a2y United States Patent
Dayka et al.

US009973480B2

US 9,973,480 B2
*May 15, 2018

(10) Patent No.:
45) Date of Patent:

(54) MULTI-LEVEL SECURITY ENFORCEMENT
UTILIZING DATA TYPING

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: John C. Dayka, New Paltz, NY (US);
Michael Charles Osborne,
Rueschlikon (CH); Tamas Visegrady,

Rueschlikon (CH)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 64 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 14/870,444

(22) Filed: Sep. 30, 2015
(65) Prior Publication Data
US 2017/0093879 Al Mar. 30, 2017
(51) Imnt. CL
HO4L 29/06 (2006.01)
GO6F 21/60 (2013.01)
(Continued)
(52) U.S. CL
CPC HO4L 63/0471 (2013.01); GO6F 21/602
(2013.01); HO4L 63/0435 (2013.01);
(Continued)
-
190
CSP STORAGE

(38) Field of Classification Search
CPC . HO4L 63/105; HO4L 63/123; HO4L 63/04335;
HO4L 9/3247; HO4L 63/04°71; GO6F
21/71; GO6F 21/602
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6/2004 Wootten et al.
10/2009 Patrick et al.

(Continued)

0,754,819 Bl
7,603,548 B2

OTHER PUBLICATTIONS

Keighren, Gavin, “Restricting Information Flow in Security APIs
via Typing,” Thesis, University of Edinburgh, 2014, 151 pages. Jan.
1, 2014.

(Continued)

Primary Examiner — Robert Leung

(74) Attorney, Agent, or Firm — Willlam A. Kinnaman;
Matthew W. Hulihan; Heslin Rothenberg Farley & Mesiti

PC

(57) ABSTRACT

A computer-implemented method, a computer system, and a
computer program product are provided for enforcing multi-
level security (MLS) on a message transmitted over a
network that may be insecure. The method includes the
processor obtaming a request from a source to send a
message to a target, where the request includes the message
and a context indicating a requested security level for the
message. The processor encrypts the message based on
ascertaining the message recerved 1n the request 1s a plain-
text. The processor authenticates the encrypted message
based on ascertaining the encrypted message 1s a ciphertext,
where the target 1s enabled to trace the authenticated cipher-
text back to the source. The processor transmits the authen-
ticated encrypted message to the target across the network.

11 Claims, 7 Drawing Sheets

j KE {CKA_ENCRYPT = TRUE}
RE {CKA_KEY_TYPE = D1-D2}
DE {INPUT_TYPE=D1, OUTPUT_TYPE=D2}

125E

| KA {CKA_SIGN = TRUE}
RA {CKA_KEY_TYPE = D2-D3}
DA {INPUT_TYPE=D2, OUTPUT_TYPE=D3}

130E

| KV {CKA_VERIFY = TRUE)
RV {CKA_KEY_TYPE = D3-D4}
DV {INPUT_TYPE=D3, OUTPUT_TYPE=D4}

155E

| KD {CKA_DECRYPT = TRUE}
RD {CKA_KEY_TYPE = D4-D5}
DD {INPUT_TYPE=D4, OUTPUT_TYPE=D5}

160E

US 9,973,480 B2
Page 2

(51) Int. CL
GOGF 21/71 (2013.01)
HOA4L 9/32 (2006.01)
(52) U.S. CL
CPC oo, HO4L 63/06 (2013.01); HO4L 63/105

(2013.01); HO4L 637123 (2013.01); GO6F
21/71 (2013.01); GO6F 2221/2107 (2013.01);
GO6F 2221/2113 (2013.01); HO4L 9/3247

(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
7,673,323 Bl 3/2010 Moriconi
8,041,947 B2 10/2011 O’Brien et al.
2005/0010766 Al1* 1/2005 Holden GO6F 21/31
713/166
2006/0173845 Al 8/2006 Handy-Bosma et al.
2008/0260147 Al1* 10/2008 Shinco... HO4L 9/0637
380/46

2011/0314271 Al1* 12/2011 Boccon-Gibod ... GO6F 21/6218

713/151
2012/0066509 Al* 3/2012 Lappccecevvvvnnnnn, GO6F 21/606
713/189
2012/0131354 Al* 5/2012 French GOo6F 21/602
713/189

OTHER PUBLICATTONS

Lanz, Daniel J., “High Assurance Cryptographic Interface,” Mili-
tary Communications Conference, 2008, MILCOM 2008, IEEE, pp.

1-5. Jan. 1, 2008.

Uchenick, Gordon M., et al., “Multiple Independent Levels of
Safety and Security: High Assurance Architecture for MSLS/MLS,”
Military Communications Conference, 2005. MILCOM 2005,
IEEE, pp. 610-614. Jan. 1, 2005.

Dayka, John C. et al., “Multi-Level Security Enforcement Utilizing
Data Typing,” U.S. Appl. No. 15/195,740, filed Jun. 28, 2016, pp.
1-44.

List of IBM Patents or Patent Applications Treated as Related, Jul.
15, 2016, pp. 1-2.

* cited by examiner

U.S. Patent May 15, 2018 Sheet 1 of 7 US 9,973.480 B2

100 X

101

120
SOURCE DOMAIN
CRYPTOGRAPHY SERVICE
PROVIDER
(FIG. 1B)

110

SOURCE
APPLICATION

107

150
TARGET DOMAIN
CRYPTOGRAPHY SERVICE
PROVIDER
(FIG. 1B)

1/0

TARGET
APPLICATION

FIG. 1A

U.S. Patent May 15, 2018 Sheet 2 of 7 US 9,973.480 B2

1002>
101 107
D1 D5
125 160
ENCRYPTION DECRYPTION
D2 D4

130 I 155
AUTHENTICATION 5 VERIFICATION

135
SOURCE
CSP STORAGE

165
TARGET

CSP STORAGE
(FIG. 1C)

120 15

U.S. Patent May 15, 2018 Sheet 3 of 7 US 9,973.480 B2

190
CSP STORAGE

125EF
KE {CKA_ENCRYPT = TRUE}
RE {CKA_KEY_TYPE = D1-D2}
DE {INPUT _TYPE=D1, OUTPUT _TYPE=D2}

130E
KA {CKA_SIGN = TRUE}

RA {CKA KEY_TYPE = D2-D3}
DA {INPUT_TYPE=D2, OUTPUT TYPE=D3}

155E
KV {CKA_ VERIFY = TRUE}
RV {CKA KEY_TYPE = D3-D4)

DV {INPUT TYPE=D3, OUTPUT TYPE=D4)

160E
KD {CKA_DECRYPT = TRUE}
RD {CKA_KEY_TYPE = D4-D5}
DD {INPUT_TYPE=D4, OUTPUT_TYPE=D5)

FIG. 1C

U.S. Patent May 15, 2018 Sheet 4 of 7 US 9,973.480 B2

202 210 220 230

204
REQUEST
206
KEY HANDLE

208 DATA

N
NN
N
N

212 222 232
REQUEST REQUEST REQUEST

224 234
KEY KEY
OBJECT OBJECT

226 236
NC DATA NC DATA

238
SIGNED
DATA

FIG. 2

U.S. Patent May 15, 2018 Sheet 5 of 7 US 9,973.480 B2

12~ COMPUTER SYSTEM/ SERVER 28

! 3 MEMOURY 3&’
%,

a ;
% || RaM
16

PROCESSING 1 | |
NI '

AR AN el aurdr

5;
1 3_\\ %\mmm“‘.%\“\-ﬁ“m-.“

24 Y.
!—I——I-W-L 'l e tatatas’ .q..mu.u.-.u.n.-.u.u.u.'.'

L N e

O = ‘
INTERF:QE{;@; - NETWORK ARAPTER

P EXTERNAL
DEVICR{S)

FIG. 3

U.S. Patent

I T R e

EVNEI T ETEETEE TEY T T . ..

May 15, 2018

Sheet 6 of 7

US 9,973,480 B2

JEEPPRENE L0 Stpubuabu 5 LGk
~.1::,h-:'-l'ﬂ"-%."'-' o N
o X

o '.@‘-x“ ‘1.}\\1..,_ “"%‘

Sl = e AT -

1"-‘&11.1.1.1."‘&{1.1?{21 . i Rt S T -~
b

. 20 1 Rkl U e . n
* . y :-'.-:" .t,‘!_ . L .\.1. L R R R R R 1 .
. NG G > Y L " \ by
» . t % 'I} 4 . .\. <N N
1 a ...".'i. B by P - .“.".""-"'L -..-.‘-..""'I..'-I‘-\..l.'I
v - \ i E;'t ~ . ;mﬁg.um'-um.- R Ry
Ll “* N 5 oy
s _ a - ARG
: -;‘ -‘q. o ik, SV L O R E EE E’"i e 1 i N N }\t
o e - leiivialian AL TERT E% ST MLl R ERE LTI L R, s
'I-‘ S ARAELAELELL I?." ‘}“ ~ ‘: TR .“ -ec.h} b da -.L““t:-::: :‘..h::‘ -"'?"..“-\-‘}
.,F ::..1.1. [y u.h ""L L 1‘,.- . ‘5:,:1- - ‘; -1&__ ETCETE L L VE\‘_":_'_ -
ml‘ X M, .i"" ' "-l'i,ﬁ* ety
"11
o . .
ey 2 bkl © AN
- L
'l:-. . ‘l'\‘_
I'-.-', ‘._!- \\
| | -"_l"
n Y - L
- ..jh'h'."“"' A e Ak h'l_b..\lf‘h ‘i
" -y . s
‘H-.hh ' ‘.'l'] u W 'Q L™ -‘.‘.".hl
iy] ; < LY
& - Yo \\
>) 0y \
, L N %
"i. L]
$ E AN 33 :
P : s IR Pl :
s A '!; by u ' ." *" % ~ -lt.-
. » hy ta -ﬂ My A \
‘_l" E L . ,."l."‘ ' I“.. s :: o -
-_,"‘ 2 " ' -y oo : ‘h_u-.:_ﬁ.ip_“t ‘f \ an MO
z . hy \ . ks L Ty & W,
5 X ‘- T : T : s <«
N 'y t k L 1- .‘ .'I. - . 3] X 'ﬁ
; S 3E o NG s oo -
. S 3 3 S s A 3
: S, ; e N i g §
-, ,. ~ ' N . ~ ™ s ‘“lu.-.}. ‘_."'
!I] * : [| - \‘l-h‘f - .
-".. 2 -.‘ L1 : : ‘L . H‘-"b =
A% . P - o
_.'" Wi gy . \ - g o
. \ 1, L ‘.]
» - oy by 2 - Rt
. = y : 1 F % =3
4 i Y F : \. -~
1 : ; 3 N o et
- e : § :
i b 3
N h. 3 ,..d;"
& .
.‘\'."""'-.'..... PIPEPRN L :: =
\ _‘
\"\
L WY
i P "
;}"“ R _
iy S,
- ""-‘In. . -
.r“' i L L S
l-"‘
- E,-.ul. o Ty B, W, T, B, W,
’r’-f EEEE R EEEE R EEE . . m
*
»
&
- L Y O L L P L L
-
R o N
WL LTl
- RETL A % E
A& ST R S :
Ny, oy has “h h I
Ny gt AN \
. S S) H
Ty % % N
w3 3% \ :
-} L Y y
. , . N]
3 3 3y :
""\"h 1:.. T !
"i "‘ll_ ‘_ il "..'-"';. ﬁh h
1.{.1_ i R _.‘-.-";:‘ ﬁl: ﬁ N AL AL ALAL LR AR LA LR A L
\ y o) .:"_
s, ﬂ ' N
y a ﬁ Ty
"y, . a n, TR PN Y Y R WY !
O R RAY e, eigieiaigioigl
AR NS
" "n o . n!
Y {_:.._.:" oo t_,_ _.-' ‘,1.-"‘ ':*f

-‘
Nyt s Y _L_._..-.-"
.“"".l.-u-- L =

FIG. 4

7 m U » h@ SN AR BRI]

US 9,973,480 B2
&

7 ._m?mm o a0 aﬁu&ﬁ xe y

L o cninoean 1 : { A S it SRRl @ \._ ,
F RN onE| Sy " e X - s

S N o R € —— M B /
Y d I|M.\ WA e s
ﬁ ﬂﬂﬂﬂﬂ ; anuriE R _ A P Fﬁ& A
e .._..HH%H\ ...nMx o r 1 rﬁﬁm x.n._.....q..“..m e IV g 171
Trees ~ — e Ol AR B N Ll R E
v
~ d = ﬁm Ty g AN L - VOB,
= S| wﬁmﬁﬁaﬁ mﬁ%_ﬁ Bt %&m Py
- i ket e s O, %
=TT =T ~ w..}..{ . I ,..... .
- S T i .
A_w — < ,.H“.ﬂ_....:”.m Ty .\.»,m.._._.
= 1 L med S8
S L TR ﬂ. \..._
~~~~~~~~~~~~~~~~~~~~~~~~~~ 5y (74 £R 25 14 sletBaeRy S
__"_. qm z u.“ -.. .m...,_._

- ...\.r
&Eﬁ*m__?b._ﬁm .\\\.. \..\.\
CALERDE T x\ N

AV A"

" !
n.r-\\ _u......__.-.

SPEOICH

u_an__m_.ﬁu_ Eﬁk ,
/" Dk ﬁn“ g

pashmayy . @E& e

[BAEE NE?% \

By B,
4

May 15, 2018

x ﬁaﬁﬁr%m‘ﬁwm x\

A7 20 E
4 @ﬁﬂ_ﬁwd \ Ehﬁmﬁmx \

LR TR
HERHY "&E \
2L MR

U.S. Patent



US 9,973,480 B2

1

MULTI-LEVEL SECURITY ENFORCEMENT
UTILIZING DATA TYPING

BACKGROUND

One or more aspects relate, in general, to cryptography
service for data communication, and, in particular, to addi-
tional cryptography service for conventional cryptography
service Tunctionality of mainirame computer systems.

Multi-level security (MLS) systems that are used in
high-assurance environments as for financial transactions
require privilege separation, reliable tracking of origins and
purpose of cryptographic keys and data. Cryptography ser-
vices provided 1n conventional mainframe computer sys-
tems lack the capability to tag immformation as required in
MLS systems. Thus to implement MLS systems, cryptog-
raphy service provider (CSP) need to associate types with
inputs to the CSP prior to enforce type-based rules for MLS
systems.

SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a com-
puter-implemented method of enforcing multi-level security
(MLS) on a message transmitted over a network that may be
insecure. The method includes, for instance: obtaiming, by a
processor, a request from a source to send a message to a
target, the request comprising the message and a context
indicating a requested security level for the message;
encrypting, by the processor, the message based on ascer-
taining the message received in the request 1s a plaintext;
authenticating the encrypted message based on ascertaining
the encrypted message 1s a ciphertext, wherein the target 1s
enabled to trace the authenticated ciphertext back to the
source; and transmitting, by the processor, the authenticated
encrypted message to the target across the network.

Computer-implemented methods, computer program
products and/or computer systems relating to one or more
aspects are also described and claimed herein. Further,
services relating to one or more aspects are also described
and may be claimed herein.

Additional features and advantages are realized through
the techniques described herein. Other embodiments and
aspects are described in detail herein and are considered a
part of the claimed aspects.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more aspects are particularly pointed out and
distinctly claimed as examples 1n the claims at the conclu-
s1on of the specification. The foregoing and objects, features,
and advantages of one or more aspects are apparent from the
following detailed description taken in conjunction with the
accompanying drawings in which:

FIG. 1A depicts one embodiment of a system for enforc-
ing multi-level security (MLS) by use of data typing;

FIG. 1B depicts one embodiment of the system of FIG.
1A for enforcing multi-level security (MLS) by use of data
typing, with components of cryptography service provider
(CSP);

FIG. 1C depicts one embodiment of instances stored in a
cryptography service provider (CSP) storage;

FIG. 2 depicts various structures of stateless CSP for
MLS;

FIG. 3 depicts one embodiment of a cloud computing
node;:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 depicts one embodiment of a cloud computing
environment; and
FIG. 5 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

In accordance with one or more aspects, a method for
multi-level secunity (MLS) enforcement by use of data-
typing 1s provided, as an added feature of conventional
cryptography service provider (CSP) application program-
ming interfaces (APIs), such that users of hardware-imple-
mented conventional CSP APIs may utilize high-assurance
cryptography service functionality without replacing physi-
cal computer systems.

In cryptography, a key 1s a variable value that 1s applied
using an algorithm to a unit of unencrypted text to produce
encrypted text, or to decrypt encrypted text. In this specifi-
cation, any cryptographic function selected from the group
including encryption, decryption, authentication, and veri-
fication 1s regarded to have a key corresponding to the
cryptographic function. Mechanisms to secure keys for
transportation are deemed to be provided by a conventional
cryptography service provider (CSP).

Conventional CSP application programming interfaces
(APIs) do not associate attributes with raw data, and gen-
erally offer basic key-usage attributes. As conventional CSP
APIs provide lmmited key-transport capabilities, conven-
tional CSP APIs are unable to securely transport key attri-
butes, and consequently, unable to be emploved 1n MLS
environments, even 1f functions of the conventional CSP
APIs could easily serve MLS systems. Thus a method to
extend conventional CSP APIs capable of MLS service, as
provided 1n aspects of the present invention, 1s beneficial.

An example of a CSP API, may be Public Key Cryptog-
raphy Standards (PKCS) #11, which 1s one of the industry-
accepted standards of cryptography service that 1s provided
by RSA® Laboratories of RSA Secunity LLC. (RSA 15 a
registered trademark of EMC Corporation, Hopkinton,
Mass., USA.) PKCS #11 specifies an application program-
ming interface (API) to devices, which hold cryptographic
information and run cryptographic functions. Another
example of a CSP API may be Secure IBM Enterprise Public
Key Cryptography Standards (PKCS) #11 (EP11), which
will be discussed in greater detail herein. (IBM® 1s a
registered trademarks of International Business Machines
Corporation, Armonk, N.Y., USA.)

One embodiment of the present invention may be 1mple-
mented as an optional extension feature added to nput/
output (I/0) imterface functionalities of a mainframe com-
puter such as Secure IBM Enterprise Public Key
Cryptography Standards (PKCS) #11 (EP11), provided as
system calls for mainframe computers of a cryptography
service. This embodiment enables data-typing to enforce
MLS while retaining binary-compatibility for user-level
applications running on the conventional PKCS functional-
ty.

A PKCS #11 device stores objects and runs cryptographic
functions, such as source domain computer system and
target domain computer system as described in FIGS. 1A
and 1B. Conventional PKCS #11 defines three types of
objects consisting of a data object, a certificate object, and
a key object. The data object 1s defined by an application.
The certificate object stores a digital certificate. The key
object stores a cryptographic key, or simply a key. Objects
indicate 1tems that are stored in a device, such as digital
certificates and cryptographic keys. The key may be a public
key, a private key, and/or a secret key. In some embodiments




US 9,973,480 B2

3

of the present invention, EP11 may use attribute-bound
objects to secure the contents ol a message.

As will be discussed 1n greater detail in this specification,
EP11 1s not a conventional CSP, even 11 1t may emulate one.
The EP11 differs from more conventional CSPs at least
because 1t 1s stateless.

One embodiment of the present mvention implements
MLS-aware CSP mandate “attribute-bound” (AB) transport,
because MLS functionality assumes that each object 1s
associated with attributes during respective lifecycle of each
object. Accordingly, in the same embodiment, an MLS
environments would set up EP11 modules to enforce AB
transport only and prohibit the use of PKCS#11 key trans-
port. The AB key transport uses the same functions as to
wrap or unwrap keys and associates keys with their attri-
butes.

Data typing enables MLS as MLS-related attributes are
directly attached to the corresponding data. The attribute
field 1s 1n the clear and 1s authenticated as part of the
enclosure of the message. As the EP11 platform of the
present invention allows an expandable set of integer attri-
butes, 1n one embodiment of the present invention, data
types are represented integer attributes.

To regulate capabilities of keys, usage restrictions on data
types may be embedded directly into EP11 code. Key
attributes for MLS {features, having either Booleans or
integers values, may restrict the capability of MLS keys to
act on certain data types. The CSP of the present invention
may permit access to the message authentication code
(MAC) keys authenticating data only to MLS-aware keys,
such that non-MLS keys may not interfere with MLS traflic.
Conversely, MLS operations may release data from typing,
such that output of the MLS operations may be exported 1n
non-MLS formats. Because the platform of the present
invention EP11 permits runtime updates to attributes 1f
required and properly configured, MLS enforcement rules
may also be dynamically updated.

Because whether or not MLS 1s available may be easily
determined by each key and because modules may unam-
biguously recognize key and data formats, MLS keys and
sessions may coexist with corresponding non-MLS keys and
sessions 1n a separate environment, wherein the MLS keys
sessions and the corresponding non-MLS keys and sessions
are hosted within the same CSP. Wherein the MLS capabil-
ity and non-MLS capability are not concurrently used, a
stateless CSP may be utilized to add usage restrictions
exclusively for MLS and to prohibit usage of non-MLS
objects. Also, wherein a CSP offers “control points™ (CPs) to
restrict choice of supported algorithms or key sizes, an MLS
domain may enumerate CP profiles which designate a set of
algorithms preferred by the MLS domain.

Referring now to FIG. 1A, one embodiment of a system
100 implementing a method for enforcing multi-level secu-
rity (MLS) by use of data typing 1s shown. The system 100
comprises a source domain computer system 101, a target
domain computer system 107, and a network 50.

The source domain computer system 101 comprises a
source application 110 and a source domain cryptography
service provider (CSP) 120. The target domain computer
system 107 comprises a target application 170 and a target
domain cryptography service provider (CSP) 150. The
source domain computer system 101 1s coupled to the target
domain computer system 107 by use of the network 50, of
FIG. 4. In this specification, the network 30 1s regarded as
an untrusted data communication medium, for which cryp-
tography service to secure messages transmitted over the
network 1s useful. The source application 110 sends a

10

15

20

25

30

35

40

45

50

55

60

65

4

message (not shown) to the target application over the
network, of which the path 1s represented by the directed
arrows of FIG. 1A.

Referring now to FIG. 1B, one embodiment of the system
100 of FIG. 1A for enforcing multi-level security by use of
data typing, with components of CSP, 1s shown. The source
domain computer system 101 comprises the source appli-
cation 110 and the source domain cryptographic service
process (CSP) 120, and the target domain computer system
107 comprises the target domain CSP 150 and the target
application 170, as shown 1n FIG. 1A.

The terms “source” and “target” 1n the source application
110, the source domain CSP 120, the target application 170,
and the target domain CSP 150 are used to indicate a sender
and a receiver of data, respectively. Accordingly, the terms
“source/target” may be used interchangeably with terms
“origin/destination,” “sender/receiver,” etc., respectively 1n
the same order, to indicate respective roles in one instance
of a data communication, and are not associated with an
instance of physical entity such as a computer system. In one
embodiment of the present invention, the source domain
CSP 120 and the target domain CSP 150 are elements of
input/output interface of IBM® Enterprise Public Key Cryp-
tography Standards (PKCS) #11 (EP11) service.

One embodiment of the present mmvention provides an
example of providing high-assurance data confidentiality
and integrity based on conventional PKCS#11 Encrypt/Sign
primitive system calls 1n order to prevent isecure combi-
nations of encryption without adding machine-level cryp-
tography services, relying on key-usage and data attributes.
One embodiment of the present invention enables a func-
tionality equivalent to authenticated encryption from sepa-
rate encryption key and message authentication code (MAC)
sign keys. In some embodiments of the present invention,
Encrypt-then-MAC ordering 1s forced, that 1s, in these
embodiments, program code encrypts a message, and sub-
sequently signs the encrypted message. The Encrypt-then-
MAC ordering may provide better security properties. Pro-
gram code may enforce the Encrypt-then-MAC ordering
restriction on operation order without changing any of
semantics of Encrypt or Sign primitive system calls. In one
embodiment of the present invention, the program code mat
define additional data types and key-usage restriction cor-
responding to the additional data types to enforce the
Encrypt-then-MAC ordering.

In an embodiment of the present invention, the source
application 110 and the source domain CSP 120 are imple-
mented on a physical mstance of a computer system 12 of
FIG. 3 such that the source application 110 and the source
CSP 120 communicate without any security concern. In one
embodiment wherein the source application 110 and the
source domain CSP 120 are implemented 1n a {irst instance
of the computer system 12 of FIG. 3, the source application
110 1s a first instance of program modules 42 of the first
instance of the computer system 12 of FIG. 3, and the source
domain CSP 120 1s one element of mput/output (I/0)
interface 22 of the first instance of the computer system 12
of FIG. 3. Sumilarly, the target application 170 and the target
domain CSP 150 are may be implemented on another
physical mstance of the computer system 12 of FIG. 3. In
one embodiment where the target application 170 and the
target domain CSP 150 are implemented in a second
instance of the computer system 12 of FIG. 3, the target
application 170 1s a second instance of program module 42
of the second instance of the computer system 12 of FIG. 3,
and the target domain CSP 120 i1s one element of mput/
output (I/0) interface 22 of the second instance of the




US 9,973,480 B2

S

computer system 12 of FIG. 3. For ease of understanding, as
shown 1n FIGS. 1A and 1B, the first mnstance of computer
system hosting the source application 110 and the source
domain CSP 120 1s referred to as the source domain com-
puter system 101, and the second instance of computer
system hosting the target application 170 and the target
domain CSP 150 1s referred to as the target domain computer
system 107.

In an embodiment of the present invention, the source
application 110 generates a request to communicate securely
with the target application 170, which i1s internally trans-
ferred to the source domain CSP 120, as shown 1n Arrow D1.
The request comprises a command and an associated con-
text, such as a wanted level of security for respective piece
of data. Specifics of cryptography services such as details of
synthesizing data-flow graphs to data types and key-usage
restrictions need not to be disclosed to the source application
110 to generate the request. Within the source domain
computer system 101, the source application 110 may
securely communicate with the source domain CSP 120 via
internal data communication channel without engaging the
source domain CSP 120.

Although 1n certain embodiments of the present mnven-
tion, a specific need not be exposed to applications directly,
compositions may be compiled into datatype-based state
machines similar to the above authenticated encryption
example.

The source domain CSP 120 comprises an encryption
module 125, an authentication module 130, and a source
CSP storage 135. The source CSP storage 135 comprises key
properties, system rules, and data properties for the encryp-
tion module 125 and the authentication module 130. As the
source domain computer system 101 may function as the
target domain computer system 107 in a bidirectional data
communication, the source CSP storage 135 may further
comprise respective key properties, system rules, and data
properties for modules of the target domain CSP 150. In this
specification, term “module” 1s used to indicate a pro-
grammed functionality to serve a specific purpose such as
cryptography service, and does not indicate any specific
program format whatsoever. Generally, program modules
may 1nclude routines, programs, objects, components, logic,
data structures, and so on that perform particular tasks or
implement particular abstract data types.

Upon receiving the request from the source application
110, the source domain CSP 120, runs the encryption
module 125, and runs the authentication module 130 with a
result generated by the encryption module 125.

The encryption module 1235 determines whether or not
input 1s plamtext, or Type 1 Data as defined in this speci-
fication to indicate plaintext requesting the Encrypt-then-
MAC encapsulation as generated by the source application
110. Arrow D1 indicates that the encryption module 125
only accepts Type 1 Data as iput to encrypt as directed 1n
the request. Wherein the input 1s plaintext, the encryption
module 125 generates ciphertext corresponding to the input
D1 by use of an encryption key, or Type 2 Data as defined
in this specification to indicate ciphertext that 1s encrypted
data without a MAC. Subsequently, the encryption module
125 provides the generated ciphertext to the authentication
module 130, as shown 1 Arrow D2. See FIG. 1C for one
example of properties of the encryption module 1235 as
described 1n the source CSP storage 135.

The authentication module 130 determines whether or not
input 1s ciphertext, or Type 2 Data as defined in this
specification to indicate ciphertext encrypted by the encryp-
tion module 125. Arrow D2 indicates that the authentication

5

10

15

20

25

30

35

40

45

50

55

60

65

6

module 130 only accepts Type 2 Data as input to authenti-
cate as directed 1n the request. Wherein the input i1s cipher-
text, the authentication module 130 generates authenticated
ciphertext corresponding to the input D2 by use of a MAC-
signature key, or Type 3 Data as defined in this specification
to indicate authenticated ciphertext, that 1s encrypted and
then subsequently MACed data, prior to verfication. Sub-
sequently, the authentication module 130 ftransiers the
authenticated ciphertext to the target domain CSP 150, as
shown 1 Arrow D3. Type 3 Data 1s properly secured and
may be salely released to untrusted intermediate networks.
Arrow D3 1s shown as a dashed line to indicate unsecured
communication channel between the source domain com-
puter system 101 and the target domain computer system
107. See FIG. 1C for one example of properties of the
authentication module 130 as described 1n the source CSP
storage 135. See FIG. 2 for various examples of security
levels for data that may appear on the communication
channel between the source domain computer system 101
and the target domain computer system 107, according to the
level of security asked by the source application 110, as
secured by the source domain CSP 120.

In an embodiment of the present invention, the target
domain CSP 150 comprises a verification module 155, a
decryption module 160, and a target CSP storage 165. The
target CSP storage 165 comprises key properties, system
rules, and data properties for the verification module 155 and
the decryption module 160. As the target domain computer
system 107 may function as the source domain computer
system 101 1n the bidirectional data communication, the
target CSP storage 165 may further comprise respective key
properties, system rules, and data properties for the modules
of the source domain CSP 120.

Upon recerving the encrypted ciphertext from the source
domain computer system 101 as generated by the authenti-
cation module 130, the target domain CSP 150 first runs the
verification module 155, and subsequently runs the decryp-
tion module 160 with a result generated by the verification
module 55.

The verification module 155 functions as a counterpart of
the authentication module 125 of the source domain CSP
120. The verification module 135 determines whether or not
input 1s authenticated ciphertext, or Type 3 Data as defined
above. Arrow D3 1ndicates that the verification module 155
only accepts Type 3 Data as mput to verity the mput sent by
the source domain CSP 120. Wherein the mput 1s Type 3
Data, the authenticated ciphertext, the verfication module
155 generates verified ciphertext corresponding to the input
D3 by use of a MAC-venly key, or Type 4 Data as defined
in this specification to indicate encrypted and MACed data,
tagged as verified, as shown in Arrow D4. See FIG. 1C for
one example of properties of the verification module 1335 as
described in the target CSP storage 165.

The decryption module 160 determines whether or not
input from the verification module 155 1s verified ciphertext,
or Type 4 Data as defined above. Arrow D4 indicates that the
decryption module 160 only accepts Type 4 Data as input to
decrypt 1n generating output for the target application 170.
Whereimn the mput 1s verified ciphertext, the decryption
module 160 generates Type 5 Data, verified plaintext cor-
responding to the input D4 by use of a decryption key, by
decrypting the verified ciphertext as retrieved from an
approved Encrypt-then-MAC enclosure, as shown 1n Arrow
D5. Subsequently, the target domain CSP 150 relays the
generated Type 5 Data to the target application 170 via
internal data commumnication channel within the target
domain computer system 107, as shown in Arrow D35. See




US 9,973,480 B2

7

FIG. 1C for one example of properties of the decryption
module 160 as described in the target CSP storage 165.

The target application 170 receives data securely com-
municated as sent by the request of the source application
110, from the target domain CSP 150, as shown in Arrow
D5. The Type 5 Data (Arrow D3J) recerved corresponds to
the Type 1 Data (Arrow D1) sent by the source application
110.

By enforcing data type 1n each stage of the cryptography
service provider (CSP), the system 100 enforces the
Encrypt-then-MAC ordering. Rules governing participating
keys may be enumerated as an accepted mput format and a
speciflied operation upon an input so accepted. See FIG. 1C
for one example of keys, rules, and data attributes for
various modules in one instance of a CSP storage.

The system 100 shows only one instance of unidirectional
data transmission from the source application 110 to the
target application 170. When the data communication 1s
bidirectional, the target domain computer system 107 wall
function as the source domain computer system 101, and
vice versa. Accordingly, to accommodate secure bidirec-
tional data communication, a cryptographic service provider
(CSP) element in I/O interface of a computer system per-
forms functions comprising encryption, authentication, veri-
fication, and decryption.

The present method may be implemented as a hardware
security module that may comprise a central processing unit
(CPU) and a pre-processing umt dedicated to cryptography
service provider (CSP), comprising the encryption module
125, the decryption module 160, the authentication module
130, the verification module 155, and an instance of the CSP
storage 135, 165.

Referring now to FIG. 1C, one embodiment of a crypto-
graphic service process (CSP) storage 190 for enforcing
multi-level security by use of data typing 1s shown. The CSP
storage 190 comprises instances of respective key proper-
ties, system rule, and data properties for the encryption
module 125, the authentication module 130, the verification
module 155, and the decryption module 160, of FIG. 1B,
respectively, represented as 125E, 130E, 155E, and 160E,
respectively.

MLS-assisting keys comprise restrictions on the accom-
panying data as to which operations may be performed on
which data types. These restrictions of the MLS assisting
keys may be described as usage-restrictions similar to exist-
ing EP11 attributes used as a platform for the present
invention, to the extent that such MLS assisting keys restric-
tions may be added to EP11 while maintaining compatibaili-
ties with other client applications intended for EP11 typing.
The MLS-aware functionality may mandate only that data
used by to MLS keys 1s type-tagged, and that outputs of
MLS functionality modules are type-tagged. Modules are
able to derive the expected data type and/or attributes from
an MLS-support key that 1s associated with respective
modules.

In an embodiment of the present invention, the aforemen-
tioned tags may represent arbitrary attributes of everything,
including, but not limited to, data fields. In implementing
vartous embodiments of the present invention, the rules
discussed, including but not lmmited to restricting keys’
capabilities, may be matched against any request.

In an embodiment of the present invention, the described
type-tagging 1s wire-visible (i.e., it 1s externally observable),
it 1s 1n-band and therefore observable i1n request/response
flows, and does not require auxiliary context and the tags are
authenticated (e.g., integrity-protected, typically signed) and
therefore 1mmutable.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The type-tagging, which may be in-band and world-
visible, as described above, enables entities, including those
external to the described system, to follow the movement of
data across prescribed state machines, without these entities
requiring access to any other state. The type-tagging pres-
ents certain advantages in various embodiments of the
present invention. First, immutable annotations, such as
those employed 1n the described type-tagging of the present
invention, can be critical for provenance-tracking Second,
in-band, public tags may be interpreted by simple stream-
parsing components (assuming they can correlate wire-
visible attributes with MLS restrictions/rules). Third, the
de/senalization of a stateless CSP, as described in conjunc-
tion with certain aspects of the present invention, makes 1t
possible to integrate such tagging without impacting exist-
ing code as 1t just changes the interpretation of fields. For
example, for MLS-unaware code, the same fields could be
used without annotations, thus, non/MLS application coex-
1stence 1s possible.

Accordingly, MLS-enforcement rules may be defined as a
combination of module-wide, partition-wide, or key-specific
restrictions, which are assumed to be controlled by separate
entities mvolved 1 an exchange of MLS-aware cryptogra-
phy service. Where more than one restriction 1s applicable to
one module/object, the strictest restriction that satisfies all
applicable restrictions 1s applied as the effective MLS rule to
enforce MLS functionalities according to the described
rules.

Because the MLS-support capability of the present inven-
tion can be implemented by encoding the MLS capability
within key objects and data fields, applications based on
standard PKCS#11 are portable to an MLS-augmented EP11
backend 1n one embodiment of the present invention. Where
the PKCS#11 applications do not violate MLS-implied
rules, rely on system-provided defaults for some key attri-
butes, and do not directly inspect raw data, the PKCS#11
applications may run on a computer system implementing
the MLS-augmented EP11 without being aflected by addi-
tional MLS-specific usage restrictions and data-attached
fields.

MLS-related interactions may be described as disjoint
data types, and a corresponding set ol key types, as neces-
sary based on data types, and the corresponding key-specific
restrictions described by abstract descriptions such as
human-readable specifications.

The present invention may be extended to further imple-
menting MLS protocols into data types and key restrictions
as an oflline activity.

In one embodiment of the present mmvention, following
key/type transformations rules are set as prior conditions of
the example of FIG. 1C. First, where Type X data are
permitted to be transformed nto Type Y data, this transior-
mation 1s explicitly enumerated in a rule, and noted by
INPUT_TYPE and OUTPUT_TYPE attributes of data. Type
X data, and Type Y data may be respectively selected from
the group including Type 1 data (D1), Type 2 data (D2),
Type 3 data (D3), Type 4 data (D4), and Type 5 data (D5),
hereinafter. The key/type transformation rule may be imple-
mented as a static feature that 1s embedded 1in program
codes, or as a dynamic feature that 1s given during runtime.
The transformation rule may further be abbreviated by using
an attribute CKA_KEY_ TYPE=X-Y, indicating that key
type ol Cryptographic Key Attribute, noted as CKA_KEY
TYPE, 1s for transforming Type X data to Type Y data. A
valid pair of data types respective to all transformation rules
shall be predefined regardless of implementation of the
present invention such that a set of valid pairs for data




US 9,973,480 B2

9

transformation may be presented 1n the CSP storage 190, and
such that the set of valid pairs are not to be influenced by
actual objects to avoid inconsistency of the rules.

Second, MLS-capable CSPs in one embodiment of the
present invention verily if object/key types and attributes are
consistent with the enumerated rules for each CSP module.
Wherein a cryptographic operation module may need a key
to have a functional attribute corresponding to the crypto-
graphic operation, as shown in descriptions of the encryp-
tion module 125, the authentication module 130, the veri-
fication module 1535, and the decryption module 160 of FIG.
1B, and the MLS restrictions permit key/type transforma-
tions only 1f INPUT_TYPE and OUTPUT_TYPE are valid
as shown 1n the set of valid pairs.

Third, symbolic names for attributes used in this example
are consistent with PKCS#11 which 1s industry standard
cryptographic service API. Finally, each MLS operation lists
respective properties of a key associated with respectlve
MLS operation to use, respective conditions to be set in the
MLS-capable CSP, and respective data types/properties for
cach request. Only when all the prior conditions are satis-

fied, the MLS operation proceeds with performing respec-
tive functions described in modules 125, 130, 155, and 160

of FIG. 1B as noted above.

The CSP storage 190 represents exemplary attributes of
the key/type evolution in implementing MLS-capable CSP.
The example 1illustrates how the validity of each key/type
transformation may be verified locally by each MLS opera-
tion, how to combine attributes pursuant to merging service
requested, key-specific attributes, and MLS restrictions
embedded into the backend:

One stance MLS restrictions for the encryption module
125E comprises key properties for encryption KE, system
rule for encryption RE, and data properties for encryption
DE. The key properties for encryption KE are represented as
“CKA_ENCRYPT=TRUE” indicating that an encryption
key 1s enabled to encrypt and that by applying the encryption
key, the plaintext data 1s transformed into ciphertext. The
system rule {for encryption RE 1s represented as
“CKA_KEY_TYPE=DI1-D2” indicating that Type 1 data
(D1) may be transformed into Type 2 data (D2) by the
encryption key. The data properties for encryption DE 1s
represented as “INPUT_TYPE=DI1, OUTPUT_TYPE=D2"
indicating that the encryption module takes plaintext tagged
as Type 1/D1 as mput and generates ciphertext tagged as
Type 2/D2 that 1s corresponding to the mput D1. Where an
encryption-incapable  keys, as  represented by
“CKA_ENCRYPT=FALSE,” or type-transiformation rules
other than from D1 to D2, the encryption module does not
proceed with encryption but returns to the source applica-
tion, reporting error.

One instance MLS restrictions for the authentication
module 130E comprises key properties for authentication
KA, system rule for authentication RA, and data properties
for authentication DA. The key properties for authentication
KA are represented as “CKA_SIGN=TRUE” indicating that
a MAC key 1s enabled to generate signatures, the ciphertext
1s transformed 1nto signed c1phertext The system rule for
authentication RA 1S represented as
“CKA_KEY_TYPE=D2-D3” indicating that Type 2 data
(D2) may be transformed mnto Type 3 data (D3) by the
authentication/MAC key. The data properties for authenti-
cation DA are represented as “INPUT_TYPE=D?2,
OUTPUT_TYPE=D3" indicating that the authentication
module takes ciphertext tagged as Type 2/D2 as mput and
generates ciphertext that 1s subsequently signed/MACed,
tagged as Type 3/D3 that 1s corresponding to the mput D2.

10

15

20

25

30

35

40

45

50

55

60

65

10

As Type 3/D3 data so generated 1s immune to modification,
D3 data may be transmitted over unsecure communication
channels, such as Internet.

Although represented 1n the CSP storage 190 together, the
encryption instances and the authentication instances may
act 1n concert for the source domain CSP 120 of FIG. 1B,
and the verification instances and the decryption instances
may act in concert for the target domain CSP 150 of FIG. 1B.

One 1mstance MLS restrictions for the verification module
155E comprises key properties for vernfication KV, system
rule for verification RV, and data properties for verification
DV. The key properties for verification KV are represented
as “CKA_VERIFY=TRUE” indicating that a verification
key 1s enabled to verily the signature previously generated
by the authentication module from the sender, and, as a
result, transforms the signed ciphertext into verified cipher-
text. The system rule for verification RV 1s represented as
“CKA_KEY_TYPE=D3-D4” indicating that Type 3 data
(D3) may be transformed mnto Type 4 data (D4) by the
verification key. In this example, the verification key 1s
symmetric to the MAC key that had been used to sign the
ciphertext by the sender. The data properties for verification
DV are represented as “INPUT_TYPE=D3,
OUTPUT_TYPE=D4" indicating that the verification mod-
ule takes signed ciphertext tagged as Type 3/D3 as input and
generates verifled ciphertext tagged as Type 4/D4 that 1s
corresponding to the mput D3. Verified ciphertext (Type
4/D4) assures integrity of data, indicating that the ciphertext
had not been tempered during transmission over unsecured
medium for D3. Although standard PKCS#11 Verily opera-
tion only returns a “pass/fail” Boolean result, the MLS-
capable CSP of the present invention need to update the data
tag, which necessitates pursuant changes to the CSP API.

One mstance MLS restrictions for the decryption module
160E comprises key properties for decryption KD, system
rule for decryption RD, and data properties for decryption
DD. The key properties for decryption KD are represented
as “CKA_DECRYPT=TRUE” indicating that a decryption
key 1s enabled to decrypt a verified ciphertext input, and, as
a result transforms the mput 1into plaintext. The system rule
for decryption RD 1S represented as
“CKA_KEY_TYPE=D4-D5” indicating that Type 4 data
(D4) may be transformed into Type 5 data (D3) by the
decryption key. The data properties for decryption DD 1s
represented as “INPUT_TYPE=D4, OUTPUT_TYPE=D5"
indicating that the decryption module takes verified cipher-
text tagged as Type 4/D4 as mput and generates decrypted
plaintext tagged as Type 5/D5 that i1s corresponding to the
input D4. Once decrypted plaintext (D3) 1s generated, the
target application 170 of FIG. 1B may verily that the data
sent by the source application 110 of FIG. 1B had passed
through the state/type transitions, from D1 through D5 as
described above, to validate whether or not the Encrypt-
then-MAC order was properly enforced.

Referring now to FIG. 2, various security levels of Type
3 Data 1n stateless CSP for enforcing multi-level security by
use of data typing are shown. Although providing industry-
standard APIs such as state machine model of the PKCS#11
1s preferable 1 other circumstances, a stateless CSP imple-
mentation suits better in enterprise environments 1n order to
satisly availability and scalability requirements, even for
APIs which appear to be stateful for hosts. In one embodi-
ment of the present invention, the IBM Enterprise PKCS#11
(EP11) implementation replaces standard PKCS#11 key
tokens with 1n-band senialized key tokens such that the key
tokens may be stored by host entities that are not trusted.
Accordingly, the key tokens encrypt and subsequently




US 9,973,480 B2

11

authenticate numerous structures used by the stateless CSP,
as presented 1n stateless CSP structures 202, 210, 220, and
230.

The stateless CSP implementation of aspects of the pres-
ent invention can assist in enabling in-band, public tags to be
interpreted by simple stream-parsing components. In con-
trast to stateless CSPs, type-tagging in stateful CSPs may
contain other implied meaning, thus only partial informa-
tion, such as handles may be wire-visible. This complicates
the parsing and interpretation of the tags.

One embodiment of type enforcement described 1n FIGS.
1A, 1B, and 1C 1n the present specification 1s used to
identily what security level a piece of data may belong to.
Security levels as used 1n the context of term multi-level
security (MLS) for cryptography service provider (CSP)
comprise, no-security, mtegrity, and confidentiality. Data
belonging to a no-security level are unsigned plaintexts.
Data belonging to an integrity level have been authenticated
in order to track back to the onigin of the data, either
plaintext or ciphertext. Data belonging to a confidentiality
level are signed ciphertexts.

Structure 202 illustrates a first structure as used in con-
ventional stateful CSP interface, comprising request 204,
key handle 206, and data 208. The request 204 includes a
command and a context in which the command of the
request 204 may be performed. The request 204 may com-
mand a cryptographic operation to the stateful CSP. The
request 204 belongs to no-security level. The key handle 206
1s an indirect reference to module-resident keys that may
appear 1n serialized PKCS#11 requests. The key handle 206
belongs to a no-security level. The data 208 of structure 202
1s neither encrypted nor signed, and, accordingly, belongs to
a no-security level.

Structure 210 illustrates a second structure used 1n state-
less CSP interface with key-integrity enforcement. The
structure 210 comprises request 212, key object 214, and
data 216. The request 212 comprises a command and a
context 1n which the command of the request 212 may be
performed. The request 212 may command a cryptographic
operation to the stateless CSP. The request 212 belongs to a
no-security level. The key object 214 encodes MLS-specific
additions and keys within the key object 214. The key object
214 1s encrypted then signed, and belongs to a confidenti-
ality level. The data 216 of structure 210 1s neither encrypted
nor signed, and, accordingly, belongs to no-security level.

Structure 220 illustrates a third structure as used 1n
stateless CSP interface with key-integrity enforcement. The
structure 220 comprises request 222, key object 224, non-
confidential (NC) data 226 and data 228. The request 222
comprises a command and a context in which the command
of the request 222 may be performed. The request 222 may
command a cryptographic operation to the stateless CSP.
The request 222 belongs to no-security level. The key object
224 encodes MLS-specific additions and keys within the key
object 224. As the key object 224 1s encrypted then signed,
the key object 224 belongs to confidentiality level. The NC
data 226 of structure 220 may be non-sensitive data/key
such as a public key and corresponding attributes, and need
not be encrypted but i1s signed to enable tracking of the
origin of the non-confidential data 226. Accordingly, the NC
data 226 belongs to an integrity level. The data 228 of
structure 220 1s neither encrypted nor signed, and, accord-
ingly, belongs to a no-security level.

Structure 230 1llustrates a fourth structure as used 1n
stateless CSP interface with full-integrity enforcement, indi-
cating that all components of the structure 230 may be
tracked to the origin of respective components. The structure

10

15

20

25

30

35

40

45

50

55

60

65

12

230 comprises request 232, key object 234, non-confidential
(NC) data 236 and signed data 238. The request 232
comprises a command and a context in which the command
of the request 232 may be performed. The request 232 may
command a cryptographic operation to the stateless CSP.
The request 232 belongs to no-security level. The key object
234 encodes MLS-specific additions and keys within the key
object 234. As the key object 234 1s encrypted then signed,
the key object 234 belongs to confidentiality level. The NC
data 236 of structure 230 may be a public key and corre-
sponding attributes, and need not be encrypted but need to
be signed to enable tracking of the origin of the non-
confidential data 236. Accordingly, the NC data 236 belongs
to an integrity level. The signed data 238 of structure 238 1s
signed without encryption to enable tracking of the origin,
and, accordingly, belongs to an integrity level.

Because stateless CSPs deserialize each request in 1ts
entirety, data fields may be treated as another hierarchically
encoded type. Whether or not to recognize hierarchical data
fields/raw data fields may be determined pursuant to context
of the CSP operation, and consequently, the extension may
preside concurrently with applications not expecting unse-
lected treatment of data fields, as the CSP operation does not
alter the message framing or headers but only makes dii-
ferent iterpretation of data fields.

One or more aspects may relate to cloud computing.

It 1s understood 1n advance that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence i1n that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-




US 9,973,480 B2

13

bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud inirastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure 1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modulanty, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 3, a schematic of an example of a
cloud computing node 1s shown. Cloud computing node 10
1s only one example of a suitable cloud computing node and
1s not mtended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10 1s
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

10

15

20

25

30

35

40

45

50

55

60

65

14

In cloud computing node 10 there 1s a computer system/
server 12, which 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable 1nstructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located 1n both local and remote computer system storage
media including memory storage devices.

As shown 1n FIG. 3, computer system/server 12 in cloud
computing node 10 1s shown in the form of a general-
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (IMCA) bus, Enhanced ISA

(EISA) bus, Video Electronics Standards Association

(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
12, and 1t includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media 1n the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter system/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive™). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “tloppy disk™), and an optical
disk drnive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having




US 9,973,480 B2

15

a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an 1mple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the mnvention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soift-
ware components could be used 1n conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, efc.

Referring again to FIG. 3:

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing

5

10

15

20

25

30

35

40

45

50

55

60

65

16

devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-




US 9,973,480 B2

17

ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Referring now to FIG. 4, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 34B,
laptop computer 34C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described heremabove,
or a combination thereof. This allows cloud computing
environment 30 to offer iirastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices S4A-N
shown 1n FIG. 4 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(c.g., using a web browser).

Referring now to FIG. 5, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
4) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown mn FIG. § are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
solftware components. Examples of hardware components
include mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, soltware compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; wvirtual

10

15

20

25

30

35

40

45

50

55

60

65

18

networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or 1nvoicing for
consumption ol these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides i1dentity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 95; and layered processing 96.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting. As used herein, the singular forms “a,” “an,” and
“the” are intended to 1include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprise” (and any form of
comprise, such as “comprises” and “comprising’), “have”
(and any form of have, such as “has” and “having”),
“include” (and any form of include, such as “includes™ and
“including”), and “contain” (and any form of contain, such
as “contains” and “containing”) are open-ended linking
verbs. As a result, a method or device that “comprises,”
“has,” “includes,” or “contains™ one or more steps or ele-
ments possesses those one or more steps or elements, but 1s
not limited to possessing only those one or more steps or
clements. Likewise, a step of a method or an element of a
device that “comprises,” “has,” “includes,” or “contains”
one or more features possesses those one or more features,
but 1s not limited to possessing only those one or more
features. Furthermore, a device or structure that 1s config-
ured 1n a certain way 1s configured in at least that way, but
may also be configured 1n ways that are not listed.

The corresponding structures, matenals, acts, and equiva-
lents of all means or step plus function elements 1n the
claims below, 1f any, are intended to include any structure,
material, or act for performing the function 1n combination

b



US 9,973,480 B2

19

with other claimed elements as specifically claimed. The
description set forth herein has been presented for purposes
of 1llustration and description, but is not intended to be
exhaustive or limited to the form disclosed. Many modifi-
cations and variations will be apparent to those of ordinary
skill in the art without departing from the scope and spirit of
the disclosure. The embodiment was chosen and described
in order to best explain the principles of one or more aspects
set Torth herein and the practical application, and to enable
others of ordinary skill 1n the art to understand one or more
aspects as described herein for various embodiments with
vartous modifications as are suited to the particular use
contemplated.

What 1s claimed 1s:

1. A computer program product for enforcing multi-level
security (MLS) on a message transmitted over a network
that may be insecure, the computer program product com-
prising:

a computer readable storage medium readable by a pro-
cessor and storing instructions for execution by the
processor for performing a method comprising:
obtaining, by the processor, a request from a source to

send a message to a target, the request comprising
the message and a context indicating a requested
security level for the message;
encrypting, by the processor, the message based on
ascertaining the message received 1n the request 1s a
plaintext;
authenticating the encrypted message based on ascer-
taining the encrypted message 1s a ciphertext and
using rule-based mput and output data-type enforce-
ment, wherein the target 1s enabled to trace the
authenticated ciphertext back to the source, and
wherein the authenticating comprises:
acquiring a {irst key and a first rule corresponding to
the first key for the authenticating, wherein the
first rule comprises an attribute for authentication,
an attribute for key type, and an attribute for data,
wherein the first key enables the authenticating,
wherein the attribute for key type 1s defined as an
ordered set of a first data type and a second data
type and instantiated as the ciphertext for the first
data type and the authenticated ciphertext for the
second data type, indicating that the first key 1s
applied to the ciphertext obtained from the
encrypting and generates the authenticated cipher-
text, and wherein the attribute for data i1s defined
as a pair of data types for an mput and an output
of the authenticating, and wheremn the mput is
instantiated as the ciphertext, and the output 1is
instantiated as the authenticated ciphertext, gen-
erated by the first key corresponding to the mput;
signing the message with the first key pursuant to the
first rule; and
producing the authenticated ciphertext and making
the produced authenticated ciphertext available
for transmitting; and
transmitting, by the processor, the authenticated
encrypted message to the target across the network.

2. The computer program product of claim 1, wherein the
authenticated ciphertext 1s one or more of: wire-visible,
in-band, or immutable based on being authenticated.

3. The computer program product of claim 1, wherein the
encrypting comprises:

acquiring a second key and a second rule corresponding
to the second key for the encrypting, wherein the
second rule comprises an attribute for encryption, an

5

10

15

20

25

30

35

40

45

50

55

60

65

20

attribute for key type, and an attribute for data, wherein
the second key enables the encrypting, wherein the
attribute for key type of the second rule 1s defined as an
ordered set of a third data type and a fourth data type
and 1nstantiated as the plaintext for the third data type
and the ciphertext for the fourth data type, indicating
that the second key 1s applied to the plaintext and
generates the ciphertext, and wherein the attribute for
data of the second rule 1s defined as a pair of data types
for an mput and an output of the encrypting, and
wherein the input of the encrypting 1s instantiated as the
plaintext, and the output of the encrypting 1s 1nstanti-
ated as the ciphertext, generated by the second key
corresponding to the input of the encrypting;
encoding the message by use of the second key pursuant
to the second rule; and
producing the ciphertext and making the produced cipher-
text available to the authenticating.
4. The computer program product of claim 1, wherein the
method further comprises:
obtaining, by the processor, another message from the
SOUrcCe;
veritying, by the processor, the another message, based on
ascertaining the another message 1s a signed ciphertext;
decrypting, by the processor, the verified another message
from the verifying based on ascertaining that the veri-
fied another message 1s a verified ciphertext, such that
a module generates a verified plaintext corresponding,
to the message from the source; and
delivering the verified plaintext to the target.
5. The computer program product of claim 4, wherein the
verilying comprises:
acquiring a second key and a second rule corresponding,
to the second key for the veriiying, wherein the second
rule comprises an attribute for verification, an attribute
for key type, and an attribute for data, wherein the
second key enables the verifying, wherein the attribute
for key type of the second rule 1s defined as an ordered
set of a third data type and a fourth data type and
instantiated as the signed ciphertext for the third data
type and the verified ciphertext for the fourth data type,
indicating that the second key 1s applied to the signed
ciphertext of the another message and generates the
verified ciphertext, and wherein the attribute for data of
the second rule 1s defined as a pair of data types for an
input and an output of the verifying, and wherein the
input of the verifying 1s instantiated as the signed
ciphertext, and the output of the verifying 1s instanti-
ated as the verified ciphertext corresponding to the
input of the veritying,
assuring that the source had sent the another message
based on the second key pursuant to the second rule;
and
producing the verified ciphertext and making the pro-
duced verified ciphertext available to the decrypting.
6. The computer program product of claim 4, wherein the
decrypting comprises:
acquiring a third key and a third rule corresponding to the
third key for the decrypting, wherein the third rule
comprises an attribute for decryption, an attribute for
key type, and an attribute for data, wherein the third key
ecnables the decrypting, wherein the attribute for key
type of the third rule i1s defined as an ordered set of a
fifth data type and a sixth data type and instantiated as
the verified ciphertext for the fifth data type and the
verified plaintext for the sixth data type, indicating that
the third key 1s applied to the verified ciphertext of the




US 9,973,480 B2

21

another message and generates the verified plaintext,
and wherein the attribute for data of the third rule 1s
defined as a pair of data types for an mput and an output

of the decrypting, and wherein the mput of the decrypt-
ing 1s instantiated as the verified ciphertext, and the
output of the decrypting 1s instantiated as the verified
plaintext corresponding to the mput of the decrypting;

decoding the verified ciphertext of the another message
based on the third key pursuant to the third rule; and

producing the verified plaintext and making the produced
verified plaintext available to the delivering.

7. A computer system for enforcing multi-level security
(MLS) on a message transmitted over a network that may be
insecure, the computer system comprising:

a memory; and

a processor 1 communication with the memory, wherein

the computer system 1s configured to perform a
method, the method comprising:
obtaining, by the processor, a request from a source to
send a message to a target, the request comprising
the message and a context indicating a requested
security level for the message;
encrypting, by the processor, the message based on
ascertaining the message received 1n the request is a
plaintext;
authenticating the encrypted message based on ascer-
taining the encrypted message 1s a ciphertext and
using rule-based mput and output data-type enforce-
ment, wherein the target i1s enabled to trace the
authenticated ciphertext back to the source, and
wherein the authenticating comprises:
acquiring a first key and a first rule corresponding to
the first key for the authenticating, wherein the
first rule comprises an attribute for authentication,
an attribute for key type, and an attribute for data,
wherein the first key enables the authenticating,
wherein the attribute for key type 1s defined as an
ordered set of a first data type and a second data
type and instantiated as the ciphertext for the first
data type and the authenticated ciphertext for the
second data type, indicating that the first key 1s
applied to the ciphertext obtained from the
encrypting and generates the authenticated cipher-
text, and wherein the attribute for data 1s defined
as a pair ol data types for an mput and an output
of the authenticating, and wherein the mnput 1s
instantiated as the ciphertext, and the output 1s
instantiated as the authenticated ciphertext, gen-
crated by the first key corresponding to the mput,
signing the message with the first key pursuant to the
first rule; and
producing the authenticated ciphertext and making
the produced authenticated ciphertext available
for transmitting; and
transmitting, by the processor, the authenticated
encrypted message to the target across the network.

8. The computer system of claim 7, wherein the authen-
ticated ciphertext 1s one or more of: wire-visible, in-band, or
immutable based on being authenticated.

10

15

20

25

30

35

40

45

50

55

22

9. The computer system of claim 7, wherein the encrypt-
Ing COmMprises:
acquiring a second key and a second rule corresponding,

to the second key for the encrypting, wherein the
second rule comprises an attribute for encryption, an
attribute for key type, and an attribute for data, wherein
the second key enables the encrypting, wherein the
attribute for key type of the second rule 1s defined as an
ordered set of a third data type and a fourth data type
and 1nstantiated as the plaintext for the third data type
and the ciphertext for the fourth data type, indicating
that the second key 1s applied to the plaintext and
generates the ciphertext, and wherein the attribute for
data of the second rule 1s defined as a pair of data types
for an mput and an output of the encrypting, and
wherein the input of the encrypting 1s instantiated as the
plaintext, and the output of the encrypting 1s 1nstanti-
ated as the ciphertext, generated by the second key
corresponding to the mput of the encrypting;

encoding the message by use of the second key pursuant

to the second rule; and

producing the ciphertext and making the produced cipher-

text available to the authenticating.

10. The computer system of claim 7, wherein the method
further comprises:
obtaining, by the processor, another message from the

SOUIrCC,

veritying, by the processor, the another message, based on

ascertaining the another message 1s a signed ciphertext;

decrypting, by the processor, the verified another message

from the verifying based on ascertaining that the veri-
fied another message 1s a verified ciphertext, such that
a module generates a verified plaintext corresponding
to the message from the source; and

delivering the verified plaintext to the target.

11. The computer system of claim 10, wherein the
encrypting comprises:

acquiring a second key and a second rule corresponding,

to the second key for the encrypting, wherein the
second rule comprises an attribute for encryption, an
attribute for key type, and an attribute for data, wherein
the second key enables the encrypting, wherein the
attribute for key type of the second rule 1s defined as an
ordered set of a third data type and a fourth data type
and 1nstantiated as the plaintext for the third data type
and the ciphertext for the fourth data type, indicating
that the second key 1s applied to the plaintext and
generates the ciphertext, and wherein the attribute for
data of the second rule 1s defined as a pair of data types
for an input and an output of the encrypting, and
wherein the input of the encrypting 1s instantiated as the
plaintext, and the output of the encrypting 1s instanti-
ated as the ciphertext, generated by the second key
corresponding to the mput of the encrypting;

encoding the message by use of the second key pursuant

to the second rule; and

producing the ciphertext and making the produced cipher-

text available to the authenticating.

¥ o # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

