available state-of-the-art techniques such as elimi-
nation of busy waiting and asynchronous programming of
functions. The graphical programming language of Y WAM
contains notation that identifies the functions that execute 1n
these modes.

Function Allocation Between the Client and the Server

If a DC structure can be executed on the client machine
(c.g., all i1ts computations can be done by the client
machine), the designer may decide to do this for this would
reduce the load on the application server. The program
notation identifies such DC functions and such a DC func-
tion structure can be automatically or manually translated
into javascript code and included in scripts accessible by the
AMP. When this 1s done for a DC function, that DC function
still preserves 1ts place 1n the application program structure
at the application server but only as a placeholder function

5

10

15

20

25

30

35

40

45

50

55

60

65

14

to ivoke the actual worker javascript function at the client
machine. When called at the application server, a place-
holder DC function would send to the AMP a message that
identifies the DC function script to execute. The same
placeholder DC function may also receive the execution
results (1f any) through 1ts websocket connection.

YWAM and MVC

It should be obvious by now that an interactive supervi-
sory structure of a //DC function directly maps mto MVC
components of the Object Oriented paradigm. This mapping
1s as: the FBS 1s the MVC controller, the set of computa-
tional functions called by the FBS 1s the model, and the set
of dialogue functions called by the FBS 1s the MVC view.
For example, for the //DC function A of FIG. 8, the con-
troller or the FBS consists of the functions A and C, the
MVC model consists of functions F and G, and the MVC
view 1ncludes the functions B, D, and F.

In reality, by providing for a tree structure of //DC
function supervisory structures, the YWAM’s notational
grammar also organizes a tree-structured MVC hierarchy (or
tree-structured MVC hierarchies that execute in parallel).
The SS of FIG. 8 1s an example of two MVC structures
whereas one creates the other one dynamically during
execution time (1.e., the MVC structure headed by function
A creates the MVC structure headed by function H).
Publishing/Registering an Application

AY WAM application 1s published by publishing the URL
of its AIP. This 1s accomplished by registering the [applica-
tion_id, AIP_URL] pair at a proprietary application direc-
tory site named as YwebAIP.com. This directory can be used
in a plurality of ways including;:

(a) A document designer can manually examine the directory
and extract the AIP URL that he/she wants to use as a
hyperlink 1 his/her document;

(b) Within a document, the URL string “YwebAIP.com/
application_i1d” can retrieve from YwebAIP.com a short
HTML document that contains a javascript statement that
retrieves and executes the AIP (e.g., window.location.assign
(“AIP_URL™)); or

(c) A document sends to YwebAIP.com the application_id
and YwebAIP.com retrieves the associated AIP and returns
it to the browser.

The advantage of using options “b” or “c” above over
option “a” 1s that the URL of the AIP 1s transparent to the
user/document designer. Hence, the owner of an AIP can
relocate the AIP with no need to inform the users of the AIP.

An alternative publishing/registering approach 1s to place
all application AIP’s 1n an HT'TP server (e.g., called AIPs-
erver.com) as HI'ML files and name these files with the
associated application identifiers. Then one can retrieve an
AIP simply by the URL string: “AlPserver.com/applicatio-
n_1d”. With this approach, publishing or registering an
application 1s simply uploading the application’s AIP to the
AIP server.

Yet another method for registering an application 1s by
using a top level JANA domain as the AIP_URL directory.
If this domain 1s called ““.app” for example, the in-document
address of an application would be “application_name.app”
and 1t would return the URL of the application’s AIP.
However, this method requires modifications to web brows-
ers for first retrieving the URL of the AIP and then retrieving
and executing the AIP.

Another method of accessing an application 1s by using a
portable external storage device that stores the AIP of an
application server as a .html file. Then, one can simply
execute this .html file on any client machine and starts using
an instance of the application.

US 9,986,020 B2

15

YWAM’s Dual SS Architecture

So far, this description covered a YWAM application
architecture 1 which an application instance runs at the
application server, and the dialogue HIML pages run at the
client machine. We shall refer to this architecture as mono-
SS architecture. As an alternative, FIG. 12 shows the dual-
SS architecture 1 which both the client and the server
identically execute the same Behavioral Structure (BS) part
of an SS. The BS at the client machine calls the actual

dialogue functions (denoted by the capital letter D 1n the
figure) for user interaction, and the BS at the server machine
calls the actual computation functions (denoted as C 1n the
figure) for server side computation. But each dialogue and
computation function, before it returns to its calling BS,
sends 1ts output data to 1ts same-1dentity placeholder func-
tion (1.e., ‘d’ for dialogue or ‘c’ for computation) called by
the BS 1n the other machine. A placeholder function has the
same name and parameters as 1ts actual function equivalent
that executes at the other side. All a placeholder function
does 1s to receive the output data of its actual-function
equivalent and return it to 1ts caller. Hence each BS receives
the 1dentical dialogue and computation results and exhibit
identical behavior, and neither one knows whether 1t 1s
running on the client or on the server machine.

The dual SS structures discussed above are transparent to
the application developer. The developer specifies a single
SS with no regard to what machine 1t will be running on. The
Y WAM compiler receives the application SS representation
as an input and generates the executable dual structures and
associated embedded protocol code as 1ts output. The com-
piler can be a computer program or can be a software
engineer who does manual compilation.

The dual SS architecture eliminates the need for remote
procedure calls. Also, the concept can be applied to more
than two machines such that each machine executes the
same common program structure whereas each machine
specific actual function sends 1ts output data to placeholder
functions 1n other machines. Likewise, all machines exhibit
the 1dentical behavior.

FIG. 13 shows one practical implementation of the dual
SS architecture. Here, the server SS 1 1s compiled binary-
code mstantiated as a thread by the application server and
the client SS 2 1s the Javascript equivalent of that server SS
which 1s retrieved from the HTTP server. As FIG. 13 shows,
the client SS establishes websocket connections both to the
browser and to the server SS. Both the server SS and the
client SS execute the same Behavioral Structure and use the
websocket 3 for data exchange between the actual and
placeholder dialogue and computational functions. The
actual dialogue functions are executed 1n the client SS 2 and
these functions talk to the HTTP dialogue pages 4 as
discussed before, through a websocket connection 3.

The implementation of the operation 1 FIG. 13 requires
that Javascript has listening socket tunctionality for facili-
tating establishment of the previously discussed websocket
connection between a browser window/document and the
client SS wntten 1 Javascript. In the absence of this
Javascript listening socket functionality, the socket connec-
tion and communication between the browser dialogue
documents and the client SS Javascript document can be
tacilitated through the browser’s sessionStorage.

Wider Scope of the Invention Obvious to Persons of Ordi-
nary Skill in the Art

Persons of ordinary skill in the art should conclude that
tollowing approaches stay within the scope of the mnvention
presented 1n this description.

10

15

20

25

30

35

40

45

50

55

60

65

16

Without departing from the scope of the mvention, while
keeping the role of the application server of Y WAM as 1t 1s,
one can replace the web browser with a more eflective
dialogue engine, one can replace the HIML with a more
expressive and more poweriul dialogue specification lan-
guage, and one can replace the HI'TP server with a dialogue
document server that can serve not only textual documents
but also executable binary dialogue code.

Furthermore, as stated earlier in this description, the AMP
messages presented here are exemplary only and can be
extended to include further functionality. One such example
functionality 1s storing (e.g., at an HI'TP server) and retriev-
ing the intermediate dialogue pages.

Again, for simplicity, this description excluded HTML
code from the application server. But when practical, a
dialogue function can generate HTML code and send it to a
document’s AMP for mserting into a document. This can be
done by an AMP message that specifies the message type as
“HTML” and carries the HIML code and 1ts place in DOM.
Hence, this 1s another example of expandability of the AMP
messages.

Although for simplicity of presentation, this description
used a separate user interface connection (e.g., a separate
websocket) for each application thread, the same commu-
nication capabilities can be achieved by multiplexing a
plurality of communication channels on a single websocket
connection. A message dispatcher that sits between the
parallel application components and their user interfaces can
manage this multiplexing. Obviously, replacing websockets
with regular TCP sockets when 1t 1s viable (e.g., 1n seli-
contained secure private networks) 1s another connection
setup strategy.

This description used graphical notation 1 identifying
various program function types. It should be obvious that the
same notational semantics can be represented by using
textual means (e.g., appending function type to a function’s
name, using a type specific color 1n a function’s name, etc.).

Obviously, software programs that will automate the use
of YWAM are within the scope of this invention. For
example, a graphical Web Programming Language compiler
can generate the application code associated with the nota-
tion used. An example for this 1s the automatic generation of
//DC thread code that interacts with the browser for setting
up the user interface and connecting to it. It should also be
obvious to persons skilled in the art that an interactive
application program running at the application server
includes run-time support software for providing robust
system behavior. This includes periodic “ping” messages
sent by the //DC function threads to check if their user
interfaces (e.g., windows) are still alive (i.e., not closed by
the user). If a thread’s interface 1s closed by the user, the
thread terminates 1tself.

It should also be obvious to those with ordinary skill 1in the
art that the YWAM concepts presented via the functional
decomposition embodiment of this description readily
applies to programs developed with the object oriented
paradigm. For example, when OO approach to system
development 1s used, the notational grammar rules of the
methodology shown 1 FIG. 7 may produce the following
classes:

a) a supervisory-structure class for each concurrently-

running system-level supervisory structure;

b) a Functional-Behavioral-Structure class for each con-

current 1nteractive supervisory structure;

¢) plurality of dialogue function classes—possibly one or

more such classes for each Functional Behavioral
Structure;

US 9,986,020 B2

17

d) plurality of computation function classes—possibly
one or more such classes for each Functional Behav-
1oral Structure; and

¢) Y WAM protocol classes for embedding into an appli-
cation the protocol activities such as interactive-thread-
object 1nstantiation and setting up the user-interface.

In the claims of this invention, a display-window 1s used

as a preferred embodiment for the user interface, but 1t
should be obvious to a person skilled in the art that a user
interface can contain plurality of devices and plurality of
interaction objects.

REFERENCES

[1] Yunten, Tamer., “A SUPERvisory Methodology And
Notation (SUPERMAN) for Human-Computer System
Development”, in Advances in Human-Computer Inter-
action, Volume 1 (Google eBook)—editor: H. Rex Hart-
son; pp 243-278.

[2] Yunten, Tamer., “A SUPERvisory Methodology And
Notation (SUPERMAN) for Human-Computer System

Development”, Ph.D. Dissertation, Virginia Tech Com-
puter Science Dept., 1985.

What 1s claimed 1s:

1. A method for providing stateful interactive web appli-
cations that run outside a web browser, the method com-
prising;:

executing, by a browser at a client machine, a browser

document hereon referred to as Application Instantia-
tion Page (AIP) configured to: (a) trigger starting of an
application program instance, and (b) establish via 1ts
AMP, 1 response to each websocket-connected user

interface request from the application program
instance, a websocket connection between a said-re-
quest identified Application Program Object (APO) and
a browser user interface, whereas request-identified-
APO types comprises an instantiated application pro-
gram object and also comprises any executable pro-
gram object dynamically created by the application
program during its execution, and whereas implemen-
tation choices for an APO comprises a thread and an
operating system process;

triggering, by the AIP, instantiation of an application
program instance having a websocket connection to the
AIP, wherein said triggering comprises sending an
“upgrade to websocket” HTTP request to an applica-
tion server hosting an application program automati-
cally and dynamically constructing one or more web-
socket-connection requests and sending them to a
browser, wherein a said websocket-connection request
triggers at a browser execution of the websocket con-
nection protocol for constructing a persistent bidirec-
tional TCP connection between a request identified
application program object (APO) and an application-
program user interface;

instantiating, by the application server, an mstance of the
application program as an APO that inherits the appli-
cation server’s HIMLS websocket connection with the
AIP, wherein the application program 1s free to use any
HTML document;

executing, for an APO requiring a websocket-connected
user interface, the steps for establishing a websocket-
connected user interface comprising:
(a) creating, by a dynamically constructed interactive

APOQO, a listening socket with a non-reserved port and
said listening socket’s URI;

10

15

20

25

30

35

40

45

50

55

60

65

18

(b) constructing, by the APO, a websocket-connection
request message carrying said listening-socket URI,
and a user-interface URI;

(c) sending, by the APO, said request message to an
in-execution browser document configured to
respond to said websocket-connection request mes-
sage;

(d) opening, by said in-execution browser document 1n
response to said request message, a user interiace
identified by said user-interface URI, and connecting,
said user interface to the APO wvia said listening-
socket URI; and

executing a stateful interaction between the instance of
the application program and the browser’s user inter-
face at the client machine; whereas a websocket con-
nection 1s a persistent bidirectional TCP connection and
other protocols that construct a persistent bidirectional
TCP connection are alternatives to the Internet Engi-
neering Task Force (IETF) websocket protocol.

2. The method of claim 1, wherein the AIP 1s loaded from

a non-transitory storage medium.

3. The method of claim 1, wherein the AIP 1s retrieved
from a HI'TP server.

4. The method of claim 3, wherein the application server
and the HT'TP server are located at different server machines
in a network.

5. The method of claim 3, wherein the application server
and a HT'TP dialogue document server are located at a same
server machine.

6. The method of claim 1, wherein the statetul interaction
further comprises: executing program logic based on stored
information and user input; and

reconfiguring user display, dynamically at execution time,
based on stored information and executed program
logic, wherein said reconfiguring comprises moditying
a part of a current display, and also comprises replacing
totality of a display based on program logic and stored
information.

7. The method of claim 1, wherein the browser document
1s written in HTML and a scripting language, and wherein
the application program i1s written 1n a programming lan-
guage.

8. The method of claim 1, wherein the AIP comprises a
browser document comprising;

a browser dialogue document configured to send user
input to the instance of the application program via a
websocket connection; and

an application message processor (AMP) configured to
receive data from the instance of the application pro-
gram via the websocket connection comprising appli-
cation program requests and also comprising data for
display at the user interface.

9. The method of claim 8, wherein the instance of the
application program includes one or more dialogue func-
tions configured to communicate with the browser document
and to translate between text data used by the browser
document and binary data used by the instance of the
application program.

10. The method of claim 1, wherein the application
program 1s a document free-application program which does
not contain and/or internally process or transmit 1ts browser
documents.

11. The method of claim 1, wherein a websocket connec-
tion multiplexes bidirectional data flow for one or more
PIDO’s wherein data flow for a PIDO 1s identified via a
PIDO identifier, whereas said i1dentifier 1s same as or maps
to the PIDO’s application-program thread identifier.

US 9,986,020 B2

19

12. The method of claim 1, wherein a websocket connec-
tion multiplexes bidirectional data flow between plurality of
concurrently running dynamically created application pro-
gram objects (APO’s) and their respective user interface
documents, wherein data flow for an APO 1s identified via an

APO i1dentifier whereas an APO 1dentifier 1s same as or maps

to the APO’s user-interface identifier thereby identifying a
virtual websocket connection within the actual websocket
connection, wherein, on the server machine side, a message-
dispatching function de-multiplexes incoming browser mes-
sages and dispatches them to destination APO’s, and
wherein, on the client machine side, AMP of said message-
dispatching function’s browser document de-multiplexes
and dispatches mncoming APO messages to destination user
interfaces.

13. The method of claim 12 wherein constructing a
multiplexed websocket connection between an APO and its
user interface comprises:

constructing, by the APO, a connection request message

carrying a connection identifier uniquely identifying
the APO and a user-interface URI;

sending, by the APO, said request message to an 1n-

execution browser document configured to respond to
said request message; and

opening by said browser document in response to said

request message, a user interface identified by said
user-interface URI, and connecting said user interface
to the APO wherein said connecting comprises logi-
cally connecting the user interface to the APO by
storing 1 browser memory a binding association
between said user-interface and said APO connection
identifier.

14. The method of claim 1, wherein a PIDO is connected
to 1ts associated interactive APO wvia a private websocket
connection, wherein said connection is established by an
AMP function processing a websocket-connection request
from said APO carrying a listening-socket URI.

15. The method of claim 1, wherein the method 1is
intermixed with a HT'TP request-response based application,
wherein said intermixing comprises executing AIP function-
ality within a browser document of an HTTP-based appli-
cation intermixing with the method, whereas said intermix-
ing also comprises a Yunten’s Web Application
Methodology (YWAM) dialogue document comprising an
AMP part 1nteract1ng with conventional WWW servers
while utilizing various Internet Engineering Task Force
(IETF) and W3C technologies.

16. The method of claim 1, wherein plurality of AIPs
provide for accessing plurality of application program ser-
vices, wherein each AIP 1s associated with one application
program service.

17. The method of claim 1, wherein a browser document
of a first application program started via a first AIP starts a
second application program via a second AIP.

18. The method of claim 1, wherein a browser document
opens multiple applications via calls to multiple AIP’s.

19. The method of claim 1, wherein the method 1s used to
transform an existing pre-web interactive application pro-
gram 1nto a web application program with a browser user
interface.

20. The method of claim 1, wherein the method 1s used to
create and use new browser capabilities via cooperation of
AMP and an application program, whereas such capability 1s
exemplified by implementation of PIDO’s, whereas such
capability 1s further exemplified by HTTP-independent
implementations for Server Sent Events (SSE) and

10

15

20

25

30

35

40

45

50

55

60

65

20

XmlHttpRequest functionalities via cooperation of an AMP
and a server-machine application program.

21. The method of claim 1 wherein the method constructs
no websocket connections other than the connection
between the AIP and the application program which 1s
constructed upon AIP’s “upgrade to websocket” HTTP
request to the application server, and wherein said web-
socket connection multiplexes one or more application-
program-requested connections each connecting a user inter-
face and an associated APO, and wherein the AIP dispatches
incoming application program messages to destination user
interface documents via its AMP and multiplexes outgoing
messages from these user interface documents 1n said web-
socket connection.

22. The method of claim 1 wherein embodiment alterna-
tives for one or more multiplexing websocket connections
comprise: (1) the application program’s websocket connec-
tion to the AIP constructed in response to AIP’s “upgrade to
websocket” HT'TP request, (11) one or more websocket
connections the construction of which are requested by the
application program from the browser, (111) a combination of

“1’ an above.

23. The method of claim 1 wherein the AIP 1s not a part
of an interactive web application program but i1s a stand-
alone utility page with functionality comprising starting an
application instance and providing for opening its web-
socket-connected user interface.

24. The method of claim 1 wherein a child APO inherits
a websocket connection constructed by its parent.

25. The method of claim 1, wherein a browser page opens
a user 1mnterface and connects to 1t a websocket connection to
an application program.

26. A method for constructing a websocket (WS) connec-
tion between a client-machine browser user mterface of a
web application program and an application program thread
encapsulating an interactive functionality of the web appli-
cation program, wherein the standard Internet Engineering
Task Force (IETF) WS connection protocol for constructing
said connection 1s triggered by the thread via a WS-connec-
tion-request message that it sends via a pre-existing TCP
connection to an m-execution browser document configured
to respond to said request by starting the WS connection
protocol using the information supplied by said message,
wherein said message supplies what the browser needs to
know for constructing the WS connection comprising, in
addition to a specification of the user interface the thread
requests, the URI string for a listening socket the thread
dynamically creates at execution time via an operating
system service that allocates the listening socket uniquely to
the thread, and wherein the thread listens on said socket for
a Torthcoming browser message that starts the WS connec-
tion protocol and wherein the thread completes the protocol
by interacting with the browser and whereby the browser
document code hides from an observer of the document the
value of the listening-socket’s URI, and further, because the
listening socket 1s directly assoc1ated by the thread through
the operating system, the listening socket intrinsically
implements the server-machine path information for the
application program functionality encapsulated 1n the
thread, and thereby the method eliminates the programming
cllort for explicitly specifying, in the document’s W3C-
specification compliant WS API code, the [IP address , port
number| values and path string for application program
functionality encapsulated 1n the thread, and further, at the
application program side of the connection, for a websocket
message 1s directly delivered via the operating system to the
thread the method eliminates programming efl

Gi ?3‘

ort for pro-

US 9,986,020 B2

21

cessing path information for delivering an mcoming web-
socket message to the thread, the method comprising

(a) creating, by the thread, a listening socket with a
non-reserved port and said listening socket’s URI;

(b) constructing, by the thread, a websocket-connection
request message carrying said listening-socket URI,
and a user-interface URI;

(c) sending, by the thread, said request message to an
in-execution browser document configured to respond
to said websocket-connection request message; and

(d) opening, by said in-execution browser document 1n
response to said request message, a user interface
identified by said user-interface URI and connecting
said user interface to the thread via said-listening-
socket URI;
whereas a said thread comprises a web application

program 1nstance instantiated by an application
server and also comprises an executable program
object dynamically created by the web application
program during its execution, whereas an operating
system process 1s an alternative to a said thread; and
whereas a websocket connection 1s a persistent bidi-
rectional TCP connection and other protocols that
construct a persistent bidirectional TCP connection
are alternatives to the Internet Engineering Task
Force (IETF) websocket protocol.

27. The method of claim 26, wherein the method connects
a thread to an in-execution browser document wherein the
connection request message either excludes a user-interface-
URI or carries a URI for the in-execution browser document.

28. The method of claim 26, wherein a websocket-
connection request message sent from a thread to a browser
includes a character-string 1dentifier that uniquely 1dentifies
the thread sending the message.

29. The method of claim 26, wherein a connection request
message, 1 addition to containing a listening socket uri
(LS_un) and a user interface uri, also contains a character-
string 1dentifier for said-thread-encapsulated application
program object sending the request, and wherein the receiv-
ing browser document stores 1 browser memory the asso-
ciation between the LS urt and the application program
object_identifier, and opens the new user interface using the
user_interface _uri, and thereon every document running in
said user interface upon request of said application program
object retrieves from browser memory the LS_un for the
application program object and uses said listening socket to
connect to the application program object via a new web-
socket connection.

30. A method for implementing structured interactive web
application programs wherein the method separates appli-
cation-program code that generates an application-pro-
gram’s functional behavior from HTML and Javascript code
that interacts with a user, the method comprising:

starting execution of, by a computer processor, an entry
function of an interactive application program wherein
said entry function 1s connected, via a websocket
connection, to a browser user-interface document con-
taining an application message processor (AMP) con-
figured to dynamically construct, 1n response to each
websocket-connected user interface request message
from the application program, a websocket connection
between a said-request-specified web-browser-imple-
mented user interface and a dynamically created inter-
active application program object (APO) submitting
said request;

executing, by the high-level entry function, a software
procedure comprising calls to any combination of one

10

15

20

25

30

35

40

45

50

55

60

65

22

or more DC functions, one or more //DC functions, one

or more dialogue (D) functions, and one or more

computational (C) functions, whereas said called func-

tions are lower level functions derived through func-
tional decomposition of the calling function 1 compli-
ance with the WPL grammar;

executing by a called DC function, 1f any, a software
procedure comprising function calls as described in
above “executing” activity;

creating and executing, for a called //DC function, 1f any,
a concurrent thread contaiming the //DC function,
wherein, first constructing the thread’s websocket-con-
nected user interface by sending to the browser an
interface-request message with a listening-socket URI
coupled with a user-interface URI programmatically
declared as a property of the //DC function; and next
executing via said //DC function in the thread a soft-
ware procedure comprising function calls as described
in above “executing’ activity, whereas an operating
system process 1s an alternative to said //DC function
thread:

recursively repeating above “executing by a called DC
function” and “creating and executing” activities
wherein said recursive repetition generates execution
paths of an application program with a tree structure of
function calls comprising DC and //DC functions as
nodes and comprising calls to D and C functions as
leaves, wherein said tree structured program, named
Functional Behavioral Structure (FBS), executes and
generates functional behavior of an application pro-
gram through levels of functional decomposition while
sequencing and executing D and C functions;

implementing, by D functions, commumnications between
the FBS and browser-executed user interface docu-
ments; and

implementing, by C functions, non-interactive computa-
tional functionality of the application program and
associated data communications with the FBS;

whereby, the above used software function types DC,

//DC, D, and C are defined as:

“DC” stands for Dialogue-Computation function which 1s
a high level interactive software function that manages
execution sequencing of and data communications

between dialogue and computation functions; every

DC function 1s a supervisory function;

“//DC” stands for a supervisory DC software function
concurrently running as a server thread or a process
which owns an asynchronous private window as its
user interface;

“C” stands for a computational soitware function which
can only perform or call computational functions and
has no user dialogue 1n 1ts underlying structure;

“D” stands for un application server software a dialogue
function whose activities include:

1) invoking a client-side AMP function via a websocket
message which carries the function’s iput param-
clers;,

11) recerving from a client machine websocket messages
carrying user mputs;

111) translating application data outgoing to a browser
into text and translating incoming browser textual
data into application data types and structures used
by the application program;

whereas, totality of a program tree structure composed of
function nodes for DC, //DC, C, and D functions is
called a Supervisory Structure (SS), whereas a dynami-
cally created APO comprises a thread and also com-

US 9,986,020 B2

23

prises an operating system process; whereas a web-
socket connection 1s a persistent bidirectional TCP
connection and other protocols that construct a persis-
tent bidirectional TCP connection are alternatives to the
Internet Engineering Task Force (IETF) websocket
protocol.

31. the method of claim 30, wherein the SS 1s capable of
being compiled into executable binary code according to the
SS grammar rules.

32. The method of claim 30, wherein a dialogue function
communicates with a browser user-interface document via
websocket messages, or a session store of a browser, or
inter-window messages.

33. The method of claim 30, wherein each SS of the
dual-SS architecture contains a same FBS and a particular
client machine and a server machine i a client-server
environment execute said same FBS.

34. The method of claim 33, wherein a supervisory
function at the client machine calls an actual dialogue
function and the actual dialogue function sends 1ts output
data to 1ts corresponding placeholder function at the server
machine.

35. The method of claim 33, wherein a supervisory
function at the server machine calls an actual computation
function and the actual computation function sends its
output data to 1ts corresponding placeholder function at the
client machine.

36. The method of claim 30, wherein the method 1s used
for program-controlled sequencing of dialogue documents,
and further used for program controlled sequencing of user
dialogue within a document.

37. The method of claim 30, wherein the method 1s used
for hiding internals of i1ts web pages behind an explicit
application behavior representation.

38. A method for providing interactive web applications
via dual-Supervisory Structure (SS) providing stateful inter-
active web applications, where a particular client machine
and a server machine in a client-server environment execute
a same Functional Behavioral Structure (FBS), the method
comprising;

executing, by a browser at a client machine, an Applica-

tion Instantiation Page (AIP) configuring parts of an
application program, wherein the AIP comprises a
browser document and the AIP 1s not a part of an
interactive web application program but 1s a utility
page;

triggering, by the AIP, instantiation of an application

program thread with a websocket connection to the
AIP, wherein said triggering comprises sending an
“upgrade to websocket” HTTP request to an applica-
tion server hosting the application program, and
wherein said request starts the HIMLS websocket

10

15

20

25

30

35

40

45

50

24

connection protocol which the AIP and the application
server complete via the protocol’s handshake and get
connected via a websocket connection;

instantiating, by the application server, a server-machine
instance ol the application program that inherits the
server’s HIMLS5 websocket connection with the AIP;

Sending to the AIP, by the server-machine instance of the
application program, a listeming socket URI;

downloading, by the AIP, into the client machine a
client-machine instance of the application program and
passing to 1t said listening socket URI;

starting, by the client-machine instance of the application
program, the HIMLS websocket connection protocol
using said listening socket URI and establishing a
websocket connection to the server-machine instance
of the application program:;

opening, by the AIP and the client-machine instance of the
application program, a user interface at the client
machine for interaction between the user and the FBS
of the client-machine instance of the application pro-
gram; and

executing the application-program’s FBS at both
machines in parallel wherein each actual dialogue
function of the FBS at the client machine sends 1ts
output data to 1ts corresponding FBS placeholder func-
tion at the server machine and each placeholder com-
putation function of the FBS at the client machine
receives 1ts output data from its corresponding FBS
actual function at the server machine, thereby both
FBS’s executing identically, whereas the FBS at the
client machine 1s executed by the browser or 1is
executed outside the browser by the host operating
system, whereas a websocket connection 1s a persistent
bidirectional TCP connection and other protocols that
construct a persistent bidirectional TCP connection are
alternatives to the Internet Engineering Task Force
(IETF) websocket protocol.

39. The method of claim 38, wherein the application-

program’s FBS runs only at a client machine, wherein:

(a) the “instantiating” operation instantiates a server-
machine SS program that receives a series of compu-
tational function calls from the client machine FBS
through a websocket connection and returns computa-
tion results to corresponding calling functions through
the websocket connection; and

(b) the “executing” operation replaces the dual FBS data
exchange mechanism of claim 38 with the client-
machine-FBS’s placeholder computational functions
remotely calling actual computational functions of the
server-machine SS program through the websocket
connection.

	Front Page
	Drawings
	Specification
	Claims

