12 United States Patent

US009979546B2

(10) Patent No.: US 9.979.546 B2

Van Someren 45) Date of Patent: May 22, 2018
(54) CONTROLLING ACCESS TO A RESOURCE (52) U.S. CL
VIA A COMPUTING DEVICE CPC HO4L 9/3228 (2013.01);, GO6E 12/1408
(2013.01); HO4L 970822 (2013.01);
(71) Applicant: BlackBerry Limited, Waterloo (CA) (Continued)
_ _ﬁ (58) Field of Classification Search
(72) Inventor: Nicholas B. Van SOIIIEI'EII,, DOVBI',, DE CPC HO041 . 63/063 HO04] 63/103 HO041 . 9/08223
(US) HO4W 12/04; HO4W 12/08
_ _ See application file for complete search history.
(73) Assignee: BlackBerry Limited, Waterloo, Ontario
(CA) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.s. PALENT DOCUMENTS
patent 1s extended or adjusted under 35 5,768,373 A * 6/1998 Lohstroh GOG6F 21/31
U.S.C. 154(b) by O days. days. 380/286
7,502,475 B2 3/2009 Chen
(21) Appl. No.: 15/315,360 (Continued)
(22) PCT Filed: May 29, 2013 OTHER PURBLICATIONS
(86) PCT No.: PCT/US2015/033334 International Search Report and Written Opinion of the Interna-
§ 371 (¢)(1) tional Searching Authority 1ssued 1n International Application No.
(2) Date: j Nov. 30. 2016 PCT/US2015/033334 dated Aug. 31, 2015; 9 pages.
5 (Continued)
(87) PCT Pub. No.: WO2015/184358 Primary Examiner — Abiy Getachew
PCT Pub. Date: Dec. 3, 2015 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(65) Prior Publication Data (57) ABSTRACT
The present invention provides methods of, and computer
US 2017/0126408 Al May 4, 2017 programs and systems for, controlling access to a resource
via a computing device configured to perform a method that
o enables new encrypted versions of a key, encrypted with
Related U.S. Application Data code values 1n a sequence of code values that are valid at a
(60) Provisional application No. 62/005,725, filed on May future time, to be provided and made available for future
30, 2014. performance of the method. This 1n turn enables a method of
user verification that does not require access to a remote
(51) Int. Cl. server 1n order to provide one-time passcode verification,
GO6F 9/00 (2006.01) and so provides an oflline one-tome passcode authentication
HO4L 9/32 (2006.01) method that 1s self-sustaining.

(Continued)

200

21 Claims, 5 Drawing Sheets

Non-volatile storage 106

Cryptographically
secured containe| 202

Storage portion 219 (not encrypted by master kay 205)

Public key

| |
290 | Encrypted |
Private key 210 | | masterkey | |
Non-scure : 208 I
resources —
OTP seed 212 551 | | Encrypted | |
| | mastar key I
~
Statlc password . - I <08 I
214 Mor-securg | [Encyped | |
cata 223 | | mastar key I
<> — L_=s ||
Secure Data for secure | | Encrypied |
data 218 |
applications 225 I mastar Key |
| 208 |
Resources T
218
A
242 238 ‘ 240 234
Linlgeking mechanism 206 . Verification key penarator 204
Varsion af -
verification Varificatian
kay 226 oo Kevs 226
Code valug Clock, — ¥ OTP values
230 231 224

Code value

pEnNSrator
228

|

236

QTF
genarator
222

Input |<

OTP Token 201

Clock

QTP genarator
207 203 205

QTP saed

US 9,979,546 B2

Page 2

(51) Int. CL

GO6F 12/14 (2006.01)

HO4L 9/08 (2006.01)

HO4L 9/14 (2006.01)

HO4L 9/30 (2006.01)
(52) U.S. CL

CPC HO4L 9/0863 (2013.01); HO4L 9/14

(2013.01); HO4L 9/30 (2013.01);, HO4L 9/3236
(2013.01); GO6F 2212/1052 (2013.01); GO6F

2212/402 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

8,731,191 B2* 52014 Wucceeeennnn, GO6F 21/6209
358/3.28

2010/0172504 Al 7/2010 Allen et al.
2012/0257759 Al* 10/2012 Nick ..ovviivviininnnn, HO4L 9/0822
380/286
2014/0040637 Al* 2/2014 Hameed GOO6F 12/0868
713/193

2014/0140023 Al 5/2014 Stevenson et al.

OTHER PUBLICATIONS

Extended European Search Report 1ssued in European Application
No. 15799229.8 dated Dec. 5, 2017, 8 pages.

* cited by examiner

U.S. Patent May 22, 2018 Sheet 1 of 5 US 9,979.546 B2

Computing device 100

e | RAM 108
104
\I rocessor Operating system 118
106
Non-volatile
< Program
k storage g L ~_ 120
110 2
L User input | f; <endering engine i/'_/ 122
ntertace *?ni Core services 124
e ” Service plug-ins 126
\I int\leer?gg;é) <2 Application services 1238
114 Applications 130
Graphics OTP Security App 140

processing

Figure 1

U.S. Patent May 22, 2018 Sheet 2 of 5 US 9,979.546 B2

200
Non-volatile storage 106
Cryptographically Storage portion 213 (not encrypted by master key 208)
secured container202 | |

Public key | — 1
550 | Cnerypted |
| Private key 210 | —————————— || masterkey ||
Non-secure : 208 :

resources =
| OTP seed 212 | | Encrypted | |

221
| | master key :
. 208
Static passworo - : |
214 Non-secure | =ncrypted |
data 223 | | master key :
- : 208 |
dS?CLér'IeG Data for secure I Encrypted I
ala applications 225 | master key :
| 208 |
Resources l————‘————
218
|z
242 238 240 234

Unlocking mechanism 206 Verification key generator 204

Version of -
verification Verification

key 226 232 Keys 226
S

OTP values
224

A

Code value
230

OTP
generator
227

Code value
generator
228

230
OTP Token 201

‘ Input |< Clock OTP generator OTP seed
207 203 205

Figure 2

U.S. Patent May 22, 2018 Sheet 3 of 5 US 9,979,546 B2

302

Recelve

Input

Provide code value
based on received | S04
Input

Acrcess to

Generate version of | 306 container 319

verification key

denied

Attempt to decrypt
first encrypted version of | 308
master key

Successtul
decryption of first
encrypted version
of master key?

No

Yes

Unlock container and provide 314
access to private key

Provide user access to
secure data and 316
resources

—Ncerypt second 318
version of
master ke

Store seconq 390
encrypted version
of master ke

Figure 3

U.S. Patent May 22, 2018 Sheet 4 of 5 US 9,979.546 B2

Generate set of OT

values, (Oy,...0,) 402

Hash OTP values with corresponding
time value, and static password, PW,
of the user 404

Compute
406

K = 2k mod (P-1)(Q-1)

Hi — haSh(t” Oi! PW)

Generate set of verification keys 226,

H, by computing 108

HX'mod N (= hash (HZ mod N))

Encrypt versions of the master key 208

using the set of verification keys 226, H; 410

encrypt(MK, H;)

Store versions of the master key 208 419
outside container 202

Figure 4

U.S. Patent May 22, 2018 Sheet 5 of 5 US 9,979,546 B2

Receive input defining an

OTP value, O, and a static 502
password, pw, of the user

Hash OTP values with corresponding

time value, and static password 504

H(t) = hash(t, O, pw)

Perform K modulo squaring operations in sequence
506
H2 mod N

Generate a verification key 226, H'(1),

by computing 508

H'(t)=hash(H2" mod N)

Obtain an encrypted version of the master

key 208 from non-volatile storage 106 >10
Decrypt a version of the master key 208
using the generated verification key 226, H’ E10

decrypt(MK, H')

Attempt to unlock the container using 14
decrypted MK

Figure 5

US 9,979,546 B2

1

CONTROLLING ACCESS TO A RESOURCE
VIA A COMPUTING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a U.S. National Stage of PCT/US2015/
033334, filed on May 29, 2015, and claims the benefit of
U.S. Provisional Patent Application No. 62/005,725, filed
May 30, 2014, which 1s hereby imncorporated by reference 1n
its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to methods of, and computer
programs and systems for, controlling access to a resource
via a computing device.

Data stored in storage media i computer systems 1s
commonly protected by a password or security code to
prevent unauthorized access of the data. For applications
where high levels of secunity are required, data may be
stored 1n an encrypted form so that it cannot be read by an
unauthornized user who gains access to it.

Cryptographic algorithms are used to encrypt data using
an encryption key and fall into two main categories. Asym-
metric key algorithms use a pair of cryptographic keys, one
of which (commonly referred to as a public key) 1s used to
encrypt data and another of which (commonly referred to as
a private key) 1s used to decrypt data. Symmetric key
algorithms encrypt and decrypt data using a single crypto-
graphic key. Once encrypted, the data i1s unreadable to
anyone except those who possess, or are able to generate, the
cryptographic key to transform encrypted data into a read-
able form that can be displayed to the user. The crypto-
graphic key 1s a security code comprising a string of bits that
1s mnput to the encryption algorithm with data to transform
the data to/from encrypted form. It 1s desirable that the string,
of bits be long enough to provide a sufhicient level of
unpredictability, or entropy, such that an unauthorized user
cannot guess or otherwise break the key by, for example,
trying different possible combinations of bits, and decrypt
the data.

Typically, users are not required to input the crypto-
graphic key directly, since 1n secure systems the string of
data 1s too long to be easily remembered or mput. More
commonly, the user enters a password that 1s known, or
available, only to authorized users, and which 1s converted
using a mathematical transformation such as a hash function
into a security code. The security code may then be used as
the cryptographic key, or may be used as a seed for the
cryptographic key, to encrypt or decrypt data. Commonly,
passwords used for these purposes are alphanumeric. Pass-
words chosen by users tend to have poor entropy and are
therefore vulnerable to so-called “shoulder-surfing™ attacks
in which an unauthorized user observes an authorized user
entering their password. To reduce the risk of such attacks
and 1mprove security of stored data, these alphanumeric
passwords may be generated as one-time passcodes (OTPs).
OTPs may be generated, for example, by providing the user
with a “tag”, “token” or other device contaiming logic for
generating a time and/or event dependent code. Systems that
employ OTP verification typically use a hash function to
combine a time value or event/sequence number with a
secret seed value to produce a set of digits that the user must
input to a computing device that 1s being used to access
stored data.

10

15

20

25

30

35

40

45

50

55

60

65

2

In OTP authentication systems that enable offline authen-
tication, such as the Disconnected Authentication scheme

developed by RSA Securnity Inc., a set of short-term verifi-
cation codes (for example, possible OTP values) 1s down-
loaded from an authentication server to a local system to be
subsequently used to verity OTP values presented by a user
if the server 1s unavailable (for example, 11 the local system
does not have a direct connection to a server). However,
such systems require that the local device or system con-
nects to the authentication server periodically to download
an updated set of verification codes.

It 1s an object of the present invention to at least mitigate
some of the problems of the prior art.

[

SUMMARY

According to a first embodiment of the present invention,
there 1s provided a method of controlling access to a
resource via a computing device, the computing device
comprising: a memory storing a first set of data and a second
set of data, the first set of data being encrypted using a first
key, and the second set of data being different from the first
set of data; and a code value generator configured to
generate a sequence of code values, wherein the first set of
data comprises a second key, and said second set of data
comprises at least a first encrypted version of the first key,
the first encrypted version of the first key having been
encrypted at least partly on the basis of a first one of said
sequence ol code values and said second key, the method
comprising: receiving, at the computing device, a first input,
and providing a first code value on the basis of the first input;
performing a first decryption process at least partly on the
basis of the first code value, the first decryption process
comprising decryption of said first encrypted version of the
first key; and responsive to successtul decryption of said first
encrypted version of the first key: performing a second
decryption process, the second decryption process being
performed on the basis of the first key decrypted during the
first decryption process, wherein the second decryption
process comprises decryption of at least some of said first set
of data; providing access to said resource on the basis of the
first key decrypted during the first decryption process; in
response to said decryption of at least some of said first set
of data, providing at least a second encrypted version of said
first key, said second encrypted version of said first key
having been encrypted at least partly on the basis of a second
one of said sequence of code values and said second key;
and storing said second encrypted version of said first key 1n
said memory as data of said second set of data.

The method enables the new encrypted versions of the
first key, encrypted with code values 1n the sequence of code
values that are valid at a future time, to be provided and
made available for future performance of the method. This
in turn enables a method of user verification that does not
require access to a remote server 1n order to provide OTP
verification, and so provides an offline OTP authentication
method that 1s self-sustaining.

In some embodiments, the resource to which access 1s
provided comprises data of said first set stored in the
memory of the computing device.

In some embodiments, the first encrypted version of the
first key has been encrypted using a first value generated
using a {irst code generating function, on the basis of the first
one of the sequence of code values and said second key.

In some embodiments, the second decryption process
comprises decrypting said second key on the basis of the first
key decrypted during the first decryption process, and the

US 9,979,546 B2

3

method comprises: 1 response to decrypting said second
key, generating the second encrypted version of said first key
using a second value generated using the first code gener-
ating function, the second value being generated on the basis
of the second one of said sequence of code values and said
second key; and storing the second encrypted version of said
first key 1n said memory as data of said second set of data.

In some embodiments, the first code generating function
1s stored in the first set of data.

In some embodiments, the first code generating function
uses parameters stored in the first set of data.

In some embodiments, the first decryption process com-
prises generating a third value using a second code gener-
ating function on the basis of said first code value and a third
key, different from said second key.

The first value may be equal to said third value.

In some embodiments, the second code generating func-
tion takes a greater amount of time to generate said third
value than said first code generating function takes to
generate said first value.

Providing a second code generating function that takes a
greater amount of time to generate the third value than the
first code generating function takes to generate said first
value, enables fast generation of the encrypted versions of
the first key whilst enabling robustness against brute-force
attacks due to the slow decryption of the encrypted versions
of the first key. In turn, the fast generation of encrypted
versions of the first key enable the method to be performed
offline (that 1s, without connecting to a remote server) for
extended periods of time without requiring that large
amounts of data storage to store encrypted versions of the
first and/or without using large amounts of processing
resources to generate encrypted versions of the first key.
Furthermore, the method can be performed using existing
OTP algorithms and so can executed by providing users with
existing OTP tokens (which may currently be used for online
OTP verification).

In some embodiments, the third key comprises a value
equal to the product of two or more prime numbers and the
second key comprises said two or more prime numbers.

In some embodiments, the second code generating func-
tion comprises a series of modulo multiplication operations.

In some embodiments, the value of each of sequence of
code values 1s determined at least partly on the basis of a
position within said sequence.

In some embodiments, each of said sequence of code
values 1s generated at least partly on the basis of a time
value.

In some embodiments, the first encrypted version of the
first key 1s encrypted at least partly on the basis of a static
password value, and the first input comprises said static
password value.

In some embodiments, the method comprises in response
to said decryption of at least some of said first set of data,
providing a set of encrypted versions of said first key
including said second encrypted version and a plurality of
turther encrypted versions; and storing said plurality of
turther encrypted versions of said first key 1n said memory
as data of said second set of data.

In some embodiments, the sequence of code values are
generated on the basis of a one-time passcode (OTP) gen-
crating algorithm.

In some embodiments, the method comprises: storing a
seed value for said OTP generating algorithm in said
memory as data of said first set of data; 1n response to said
decryption of at least some of said first set of data, providing
said seed value to said code value generator; and generating,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

at said code value generator, said sequence of code values at
least partly on the basis of said seed value.

In some embodiments, the first set of data 1s encrypted on
the basis of a symmetric key algorithm.

In some embodiments, the first set of data 1s encrypted on
the basis of an asymmetric key algorithm.

According to a second embodiment of the present 1nven-
tion, there 1s provided a computing device comprising: a
memory storing a first set of data and a second set of data,
the first set of data being encrypted using a first key, and the
second set of data being different from the first set of data;
and a code value generator configured to generate a
sequence of code values, wherein the first set of data
comprises a second key, and said second set of data com-
prises at least a first encrypted version of the first key, the
first encrypted version of the first key having been encrypted
at least partly on the basis of a first one of said sequence of
code values and said second key, the computing device
being configured to: receive a first imnput and provide a first
code value on the basis of the first mput; perform a {first
decryption process at least partly on the basis of the first
code value, the first decryption process comprising decryp-
tion of said first encrypted version of the first key; and
responsive to successiul decryption of said first encrypted
version of the first key: perform a second decryption process
on the basis of the first key decrypted during the first
decryption process, wherein the second decryption process
comprises decryption of at least some of said first set of data;
provide access to said resource on the basis of the first key
decrypted during the first decryption process; provide, 1n
response to said decryption of at least some of said first set
of data, at least a second encrypted version of said first key,
said second encrypted version of said first key having been
encrypted at least partly on the basis of a second one of said
sequence ol code values and said second key; and store said
second encrypted version of said first key 1n said memory as
data of said second set of data.

The computing device of the second embodiment may be
adapted to provide features corresponding to any of those of
the first embodiment.

The computing device may be a portable device and/or
may be a smartphone.

According to a third embodiment of the present invention,
there 1s provided a non-transitory computer readable
medium having instructions stored thereon, the mnstructions
being executable by a computing device comprising: a
memory storing a first set of data and a second set of data,
the first set of data being encrypted using a first key, and the
second set of data being different from the first set of data;
and a code value generator configured to generate a
sequence of code values, wherein the first set of data
comprises a second key, and said second set of data com-
prises at least a first encrypted version of the first key, the
first encrypted version of the first key having been encrypted
at least partly on the basis of a first one of said sequence of
code values and said second key, wherein, when executed by
the computing device, the instructions will cause the com-
puting device to: recerve a first input and provide a first code
value on the basis of the first input; perform a first decryp-
tion process at least partly on the basis of the first code value,
the first decryption process comprising decryption of said
first encrypted version of the first key; and responsive to
successiul decryption of said first encrypted version of the
first key: perform a second decryption process on the basis
of the first key decrypted during the first decryption process,
wherein the second decryption process comprises decryp-
tion of at least some of said first set of data; provide access

US 9,979,546 B2

S

to said resource on the basis of the first key decrypted during
the first decryption process; provide, in response to said
decryption of at least some of said first set of data, at least
a second encrypted version of said first key, said second
encrypted version of said first key having been encrypted at
least partly on the basis of a second one of said sequence of
code values and said second key; and store said second
encrypted version of said first key 1n said memory as data of
said second set of data.

The computer readable medium of the third embodiment
may be adapted to provide features corresponding to any of
those of the first and second embodiments.

Further features and advantages of the invention will
become apparent from the following description of embodi-
ments of the invention, given by way of example only, which
1s made with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a schematic diagram 1llustrating the components
ol a computing device according to one or more embodi-
ments of the present invention;

FIG. 2 1s a schematic diagram 1llustrating the components
ol a verification system according to one or more embodi-
ments of the present invention;

FI1G. 3 1s a flow diagram 1llustrating the steps of providing
a method for providing OTP venfication of a user and
controlling access to a resource according to one or more
embodiments ol the present invention;

FI1G. 4 15 a flow diagram 1illustrating the steps of a process
for generating encrypted versions of a master key according
to one or more embodiments of the present invention; and

FI1G. 5 15 a flow diagram 1illustrating the steps of a process
for decrypting an encrypted version of a master key to
enable access to a container according to one or more
embodiments of the present invention.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

FIG. 1 schematically illustrates the components of a
computing device 100, which 1s an exemplary device used
to illustrate the features of an embodiment of the present
invention. The computing device 100 may take the form of
a Smartphone, a personal digital assistant (PDA), an
e-reader, a tablet computer, desktop computer, laptop com-
puter, or any other suitable device. The computing device
100 1ncludes a processor 102 that 1s able to transmit control
messages to, receive status mformation from, and transmit
data to and from components within the computing device
100 that are connected to a system bus 104, where these
components may include a non-volatile storage device 106,
random access memory (RAM) 108, user input interface
110, network interface 112 and graphics-processing compo-
nent 114, arranged to output a user interface to a display 116.
The processor 102, which 1s typically a microprocessor,
processes mstructions stored in the RAM 108 that have been
loaded from the non-volatile storage device 106, which
could be for example a tlash memory or a hard disk drive.
These mstructions are 1n the form of computer software 1n
the form of one or more programs that implement an
operating system 118 and one or more application programs,
referred to hereinafter as programs 120. The RAM 108 1s
also used by the programs 120 running on the processor 102
as a means ol storing and accessing data in the form of
clectronic signals where the data 1s used during the execu-
tion of the programs 120.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The user input interface 110 receives user mput from a
user mput device or devices (not shown). User input devices
may include a keypad, keyboard, touch-screen display,
mouse and/or remote control, or any other pointer device,
which may be incorporated within the computing device 100
or may be connected to 1t via a wired or wireless connection.

The computing device 100 may include a network inter-
face 112 (or a plurality of such interfaces) that allows
programs 120 running on the processor 102 to transmait and
receive data to and from a number of other devices and
systems via a communications network or a plurality of such
networks. The network interface 112 (or plurality of such
interfaces) may be able to connect to the communications
network via a wireless access node using one or more of a
number of radio access technologies or via a wired technol-
ogy such as a modem and/or an Ethernet card. The com-
munications network 210 and/or wireless access node may
also provide access to the Internet.

The graphics-processing component 114 1s able to render
graphics 1n accordance with commands made by the pro-
grams 120 running on the processor 102 and output these to
a display 116, which may reside within the computing
device 100. The display 116 may be an external component
connected to the computing device 100 via one or more of
composite video, component video, Video Graphics Array,
Digital Visual Interface, and High-Definition Multimedia
Interface connection. The display 116 may be an integral
component of the computing device 100, and may be a
touch-screen display.

The operating system 118 1s computer software 1n the
form of a program or set of programs whose instructions are
loaded from non-volatile storage 106 by the processor 102
and executed when the computing device 100 1s turned on.
The operating system 118 may start further programs 120
automatically and/or may allow a user to start further
programs 120, for example via a user mterface provided by
the operating system 118. The operating system 118 enables
the sharing of the processing power provided by the pro-
cessor 102 between the programs 120 running on the pro-
cessor 102.

The operating system 118 provides a programmatic inter-
face for programs 120 runnming on the processor 102 allow-
ing them to request functionality from the operating system
118. This programmatic interface may take the form of
procedures, 1.e. system calls, which a program 120 runmng
on the processor 102 may use 1n order to invoke the
operating system 118 and request it to provide desired
functionality. In response to receiving a request for func-
tionality, the operating system 118 may transmit control
messages to, recerve status mformation from, transmit data
to and/or recerve data from components (e.g. 106, 108, 110,
112, 114, 116) connected to the system bus 104 1n order to
provide the requested functionality, and may also return data
to the requesting program 120 as a result.

The operating system 118 may provide a file system for
storing, modifying, and accessing files or other data held 1n
non-volatile storage 106. The file system may be accessible
to other programs 120 running on the processor 102 via the
programmatic interface provided by the operating system
118.

The user may use the operating system 118 to start the
programs 120 once they are installed on the computing
device 100. The programs 120 may include a number of
components that are configured to allow the user to access
resources and/or data held in non-volatile storage 106 of the
computing device 100. These components of the programs
120 may include a rendering engine 122, core services 124,

US 9,979,546 B2

7

service plug-ins 126, application services 128, and applica-
tions 130. These components may use the programmatic
interface provided by the operating system 118 (1.e. system
calls) to request functionality from the operating system 118
(for example to access the file system, send/receive mes-
sages, use the network interface 112, etc.).

The programs 120 running on the processor 102 can
process user mnput obtained from a user input iterface 110
that receives user mput from a user mput device or devices

(not shown).

The applications 130 may include an OTP security appli-
cation 140 that operates as part of an OTP verification
system, described below with reference to FIG. 2, and
provides a user interface that may be rendered by the
graphics processing component 114 and displayed on the
display 116. The user interface enables the user to enter
identification and authentication details for accessing
secured resources of the computing device 100 and/or
secured data stored 1n the non-volatile storage 106. The OTP
security application 140 may display an authentication user
interface which may be displayed when the user attempts to
access secure (encrypted) data. The authentication user
interface may also be the first user interface that 1s displayed
to a user when the program 120 1s started, or when the
computing device 100 1s first turned on, or at any other time
when a conventional alphanumeric password or security
code 1s required. The OTP security application 140 may also
provide a user iterface to the user that allows other appli-
cations 130 or programs 120 to be started, or connections via
the network 1nterface(s) 112 to be launched.

The OTP security application 140 contains an algorithm
for encrypting, and/or decrypting, data stored 1n a crypto-
graphically secured container within the non-volatile storage
106. Encrypted data may be received via the one or more
network interfaces 112 (for example, from the one or more
remote servers) or may be saved to the non-volatile storage
106 by some other means. For example, data may be
manually imported by the user, encrypted using the encryp-
tion algorithm, and stored in encrypted form 1in the non-
volatile storage 106.

The data may be encrypted and/or decrypted according to
a symmetric key algorithm (1.e. using the same key for both
encrypting and decrypting the data), such as the Advanced
Encryption Standard (AES), or according to an asymmetric
key algorithm (1.e. using one key for encrypting the data and
another key for decrypting the data), or by any other suitable
cryptographic algorithm. The embodiments described below
with reference to FIGS. 2 to 5 are described as being
implemented using a symmetric cryptographic algorithm; 1t
will however be understood that, as explained below, they
may be mmplemented using an asymmetric cryptographic
algorithm. Irrespective of the type of cryptographic algo-
rithm used, 1n order for encrypted data to be decrypted so
that 1t can be displayed 1n a readable form, a cryptographic
key, referred to herein as a master key, 1s provided, which the
security application 140 uses in combination with the cryp-
tographic algorithm to decrypt the data.

By requiring that the user enters an OTP 1n addition to a
static password increases resistance to so-called brute force
attacks by 1increasing the entropy of the password. For
example, requiring that the user enters a 6 digit OTP 1n
addition to their static password adds approximately 20 bits
to the combined password and makes brute force attacks
1,000,000 times more dificult (1.e. requires 1,000,000 times
the number of attempts to break the combined password)
than if the OTP were not required.

10

15

20

25

30

35

40

45

50

55

60

65

8

Data encrypted using the master key 1s stored 1n encrypted
form 1n a cryptographically secured container in the non-
volatile storage 106. One or more encrypted versions of the
master key are stored outside the container. To unlock the
container and decrypt the data, the encrypted version of the
master key 1s first decrypted using a verification key. The
decrypted master key may then be used to unlock the
container. This may be done to enable secure transmission of
cryptographic keys, and to avoid the need to re-encrypt the
entire store of encrypted data when the key 1s changed
(which may be done periodically to maintain the security of
the data). In the case of an OTP verification system, the
verification key 1s generally different for each OTP value
and so a different encrypted version of the master key, which
can be decrypted by the different verification keys, 1is
required for each OTP value.

FIG. 2 1s a schematic diagram showing the components of
an OTP venfication system 200 operable on the computing
device 100. The verification system 200 comprises a cryp-
tographically secured data storage portion 202, hereimnafter
referred to as a container 202, which i1s stored in the
non-volatile storage 106. The verification system also com-
prises a verification key generator 204, and an unlocking
mechanism 206.

The OTP verification system 200 1s arranged to be used by
a user who 1s provided with, or 1s able to generate OTP
values. For example, the user may be provided with an OTP
token 201 which may be implemented on a device separate
to the computing device 100, or may be implemented by an
application running on the computing device 100. The OTP
token 201 contains an OTP generator arranged to generate
OTP values according to an OTP algorithm and also contains
an OTP seed value 205 and a clock 207. The OTP generator
203 1s arranged to generate OTP values according to the
OTP algorithm based. The OTP algorithm may be any
algorithm capable of generating a code value that 1s valid for
only one session (1.e. period of time) or transaction (event).
Such an algorithm may derive the OTP values 224 based on
a current time, based on a previous OTP value 224, or based
on an event count. For example, OTP values may be
generated 1n sequence according to a random value gener-
ating algorithm that 1s not necessarily time-dependent.

In the example shown 1n FIG. 2, the OTP generator 203
1s arranged to generate OTP values based on the seed value
205 and a current time value from the clock 207. The
generated OTP values are then provided to the user to use
with the OTP venfication system 200. For example, the OTP
token may be provided with a display (not shown) that
displays a current OTP value generated by the OTP genera-
tor 203.

In the embodiment of FIG. 2, the container 202 1s
encrypted using a symmetric encryption algorithm and the
resources 218 contained within the container 202 can be
locked and/or unlocked using a first key referred to herein-
alter as a master key 208. The container 202 contains a first
set of data including a copy of a second key referred to
hereinafter as a private key 210, an OTP seed 212 and, where
applicable, a copy of the static password 214 of the user. The
container 202 may additionally contain data 216 or other
resources 218 that the user wishes to keep secure.

Outside of the contamner 202 1s a portion of the non-
volatile storage 106, which 1s not encrypted by the master
key 208, 1n which a second set of data including a public key
220 1s stored. This portion of the non-volatile storage 106 1s
referred to heremnafter as a storage portion 219. Encrypted
versions of the master key 208, as well as resources 221 and
data 223 that are not secured, may be stored 1n the storage

US 9,979,546 B2

9

portion 219. Secure applications 225, such as email appli-
cations, which require user authentication prior to granting
access to a user may also be stored 1n the storage portion
219.

The private key 210 1s mathematically linked to the public
key 220. The public key 220 1s stored 1n the storage portion
219 (1.e. 1t 15 not securely stored 1n the container 202 but 1t
1s at least difficult, 1n the timeframe of the OTP, to derive the
private key 210 from the public key 220. For example, the
public key 220 may be the product of two large prime
numbers, N and possibly other values, such as an 1teration
count, K, which provides a further increased security factor.
The private key 210 may be the factorization of the public
key 220, P, Q (i.e. the two large prime numbers plus any
other value included) and optionally some other values
computed from the factors of the public key 220. For
example, the public key 220 may be a 1024 bit key,
comprising 512 bit prime numbers, and there may be 1,000,
000 1terations, K.

The wverification key generator 204 includes an OTP
generator 222, arranged to generate a sequence of OTP
values 224, which are the same OTP values as the values
provided to the user by the OTP token 201. For example, the
OTP generator 222 may include the same OTP generation
algorithm which operates on an OTP seed 212 having the
same value as the OTP seed 205 used by the OTP token 201
to produce the same OTP value as the OTP token 201 for a
given time value.

OTP values of any length may be used. Using OTP with
a higher number of digits increases the number of possible
OTP values and therefore increases the resistance of the
OTP venfication system 200 to so-called brute-force attacks.
Since a brute-force attacker does not have the private key
210, tests of each possible value can take a significant time,
and increasing the number of possible OTP values reduces
the probability of a brute-force attacker finding the correct
OTP value within the lifetime of an OTP value.

The verification key generator 204 generates, using a first
code generating function, verification keys 226 to be used to
encrypt copies of the master key 208 so that they can be
securely stored 1n the storage portion 219 (i.e. 1n areas of the
non-volatile storage 106 that are outside of the container
202). To generate encrypted copies of the master key 208,
the verification key generator 204 obtains a copy of the
private key 210 and a copy of the OTP seed 212 from the
container 202 (indicated by arrow 232), and generates
verification keys 226 on the basis of the OTP values 224
(generated on the basis of the OTP seed 212) and the private
key 210. The verification keys 226 are each used to encrypt
a different encrypted version of the master key 208. The
verification key generator 204 then stores the encrypted
versions of the master key 208 1n the storage portion 219 of
the non-volatile storage 106 (indicated by arrow 234).

The unlocking mechanism 206 1s arranged to receive
input (indicated by arrow 236), for example via the user
input interface 110. The mput may include an OTP value
generated by the OTP token 201 and a static password of the
user. A code value generator 228 receives the mput and
generates a code value 230 based on the received 1nput, and
a time value determined from a clock 231, which 1s syn-
chronized with a clock 1n the user’s OTP token, for example.
The unlocking mechanism 206 then generates, using a
second code generating function, a version of the verifica-
tion key 226 for decrypting the encrypted versions of the
master key 208. Verification keys 226 generated by the
unlocking mechanism 206 are generated on the basis of the
code value (which 1s generated on the basis of the received

10

15

20

25

30

35

40

45

50

55

60

65

10

input) and the public key 220, which 1s obtained from the
storage portion 219 of the non-volatile storage 106 (indi-
cated by arrow 238). The unlocking mechanism 206 obtains
one or more encrypted versions of the master key 208 from
the storage portion 219 of the non-volatile storage 106
(indicated by arrow 240) and uses the verification key 226
that 1t has generated to attempt to decrypt an encrypted
version of the master key 208. Once an encrypted version of
the master key 208 has been successtully decrypted, the
unlocking mechanism 206 uses the decrypted master key
208 to unlock the container 202 (indicated by arrow 242).

FIG. 3 1s a flow diagram showing the steps of a method
300 for providing OTP verification of a user and controlling
access to a resource via a computing device, performed by
the OTP verification system 200 shown 1n FIG. 2.

At step 302, the unlocking mechanism 206 receives input,
which may be user mput received through the user input
interface 110. The input includes an OTP value (that the user
obtains from an OTP token, for example) and may also
include a static password of the user. The unlocking mecha-
nism 206 then provides an input code value based on the
received put at step 304. The input code value may, for
example, be a combination of the OTP value, the static
password of the user, and a current time value.

At step 306, the unlocking mechanism 206 generates a
version of a verification key 226, for a first decryption
process for decrypting an encrypted version of the master
key 208 that has previously been encrypted with a verifica-
tion key 226 generated by the verification key generator 204,
as described below with reference to FIG. 4. Versions of the
verification key 226 generated by the unlocking mechanism
206 are generated on the basis of the code value (which 1s
generated on the basis of the recerved mput) and the public
key 220, as described below with reference to FIG. 5.

At step 308, the unlocking mechanism 206 attempts to
decrypt one or more of the encrypted versions of the master
key 208 using the version of the verification key 226 1t has
generated. Since the encrypted versions of the master key
208 are encrypted and decrypted using a symmetric encryp-
tion algorithm, 1f the vernification key 226 generated by the
unlocking mechanism 206 corresponds with a verification
key 226, such that at step 310 there 1s successiul decryption
of an encrypted version of the master key 208, the unlocking
mechanism 206 1s able to decrypt an encrypted version of
the master key 208.

A version of the venfication key 226 generated by the
unlocking mechanism 206 1s able to unlock any encrypted
version of the master key 208 that was encrypted using a
verification key 226 (generated by the verification key
generator 204) having the same value. However, because the
verification keys 226 are generated on the basis of OTP
values that are hashed, only an encrypted version of the
master key 208 corresponding to the time or event for which
a particular version of the verification key 226 generated by
the unlocking mechanism 206 1s able to be decrypted using
that version of the verification key 226.

Encrypted versions of the master key 208 may be tagged
with the time or event for which a corresponding version of
the verification key 226 1s valid to enable the verification
system 200 to only attempt to decrypt a current encrypted
version ol the master key 208. For example, the verification
system 200 may only attempt to decrypt encrypted versions
of the master key 208 that are tagged with times close to a
current clock time.

In order to prevent decryption of old or expired encrypted
versions of the master key 208, and therefore reduce the risk
of a brute force attack succeeding by encrypted such an

US 9,979,546 B2

11

expired version ol the master key 208, the verification
system 200 may delete encrypted versions of the master key
208 that are tagged with a time or event that has passed, or
1s 1dentified 1n any other appropriate way as being old or
expired.

If the verification key 226 generated by the unlocking
mechanism 206 does not match a verification key 226 that
was used to encrypt an encrypted version of the master key
208, at step 310 there 1s not successiul decryption of an
encrypted version of the master key 208, and the unlocking
mechanism 206 1s therefore unable to unlock the container
202 to provide access to the resources and data within the
container 202; that 1s, access to the resource 1s denied, at step
312.

Once the unlocking mechanism 206 has decrypted an
encrypted version of the master key 208, it unlocks the
container 202 using the master key 208 1n a second decryp-
tion process at step 314. This provides access, for the
verification key generator 204, to the private key 210, the
OTP seed 212 and, where applicable, to the static password
214 of the user. While the container 202 1s open the user 1s
able, at step 316, to access secure data 216 and/or resources
218 that are within the container 202.

In some embodiments the decrypted master key 208 may
be used to authenticate the user to a resource such as a secure
application 225 outside of the container 202, 1n addition or
as an alternative to authenticating access to resources within
the container 202. For example, the master key 208 may be
used to authenticate the user to an email application (e.g. by
acting as a password to the application) that provides 1ts own
encryption of data and stores that data in the storage portion
219 of the non-volatile storage 106 (1.e. a portion of the
non-volatile storage 106 that 1s not encrypted with the
master key 208).

At step 318, the verification key generator 204, which
accesses the private key 210, the OTP seed value 212 and,
where applicable, the static password 214 of the user, stored
in the contamner 202, generates one or more further
encrypted versions of the master key 208, as described
below with reference to FIG. 4. Since the verification key
generator 204 has access to the private key 210, 1t 1s able to
generate verification keys 226 for encrypting versions of the
master key 208 more quickly (using fewer computational
resources) than the unlocking mechanism 206 (which only
has access to the public key 220 and not the private key 210)
can generate versions of verification keys 226 for decrypting
encrypted versions of the master key 208.

At step 320, the one or more further encrypted versions of
the master key 208 are stored 1n the storage portion 219 of
the non-volatile storage 106 (1.e. outside of the container
202), for use 1n unlocking the container 202 in subsequent
iterations of the method 300.

FIG. 4 15 a flow diagram showing an encryption process
400 for generating encrypted version ol a master key 208
(denoted by MK) for a set of times, t=1, . . ., t=n, using the
verification key generator 204. The set of times 1s generated
to cover a period of time during which the user may be
expected to unlock the container 202 at least once. Typically,
the set of times will span several days, to allow the user to
be able to continue accessing secured data and resources
oflline provided the container 202 1s unlocked at least once
during that time span. In the event that a user does not access
their container 202 at least once within the prescribed time
limit (such that the OTP vernification system 200 1s unable to
generate new encrypted versions of the master key 208 for
times beyond the time limit), the verification system 200
may require that the user performs an online verification

5

10

15

20

25

30

35

40

45

50

55

60

65

12

process to unlock the container 202, thereby enabling the
verification key generator 204 to generate new encrypted
versions of the master key 208.

The separation of the times 1n the set of times may be any
value. Closer separation between times results 1in the OTP
value and the valid encrypted version of the master key 208
changing more often, and therefore results 1n a higher degree
of security of the contents of the container 202. Typically,
the separation between times 1s 1n the range of 30 seconds
to 60 seconds; for example, in a system in which the
separation between times 1s 30 seconds, the valid OTP value
changes every 30 seconds. However any suitable separation
between times may be used.

At step 402, the verification key generator 204 generates
a set of OTP values 224, O1, . . ., On, by operating the OTP
generation algorithm of the OTP generator 222 using the
seed value 212 obtained from the container 202 and the set
of times, such that each OTP value corresponds to a time 1n
the set of times.

At step 404, for each OTP value 224, the verification key
generator 204 computes a combined value relating to the
OTP value 224 (denoted by O1), the corresponding time
value (denoted by 11), and (optionally) the static password of
the user (denoted by pw). The combined value may be
computed using a one-way function, which ensures that the
constituent values cannot easily be determined from the
combined values (e.g. cannot feasibly be determined within
the lifetime of the OTP value). For example, the verification
key generator 204 may generate a combined, hashed value,
Hi using a cryptographic hash function, given by:

Hi=hash(#, Oi, pw).

As described above, to encrypt versions of the master key
208, the verification key generator 204 generates a set of
verification keys 226. The encrypted versions of the master
key 208 are typically 32 bytes long, which means that the
verification key 226 used to encrypt the encrypted versions
of the master key 208 1s also typically 32 bytes long, because
the cryptographic algorithm used to encrypt and decrypt the
encrypted versions of the master key 208 1s symmetric.
Since the public key 220 1s typically much longer (i.e.
comprises more bits) than the encrypted versions of the
master key 208 (for example the public key 220 may
comprise 1024 bits, comprising two 512 bit prime numbers),
the verification key 226 used 1s generated using another hash
function which generates another hashed value, H', that 1s
32 bytes long and 1s generated using the hashed value
generated at step 404, Hi, the public key 220 (denoted by N),
and an iteration count (denoted by K). Each verification key
226 therefore has a value of H", given by:

H'i—hash(H i"(2"%)mod N).

Since the factorization of N (1.e. the private key 210) 1s
known, values of H'1 that form the vernfication keys 226
generated by the venfication key generator 204 can be
computed relatively quickly by first computing, at step 406:

k'=2k mod(P-1)(0-1);
and then computing, at step 408:

Hik' mod M.

As shown 1n FIG. 4, the value of k' may be computed
separately from the generation of the combined value, H'.
The value of k' may, for example, be computed and stored
in the container 202 prior to the operation of the verification
key generator 204, and accessed by the verification key
generator 204 when the container 212 1s unlocked. Alterna-

US 9,979,546 B2

13

tively, the value of k' may be computed at run time while the
verification key generator 204 1s generating verification keys
226.

The time taken to compute H'1 when the values of P and
Q are known 1s less than the time taken to compute the value
of H'1 when the values of P and Q are not known. For
example, using a 1024 bit public key 220 (comprising 512
bit prime numbers and 1,000,000 count iterations, K, the
time taken to generate a verification key 226 using the
verification key generator 104 (that 1s, with access to the
private key 210) 1s about 0.25 muillisecond on a typical
desktop computer i 2013 and about 1 millisecond on a
typical smartphone 1n 2013 (the verification key generator
204 operating on a typical smartphone 1n 2013 can generate
one day’s worth of verification keys 226 1n about 3 CPU-
seconds).

At step 410, the venification key generator 204 then uses
cach of the generated venfication keys 226 to encrypt a
version of the master key 208 using a symmetric encryption
algorithm, given by:

encrypt(MK H").

Thus a set of encrypted versions of the master key 208,
cach generated with a different verification key 226 (based
on a different OTP value) 1s generated.

At step 412, the set of encrypted versions of the master
key 208 1s stored in the storage portion 219 non-volatile
storage 106 (1.e. outside the container 202). The set of
encrypted versions of the master key 208 are then available
for subsequent attempts by the user to unlock the container
202 using the unlocking mechanism 206.

The length of the encrypted versions of the master key
208 may be chosen to balance the entropy of the key
encryption with the available storage. For example, the
encrypted versions of the master key may be 32 bytes long.
With 32 byte long encrypted versions of the master key 208
and with each encrypted version of the master key 208 being
valid for a period of 30 seconds, the data storage capacity
required to store encrypted versions of the master key 208
for one day 1s about 92 kB. In order to limit the data storage
requirement, the verification system 200 may require that
users access the container 202 at least once within a pre-
scribed time limit; for example, at least once every few days.
In the event that a user does not access their container 202
at least once within the prescribed time limit (such that the
OTP verification system 200 1s unable to generate new
encrypted versions of the master key 208 for times beyond
the time limit), the verification system 200 may require that
the user performs an online verification process to unlock
the container 202, thereby enabling the verification key
generator 204 to generate new encrypted versions of the
master key 208.

FIG. 5 1s a flow diagram showing a decryption process
500 for decrypting an encrypted version of the master key
208 using the unlocking mechanism 206.

To decrypt an encrypted version of the master key 208 the
unlocking mechanism 206 1s required to successtully gen-
erate a version of a verification key 226 having the same
value as a vernfication key 226 that was generated by the
verification key generator 204 and used to encrypt an
encrypted version ol the master key 208. That 1s, the
unlocking mechanism 206 must generate a verification key
226 having a value, H', given by:

H'=hash(fd (2" k)mod N)=hash(i (2 k)mod N).

To generate a verification key 226, the unlocking mecha-
nism 206 receives mput, such as user mnput at step 502. The

10

15

20

25

30

35

40

45

50

55

60

65

14

input comprises a current OTP value (denoted by O) and
possibly the static password of the user (denoted by PW).
The current OTP value may be obtained by the user from an
OTP token 201, for example.

At step 504, the unlocking mechanism computes a com-
bined value relating to the current OTP value, the current
time value (denoted by t) which may be determined from the
clock 231 and the static password of the user (denoted by
pw). The combined value may be computed using a one-way
function, which ensures that the constituent values cannot
casily be determined from the combined values (e.g. cannot
teasibly be determined within the lifetime of the OTP value).
For example, the unlocking mechanism 206 may generate a
combined, hashed value, H, using a cryptographic hash
function, given by:

H=hash(z,0,pw).

Since neirther the unlocking mechanism 206 nor the user
has access to the private key 210 (only to the public key
220), to generate a version of the verification key 226 having
the same value as the venfication key 226 that was used to
encrypt a given encrypted version of the master key 208
requires the unlocking mechanism 206 to derive or compute
the verification key 226 using a different process to that used
by the verification key generator 204.

To generate a version of a verification key 226, at step
506, the unlocking mechanism 206 performs K modulo
squaring operations 1n sequence to determine the value:

H (2 k)mod N.

At step 508, the unlocking mechanism performs another
hashing operation. As described above with reference to step
408 of FIG. 4, a version of the verification key 226 1is
generated using another hash function so that the verification
key has a fixed length (for example, 32 bytes) that corre-
sponds with the length of the encrypted versions of the
master key 208, and 1s typically shorter 1n length than the
public key 220. Therefore, the version of the verification key
226 1s generated using the hashed value generated at step
504, H, the public key 220 (denoted by N), and an 1teration
count (denoted by K). The verification key 226 generated by
the unlocking mechanism 206 has a value of H', given by:

H'=hash(f (2 k)mod N).

The values of H' that form the venfication keys 226
generated by the unlocking mechanism 206 are therefore
calculated without knowing the factorization of N (i.e.
without access to the private key 210) by performing k
modulo squaring operations in sequence, whereas the values
of H'1 that form the verification keys 226 generated by the
verification key generator 204 are calculated knowing the
factorization of N (the private key 201). Therefore, the
computation performed by the verification key generator
204 1s less computationally mtensive than that performed by
the unlocking mechanism 206, and so the verification key
generator 204 can generate a verification key 226 for
encrypting an encrypted version of the master key 208 more
quickly than the unlocking mechanism 206 can generate the
same verification key 226 for decrypting an encrypted
version of the master key 208.

At step 510, the unlocking mechanism obtains an
encrypted version of the master key 208 from the storage
portion 219 non-volatile storage 106. In this respect, the
unlocking mechanism 206 may only obtain an encrypted
version of the master key 208 that corresponds to a current
time value, or may obtain all stored encrypted versions of

US 9,979,546 B2

15

the master key 208. The unlocking mechanism 206 may hold
the obtained encrypted version(s) of the master key 208 in
RAM 108.

At step 512, the unlocking mechanism 206 uses the
verification key 226 1t has generated to decrypt an encrypted
version of the master key 208 corresponding to the current
time. Decryption of the encrypted version of the master key
208 1s performed using the same symmetric encryption
algorithm used by the verification key generator 204 to
encrypt the encrypted version of the master key 208, given
by:

decrypt(MK H').

The process by which the unlocking mechanism 206
generates a version of the verification key 226 for decrypting
encrypted versions of the master key 208 typically takes
significantly longer than the process by which the verifica-
tion key generator 204 generates verification keys 226 for
encrypting encrypted versions of the master key 208. For
example, using a 1024 bit public key 220 (comprising 512
bit prime numbers and 1,000,000 count iterations, K, the
time taken to generate a verification key 226 using the
unlocking mechanism 206 (that i1s, without access to the
private key 210) 1s about 500 milliseconds on a typical
desktop computer 1n 2013 and about 2 seconds on a typical
smartphone i1n 2013. Therefore, the unlocking mechanism
206 takes about 2,000 times longer to generate a verification
key 226 than the venification key generator 204. The differ-
ence between the time taken by the venfication key genera-
tor 204 to generate the verification key 226 and the time
taken by the unlocking mechanism 206 to generate the same
key 226 provides robustness against brute-force attacks,
because the unlocking mechanism 206 1s slow, whilst allow-
ing fast generation of the encrypted versions of the master
key 208, because verification key generator 204 1s fast. In
turn, the fast generation of encrypted versions of the master
key 208 enable the OTP verification system 200 to be
operated offline (that 1s, without connecting to a remote
server) for extended periods of time without requiring that
large portions of the non-volatile storage 106 are dedicated
to storing encrypted versions of the master key 208, or that
large amounts of processing time 1s devoted to generating
encrypted versions of the master key 208. Furthermore, the
verification system 200 can be implemented using existing
OTP algorithms and so can be used in conjunction with
existing OTP tokens (which may currently be used for online
OTP verification).

The above embodiments are to be understood as illustra-
tive examples of the imnvention. Further embodiments of the
invention are envisaged. For example, 1n the above descrip-
tion of the OTP venfication system, the verification key
generator 204 1s described as being external to the container
202, and 1s only able to access the private key 210 and the
OTP seed 212, when the container 202 1s unlocked. How-
ever, the verification key generator 204 may 1tself be stored
within the container 202 and may thus hold a copy of the
private key 210 and the OTP seed 212. In response to the
container 202 being unlocked, the verification key generator
204 may remove expired encrypted versions of the master
key 208 (that 1s, for times 1n the past) from the storage
portion 219 of the non-volatile storage 106, and initiate a
process for generating a new set of future encrypted versions
of the master key 208.

Although 1n the method described above the unlocking
mechanism 206 obtains encrypted versions of the master key
208 from the storage portion 219 of the non-volatile storage
106, 1t will be understood that the encrypted versions of the

10

15

20

25

30

35

40

45

50

55

60

65

16

master key 208 may be passed to the unlocking mechanism
206 by the verification key generator 204 either at the time
of generation or at any time thereafter. "

The unlocking
mechanism 206 may then store the encrypted versions of the
master key 208 1n the storage portion 219 of the non-volatile
storage 106, or may just store the encrypted versions of the
master key 208 temporarily in RAM 108.
Although 1n the embodiment described above with refer-
ence to FIGS. 4 and 5, the combined values relating to the
time value, the OTP value and the static password of the user
are described as being computed using a one-way function
such as a hash function, 1t will be understood that any
suitable function for combining these values may be used.
For example, the combined values may be computed by
concatenating the time value, OTP value and static password
ol the user.
The above embodiments are described 1n the context of a
symmetric encryption scheme 1 which the same key, the
master key 208, 1s used for both locking and unlocking the
container 202. However, 1t will be understood that a suitable
asymmetric encryption scheme may also be used with the
verification system 200. In such a system, the verification
key generator 204 generates multiple encrypted versions of
the master key 208, which forms the private part of an
asymmetric key pair for unlocking the container 202. A
corresponding public part of the asymmetric key pair, for
locking the container 202, 1s stored outside of the container
202. Such an implementation of the verification system 200
using an asymmetric key algorithm enables data, for
example, to be put into the container 202 (i.e. encrypted)
while the container 202 1s either locked or unlocked but only
taken out of the container 202 (1.e. decrypted) while the
container 202 1s unlocked.
It 1s to be understood that any feature described 1n relation
to any one embodiment may be used alone, or in combina-
tion with other features described, and may also be used in
combination with one or more features of any other of the
embodiments, or any combination of any other of the
embodiments. Furthermore, equivalents and modifications
not described above may also be employed without depart-
ing from the scope of the invention, which 1s defined 1n the
accompanying claims.
What 1s claimed 1s:
1. A method of controlling access to a resource via a
computing device, the computing device comprising:
a memory storing a {irst set of data and a second set of
data, the first set of data being encrypted using a {first
key, and the second set of data being different from the
first set of data; and
a code value generator configured to generate a sequence
of code values,
wherein the first set of data comprises a second key, and
saild second set of data comprises at least a first
encrypted version of the first key, the first encrypted
version of the first key having been encrypted at least
partly on the basis of a first one of said sequence of
code values and said second key, the method compris-
ng:
receiving, at the computing device, a first mput, and
providing a first code value on the basis of the first
input;

performing a first decryption process at least partly on
the basis of the first code value, the first decryption
process comprising decryption of said first encrypted
version of the first key; and
responsive to successiul decryption of said first

encrypted version of the first key:

US 9,979,546 B2

17

performing a second decryption process, the second
decryption process being performed on the basis
of the first key decrypted during the first decryp-
tion process, wherein the second decryption pro-
cess comprises decryption of at least some of said
first set of data;

providing access to said resource on the basis of the
first key decrypted during the first decryption
pProcess;

in response to said decryption of at least some of said
first set of data, providing at least a second
encrypted version of said first key, said second
encrypted version of said first key having been
encrypted at least partly on the basis of a second
one of said sequence of code values and said
second key; and

storing said second encrypted version of said first
key 1n said memory as data of said second set of
data.

2. The method according to claim 1 in which the resource
to which access 1s provided comprises data of said first set
stored 1n the memory of the computing device.

3. The method according to either of claim 1, 1n which the
first encrypted version of the first key has been encrypted
using a first value generated using a first code generating,
function, on the basis of the first one of the sequence of code
values and said second key.

4. The method according to claim 3, 1n which the second
decryption process comprises decrypting said second key on
the basis of the first key decrypted during the first decryption
process, and the method further comprises:

in response to decrypting said second key, generating the

second encrypted version of said first key using a
second value generated using the first code generating
function, the second value being generated on the basis
of the second one of said sequence of code values and
said second key; and

storing the second encrypted version of said first key 1n

said memory as data of said second set of data.

5. The method according to claim 3, 1n which the first
code generating function 1s stored 1in the first set of data or
in which the first code generating function users parameters
stored 1n the first set of data.

6. The method according to claim 3, in which the first
decryption process comprises generating a third value using
a second code generating function on the basis of said first
code value and a third key, different from said second key.

7. The method according to claim 6, in which the first
value 1s equal to said third value.

8. The method according to claim 6, 1n which said second
code generating function takes a greater amount of time to
generate said third value than said first code generating
function takes to generate said first value.

9. The method according to claim 8, in which said third
key comprises a value equal to the product of two or more
prime numbers and the second key comprises said two or
more prime numbers, and 1n which said second code gen-
erating function comprises a series of modulo multiplication
operations.

10. The method according to claim 1, in which the value
of each of sequence of code values 1s determined at least
partly on the basis of a position within said sequence.

11. The method according to claim 1, in which each of
said sequence of code values 1s generated at least partly on
the basis of a time value.

12. The method according to claim 1, 1n which the first
encrypted version of the first key 1s encrypted at least partly

10

15

20

25

30

35

40

45

50

55

60

65

18

on the basis of a static password value, and the first input
comprises said static password value.

13. The method according to claim 1, further comprising:

in response to said decryption of at least some of said first

set of data, providing a set of encrypted versions of said

first key 1including said second encrypted version and a

plurality of further encrypted versions; and
storing said plurality of further encrypted versions of said
first key m said memory as data of said second set of

data.
14. The method according to claim 1, i which the
sequence of code values are generated on the basis of a

one-time passcode (OTP) generating algorithm.

15. The method according to claim 14, further compris-
ng:

storing a seed value for said OTP generating algorithm in
said memory as data of said first set of data;

in response to said decryption of at least some of said first
set of data, providing said seed value to said code value
generator; and

generating, at said code value generator, said sequence of
code values at least partly on the basis of said seed
value.

16. The method according to claim 1, 1n which said first
set of data 1s encrypted on the basis of a symmetric key
algorithm or an asymmetric key algorithm.

17. The method according to claim 1, 1n which said first
set of data 1s encrypted on the basis of an asymmetric key
algorithm.

18. A computing device comprising:

a memory storing a {irst set of data and a second set of
data, the first set of data being encrypted using a {first
key, and the second set of data being different from the
first set of data; and

a code value generator configured to generate a sequence
of code values,

wherein the first set of data comprises a second key, and
saild second set of data comprises at least a first
encrypted version of the first key, the first encrypted
version of the first key having been encrypted at least
partly on the basis of a first one of said sequence of
code values and said second key, the computing device
being configured to:
receive a lirst input and provide a first code value on the

basis of the first mput;

perform a first decryption process at least partly on the

basis of the first code value, the first decryption

process comprising decryption of said first encrypted

version of the first key; and

responsive to successiul decryption of said first

encrypted version of the first key:

perform a second decryption process on the basis of
the first key decrypted during the first decryption
process, wherein the second decryption process
comprises decryption of at least some of said first
set of data;

provide access to said resource on the basis of the
first key decrypted during the first decryption
process;

provide, 1n response to said decryption of at least
some of said first set of data, at least a second
encrypted version of said first key, said second
encrypted version of said first key having been
encrypted at least partly on the basis of a second
one ol said sequence of code values and said
second key; and

US 9,979,546 B2

19

store said second encrypted version of said first key
in said memory as data of said second set of data.
19. The computing device according to claim 18, wherein
the computing device 1s a portable device.
20. The computing device according to claim 19, wherein >
the computing device 1s a smartphone.

21. A computer program comprising instructions execut-

able by a computing device comprising:

a memory storing a first set of data and a second set of
data, the first set of data being encrypted using a first
key, and the second set of data being different from the
first set of data; and

a code value generator configured to generate a sequence
ol code values,

wherein the first set of data comprises a second key, and
saild second set of data comprises at least a first
encrypted version of the first key, the first encrypted
version of the first key having been encrypted at least
partly on the basis of a first one of said sequence of
code values and said second key,

wherein, when executed by the computing device, the
computer program causes the computing device to:
receive a first input and provide a first code value on the

basis of the first mput; perform a first decryption

10

15

20

20

process at least partly on the basis of the first code
value, the first decryption process comprising
decryption of said first encrypted version of the first
key; and

responsive to successiul decryption of said first

encrypted version of the first key:

perform a second decryption process on the basis of
the first key decrypted during the first decryption
process, wherein the second decryption process
comprises decryption of at least some of said first
set of data;

provide access to said resource on the basis of the
first key decrypted during the first decryption
process;

provide, 1n response to said decryption of at least
some of said first set of data, at least a second
encrypted version of said first key, said second
encrypted version of said first key having been
encrypted at least partly on the basis of a second
one ol said sequence of code values and said
second key; and

store said second encrypted version of said first key
in said memory as data of said second set of data.

% o *H % ex

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,979,546 B2 Page 1 of 1
APPLICATION NO. : 15/315360

DATED : May 22, 2018

INVENTOR(S) : Nicholas Van Someren

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Item (57) (Abstract), Line 9, Delete “one-tome” and 1nsert -- one-time --, therefor.

In the Claims

In Column 18, Line 9, In Claim 13, delete “m” and insert -- 1in --, therefor.

Signed and Sealed this
Twenty-seventh Day ot Apnil, 2021

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

