US009984231B2

a2y United States Patent
Salajegheh et al.

US 9.984.231 B2
May 29, 2018

(10) Patent No.:
45) Date of Patent:

(54) DETECTING PROGRAM EVASION OF (56) References Cited
VIRTUAL MACHINES OR EMULATORS |
U.S. PATENT DOCUMENTS
(71) Applicant: QUALCOMM Incorporated, San 6,697,971 BL* 2/2004 DWYEr ooovvevvre.... GO6F 9/3824
Diego, CA (US) 711/E12.101
8,763,125 B1* 6/2014 Fengc.ooovvvvnnnennn GOO6F 21/56
: : 713/175
(72) Inventors: Mastqror.eh S:alajegheh, Santa Clara, 8.004.537 B2 122014 Turkulainen et al.
CA (US); Rajarshi Gupta, Sunnyvale, 0,104,870 BL* 8/2015 QU vovoovvrrrosrrrrr GOGF 21/563
CA (US); Nayeem Islam, Palo Alto, 0,294,486 B1* 3/2016 Chiangc.coc....... HO041. 63/14
CA (US) 9,355,246 B1* 5/2016 Wan GO6F 21/566
9,411,959 B2* 82016 Adams GO6F 21/56
_ 9413774 B1* 82016 Liucccooonnn.. HO4L 63/1416
(73) Assignee: QUALCOMM Incorporated, San 9,501,644 B2* 11/2016 Niemela GOGF 21/566
Diego, CA (US) 9,703,956 B1* 7/2017 Watson GO6F 21/562
(Continued)
(*) Notice: Subject to any disclaimer, the term of this _ N
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 66 days. WO 2013067505 Al 5/2013
(22) Filed: Nov. 11, 2015 Kang et al. “Emulating Emulation-Resistant Malware” [Online],
Nov. 9, 2009 [Retrieved on: Apr. 10, 2017], Retrieved from:
http://bitblaze.cs.berkeley.edu/ /'VMSec02-kang.pdf.*
(65) Prior Publication Data up:/bitblaze.cs-berkeley e((éloliil:i?je) Srertaep
US 2017/0132411 Al May 11, 2017 Primary Examiner — Eric W Shepperd
(74) Attorney, Agent, or Firm — Jae-Hee Choi; The
(51) Int. CL Marbury Law Group
GO6l’ 21/53 (2013.01) (57) ARSTRACT
GO6F 21756 (2013.01) Various embodiments include methods implemented on a
(52) U.S. Cl. computing device for analyzing a program executing within
CPC GOorF 21/53 (2013.01); GOGE 21/566 a virtual environment on the computing device. The methods
(2013.01); GO6F 222172105 (2013.01) may include determining whether the program 1s attempting
(58) Field of Classification Search to detect whether 1t 1s being executed within the virtual

CPC GO6F 21/00; GO6F 21/50; GO6F 21/52;
GO6F 21/53; GO6F 21/55; GO6F 21/554;

GO6F 21/56; GO6F 21/566; GO6F

2221/2149

See application file for complete search history.

environment, and analyzing the program within a protected
mode of the computing device 1n response to determining
that the program 1s attempting to detect whether it 1s being
executed within the virtual environment.

24 Claims, 6 Drawing Sheets

400

- 402

Analyze program exacuting within a virtual
environment on a computing device

Y

Monitar atiempted access by program to APl |.~— 404
properites of the virtuat environment

Y

-- 406

ls the program trying to Yeas
check whether it is being executed in

the virtual environment?

408

Continue analysis of program within the wiriual
gnvirgnment

A10

Terminate program and re-execute and
analyze within a protected mode of the
computing device

US 9,984,231 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0225655 Al1* 9/2011 Niemela GO6F 21/566
726/24
2013/0104234 Al* 4/2013 Northup GOOF 21/52
726/24
2014/0096250 Al* 4/2014 Belovcccccinnn, GO6F 21/566
726/23
2015/0067862 Al* 3/2015 Yu ..ccoovvvvnniiiiininnnn, HO4L 63/145
726/24
2015/0150131 Al* 5/2015 Boutnaru GO6F 21/567
726/23

2015/0161381 Al 6/2015 Sun et al.
2015/0372980 Al* 12/2015 Eyada HO4L 63/1441
726/1
2016/0080414 Al* 3/2016 Kolton HO4L 63/1491
726/23
2016/0212154 Al1* 7/2016 Bobrtsky GOO6F 21/56
2016/0357965 Al* 12/2016 Prowell GO6F 21/566
2016/0381042 Al* 12/2016 Zhang GO6N 99/005
726/24
2017/0243000 Al* 8/2017 Shraim GOOF 21/53

OTHER PUBLICATIONS

Ferrie, Peter, “Attacks on Virtual Machine Emulators” [Online],
2006, [Retrieved on: Apr. 10, 2017], In: AVAR Conference,
Auckland, Symantec Advanced Threat Research (2006), Retrieved
from: < http://1s1s.poly.edu/~aleksey/papers/
Virtual _Machine Threats.pdf >.*

Iindorfer et al. “Detecting Environment-Sensitive Malware”
[Online], Secure Systems Lab, Vienna University of Technology,

2011 [Retrieved on: Jan. 30, 2018], Retrieved from: < http://seclab.
tuwien.ac.at/papers/disarm_paper.pdf > (Year: 2011).*

Raffetseder et al. “Detecting System Emulators™ [Online], Secure
Systems Lab, Vienna University of Technology, 2007 [Retrieved on:
Jan. 30, 2018], Retrieved from: < file:///C:/Users/eshepperd/Docu-
ments/e-red%20Folder/14937949/1sc07_detection.pdf > (Year:
2007).*

Sun et al. “Malware Virtualization-Resistant Behavior Detection”
[Online], 2011 [Retrieved on: Jan. 30, 2018], IEEE 17th Interna-
tional Conference on Parallel and Distributed Systems, Retrieved
from: < http://1eeexplore.iece.org/stamp/stamp.
jsp?arnumber=6121379 > (Year: 2011).*

Lindorfer M., “Detecting Environment-Sensitive Malware,”
Matriculation No. 0626770, at the Faculty of Informatics, Vienna
University of Technology, Vienna, Apr. 11, 2011, 62 Pages.
Petsas T., et al., “Rage against the Virtual Machine: Hindering
Dynamic Analysis of Android Malware,” Proceedings of the Sev-
enth Furopean Workshop on System Security, 2014, pp. 1-6.
Wueest C., “Threats to Virtual Environments,” Symantec, Security
Response, Version 1.0—Aug. 12, 2014, 18 pages.

Balzarotti D., et al., “Efficient Detection of Split Personalities in
Malware”, May 1, 2015 (May 1, 2015), XP055324245, Retrieved
from the Internet: URL:https://web.archive.org/web/
20150501000000/http://www.1soc.org/1soc/conferences/ndss/ 10/
pdi/24.pdf [retrieved on Nov. 29, 2016]. Whole document—16
pages.

International Search Report and Written Opimmion—PCT/US2016/
056443—ISA/EPO—dated Dec. 8, 2016.

Kirat D., et al., “Open access to the Proceedings of the 23rd
USENIX Security Symposium 1s sponsored by US EN IX
BareCioud: Baremetal Analysis-based Evasive Malware Detection
BareCioud: Bare-metal Analysis-based Evasive Malware Detec-
tion”, LISA 17, Berkeley, CA, USA, Aug. 20, 2014, pp. 287-301,
XP055324257, ISBN: 978-1-931971-15-7 Retrieved from the Inter-
net: URL:https://www.usenix.org/system/files/conference/
usenixsecurity 14/sec 14-paper-kirat.pdf retrieved on Nov. 29, 2016].

* cited by examiner

U.S. Patent May 29, 2018 Sheet 1 of 6 US 9,984,231 B2

¢ 110

. , “"'“”’”’"" Protected Mode
Virtual Environment |

Operating System

FIG. 1

U.S. Patent

May 29, 2018

Sheet 2 of 6

US 9,984,231 B2

Operating System

204 —\

Virtual Environment

206 — .

Program

208

AP

FIG. 2

U.S. Patent May 29, 2018 Sheet 3 of 6 US 9,984,231 B2

.300"_‘;;

302— “ “
Operating System

304 — 310
Virtual Environment Frotected Mode

306 —

Program S R ﬁ > Program

FIG. 3

U.S. Patent May 29, 2018 Sheet 4 of 6 US 9,984,231 B2

~400

| 402
Analyze program executing within a virtual |

environment on a computing device

Monitor attempted access by program to API ****** 404
| properties of the virtual environment ﬁ

- 406

- Is the program frying fo ™~ Yes
' check whether it is being executed in >
- the vitual environment? __—~

N _

Continue analysis of program within the virtual '
environment

Terminate program and re-execute and
analyze within a protected mode of the
computing device

FIG. 4

U.S. Patent May 29, 2018 Sheet 5 of 6 US 9,984,231 B2

| 510

| — 520

US 9,984,231 B2

Sheet 6 of 6

May 29, 2018

U.S. Patent

FIG. 6

US 9,984,231 B2

1

DETECTING PROGRAM EVASION OF
VIRTUAL MACHINES OR EMULATORS

BACKGROUND

Various computing devices, including desktop computers,
laptops, tablets, and mobile computing devices such as smart
phones, execute programs and processes according to soft-
ware 1nstructions stored 1n memory. Some programs, such as
malware, execute malicious code when run on a computing
device. There are a various ways to detect and analyze
programs to determine whether or not those programs are
malicious.

One method of analyzing programs i1s to execute the
program within a virtual environment on the computing
device, such as a virtual machine or emulator. The virtual
environment provides an artificial self-contained environ-
ment for the program to execute. An anti-malware applica-
tion or other program analyzer may observe and analyze the
behavior of the program within the virtual environment to
determine whether or not it 1s malicious.

However, some malicious programs may try to evade
virtual environment testing by attempting to detect whether
the program 1s executing within a virtual environment. For
example, the program may attempt to call certain functions
or access certain data structures indicative of a virtual
operating environment. If the program detects that 1t i1s
executing within a virtual environment, the program may
behave 1n a benign manner and thus escape detection. When
the program 1s released and executed within the normal
operating system of a computing device, the program may
then act maliciously.

SUMMARY

Various embodiments include methods implemented on a
computing device for analyzing a program executing within
a virtual environment on the computing device. The methods
of the wvarious embodiments may include determining
whether the program 1s attempting to detect whether the
program 1s being executed within the virtual environment. In
response to determining that the program 1s attempting to
detect whether the program 1s being executed within the
virtual environment, the program may be analyzed within a
protected mode of the computing device.

In some embodiments, the protected mode may be a
system management mode. Some embodiments may further
include continuing analysis of the program within the virtual
environment 1n response to determining that the program 1s
not attempting to detect whether the program 1s being
executed within the virtual environment.

In some embodiments, determining whether the program
1s attempting to detect whether the program 1s being
executed within the virtual environment may include moni-
toring access of the program to application programming,
interface (API) properties of the virtual environment. In
some embodiments, the API properties may include at least
one member selected from the group consisting of a model
specific register, a length of an instruction, a store interrupt
descriptor table register, a debugger function, and an mstruc-
tion for host-guest communication. In some embodiments,
the virtual environment may be a virtual machine or an
emulator.

Further embodiments include a computing device includ-
ing a memory and a processor configured with processor-
executable mstructions to perform operations of the methods
described herein. Further embodiments include a non-tran-

10

15

20

25

30

35

40

45

50

55

60

65

2

sitory processor-readable storage medium having stored
thereon processor-executable software instructions config-
ured to cause a processor to perform operations of the
methods described herein. Further embodiments include a

computing device that includes means for performing func-
tions of the operations of the methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and constitute part of this specification, illustrate
exemplary embodiments, and together with the general
description given above and the detailed description given
below, serve to explain the features of the claims.

FIG. 1 15 a block diagram of a computing device for use
with various embodiments.

FIG. 2 1s a block diagram illustrating program analysis
within a virtual environment on a computing device accord-
ing to various embodiments.

FIG. 3 1s a block diagram illustrating program analysis
within a protected mode on a computing device according to
various embodiments.

FIG. 4 1s a process tlow diagram illustrating a method for
analyzing a program on a computing device according to
various embodiments.

FIG. 5 1s a component block diagram of a mobile com-
puting device suitable for implementing some embodiment
methods.

FIG. 6 1s a component block diagram of a computing

device suitable for implementing some embodiment meth-
ods.

DETAILED DESCRIPTION

Various embodiments will be described i1n detail with
reference to the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. References
made to particular examples and implementations are for
illustrative purposes, and are not intended to limit the scope
of the written description or the claims.

As used herein, the term “computing device” refers to any
one or all of cellular telephones, smart phones, personal or
mobile multi-media players, personal data assistants, desk-
top computers, laptop computers, tablet computers, servers,
smart watches, smart books, palm-top computers, wireless
electronic mail receivers, multimedia Internet-enabled cel-
lular telephones, wireless gaming controllers, and similar
personal or enterprise electronic devices that includes a
programmable processor and memory.

Computing devices execute programs and applications
that provide a number of functions and services for users. A
threat to computing devices and the services provided to
users 1s malware, which refers to a variety ol programs
written to perform unauthorized operations that in many
cases are malicious. For example, malware that executes on
a computing device may be designed to take control of the
computing device, delete or corrupt critical files on the
computing device, spy or track user actions on the comput-
ing device, provide unwanted advertisements to users, or
extort or trick users mnto paying money or giving away
financial or personal information. Thus, methods of detect-
ing and protecting against malware have received much
attention.

There are a number of ways to detect malicious programs.
One method 1s to execute a potentially malicious program
within a virtual environment on the computing device, such

US 9,984,231 B2

3

as a virtual machine or emulator. The virtual environment
may provide a seli-contained environment that resembles
the normal operating system of a computing device. Pro-
gram operations may be analyzed within the virtual envi-
ronment to determine whether 1t exhibits malicious behav-
iors. However, there 1s a risk that some malware programs
vary their behavior depending on whether they are being
executed within a virtual environment. These programs may
behave benignly 1n a virtual environment but behave mali-
ciously 1n a normal operating system environment.

In overview, various embodiments provide systems and
methods for analyzing a program executing within a virtual
environment on a computing device. Various embodiments
may include determining whether the program 1s executing,
operations that indicated the program 1s attempting to detect
whether 1t 1s being executed within the virtual environment.
In response to determining that the program is attempting to
detect whether 1t 1s being executed within the virtual envi-
ronment, the program may be analyzed within a protected
mode of the computing device. In response to determining,
that the program 1s not attempting to detect whether 1t 1s
being executed within the virtual environment 1n, the analy-
s1s of the program may continue within the virtual environ-
ment. The virtual environment may be a virtual machine or
an emulator. The protected mode may be a system manage-
ment mode on the computing device or another computing,
device that 1s 1solated from other network components
and/or sensitive information.

Methods for recognizing when the program 1s attempting,
to detect whether 1t 1s being executed within the virtual
environment may include monitoring access of the program
to application programming interface (API) properties of the
virtual environment. The API properties being monitored
may include at least one of a model specific register, a length
of an 1nstruction, a store mterrupt descriptor table register, a
debugger function, and instructions for host-guest commu-
nication (e.g., IN/OU'T instructions for accessing data from
an put/output port, and use of illegal opcodes within a
virtual environment).

FIG. 1 1s a functional block diagram of a computing
device 100 suitable for implementing various embodiments.
The computing device 100 may be, among other things, a
desktop computer, laptop, tablet, any type of mobile elec-
tronic device, a server or any type of consumer or enterprise
clectronic device. The computing device 100 includes a
central processing unit (CPU) 102 for executing soiftware
istructions, and a memory 104 for storing code and data.
The memory 104 may be a non-transitory computer-read-
able storage medium that stores processor-executable
instructions. The memory 104 may store an operating sys-
tem 106.

A virtual environment 108 may be created and executed
within the operating system 106. The virtual environment
108 may be a virtual machine or emulator—that 1s, the
virtual environment 108 may be used to simulate the soft-
ware and/or hardware environment and functionality of
another computing system. The virtual environment 108
may be based on the computer architecture, hardware,
and/or soitware of the computing system that the wvirtual
environment 108 1s trying to simulate. The virtual environ-
ment 108 may be used for a number of different purposes.
One use of the virtual environment 108 may be as a testing
ground or artificial environment to analyze the behavior of
potentially malicious programs.

The computing device 100 may also include a protected
mode 110. The protected mode 110 may be a special mode
of the computing device 100 that when activated suspends

10

15

20

25

30

35

40

45

50

55

60

65

4

the operation of the operating system 106 or otherwise
insulates the computing device from malicious actions by
malware. The protected mode 110 may be a particular
operating mode of the CPU 102 that has special privileges
with respect to hardware and software functions on the
computing device 100. The protected mode 110 may be
implemented within firmware or a hardware-assisted debug-
ger on the computing device 100. An example of the
protected mode 110 1s a system management mode (SMM),
which may be provided 1n certain CPU chipsets. The SMM
may be triggered by asserting the system management
interrupt (SMI) pin on the CPU 102. The handler for the

SMM may be stored 1n special memory accessible only by
the SMM.

The protected mode 110 may be used for performing
special tasks such as power management or error handling.
The protected mode 110 1s a “real” computing environment
in that 1t runs within the actual hardware on the computing
device 100 rather than simulated hardware as in the virtual
environment 108. The protected mode 110 may also provide
certain safeguards against malicious code, such as locking
out programs from high level access (e.g., root access).
Thus, 1n various embodiments the protected mode 110 may
serve as an alternate testing environment for potentially
malicious programs, especially 11 the programs are designed
to evade the virtual environment 108.

The computing device 100 may also include various other
components not 1illustrated in FIG. 1. For example, the
computing device 100 may include a number of nput,
output, and processing components such as a speaker, micro-
phone, modem, transceiver, subscriber 1dentification module
(SIM) card, keypad, mouse, display screen or touchscreen,
various connection ports, audio or graphics processor, addi-
tional hard drives, and many other components known in the
art.

FIG. 2 includes a block diagram 200 1llustrating program
analyses using a virtual environment on a computing device.
The computing device may include an operating system 202.
A virtual environment 204 may run within the operating
system 202. The virtual environment 204 may provide a
self-contained computing environment within the operating
system 202. For example, the virtual environment 204 may
be a virtual machine or emulator that simulates the software
and/or hardware functionality of another computing system.
The virtual environment 204 may be used to analyze a
program 206 to determine whether or not 1t 1s malicious. A
program 206 executed within the virtual environment 204 1s
not able to access the operating system 202 or other
resources of the computing device outside of the virtual
environment. Thus, 1f the program 206 1s malicious, the
program 206 1s not capable of coopting or damaging the
operating system 202 or the computing device on which the
virtual environment 204 executes.

The virtual environment 204 may include an application
programming nterface (API) 208 that 1s used by the oper-
ating system 202 to interact with and control the virtual
environment 204. The API 208 may include a number of
functions, routines, protocols, and data structures.

Some malicious programs (e.g., program 206) may be
designed to attempt to discover whether they are executing
within a virtual machine, or within an operating system.
Such programs may behave benignly when executing within
the virtual environment 204 and thus may evade malicious
code detection. Once the programs are released into the
operating system 202, the programs may begin acting mali-
ciously.

US 9,984,231 B2

S

The malicious program 206 may attempt to discover
whether it 1s executing within a virtual environment 204,
such as by attempting to call certain functions or access
certain data structures 1n the API 208. Certain return values
from the called functions or data structures of the API 208
may confirm that the program 206 1s executing within the
virtual environment 204. Theretore in various embodiments,
the virtual environment 204 or the operating system 202
may be configured to monitor operations and behaviors of
the program 206 within the virtual environment 204 to
determine whether the program 206 1s calling certain func-
tions or accessing certain data structures in the API 208 in
an attempt to discover whether 1t 1s executing within the
virtual environment 204. There are several types of func-
tions and/or data structures that a malicious program 206
might execute or attempt to access in an eflort to detect a
virtual environment, and that the virtual environment 204
may be configured to detect.

A non-limiting example of an action that a malicious
program 206 might perform and that the virtual environment
204 may be configured to detect includes accessing a model
specific register that 1s valid on a quick emulator (QEMU)
simulator but returns an exception when called 1n the actual
computing device.

Another non-limiting example of an action that a mali-
cious program 206 might perform and that the virtual
environment 204 may be configured to detect includes
accessing a length of an instruction. This 1s because the
length of an instruction will be finite 1n an actual computing
device but may be arbitrarily long in a virtual environment.

Another non-limiting example of an action that a mali-
cious program 206 might perform and that the wvirtual
environment 204 may be configured to detect includes
accessing a store mterrupt descriptor table register. This 1s
because the base address 1n a virtual environment may differ
from an actual computing device, and may exceed a certain
function.

Another non-limiting example of an action that a mali-
cious program 206 might perform and that the wvirtual
environment 204 may be configured to detect includes
calling a debugger function. For example, the environment
204 may be configured to detect when a program calls
IsDebuggerPresent() or CheckRemoteDebuggerPresent().

Another non-limiting example of an action that a mali-
cious program 206 might perform and that the wvirtual
environment 204 may be configured to detect includes
executing an IN or OUT instruction used to read or write
data from an 1put/output port used during host-guest com-
munications. Such an IN or OUT mstruction may imvolve
reading/writing data from port addresses that exist within a
virtual environment but that would raise an exception when
called in the underlying computing device.

Another non-limiting example of an action that a mali-
cious program 206 might perform and that the virtual
environment 204 may be configured to detect includes an
attempt to execute illegal opcodes during host-guest com-
munication. This 1s because an error handler of the under-
lying computing device may handle a call to an illegal
opcode but the virtual environment may not have an error
handler. For example, an illegal opcode may include an
undefined opcode or an 1llegal coding of an existing opcode.
Which opcodes are illegal may depend on the particular
virtual environment 204 and/or hardware or software of the
computing device.

If the virtual environment 204 detects that the program 1s
attempting to detect whether 1t 1s executing within the virtual
environment 204 (1.e., the program 1s trying to evade testing

10

15

20

25

30

35

40

45

50

55

60

65

6

in a virtual environment), the virtual environment 204 may
mark or flag the program 206 as an evading program and
terminate the program 206. The virtual environment 204 or
the operating system 202 may then signal the computing
device that the program 206 should be executed and ana-
lyzed within a protected mode on the computing device.
This 1s 1llustrated 1n FIG. 3.

FIG. 3 1s a block diagram 300 illustrating program analy-
s1s using a protected mode on a computing device. The
computing device may include an operating system 302. A
virtual environment 304 may operate within the operating
system 302 to analyze potentially malicious programs, such
as the program 306. The virtual environment 304 may detect
that the program 306 1s attempting to detect whether 1t 1s
being executed within the wvirtual environment 304 as
described with reference to FIG. 2. The virtual environment
304 may flag the program 306 as evading and terminate the
program 306. The computing device may then nitiate a
protected mode 310, such as SMM. The protected mode 310
may be triggered by a system interrupt, such as the SMI for
a SMM. The program 306 may be re-executed within the
protected mode 310.

The protected mode 310 may also provide a self-con-
tained environment for analyzing the program 306, but 1s an
environment that 1s based on the actual computing device
rather than a stmulation of another computing device. Thus,
the program 306, which may be designed to evade the virtual
environment 304, will not detect that 1t 1s executing 1n a
virtual environment and thus will not behave 1n a manner
designed to evade the protected mode 310 (1.e., the program
306 behaves normally rather than pretending to be benign).
The protected mode 310 may prevent the program 306 from
accessing critical parts of the computing device, for example
preventing root access. An anti-malware application or
another program analyzer may analyze the program 306
within the protected mode 310 to determine whether or not
it 1s malicious. The protected mode 310 may utilize more
computing resources than the virtual environment 304, so 1n
some embodiments only programs that evade the virtual
environment 304 may be analyzed within the protected
mode 310.

FIG. 4 illustrates a method 400 for analyzing a program
executing within a virtual environment on a computing
device according to various embodiments. With reference to
FIGS. 1-4, the method 400 may be implemented with a
processor (e.g., the CPU 102 and/or the like) of a computing
device (such as the computing device 100) that 1s capable of
running a virtual environment (e.g., a virtual machine or
emulator) and a protected mode (e.g., SMM).

In block 402, the processor may analyze a program
executing within a virtual environment on the computing
device. The program may be potential malware or any other
unknown program, and the processor may be analyzing the
program to determine whether or not it 1s malicious. The
virtual environment may be a virtual machine or emulator
that stmulates the software and/or hardware environment of
another computing system. The virtual environment may
include an API that 1s used by the computing device to
control and interact with the virtual environment.

In block 404, the processor may monitor attempted
accesses by the program to certain APIs and data structures
that could reveal properties of the virtual environment.
Attempts by the program to access such API and/or data
structure properties may 1indicate that the program 1s
attempting to detect whether the program is being executed
within a virtual environment. A non-limiting example of an
API property that may be monitored 1n block 404 1s a model

US 9,984,231 B2

7

specific register (which 1s valid on a quick emulator
(QEMU) simulator but returns an exception when called 1n
the actual computing device). Another non-limiting example
of an API property that may be monitored 1n block 404 1s a
length of an 1nstruction (which may be arbitrarily long 1n a
virtual environment). Another non-limiting example of an
API property that may be monitored 1n block 404 1s a store
interrupt descriptor table register (the base address may be
different 1n a virtual environment and may also exceed a
certain function). Another non-limiting example of an API
property that may be momtored 1n block 404 1s a debugger
function (e.g., IsDebuggerPresent() or CheckRemoteDe-
buggerPresent(). Another non-limiting example of an API
property that may be monitored 1n block 404 1s an IN/OU'T
instruction used for host-guest communication. Another
non-limiting example of an API property that may be
monitored 1n block 404 1s 1llegal opcode handling used for
host-guest communication.

In determination block 406, the processor may determine
from the monitored behaviors whether the program 1is
attempting to discover whether it 1s being executed within
the virtual environment. For example, the processor may
determine that the program 1s attempting to access the
monitored API that could reveal properties unique to virtual
environments.

In response to determining that the program 1s not
attempting to detect whether 1t 1s being executed within the
virtual environment (1.e., determination block 406="No""),
the processor may Contlnue analysis of the program within
the virtual environment 1n block 408. That 1s, 1f the program
1s not trying to evade virtual environment testing, the
processor may continue analyzing the program 1n the virtual
environment.

In response to determining that the program is attempting,
to detect whether 1t 1s being executed within the virtual
environment (1.¢., determination block 406="Yes”), the pro-
cessor may terminate the program, and re-execute and
analyze the program within a protected mode on the com-
puting device in block 410. For example, the processor may
flag or otherwise i1dentity that the program has evading and
trigger the protected mode. The protected mode may be the
SMM on the computing device, which may be triggered
using a SMI. The protected mode may allow continued
analysis of the program in an environment based on the
actual computing device rather than a simulation of another
computing system, but that still prevents the program from
accessing and damaging critical parts of the computing
device. In this manner, the method 400 provides a way to
analyze potentially malicious programs that evade virtual
environment testing.

Various embodiments, including the embodiments 1llus-
trated 1n FIG. 4, may be implemented 1n any of a variety of
computing devices, an example of which (e.g., computing
device 500) 1s illustrated 1n FIG. 5. According to various
embodiments, the computing device 500 may be similar to
the computing device 100 as described with reference to
FIG. 1. As such, the computing device 500 may implement
the method 400 1n FIG. 4.

The computing device 500 may include a processor 502
coupled to a touchscreen controller 504 and an internal
memory 506. The processor 502 may be one or more
multi-core integrated circuits designated for general or spe-
cific processing tasks. The internal memory 506 may be
volatile or non-volatile memory, and may also be secure
and/or encrypted memory, or unsecure and/or unencrypted
memory, or any combination thereof. The touchscreen con-
troller 504 and the processor 502 may also be coupled to a

10

15

20

25

30

35

40

45

50

55

60

65

8

touchscreen panel 3512, such as a resistive-sensing touch-
screen, capacitive-sensing touchscreen, infrared sensing
touchscreen, etc. Additionally, the display of the computing
device 500 need not have touch screen capability.

The computing device 500 may have a cellular network
transceiver 308 coupled to the processor 502 and to an
antenna 510 and configured for sending and receiving cel-
lular communications. The transceiver 508 and the antenna
510 may be used with the above-mentioned circuitry to
implement various embodiment methods. The computing
device 500 may include one or more SIM cards 516 coupled
to the transceiver 508 and/or the processor 502 and may be
configured as described herein. The computing device 500
may nclude a cellular network wireless modem chip 517
that enables the processor to communication via a cellular
network.

The computing device 500 may also include speakers 514
for providing audio outputs. The computing device 500 may
also include a housing 520, constructed of a plastic, metal,
or a combination of materials, for containing all or some of
the components discussed herein. The computing device 500
may include a power source 522 coupled to the processor
502, such as a disposable or rechargeable battery. The
rechargeable battery may also be coupled to the peripheral
device connection port to recerve a charging current from a
source external to the computing device 500. The computing,
device 500 may also include a physical button 3524 for
receiving user inputs. The computing device 500 may also
include a power button 526 for turning the computing device
500 on and off.

Various embodiments, including the embodiments 1llus-
trated 1n FIG. 4, may be implemented 1n any of a variety of
computing devices, an example of which (e.g., computing
device 600) 1s 1llustrated 1n FIG. 6. According to various
embodiments, the computing device 600 may be similar to
the computing device 100 as described with reference to
FIG. 1. As such, the computing device 600 may implement
the method 400 in FIG. 4.

A computing device 600 (which may correspond, for
example, to the computing device 100 in FIG. 1) may
include a touchpad touch surface 617 that serves as the
pointing device of the computing device 600, and thus may
receive drag, scroll, and ftlick gestures similar to those
implemented on wireless devices equipped with a touch
screen display and described below. The computing device
600 will typically include a processor 611 coupled to volatile
memory 612 and a large capacity nonvolatile memory, such
as a disk drive 613 of Flash memory. The computing device
600 may also include a floppy disc drive 614 and a compact
disc (CD) dnive 615 coupled to the processor 611. The
computing device 600 may also include a number of con-
nector ports coupled to the processor 611 for establishing
data connections or receiving external memory devices,
such as a universal serial bus (USB) or Fire Wire® connector
sockets, or other network connection circuits for coupling
the processor 611 to a network. In a notebook configuration,
the device housing includes the touchpad 617, the keyboard
618, and the display 619 all coupled to the processor 611.
Other configurations of the computing device 600 may
include a computer mouse or trackball coupled to the
processor (e.g., via a USB 1nput) as are well known, which
may also be used 1n conjunction with various embodiments.

The foregoing method descriptions and the process flow
diagrams are provided merely as illustrative examples and
are not intended to require or 1mply that the operations of
various embodiments must be performed 1n the order pre-
sented. As will be appreciated by one of skill in the art the

US 9,984,231 B2

9

order of operations in the foregoing embodiments may be
performed 1n any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the
operations; these words are simply used to guide the reader
through the description of the methods. Further, any refer-
ence to claim elements 1n the singular, for example, using the
articles “a,” “an” or “the” 1s not to be construed as limiting
the element to the singular.

The various 1llustrative logical blocks, modules, circuits,
and algorithm operations described 1n connection with the
embodiments disclosed herein may be implemented as elec-
tronic hardware, computer software, or combinations of
both. To clearly i1llustrate this interchangeability of hardware
and software, various 1llustrative components, blocks, mod-
ules, circuits, and operations have been described above
generally in terms of their functionality. Whether such
functionality 1s i1mplemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
cach particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present embodiments.

The hardware used to implement the various illustrative
logics, logical blocks, modules, and circuits described 1n
connection with various embodiments may be implemented
or performed with a general purpose processor, a digital
signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination
thereol designed to perform the functions described herein.
A general-purpose processor may be a microprocessor, but,
in the alternative, the processor may be any conventional
processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of
computing devices, €.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any
other such configuration. Alternatively, some operations or
methods may be performed by circuitry that 1s specific to a
given function.

In one or more exemplary embodiments, the functions
described may be implemented 1n hardware, software, firm-
ware, or any combination thereof. If implemented 1n soft-
ware, the Tunctions may be stored as one or more nstruc-
tions or code on a non-transitory computer-readable storage
medium or non-transitory processor-readable storage
medium. The operations of a method or algorithm disclosed
herein may be embodied 1n a processor-executable software
module that may reside on a non-transitory computer-read-
able or processor-readable storage medium. Non-transitory
computer-readable or processor-readable storage media may
be any storage media that may be accessed by a computer or
a processor. By way ol example but not limitation, such
non-transitory computer-readable or processor-readable
storage media may include RAM, ROM, EEPROM, FLASH
memory, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that may be used to store desired program code in
the form of 1nstructions or data structures and that may be
accessed by a computer. Disk and disc, as used herein,
includes compact disc (CD), laser disc, optical disc, digital
versatile disc (DVD), floppy disk, and Blu-ray disc where
disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above are also mcluded within the scope of non-transitory

10

15

20

25

30

35

40

45

50

55

60

65

10

computer-readable and processor-readable media. Addition-
ally, the operations of a method or algorithm may reside as
one or any combination or set of codes and/or mstructions on
a non-transitory processor-readable storage medium and/or
computer-readable storage medium, which may be incorpo-
rated 1nto a computer program product.

The preceding description of various embodiments 1s
provided to enable any person skilled in the art to make or
use the claims. Various modifications to these embodiments
will be readily apparent to those skilled in the art, and the
generic principles defined herein may be applied to some
embodiments without departing from the scope of the
claims. Thus, the present disclosure i1s not intended to be
limited to the embodiments shown herein but 1s to be
accorded the widest scope consistent with the following
claims and the principles and novel features disclosed
herein.

What 1s claimed 1s:

1. A method for analyzing a program executing within a
virtual environment on a computing device, comprising:

determining whether the program is attempting to detect

whether the program 1s being executed within the
virtual environment; and

in response to determining that the program 1s attempting,

to detect whether the program 1s being executed within

the virtual environment:

terminating the program during execution within the
virtual environment:;

re-executing the program in a protected mode of the
computing device; and

analyzing the program within the protected mode of the

computing device.

2. The method of claim 1, wherein the protected mode 1s
a system management mode.

3. The method of claim 1, further comprising continuing,
analysis of the program within the virtual environment 1n
response to determining that the program 1s not attempting
to detect whether the program 1s being executed within the
virtual environment.

4. The method of claim 1, wherein determining whether
the program 1s attempting to detect whether the program 1s
being executed within the virtual environment comprises:

monitoring access of the program to application program-

ming nterface (API) properties of the virtual environ-
ment.

5. The method of claim 4, wherein the API properties
include at least one member selected from the group con-
sisting of a model specific register, a length of an 1nstruction,
a store mterrupt descriptor table register, a debugger func-
tion, and an instruction for host-guest communication.

6. The method of claim 1, wherein the virtual environment
comprises a virtual machine or an emulator.

7. A computing device, comprising:

a hardware processor configured with processor-execut-

able 1nstructions to:

determine whether a program executing within a virtual
environment on the computing device 1s attempting
to detect whether the program 1s being executed
within the virtual environment; and

in response to determining that the program 1s attempting,

to detect whether the program 1s being executed within

the virtual environment:

terminate the program during execution within the
virtual environment:

re-execute the program in a protected mode of the
computing device; and

US 9,984,231 B2

11

analyze the program within the protected mode of the
computing device.

8. The computing device of claim 7, wherein the protected
mode 1s a system management mode.

9. The computing device of claim 7, wherein the hardware
processor 1s further configured with processor-executable
instructions to continue analysis of the program within the
virtual environment in response to determining that the
program 1s not attempting to detect whether the program 1s
being executed within the virtual environment.

10. The computing device of claim 7, wherein the hard-
ware processor 1s configured with processor-executable
instructions to determine whether the program 1s attempting
to detect whether the program 1s being executed within the
virtual environment by:

monitoring access of the program to application program-

ming 1nterface (API) properties of the virtual environ-
ment.

11. The computing device of claim 10, wherein the API
properties include at least one member selected from the
group consisting of a model specific register, a length of an
istruction, a store interrupt descriptor table register, a
debugger function, and an mstruction for host-guest com-
munication.

12. The computing device of claim 7, wherein the virtual
environment comprises a virtual machine or an emulator.

13. A non-transitory computer readable storage medium
having stored thereon processor-executable software
instructions configured to cause a processor of a computing
device to perform operations comprising;

determining whether a program executing within a virtual

environment on the computing device 1s attempting to
detect whether the program 1s being executed within
the virtual environment; and

in response to determining that the program is attempting,

to detect whether the program 1s being executed within

the virtual environment:

terminating the program during execution within the
virtual environment;

re-executing the program in a protected mode of the
computing device; and

analyzing the program within the protected mode of the
computing device.

14. The non-transitory computer readable storage medium
of claim 13, wherein the protected mode 1s a system man-
agement mode.

15. The non-transitory computer readable storage medium
of claim 13, wherein the stored processor-executable soft-
ware 1nstructions are configured to cause the processor to
perform operations further comprising continuing analysis
of the program within the virtual environment 1n response to
determining that the program 1s not attempting to detect
whether the program 1s being executed within the virtual
environment.

16. The non-transitory computer readable storage medium
of claim 13, wherein the stored processor-executable sofit-
ware 1nstructions are further configured to cause the pro-
cessor to perform operations such that determining whether

10

15

20

25

30

35

40

45

50

55

12

the program 1s attempting to detect whether the program 1s
being executed within the virtual environment comprises:
monitoring access of the program to application program-
ming nterface (API) properties of the virtual environ-
ment.

17. The non-transitory computer readable storage medium
of claim 16, wherein the API properties include at least one
member selected from the group consisting of a model
specific register, a length of an 1nstruction, a store interrupt
descriptor table register, a debugger function, and an mstruc-
tion for host-guest communication.

18. The non-transitory computer readable storage medium
of claim 13, wherein the virtual environment comprises a
virtual machine or an emulator.

19. A computing device, comprising;

means for determining whether a program executing

within a virtual environment on the computing device
1s attempting to detect whether the program 1s being
executed within the virtual environment;

means for terminating the program during execution

within the virtual environment 1n response to determin-
ing that the program 1s attempting to detect whether the
program 1s being executed within the virtual environ-
ment;

means for re-executing the program in a protected mode

of the computing device in response to determining that
the program 1s attempting to detect whether the pro-
gram 1S being executed within the virtual environment;
and

means for analyzing the program within the protected

mode of the computing device 1n response to determin-
ing that the program 1s attempting to detect whether the
program 1s being executed within the virtual environ-
ment.

20. The computing device of claim 19, wherein the
protected mode 1s a system management mode.

21. The computing device of claim 19, turther comprising
means for continuing analysis of the program within the
virtual environment in response to determining that the
program 1s not attempting to detect whether the program 1s
being executed within the virtual environment.

22. The computing device of claim 19, wherein the means
for determining whether the program 1s attempting to detect
whether the program 1s being executed within the virtual
environment comprises:

means for monitoring access of the program to application

programming interface (API) properties of the virtual
environment.

23. The computing device of claim 22, wherein the API
properties include at least one member selected from the
group consisting of a model specific register, a length of an
instruction, a store interrupt descriptor table register, a
debugger function, and an instruction for host-guest com-
munication.

24. The computing device of claim 19, wherein the virtual
environment comprises a virtual machine or an emulator.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

