US009971822B1

12 United States Patent 10) Patent No.: US 9,971,822 B1

Deardeuf? et al. 45) Date of Patent: May 15, 2018
(54) REPLICATED STATE MANAGEMENT USING 9,332,069 B2* 5/2016 Aahlad HO04L 67/1048
JOURNAI-BASED REGISTERS 0,467,510 B2* 10/2016 Aahlad HO4L 67/10
9,799,081 B1* 10/2017 Lewiscccooeeeennnn, G06Q) 50/01
: : : 2006/0155729 Al1* 7/2006 Aahlad GO6F 9/52
(71) Applicant: %ﬁ“}%’é‘) Technologies, Inc., Seattle, 2013/0166574 Al* 6/2013 Kang ... GO6Q 30/02
707/749
2014/0188971 Al* 7/2014 Aahlad HO4L 67/10
(72) Inventors: Michael Benjamin Deardeuff, Seattle, : 709/201
WA (US); Timothy Daniel Cole, 2014/0189004 Al* 7/2014 Aahlad ... HOA4L 67/1048
Seattle, WA (US); Aaron Gifford 709/204
Freshwater, Seattle, WA (US); Allan (Continued)
Henry Vermeulen, Corvallis, OR (US)
_ _ FOREIGN PATENT DOCUMENTS
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) CN 103995868 8/2014
(*) Notice: Subject. to any disclaimer,,. the term of this OTHER PURLICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 318 days. “Pushdown automaton”, Wikipedia, Retrieved from URL: https://
en.wikipedia.org/wiki/Pushdown_automaton on Dec. 14, 2015, pp.
(21) Appl. No.: 14/983,237 1-10
(22) Filed: Dec. 29, 2015 (Continued)
(51) Int. CL Primary Examiner — William Spieler
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Robert C. Kowert;
GO6F 9/46 (2006.01) Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(52) U.S. CL
CPC GOGF 17/30575 (2013.01); GOGF 9/466 (57) ABSTRACT
(2013.01); GO6F 97467 (2013.01); GO6F A transaction request 1s received at a journal-based state
_ _ _ 17/30191 (2013.01) management system. The transaction request includes a
(58) Field of Classification Search register processing section indicating an operation to be
CPC ... GOOF 17/30575; GO6F 17/30578; GO6F performed at a journal register allocated to the transaction
17/30088; GOOF 17/30191; GOOF 9/466; submuitter to store state information of an application. Based
o G_O6F 9467 on the results of a conflict detection operation performed
See application file for complete search history. with respect to the transaction request and on the result of
_ the operation on the journal register, the transaction request
(56) References Cited is accepted for commit. The value of the journal register is

U.S. PATENT DOCUMENTS

stored at a node of the state management system and
provided to the transaction submitter.

1/2013 Aahlad
2/2016 Aahlad HO4L 67/10

8,504,633 B2

0,264,516 B2 * 21 Claims, 10 Drawing Sheets

Transaction submitter 260

Replication directed acyciic graph (DAG) 240
Transaction
requests 250

Acceptor node 210

Intermediate node

‘--- ' T R X 3 I P R R X FT R T EE R T 2T RSN RNNTY NN RN _J

Committer node 2 Standby node 216
Materialized registers 246 212 <l Y el
Conflict detector 271
Register language execution
engine 206 .
Journal entries 2728 Journal entries 272C Journal entrigs 2720

e

Journal entries 272

Jaurnat configuration Journal cenfiguration Journal configuration
view 2748 view 2740 view 274D

----_--------—----------ﬂ“-

Journal configuration view 274A

'---------“--------‘--.

Journal configuration-delta
messages 224

N\

Journal configuration manager 222

US 9,971,822 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2016/0191622 Al1* 6/2016 Aahlad HO4L 67/10
709/201
2017/0026465 Al1* 1/2017 Aahlad HO4L 67/1048

OTHER PUBLICATIONS

“Stack-oriented programming language”, Wikipedia, Retrieved
from URL: https://en.wikipedia.org/wiki/Stackoriented program-

ming_language on Dec. 14, 2015, pp. 1-9.

U.S. Appl. No. 14/316,674, filed Jun. 26, 2014, Allan Henry
Vermeulen et al.

U.S. Appl. No. 14/316,630, filed Jun. 26, 2014, Allan Henry
Vermeulen.

U.S. Appl. No. 14/316,622, filed Jun. 26, 2014, Allan Henry

Vermeulen et al.

U.S. Appl. No. 14/316,619, filed Jun. 26, 2014, Allan Henry
Vermeulen.

U.S. Appl. No. 14/482,661, filed Sep. 10, 2014, Allan Henry
Vermeulen.

U.S. Appl. No. 14/482,668, filed Sep. 10, 2014, Allan Henry
Vermeulen et al.

U.S. Appl. No. 14/753,475, filed Jun. 29, 2015, Allan Henry
Vermeulen et al.

U.S. Appl. No. 14/753,505, filed Jun. 29, 2015, Allan Henry
Vermeulen et al.

U.S. Appl. No. 14/833,000, filed Aug. 21, 2015, Timothy Daniel
Cole et al.

* cited by examiner

US 9,971,822 B1

Sheet 1 of 10

May 15, 2018

U.S. Patent

00T WaisAs [Ol

m - . . A R R R R
Juswabeuew 9)e1g MA Sanfen Jajsibal Uiejgo 0} ajgesny s,
.m 71, Saoepajul peal jeuwnor /'

a o e e de 4 4 W W W e W
aER

101 Jebeuew jeuinop
J.,91] °9pOu uoHezZijelivle|N

g Aowaw-uj “6'9)

119] 9pou 0} JUeAd|o!
30¢ 1 Jebeuew alois vle(] AGTT SOIIM PARILILIO)

D671 J8idde ajup

O1E] 91015 Ele(]

(JapJOo Jaquinu
a2uaNbas W09

Ul pappe) ZZT SaLua

(8Q [euonejay “69

gdlgl 9101 Ele(]

UOROESUB) PAJILULLION

gy Jeidde sjupp

q/9] 9pou 0] JueAs|o!
4511 Sajum psiiLwWo)

Y6yl Jondde ayupm

...

,&@_‘ 9pOU 0} JUBABIS
VG| SSIUM PajiLULLIO)

gd TOSON “b'9 01T reusnof painjonis-Ho |

V1€1 210]s el

YOC 1 Jabeuew ai0}s ele(|

[| suonoesuel)
pa}dasoy

001 auibus

uopnosxae abenbuej 18isiboy

/vl (S)enjen Jsjsibay

/11 esuodsai uopoesuel |

R G0 J0108)8p J01U0D
7L PRGNS UOROeSUR] |

b1 uoijoas buissaooid ioisibay o¥] Aelle 1o)sibay

011 lsenbay uonoesues]

¢ Il

¢¢¢ Jabeuew uoneinbyuod [euinop
A NN

Y7¢ sebessaw

Bljap-uoneinbiyuod jeuinor

US 9,971,822 B1

“I“‘I“"“I“i“‘i“l“‘ S A N N N N N N 3 N N X N N N X N N E N N N K N N X N

»
’

AV o7 Sia1s1bal pazijeusiey
9pOU ajeipauliBjul 01¢ 8pou J0}daooy

T

01 apou Agpuejs DOU JSRILUWOY

s
;
— :
S ’ Wi
M : /7 MSIA uoneInbyuod [eulnop
- ’ Qv men I Main qrIg Mo
.m m uoneInByuod [euInop uoneInByuos feuinop | uoneINBIU0I euINOp
7 : 777 SOLJUD [RUINO[
m
o o | | G277 sewe jeunor 3¢ S8LuS [euinop Gz Seuua feunor —
= ' 90¢ sulbus
o m uopnoaxa abenbue| Ja)siBay
\ri "
= m TZZ 10109)9p JOIU0)
o~
= :
!
'
’
’
"

_'_I'I_I"ll‘lll"l‘l'l'lll‘lllI'I'IIIIII'III'IIIIIIIII_ 8 3 B B B R 32 _E R N R R B B E B X B B N 3 2 N E 3 N &R 32 B =B B N B N R B N _ NS N AR S AR e e e o W

0G¢ Sisenbau
uonoesuel |

0v¢ (9va) ydedb d1joA%e pajoalip uonedljdey

g7 Jajigns uoioesuel |

U.S. Patent

‘-----------------‘--------------'--’-'

» ¢’

& Ol

t:""“""'l‘.‘."l‘ll."l"""l""."""."‘.".‘"'I.l_‘"""".""'..‘.l'.l"""'.".‘.l'.""'

US 9,971,822 B1

m m .::::::.mm..m mm.m:g.wmam._h_.:::::::. (Av0¢ dnolb souelsul Juaijo 10} pJeys) gose uonnsed [ealbo _mcso_, ’
= qo¥E 1es sajsifal 919
Qo
-
3 “Il"‘l‘l"“' L B L N 8 B A B N X N N R B _E_ N N N N | L B LA B 3 B B N N 3 N N E N N N 8 N N L N I"‘Ill!"ll“‘ll“l‘l"
,w m m VG 2oedsale ' (Y0 dnoJb aoue)sul Jualjo Joj pJeys) YOGE uoniLed [eaiboj _mc‘_:oﬂm
h "".-.'.".... *".“"‘."‘“‘.‘.“‘.‘."‘.‘."‘.‘l‘.i".‘.‘.‘.".‘l‘.‘ L B B B B B K N R R B B & B 2 R N R _ R o W W " i W 0 B 8 . j .l.....".".‘_‘
9

. T VOpE 1S Jejsibal 9|0
9]¢ apou Aqpuels 71 £ 9POU JBYIUWIO]) apou EMWEEE_ . 01 opou 10)daooy

-------------------------------------‘

L

YT I I I I I T I T T T r T I Ty T O Y Yy o Yy o Y Y YTUIrrrr»y’ L R N B N N B & & 3 N N N B N 3 X N N N B N 3 B B N N L R B B B N R B N YT Y T LY

May 15, 2018

0% (9vQ) ydesb oijohoe pajoaulp uonedldey e sjsanbay
uonoesuel |

“"'I"l"" LA B N N e N N N NN ""“l"'l"l‘_ L B B L R N N

' 4

‘-------#
'-------‘

(1 ddy uoneoydde
1M SIBIIWIGNS uoijoesue.)
VPOE (©10) dnolb souejsul jusi)

'_II'I'III""""""""‘

(¢ddy uoneoydde
1M SJIBIWIgNS uonoesuel) grot 91D

‘-------'

’
¢

"‘I""I‘_‘“""‘I'l""‘

U.S. Patent

¥

“ﬂﬂﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂ““ﬂﬂﬂ“ﬂﬂﬂﬂ‘ﬂﬂﬂﬂﬂ“ﬂ‘ﬂﬂﬂ'

’

US 9,971,822 B1

Sheet 4 of 10

May 15, 2018

U.S. Patent

vy Ol
17 18bie) a)up)
3197 1ebie) peay
OLEF NSOV
0y 9J0)S Ele(] Ty 19|1dwod

abenfue}
J18)s1681
leuondo

g1 0y Job.e) peay

vy Aeiqy
uone|ndiuew
19]s169¥

Ler NSOV

d0ty 9.0)S eje(] 2y Juauodwiod

buipigns
-uopoesuel |

V107 1ebJe) peay

JERTT

aouanbas Jwwoo-paldde

1S9]el) Y1E7 NSOV]
VOEY 2.01S ele(

\

iy 1senbal uonoesuel |

|7 Uonoas buissao0id J8SIbay

Iy ”
(5)10)dLI0S8p UOIORSURY UBPPIQIOS |

0ly _
(s)103)dLIosap uonoesuel paiinbay

(US)ILIM 3(0} _
usju0d “6'8) 30F speojfed ajupn |

(payILWWOI St uonoesues |
palipow $103lqo Blep Jo Siojeolpul
“09) 90T 10)d1IISOp 18S AU

(uonoesues) buunp pea:
5109[q0 210]S Blep JOo SI0eIIpUl
“03) F0T J01d1IoSap 18S peay

(SJaguinu 83uanbas yons
JO J0JOBA JO "'SNSOVT .$92In0S

Blep peas buowe wnwiuiw
"6°8) Z0¥ JSHWIIBP %03y JOIUOD

U.S. Patent May 15, 2018 Sheet 5 of 10 US 9,971,822 B1

Supported primitive register Supported register pool Supported register-
manipulation instructions 503 management operations 505 based transaction
(e.g., based on stack-oriented § ¢ _____________ management actions

delete reqgister } [TTTTTTTTTTTTTTTTTTTTTTTTT
grant access to register abort transaction
count registers commit_transaction
list register values "-aw

list registers

increment register R1.

If (R1 > Threshold T1){
abort transaction

]

Set R2 to (R2+R3);

If (R2 > Threshold T2){
abort transaction

]

Create register(R12)

Set R12 to Value1

Register processing section pseudo-code
example 553

Register-based integer counter library 517

create counter(name, min value, max value, allowed deltas)
set counter(name, value, overflow action, underflow action)
get counter(name)

increment _counter(name, delta, overflow action)

decrement counter(name, delta, underflow action)

delete counter(name)

FIG. 5

o
~ 9 9l
m, (w09 Jusoal
sow) 3769

& Jsow) 3259 310
)
=)
S e e
— sioquunu ” . 4709 Jlequinu

99uanbas 9oUBNh3as HWILLIOY)

buisesa.ou

399 417709 lequinu

A 20UaNbas JwWoy S1O1JUOD SJLM-PEa. 193)9p O]

185 peal s uooesue. pajsanbal
———— : V1M pazAjgue aq 0] ale
Q09 1o _ S19S 9lm asoym §H0 19sS 1D

3oUsNhas JILI0N

Jy09 Jequinu

99UsNas IWOo) 19 1senbay uonoesuel |

gd1(09 lequ
2ouanhas Jw

d¢59310

V259 (3L0)
AU uonoesuel] Y00 Jequinu

POJHILILIOY) 92UBNbas YWD

6170 uonoas buisseno.d Jo)sibey

Sheet 6 of 10
g 3
T &
£ 2
3 3
2
&>
7
<=

May 15, 2018

9 (aS/) J01duosap J8s sl

e
Uole 0F0 101duosap Jos pesy

(salqua Jeulnol Jap|0)

(NSH punog-semo
¢¥9 J8puiep %93y Joi

019 [eunor

U.S. Patent

US 9,971,822 B1

Sheet 7 of 10

May 15, 2018

U.S. Patent

c_EEoo .
Juadai Jsow) 4267 (319) £ Old

AUS UOIgBSUR PAJILLILLOY ven

A/ Uoioas buissanold Ja)sibay

07/ (s)ainjeubis pasnbay

Qe / Joywiep
No8Yd uofoesues) painbay

9907 S1
aes. 90/ S1
319

61
101d11asap uonoesuel palinbay

Z¢ . (S)ainjeubis usppigio-

NeS] 390 S AGOZ ASM

N
310 S
<Al a907 SL 507 ASM I
310

SIOIJUOQ sjum-pea) 129)ap 0) pazAjeue g0/ 19S 31D
suonoesuel) paiinbai AjlisA 0} pazAeue 197 19S 319

02/ 1snusp
¥o2y9 uonsesue.) usppiglo4

SUONOBSURSL UDPPIQJO) IO} pazABUR |G/ 189S T

81z

Vo0. — eyl J10}diDSep uoloesuel) usppiglo
vehl @@_Bmﬁmmr_wﬂwmwmmcﬁ 1 V0L OSM ﬂwow -
310 — 17 101dLIoSap 19S S
‘e H17 101dIosap 19s pesy
(31D 49pI0)
_ ¢ 1L JBNWIBP %9349 JOIIU0D M-Y
\ 1/ 1sonbal uonoesuel
317 [euInor vl 1} 1

U.S. Patent May 15, 2018 Sheet 8 of 10 US 9,971,822 B1

Data store 830A
Latest applied CSN = 828C
Log-structured journal 310
Cursor traversal Locally-materialized counter
il direction 820 836A (uses register R1 value)

Entry 827A

Commit sequence C

number (CSN) 823A DSM 830C’s cursor
8320

Entry 8278

SN 8288 Data store 830B

Register section 877 Latest applied CSN = 828D
DSM 830A’s cursor
Entry 827C .

832 .. I
CSN 828C . Locally-materialized counter
- 8368 (uses register R2 value)

Entry 827D '
) y Locally-materialized object 837

CSN 828D L (uses register R1 value)
1DSM 830B’s cursor

8328

Data store

830C
Most recent entry |
880 | atest applied CSN = 828A

FIG. 8

U.S. Patent May 15, 2018 Sheet 9 of 10 US 9,971,822 B1

Allocate one or more journal-based registers to a transaction submitter group (e.g.,a set
of client-side components) of an application; the application’s replicated state machine
(part of which may be stored in the registers) is maintained by a journal manager using an
optimistic concurrency control protocol 901

Recelve a transaction request containing (a) a register processing section with commands
expressed in a restricted register manipulation language to read/update/create/delete one
or more registers accessible to the transaction submitter, (b) read and write sets, and/or
(¢) logical constraint descriptors 904

Obtain results of read-write conflict-detection operations, logical constraint checking, and/
or register processing section 907

Results indicate that transaction is committable? 910

NO

Yes

Update materialized versions of registers if needed (e.g., at one or more nodes of a
directed acyclic graph of replication nodes of the journal) 913

Append new committed transaction entry to journal, optionally provide transaction
response with updated values of allocated register(s) 916

Write applier propagates committed writes
(e.g., potentially including register values
which can be used to set values for locally-
materialized objects) from journal entries to
data stores 919

Transaction submitter optionally

obtains register values via journal’s
read interface 922

allocated register(s) (which may not reflect register updates requested in aborted
fransaction) 925

FIG. 9

U.S. Patent May 15, 2018 Sheet 10 of 10 US 9,971,822 B1

Computing device
9000

Processor Frocessor Frocessor

9010a 9010b 9010n

/O interface 9030

System memory 9020 Network interface
Code Data 2020

Network(s)
9050

Other device(s)
9060

FIG. 10

USs 9,971,822 Bl

1

REPLICATED STATE MANAGEMENT USING
JOURNAL-BASED REGISTERS

BACKGROUND

In recent years, more and more computing applications
are being implemented 1n distributed environments. A given
distributed application may, for example, utilize numerous
physical and/or virtualized servers spread among several
data centers of a provider network, and may serve customers
in many different geographical locations. In many cases,
particularly 1n cloud-based computing environments, a
given application may ivolve performing reads and writes
at several different data stores, such as various instances of
relational databases, non-relational databases, and the like.
Some commonly used data store architectures may support
the traditional ACID (atomicity, consistency, 1solation and
durability) properties associated with the relational data
model for operations within a given data store, but may not
support such properties for groups of operations mvolving
multiple data stores. Other data store architectures may not
natively support the ACID property even within groups of
operations directed to a single data store instance.

Developers of applications that would benefit from sup-
port for transactions that cross data store boundaries are
sometimes forced to implement their own state change
management mechanisms. Such ad-hoc mechanisms are
often hard to maintain, especially as the set of object types
at the different data stores evolve based on changing appli-
cation requirements, and as more features are added to the
distributed applications themselves. In some cases, not all
the data stores may provide support for the same sets of
primitive types, or the same kinds of data manipulation
operations, which may further complicate the task of man-
aging complex transactions. Furthermore, given the network
delays and various types of failures that may be encountered
in typical distributed environments over time, some state
change management techniques may not be robust enough to
support the service levels required for mission-critical
operations. Some storage system applications may also
require more sophisticated state change management logic
than can be implemented using traditional contlict detection
techniques.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system environment in
which persistent registers may be implemented at a journal
for replicated state management of applications, according
to at least some embodiments.

FI1G. 2 1llustrates an example replication directed acyclic
graph (DAG) which may be used to implement a journal
used for storing committed transaction entries of a state
management system, according to at least some embodi-
ments.

FIG. 3 illustrates example journal logical partitions with
associated namespaces which may be implemented {for
respective groups of client instances of a state management
system, according to at least some embodiments.

FIG. 4 illustrates an overview of transaction requests
which may be submitted to a journal manager implementing,
an optimistic concurrency control protocol, according to at
least some embodiments.

FIG. 5 illustrates examples of register-based operations
which may be supported by a journal manager, according to
at least some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 illustrates an overview ol read-write conflict
detection operations which may be performed by a journal

manager, according to at least some embodiments.

FIG. 7 illustrates an overview of commit processing for a
transaction request which may include logical constraints,
according to at least some embodiments.

FIG. 8 illustrates an example of asynchronous processing,
of journal entries to materialize writes at various data stores,
according to at least some embodiments.

FIG. 9 15 a flow diagram 1illustrating aspects of operations
that may be performed at a journal-based replicated state
management system which supports register processing,
according to at least some embodiments.

FIG. 10 1s a block diagram 1llustrating an example com-
puting device that may be used in at least some embodi-
ments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes” mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase *“at least one of X, y, or z” means any one of X, v,
and z, as well as any combination thereof

DETAILED DESCRIPTION

Various embodiments of methods and apparatus for sup-
porting replicated state management for distributed applica-
tions using journal-based registers are described. In various
embodiments, such registers may be materialized by a
journal manager responsible for implementing an optimistic
concurrency control protocol with respect to transaction
requests submitted by client-side components of a multi-
data-store storage service or database service, and the state
of such registers may be included in the replicated state
machines implemented using journal entries as described
below. A given journal-based register may, for example,
comprise a data object (such as a 64-bit or a 128-bit integer)
stored at one or more replication nodes of the journal. An
associated register manipulation language defined by the
storage or database service may be used to customize
commit processing logic for proposed transactions, and/or to
store portions of application state information 1n a persistent
manner in some embodiments. It 1s noted that the journal-
based registers, also referred to herein simply as journal
registers, which may be read and updated in transaction
requests submitted by client-side components of complex
distributed applications, differ from processor registers
which may form part of the low-level hardware (e.g., at the
CPU level) of the computer hosts used for various compo-
nents associated with the applications and the state manage-
ment systems for the applications. Journal registers may be
referred to as being “persistent” herein because their con-
tents may typically remain accessible across transaction

USs 9,971,822 Bl

3

boundaries—e.g., a register value written to in one transac-
tion request may be readable from within a subsequent
transaction request.

In at least one embodiment, a group of one or more client
processes or instances associated with a given application
may be allocated a set of journal registers, e.g., either on
demand or automatically when the clients initially establish
connectivity to the journal manager. In some embodiments,
a plurality of data stores, some of which may implement
different data models and data manipulation languages than
others, and some of which may materialize different subsets
ol the database content than others, may be configured as
respective materialization nodes or members of the database
whose state 1s managed with the help of registers. Transac-
tion requests representing proposed state changes to the
database may be prepared locally and submitted to the
journal manager with the help of the client-side components.
A client-side component may, for example, include one or
more libraries which implement application programming,
interfaces (e.g., transaction submission APIs including reg-
ister-related APIs, as well as data store read APIs and/or
journal read APIs) supported by the database. In some
implementations client-side components may comprise
separate threads of execution than the database applications,
while 1n other implementations a client-side component may
be loaded as part of a database application process. Client-
side components may be considered one example of autho-
rized transaction submitters of the storage service or data-
base service in various embodiments.

A given transaction request may include a number of
different elements, including for example respective indica-
tors of the transaction’s read set, write set, logical con-
straints associated with de-duplication (an example of pre-
venting forbidden transactions) or sequencing of
transactions, a register processing section, a write payload,
and the like as described below 1n further detail. The journal
manager may perform a number of commit processing
operations to determine whether a given transaction request
1s acceptable for commit. Such operations may 1include
read-write contlict detection, for example, to determine
whether objects read during the preparation of a transaction
request may have been modified by subsequently-committed
transactions (whose write sets are indicated 1n respective
committed transaction entries or records appended to the
journal). In addition, if the transaction request has one or
more logical constraints, the journal manager may check
whether any of the constraints are violated by the previ-
ously-stored commutted transaction records or entries. In one
example of a logical constraint, a given transaction T1 may
only be committable 1f one or more previously-submitted
transactions such as 12 have already been committed. Such
previously-committed transactions may be indicated wvia
respective required transaction signatures 1n T1°s transaction
request, and the journal manager may examine stored sig-
natures 1n a subset of the committed transaction entries of
the journal to venily that required transactions have been
committed 1n some embodiments. Another example of a
logical constraint may mvolve forbidden or exclusion sig-
natures—e.g., a given transaction T1 may only be commut-
ted 11 a transaction T3 with a specified forbidden signature
has not been committed previously. Such exclusion checks
may also be verified by the journal manager using a subset
of the commuitted transaction entries of the journal. Exclu-
s1on or forbidden transaction checks (which may be used for
de-duplicating transaction requests i some embodiments)
and required transaction checks may be considered addi-
tional examples of contlict detection for optimistic concur-

10

15

20

25

30

35

40

45

50

55

60

65

4

rency control (where the term “conflict” 1s used 1n a broad
sense) which may be performed by the journal manager, 1n
addition to the core read-write conflict detection operations.

The register processing section of a given transaction
request may include various instructions, directives or com-
mands for register-level operations supported by the journal
manager, such as commands to read, write update/modity, or
perform arithmetic operations on one or more registers. In
some embodiments, the journal manager may include a
language execution engine responsible for implementing a
defined set of operations on the particular set of registers
allocated to a transaction submitter. In one embodiment, the
register commands may be part of a stack-oriented nstruc-
tion set defined by or at the journal-based database, ¢.g., in
accordance with a particular push-down automaton. Other
languages, such as various types ol context-free languages
which allow a small set of register operations (such as “set”,
“get”, “increment” and the like) but may not support looping
program constructs, and/or may not support function or
method calls, may be used in various embodiments. Trans-
action submitters may be permitted to request the allocation
of new registers 1n some embodiments, or the de-allocation
ol existing registers. In various embodiments, the transac-
tion requests may indicate various types ol transaction
commit dependencies on the results of requested register
operations. For example, in one transaction request for a
transaction T1, the register processing section may indicate
that T1 1s to be aborted 1f, as a result of adding a particular
value to a specified register R1, the value of R1 would
exceed a specified threshold (and that 1f the updated value of
R1 would not exceed the specified threshold and T1 1is
accepted for commit, the update to R1 should be commatted
as well). In some embodiments, higher-level abstractions
(such as a client-side library supporting counter operations)
may be implemented based on the primitive register opera-
tions supported by the journal manager, and the transaction
requests’ register processing sections may be expressed
using such abstractions. In one embodiment, a client-side
component responsible may compile a register processing
section during transaction request preparation, €.g., into byte
code or some other executable format which can be run at
the journal manager’s execution engine. That 1s, at least a
portion ol a register processing section of a transaction
request may be submitted 1n an executable form 1n such
embodiments.

In addition to performing read-write contlict detection and
logical constraint checking as described above, the journal
manager may attempt to perform the operations indicated in
the register processing section of a transaction request.
Based on the combination of the results obtained for the
read-write contlict detection, logical constraint violation
detection, and the register processing section, a decision
may be made as to whether to accept the transaction for
commit or not. If no conflict or violation 1s detected, and 1f
the journal register operations do not prompt an abort or
abandonment of the transaction, the transaction request may
be accepted for commit, and a new committed transaction
entry corresponding to the transaction request may be
appended to the journal. Committed transaction entries of
the journal may also be referred to herein as committed
transaction records or commit records. In addition, if the
transaction 1s accepted for commit and its register process-
ing section included a write to one or more journal registers,
materialized versions of those journal registers (which may
be stored at one or more replication nodes of the journal as
described below) may be updated accordingly.

USs 9,971,822 Bl

S

In at least one embodiment, the transaction submitter may
be provided a response to a given transaction request,
indicating whether the transaction was commaitted or not.
Such transaction responses may include the values of some
or all of the journal registers to which the transaction
submitter 1s granted access 1 some embodiments. Consider
two example scenarios. A request for transaction T1 includes
a register processing directive to increment a journal register
R1 (one of a set of two journal registers R1 and R2 allocated
to a transaction-submitting client C1) by one, and to abort
the transaction 1if R1’s value exceeds 100 as a result of the
increment. In one example scenario, R1’s value 1s 56 (and
R2’s value 1s 5) when T1’s request 1s received at the journal
manager, and in the other example scenario R1’s value 1s
100 (and R2’s value 1s 5) when the request 1s received. In the
first scenario, T1 would be accepted for commait, R1 would
be mcremented to a value of 57, and the register value set
(R1=57, R2=3) may be returned to the submitter in the
response to the transaction request. In the second scenario,
T1 would be aborted because R1 would exceed 100 11 1t were
incremented. As a result, any changes proposed in T1,
including the increment to R1, would not be performed, so
the response provided to the transaction may include (in
addition to an indication that the transaction was not com-
mitted) the register value set (R1=100, R2=5). In some
embodiments, a transaction submitter or other authorized
component may be able to retrieve the values of registers via
read programmatic interfaces supported by the journal man-
ager. In one embodiment, only the value of the journal
registers to which updates were directed 1n the transaction
request may be provided to the transaction submitter (e.g.,
R2 wvalues may not be provided in the above example
scenarios).

In various embodiments, the committed transaction
entries of the journal may each include a respective commiut
sequence number, indicative of the order in which the
journal manager processed the corresponding transaction
requests. Such sequence numbers may be used to delimit the
set of committed transaction entries to be examined for
conflict detection 1 various embodiments as discussed
below 1n further detail. If the journal contents are being
materialized at data stores at one or more materialization
nodes, each materialization node may have an associated
write applier responsible for examining the entries of the
journal sequentially and propagating the relevant writes (1.¢.,
those writes which are to be recorded at that materialization
node) to the materialization node. In some embodiments,
register values may be read by the write appliers from the
journal (e.g., as part ol committed transaction entries) and
used to update data objects at one or more materialization
nodes. The optimistic concurrency control algorithm 1mple-
mented by the journal manager may enable higher transac-
tion rates to be sustained for at least some types of appli-
cations than would have been possible using traditional
locking-based concurrency control techniques, especially 1n
environments where the level of contention (which leads to
read write conflicts) 1s low. The support for register opera-
tions as part of transaction requests may enable more
complex commit processing logic to be supported than 1f
only read-write contlict detection and logical constraint
violations associated with specific transaction signatures
were permitted. At the same time, restricting the types of
register manipulations allowed (e.g., by prohibiting loops or
method calls in the register processing sections of the
transaction requests) may help ensure that the probability of

6

over-burdening a journal manager by excessive register-
related computations 1s kept fairly low 1n various embodi-
ments.

In some embodiments, a given journal and its associated

5 journal manager may be implemented using a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

nodes. For example, journal contents (e.g., the committed
transaction entries) may be replicated at various nodes of a
directed acyclic graph (each of which may be implemented
at respective hosts 1n some implementations), and the values
of the registers may be materialized at one or more of such
replication nodes. In one embodiment, for example, the set
of replication nodes of the journal may include at least an
acceptor node and a committer node, and both nodes may be
required to replicate a respective commit record before the
corresponding transaction’s commit 1s considered successiul
or complete. In one implementation, the conflict detection,
logical constraint violation detection and register processing
may be performed at the acceptor node, and an array of
registers may be materialized at least at the acceptor node.

In various embodiments, a journal may be organized as a
collection of one or more journal logical partitions, with
cach journal partition being assigned or allocated to a group
of one or more applications and/or associated transaction
submitters. Each journal logical partition may have an
associated namespace, and the set of registers accessible to
the clients and/or other transaction submitters of the parti-
tion may be defined within the associated namespace. Com-
mitted transaction entries or records of several diflerent
journal logical partitions may be stored at the same repli-
cation host in some embodiments, thus supporting multi-
tenancy with respect to journal entries. In some embodi-
ments 1n which the journal i1s logically partitioned, a
respective array of registers may be defined for each parti-
tion and materialized at the acceptor node (and/or other
nodes) corresponding to that logical partition.

A wide variety of data store types may be configured as
members of such a journal-based state management system
in different embodiments, including for example one or
more 1nstances of relational databases, non-relational or
NoSQL databases, in-memory databases, object-oriented
databases, storage services which provide web-service inter-
faces to data objects, storage services which provide block-
level programmatic interfaces, and the like. Each data store
instance or materialization node may have a corresponding
data store manager, implemented for example using some
collection of hardware and/or software components, config-
ured to support a respective set of programmatic interfaces
in accordance with the syntax and semantics of the associ-
ated data store type. In at least some embodiments, for
example, some data stores may present diflerent interfaces
for read operations, and a client-side component may submit
reads to different data stores via their respective read inter-
faces on behalf of an application. The data stores configured
at a given time for transaction or state management via a
given journal of a multi-data-store database may be referred
to as “member” data stores of that database as of that time.
The terms “multi-data-store database™ and “multi-data-store
storage system” may be used synonymously herein. Member
data stores may leave or join the journal-based state man-
agement system over time 1n some embodiments. Of course,
a given state management system, storage system or data-
base may, at least at some points 1n time, comprise just a
single member data store—that 1s, while multiple members
may be permitted, the storage system may not be required to
have multiple members. In various embodiments, some of
the primitive data types supported at one member data store
may not be supported at another. For example, integer values

USs 9,971,822 Bl

7

may be stored using 64 bits in one data store, and using 32
bits 1n another. Similarly, the implementation and precision
of real numbers may differ from one data store to another.
The manner 1n which text variables or attributes are handled
may difler across data stores 1n some cases—e.g., the
maximum supported length of a character array may differ,
support for vaniable-length character arrays or strings may
differ, and so on. The details of the implementation of binary
objects (e.g., “blobs™), such as the maximum size of binary
objects, etc., may difler from one store to another. Some data
stores may not ofler the same kinds of data mampulation
operations as others. Furthermore, 1n at least some embodi-
ments, the kinds of indexes, constraints and/or other meta-
data objects which may be supported may differ from one
data store to another. In various embodiments, a data-store-
independent or data-store-agnostic transaction language
may be employed for transaction requests submitted to the
journal manager, e.g., to ensure that such differences among,
the different data stores can be managed. A common journal
schema may be employed in some embodiments, indicating
rules regarding acceptable transaction requests (including
the permitted register operations) which can be offered to the
journal manager by client-side transaction-submitting com-
ponents.
Example System Environment

FIG. 1 illustrates an example system environment in
which persistent registers may be implemented at a journal
for replicated state management of applications, according
to at least some embodiments. State management system
100 includes a journal manager 101 of a log-structured
journal 110 that may be used to store records of state
changes of a multi-data-store database. The journal manager
101 may be mmplemented using one or more computing
devices 1n various embodiments. The journal may be
described as being log-structured 1n the depicted embodi-
ment 1n that 1t may comprise an append-only sequence of
entries, with m-place modification of entries not permaitted.
The journal may comprise committed transaction entries 127
stored in the order in which the corresponding transactions
or state changes proposed by transaction submitters 144
(c.g., 144A) of state management system 100 were

approved, e.g., 1 increasing order of commit sequence
numbers. The database may include one or more material-
1zation nodes 167, such as 167A-167C, at each of which at
least a subset of the database contents are matenialized. Each
materialization node may include a respective data store 131
(e.g., data stores 131 A-131C) and a corresponding data store
manager (DSM) 130 (e.g., DSMs 130A-130C) implemented
at one or more computing devices.

The data stores 131 may be referred to as member data
stores of the database or storage system whose state 1s
managed at system 100. The member data stores 131 may
differ from each other 1n various characteristics such as their
supported data models and/or data manipulation languages,
level of data consistency supported, transaction support, data
persistence/durability level, and the like. Each of the data
stores may be registered or configured for transaction man-
agement by the journal manager 101 1n the depicted embodi-
ment. The terms “concurrency control” and “transaction
management” may be used as synonyms herein with respect
to the state change management functionality provided by
the journal manager. In effect, the journal manager may be
responsible for implementing a replicated state machine
corresponding to one or more database applications, with the
committed transaction entries expressing state changes 1n a

10

15

20

25

30

35

40

45

50

55

60

65

8

data-store-independent language in the depicted embodi-
ment. The journal manager may also be referred to as a state
manager.

The term “data store™, as used herein, may refer to an
instance ol any of a wide variety of persistent or ephemeral
data repositories and/or data consumers. For example, some
data stores such as 131A may comprise persistent non-
relational databases that may not necessarily provide native
support for multi-item transactions, while other data stores
such as 131B may comprise persistent relational databases
that may natively support multi-item transactions. In some
embodiments, a network-accessible storage service of a
provider network that enables 1ts users to store unstructured
data objects of arbitrary size, accessible via a web-services
interface, may be registered as one of the data stores. Other
types ol data stores may comprise m-memory databases
such as 131C, instances of a distributed cache, network-
accessible block storage services, file system services, and
the like. Networks set up by an entity such as a company or
a public sector organization to provide one or more services
(such as various types of multi-tenant and/or single-tenant
cloud-based computing or storage services) accessible via
the Internet and/or other networks to a distributed set of
clients may be termed provider networks 1n this document.
A provider network may also sometimes be referred to as a
“public cloud” environment. A given provider network may
include numerous data centers hosting various resource
pools, such as collections of physical and/or virtualized
computer servers, storage devices, networking equipment
and the like, needed to implement, configure and distribute
the infrastructure and services oflered by the provider.
Within large provider networks, some data centers may be
located 1n different cities, states or countries than others, and
in some embodiments the resources allocated to a given
application may be distributed among several such locations
to achieve desired levels of availability, fault-resilience and
performance. The journal manager 101 may itself be imple-
mented as part of a network-accessible distributed state
management service ol a provider network 1n some embodi-
ments.

In the depicted embodiment, transaction-submitting cli-
ent-side components 144 of the database may construct
transaction requests 116 locally (e.g., at hosts used ifor
running processes 1mplementing a database application),
and then submit (or “offer”) the transaction requests for
approval and commit by the journal manager 101. In one
implementation, for example, a client-side library may
enable an application 146 to initiate a proposed transaction
by 1ssuing the logical equivalent of a “transaction-start”
request. Within the candidate transaction, the application
may perform some number of reads on a selected set of
objects at data stores 131, and locally (e.g., 1n local memory)
perform a proposed set of writes directed at one or more data
stores. The application may then submit the proposed trans-
action by 1ssuing the equivalent of a “‘transaction-end”
request. A given transaction request 116 may include a
number of elements in various embodiments as discussed
below 1n further detail, including for example a register
processing section 145, an indication of a read set and write
set of the transaction, a write payload, and so on.

The state information maintained by the journal manager
101 may include a register array 146 comprising a plurality
of registers 1n the depicted embodiment. For example, each
register may comprise a 128-bit or 64-bit integer. Diflerent
sets of registers may be assigned or allocated to diflerent sets
ol transaction submitters 144, e.g., to be used for custom-
1zing the commit processing logic for transaction requests

USs 9,971,822 Bl

9

116 and/or to store portions of the corresponding applica-
tions’ state. In various embodiments, a register manipulation
language defined by the journal manager or the journal
service may be used to express operations directed at one or
more registers of array 146 1n the register processing section
146 of a transaction request. The journal manager may
include a register language execution engine 106 used for
carrying out the operations indicated 1n the register process-
ing sections 146 of submitted transactions. In some embodi-
ments, the register manipulation language may support a
smaller set of operations than many modern high-level
programming languages—e.g., a simple stack-based instruc-
tion set for register operations may be supported in some
embodiments, which does not allow looping programming
constructs, method/function calls, etc. Examples of the kinds
ol primitive instructions which may be supported for regis-
ters of array 146 1n various embodiments, as well as abstrac-
tions that may be built using such primitives, are discussed
below 1n the context of FIG. 5.

The decision as to whether to commit a requested trans-
action may be made based on various factors. In the depicted
embodiment, a transaction request 116 may {irst be pro-
cessed by a contlict detector 105 of the journal manager 101,
c.g., to determine whether the reads of the transaction
conflict with writes of previously-committed transactions
represented 1n committed transaction entries 127, and/or to
determine whether any logical constraints of the proposed
transaction are violated. Details of the kinds of conflict
detection operations and logical constraint violation detec-
tion operations that may be performed in various embodi-
ments are provided below. As mentioned above, 1n at least
some embodiments, a given transaction request 116 may
include a read set descriptor indicating one or more reads
(e.g., reads 117A, 117B or 117C) respectively from one or
more data stores, and a write set descriptor indicating
proposed writes which may eventually be propagated to one
or more data stores, where the set of data stores that are read
in the transaction may or may not overlap with the set of data
stores aflected by the writes. The reads may be performed
using the native programmatic read interfaces of the data
stores 1n some embodiments. The transaction requests 116
may be formatted 1n accordance with a data-store-indepen-
dent transaction language in various embodiments, €.g., a
language defined 1n a journal schema associated with journal
manager 101.

At least some of the writes indicated 1n a given transaction
request may be dependent on the results of one or more of
the reads 1n some embodiments. For example, a requested
transaction may involve reading one value V1 from a
location L1 at a data store DS1, a second value V2 from a
second location L2 at a data store DS2, computing a function
F(V1, V2) and storing the result of the function at a location
[.3 at some data store DS3. In some locking-based concur-
rency control mechamisms, exclusive locks may have to be
obtained on L1 and L2 to ensure that the values V1 and V2
do not change betfore L3 1s updated. In contrast, an optimis-
tic concurrency control mechanism may be used by the
journal manager 101 of FIG. 1, in which no locks may have
to be obtained. Instead, in the depicted embodiment, the
conilict detector 105 may determine, based at least 1n part on
the contents of the transaction request and on a set of
committed transaction entries of the journal 110, whether
one or more of the data items read in the requested trans-
action may have been updated since they were read from
their respective data stores. A sequence number based tech-

10

15

20

25

30

35

40

45

50

55

60

65

10

nique may be used to determine whether such read-write
conflicts exist 1n at least some embodiments, as described
below 1n further detail.

I1 the conflict detector 105 determines that none of results
of the proposed transaction’s reads have been aflected by
subsequently committed writes, additional checks for logical
constraint violations and register operations that might
potentially result in transaction abandonment may be per-
formed 1n at least some embodiments. For example, if the
transaction request includes a “required transaction signa-
ture”, the conflict detector 105 (or some other component of
the journal manager configured to perform logical constraint
checking) may check whether a transaction with that signa-
ture has been commuitted. It the requires transaction has not
been committed, the request 116 may be rejected. Similarly,
in some embodiments a transaction may include a “forbid-
den transaction signature”, and the journal manager may
check (e.g., by examining some set of commuitted transaction
entries 127) whether a transaction with that signature has
already been committed or not. If the forbidden transaction
has been commutted, the requested transaction may also be
rejected.

The register processing section 145 of the proposed
transaction may include one or more 1nstructions to update
(or read) specified registers, and to take actions such as
aborting/abandoning the transaction based on the register
update results or the register read results in the depicted
embodiment. For example, the register processing section
may direct the journal manager to increment the value stored
in a particular register R1 of array 146, and to abort the
transaction 1f the resulting value of R1 exceeds a threshold.
The register language execution engine 106 may perform the
requested register updates provisionally i the depicted
embodiment, such that the register updates are only com-
mitted 11 the requested transaction i1s not aborted. In some
embodiments, the read-write conflict detection and logical
constraint violation detection operations for a given trans-
action request 116 may be performed before the register
processing section 145 1s executed. In other embodiments, a
different ordering may be employed with respect to read-
write conflict detection, logical constraint checking, and
register processing, or at least some of the three types of
commit processing operations (read-write conflict detection,
logical constraint checking and register processing) may be
performed in parallel. It 1s noted that at least one of the three
types of commit processing operations may not be required
for some transaction requests in various embodiments. For
example, a transaction request may include a null read set,
in which case read-write conflict detection may not be
required. Some transaction requests may not include logical
constraint descriptors, in which case checking for violations
of logical constraints may not be required. Other transaction
requests may not include register processing sections.

If no read-write conflicts are detected, no logical con-
straints would be violated 1f the transaction request 116 were
accepted for commit, and the register operations indicated 1n
register processing section do not require abandonment of
the proposed transaction, the transaction request may be
accepted for commit 1n the depicted embodiment. A com-
mitted transaction entry 127 representing such an accepted-
for-commuit transaction 114 may be appended to the journal
110. In addition, 11 the register processing section included
a write to a register, a materialized version of that register
may be updated accordingly. In some embodiments, at least
a portion of the register processing section (or the corre-
sponding register values) may be included 1in the commaitted
transaction entry, e.g., together with other elements of the

USs 9,971,822 Bl

11

transaction request. The terms “approve” and “accept” may
be used as synonyms herein with respect to requested
transactions that are not rejected.

This type of approach to concurrency control may be
deemed optimistic 1n that decisions as to whether to proceed
with a set of writes of a transaction may be made initially
under the optimistic assumption that read-write contlicts are
unlikely, that logical constraint violations are unlikely, and
that requested register manipulations are unlikely to require
transaction abandonment. As a result, 1n scenarios 1n which
these assumption are typically valid, higher throughputs and
lower response times may be achieved than may be possible
if more traditional locking-based techniques are used. In the
case where a transaction 1s accepted for commit, 1n some
embodiments contents of a corresponding journal entry 127
may be replicated at some number of nodes of a replication
graph (as described below in further detail with respect to
FIG. 2) in the depicted embodiment before the commiut 1s
considered successiul. In some embodiments, the requesting
client-side transaction submitter component 144 may be
notified when the requested transaction 1s committed, e.g., in
the form of a transaction response 117 which includes the
register values 147 resulting from the operations of the
register processing section. In at least one embodiment, the
client-side component 144 may be mformed when a trans-
action 1s rejected, so that, for example, a new transaction
request may be generated and submitted for the desired
updates. The rejection response may also include, for
example, the values 147 of the registers (without incorpo-
rating any requested register updates included 1n the trans-
action request, since those changes were not applied as a
result of the rejection of the transaction). In at least some
embodiments, mstead of or in addition to obtaining the
register values 1n transaction responses 117, a transaction
submitter 144 may obtain values of one or more registers
using journal read interfaces 177.

For each transaction that 1s committed, 1in at least some
embodiments a commit sequence number (or some other
identifier indicative of the commit) may be generated and
stored as part of the corresponding journal entry. Such a
commit sequence number may, for example, be 1mple-
mented as a counter or as a logical timestamp. The commit
sequence number may be determined by the conflict detector
in some embodiments, or at a different component associ-
ated with the journal (such as the committer node of a
replication graph being used) in other embodiments.

In the depicted embodiment, after a given transaction 1s
committed and its entry 1s stored at the journal, at least some
of the writes of the transaction may be applied or propagated
to one or more of the materialization nodes 167. Some of the
writes may involve register values—1tor example, one of the
writes may comprise setting the value of a data attribute to
that of one of the registers of array 146. Diflerent subsets of
the committed writes may be of interest to, or relevant to,
different materialization nodes 1n some embodiments, as
indicated by arrows 115A-115C. In some 1mplementations,
the writes may be applied 1n an asynchronous fashion to the
maternalization nodes. In such implementations, there may
be some delay between the time at which the transaction 1s
committed and the time at which the payload of a particular
write operation of the committed transaction reaches the
corresponding data store. In some embodiments, respective
asynchronous write appliers 149 (e.g., write appliers 149 A-
149C) may be used to propagate some or all of the writes to
relevant data stores. In one embodiment, the write appliers
may be components of the journal manager 101, while in
other embodiments the write appliers may be components of

5

10

15

20

25

30

35

40

45

50

55

60

65

12

the data store managers 130, and may represent respective
cursors on the journal. In some embodiments, a given write
applier may be responsible for propagating writes to more
than one data store, or a single data store may receive writes
from a plurality of write appliers. In at least one implemen-
tation, a pull technique may be used to propagate written
data to the data stores—e.g., one or more data stores may
submit requests for writes to the journal manager or the write
appliers, instead of being provided written data at the
initiative of the write appliers. After the data written during
a transaction 1s applied to the corresponding data stores,
client-side components such as transaction submitters 144
may be able to read the updated data using the respective
read interfaces of the data stores. In some embodiments, at
least one of the write appliers may be capable of performing
synchronous writes (e.g., either when explicitly directed to
do so by the journal manager or a data store manager, or for
all the writes for which the applier 1s responsible).

In at least one embodiment, the journal manager may
implement respective sets of read and write programmatic
interfaces (e.g., application programming interfaces or
APIs). The journal manager’s write interfaces may be used
by authorized entities (such as transaction submitters 144) to
submit transaction requests, while the read interfaces 177
may be used by various authorized entities (e.g., including
write appliers and/or the transaction submitters) to read
contents of journal entries 127, register array 146 and the
like. In at least one embodiment, a data store manager 130
may be authorized to mvoke the journal manager’s write
interfaces—e.g., by submitting certain types of transaction
requests. Thus, 1n such embodiments, a data store manager
may act as a transaction-submitting client-side component as
well as a consumer or reader of journal entries.

In at least one embodiment, the journal manager 101 may
provide an indication of the latest committed state of the
database (such as the highest commit sequence number
generated thus far), e.g., 1n response to a query from a data
store manager or a query from a transaction submitter. The
write appliers 149 may indicate the commit sequence num-
bers corresponding to the writes that they apply 1n various
embodiments. Thus, at any given point in time, a transaction
submitter may be able (e.g., by querying the data store
managers) to determine the commit sequence number cor-
responding to the most-recently-applied write at a given
materialization node 167. In at least some embodiments,
during the generation of a transaction request 116, the
most-recently-applied commit timestamps may be obtained
from the data stores that are accessed during the transaction,
and one or more of such commit sequence numbers may be
indicated 1n the transaction request as the contlict check
delimiter. For example, consider a scenario in which, at the
time that a particular client-side component 132 1nitiates a
transaction that includes a read of a location L1 at a data
store DS1, the commit sequence number corresponding to
the most recently applied write at DS1 1s SN1. Assume
further that 1n this example, the read set of the transaction
only comprises data of DS1. In such a scenario, SN1 may be
included 1n the transaction request 116. The contlict detector
105 may 1dentily journal entries with sequence numbers
greater than SN1 as the set of entries to be examined for
read-write conflicts for the requested transaction. If any of
the write sets of the identified commit records overlaps with
the read set of the requested transaction, the transaction may
be rejected/aborted; otherwise, the transaction may be con-
sidered free of read-write contlicts 1n this example scenario.
Similar sequence number-based delimiters may be used for

USs 9,971,822 Bl

13

logical constraint checking 1n some embodiments, as dis-
cussed 1n further detail below.

The optimistic concurrency control mechanism illustrated
in FIG. 1 may allow more complex types of atomic opera-
tions to be supported than may have been possible using the
underlying data stores’ concurrency control mechanisms in
at least some scenarios. For example, some high-perfor-
mance non-relational data stores may only allow single-1tem
transactions (1.e., writes may be permitted one at a time, but
i multiple writes are submitted 1n a single batch update,
atomicity/consistency guarantees may not be provided for
the multiple writes taken together). With the journal-based
approach described above, a single transaction that encom-
passes writes to multiple locations of the non-relational data
store (and/or other data stores as well) may be supported
with relative ease.

Replication Graphs

In some embodiments, at least some contents of the
journal used for state management may be replicated for
enhanced data durability and/or higher levels of availability.
FIG. 2 1illustrates an example replication directed acyclic
graph (DAG) which may be used to implement a journal
used for storing committed transaction entries of a state
management system, according to at least some embodi-
ments. In general, a replication DAG 240 may include one
or more acceptor nodes 210 to which transaction requests
250 may be transmitted by submitters 260, one or more
committer nodes 214, zero or more mtermediary nodes 212
cach positioned along a replication pathway comprising
DAG edges leading from an acceptor node to a committer
node, and zero or more standby nodes 216 that are config-
ured to quickly take over responsibilities of one of the other
types of nodes in the event of a node failure. In various
embodiments, the functionality of the journal manager
described above may be distributed among subcomponents
at one or more of the replication DAG nodes. In the
embodiment depicted i FIG. 2, the acceptor node includes
a set ol materialized registers 246, a register language
execution engine 206, and the contlict detector 271 of the
journal manager. In other embodiments, instead of being
incorporated within an acceptor node, the contlict detector
and/or the register-related components may be implemented
separately. The matenalized registers 246 may comprise, at
any given point in time, the current values or contents of the
registers, representing the accumulated set of changes
applied to the registers in the register processing sections of
committed transactions. In at least one embodiment, mate-
rialized registers may be replicated at several nodes of DAG
240 at respective persistent storage devices.

In at least some embodiments, each node of a particular
replication DAG such as 240 may be responsible for repli-
cating journal entries. The journal entries may be propagated
along a set of edges from an acceptor node to a committer
node of the DAG along a replication pathway. In FIG. 2, the
current replication pathway starts at acceptor node 210, and
ends at committer node 214 via mtermediary node 212. For
a given journal entry (e.g., an entry indicating a committed
data object modification), one replica may be stored at each
of the nodes along the replication path, e.g., in journal
entries 272A, 272B and 272C. Each journal entry propa-
gated within the DAG may include a respective sequence
number or a logical timestamp that i1s indicative of an order
in which the corresponding transaction request was pro-
cessed (e.g., at the acceptor node 210). When a particular
journal entry reaches a committer node, e.g., after a sufli-
cient number of replicas of the entry have been saved along
the replication pathway, the corresponding transaction may

10

15

20

25

30

35

40

45

50

55

60

65

14

be explicitly or implicitly committed. In some embodiments,
the changes to the materialized registers 246 indicated 1n a
given transaction request may be applied only after the
transaction 1s committed—e.g., after the journal entry for the
transaction request has reached the committer node and a
suflicient number of replicas of the journal entry have been
made. If for some reason a suflicient number of replicas
cannot be created, the journal entries may be logically and/or
physically removed (e.g., by setting a “removed” flag) in
some embodiments from the nodes (1f any) at which they
have been replicated thus far, and the proposed register
changes (il any) associated with the transaction may not be
maternalized. After a commit, the writes of a transaction may
be propagated or applied to a set of destinations (such as
storage devices at which the contents of the member data
stores are located) as described earlier, e.g. by respective
write appliers. In some implementations, only a subset of the
DAG nodes may be read in order to propagate commaitted
writes to their destinations. In other embodiments, journal
entries may be read from any of the DAG nodes. In at least
one embodiment, write appliers may be implemented as
respective threads or processes that may run at the same
hosts at one or more of the DAG nodes. In other embodi-
ments, write appliers may run on different hosts than the
DAG nodes. A journal entry may also be transmitted even-
tually to standby node 216, and a replica of it may be stored
there after 1t has been committed, so that the standby node
216 1s able to replace a failed node of the DAG quickly 1f
and when such a faillover becomes necessary.

A journal configuration manager 222 may be responsible
for managing changes to DAG configuration (e.g., when
nodes leave the DAG due to failures, or join/re-join the
DAG) by propagating configuration-delta messages 224
asynchronously to the DAG nodes 1n the depicted embodi-
ment. Each configuration-delta message may indicate one or
more changes to the DAG configuration that have been
accepted or committed at the journal configuration manager
222. In some embodiments, each replication node may
implement a respective deterministic finite state machine,
and the journal configuration manager may implement
another deterministic finite state machine. The journal con-
figuration manager may be implemented as part of the
journal manager which 1s also responsible for the optimistic
concurrency control protocol described above.

The protocol used for managing DAG configuration
changes may be designed to maximize the availability or
“liveness” of the DAG in various embodiments. For
example, the DAG nodes may not need to synchronmize their
views of the DAG’s configuration 1n at least some embodi-
ments; thus, the protocol used for transaction record propa-
gation may work correctly even 1f some of the nodes along
a replication pathway have a different view of the current
configuration of the journal DAG than other nodes. In FIG.
2, each of the nodes may update 1ts respective journal
configuration view 274 (e.g., 274A, 2748, 274C or 274D)
based on the particular sequence ol configuration-delta
messages 224 1t has received from the configuration man-
ager 222. It may thus be the case, 1n one simple example
scenario, that one node A of a DAG 240 continues to
perform its state transition processing responsibilities under
the assumption that the DAG consists of nodes A, B, C and
D 1n that order (1.e., with a replication pathway A-to-B-to-
C-to-D), while another node D has already been informed as
a result of a configuration-delta message that node C has left
the DAG, and has therefore updated D’s view of the DAG
as comprising a changed pathway A-to-B-to-D. The con-
figuration manager may not need to request the DAG nodes

USs 9,971,822 Bl

15

to pause processing of transactions and corresponding jour-
nal entries 1n at least some embodiments, despite the poten-
tially divergent views of the nodes regarding the current
DAG configuration. Thus, the types of “stop-the-world”
configuration synchronization periods that may be required
in some state replication techniques may not be needed
when using replication DAGs of the kind described herein to
implement persistent journals for distributed transaction
management. Although a linear replication pathway 1s
shown in FIG. 2, in general, a replication pathway may
include branches at least at some points of time (e.g., during
periods when some DAG nodes have received diflerent
configuration delta messages than others). Under most oper-
ating conditions, the techniques used for propagating DAG
configuration change information may eventually result in a
converged consistent view of the DAG’s configuration at the
various member nodes, while minimizing or eliminating any
downtime associated with node failures/exits, node joins or
node role changes. It 1s noted that in some embodiments,
journal entries may be stored without using the kinds of
replication DAGs illustrated i FIG. 2.

In at least some embodiments, the nodes of a replication
DAG may each be implemented as a respective process or
thread running at a respective host or hardware server. The
hosts themselves may be physically dispersed, e.g., within
various data centers of a provider network. In one embodi-
ment, a provider network at which journal-based transac-
tions are implemented may be organized into a plurality of
geographical regions, and each region may include one or
more availability containers, which may also be termed
“availability zones™ herein. An availability container 1n turn
may comprise portions or all of one or more distinct loca-
tions or data centers, engineered in such a way (e.g., with
independent infrastructure components such as power-re-
lated equipment, cooling equipment, or physical security
components) that the resources 1n a given availability con-
tainer are insulated from failures in other availability con-
tainers. A failure 1n one availability container may not be
expected to result in a failure in any other availability
container; thus, the availability profile of a given resource 1s
intended to be independent of the availability profile of
resources 1n a different availability container. In some such
embodiments, one or more nodes of a replication DAG 240
may be implemented at a different availability container than
other nodes of the replication DAG, thereby increasing the
robustness and durability of the journal.

Journal Logical Partitions

In at least one embodiment, a journal used for state
management may be subdivided into logical partitions
which share underlying hardware devices (e.g., hosts and/or
storage devices). Each such journal logical partition may be
used, for example, for a different application or a group of
related applications, with the state information stored in
cach journal logical partition being kept 1solated from the
state information stored in any other journal logical parti-
tion. Journal logical partitions may also be referred to as
journal shards in some embodiments. FIG. 3 illustrates
example journal logical partitions with associated
namespaces which may be mmplemented for respective
groups ol client instances of a state management system,
according to at least some embodiments. Replication DAG
340 comprises acceptor node 310, intermediate node 313,
committer node 314, and standby node 316 1n the depicted
embodiment. Each of the DAG nodes may be implemented
or executed at a separate host 1n some implementations.
Using respective journal logical partitions 350 (e.g., 350A or
350B) whose contents are physically distributed among the

10

15

20

25

30

35

40

45

50

55

60

65

16

illustrated set of DAG nodes, replicated state management
for several diflerent applications may be performed. For
example, journal logical partition 350A may be assigned to
a client instance group (CIG) 304A associated with an
application Appl, while journal logical partition 304B may
have been established for client instance group 304B asso-
ciated with a different application App2. Each CIG may
comprise one or more authorized transaction submitters
(e.g., client processes or threads of execution) for the

corresponding application.

Each journal logical partition may have an associated
namespace 1solated from the namespaces of other journal
logical partitions, such as namespaces 352A and 352B of
journal logical partitions 350A and 3508 respectively. Each
namespace 352 may be used to 1dentily or define respective
sets of state management objects and entities, such as
respective sets of journal registers, transaction identifiers,
client identifiers and the like. For example, one set of journal
registers 346 A may be defined 1n namespace 352A for CIG
304A, and a second set of journal registers 346B may be
defined 1n namespace 3528 for CIG 304B in the depicted
embodiment. In one example implementation, register set
346 A may include 1024 64-bit registers R0O-R1023 within
the scope of namespace 352A, while register set 3468 may
include an additional 1024 64-bit registers RO-R1023 within
the scope of namespace 352B. When referring to a given
journal register 1 a register processing section of a trans-
action request, a transaction submitter may use the register
identifiers (e.g., RO-R1023) defined in the namespace of the
journal logical partition assigned to the CIG to which the
transaction submitter belongs. Diflerent transaction submit-
ters of a given CIG may access the same registers—e.g., one
submitter may write to a particular register, which can then
be read (assuming the transaction with the write 1s commuit-
ted) by a diflerent transaction submitter of the CIG, or
overwritten 1n a subsequent transaction by a different trans-
action submitter of the CIG. In one embodiment, the register
language usable to prepare transaction requests may include
operations to share access to a given register of a
namespace—e.g., an authorized transaction submitter may
request that read and/or write access to a particular register
(or some set of registers) be granted to another transaction
submitter, thereby potentially expanding the client instance
group associated with the namespace of that register.

In one embodiment, the number of registers allocated for
different journal logical partitions may not be identical—
¢.g., based on the needs of the corresponding applications,
the number of client instances, etc., some journal logical
partitions may have fewer registers than others at a given
point 1n time. The data types, widths (e.g., number of bits
used per register) and/or the total number of registers may
differ from one journal logical partition to another 1n some
embodiments—e.g., register set 346 A may comprise 1024
64-bit integer-valued registers, while register set 3468 may
comprise 512 128-bit integer registers. In one embodiment,
the role of a given node (e.g., among the roles of acceptor
node, intermediary node, committer node and standby node)
may differ with respect to one journal logical partition than
another—e.g., a node designated as an acceptor node for one
journal logical partition may act as a committer node for a
second journal logical partition and/or as an intermediary
node for a third journal logical partition. In some embodi-
ments, the materialized versions of the register sets of a
grven logical partition may be stored at the acceptor node for
that logical partition, while 1n other embodiments, the reg-
isters may be materialized at several different nodes.

USs 9,971,822 Bl

17

In some embodiments, when a given application (or one
of 1ts client 1nstances) first connects to or registers with the
journal service, a particular journal logical partition may be
assigned to 1t, and a default set of registers associated with
that partition may be allocated for use by the application and
its client instances. In some 1implementations, a new journal
logical partition may be created or established for each
application, while 1 other embodiments a given journal
logical partition may be re-used or recycled (e.g., after one
application has terminated, its partition may be assigned to
a different application). The journal manager may maintain
metadata indicating the mappings between applications,
CIGs and journal logical partitions in various embodiments.

Journal-based registers may be used to store critical
portions of application state during bootstrap or initialization
phases of the applications in some embodiments. A particu-
lar application process may act as a transaction submitter
and store contents ol application state during one stage of the
bootstrap to the set of registers allocated for the application.
Those registers may be read during one or more subsequent
stages ol the bootstrap procedure, and/or to enable faster
recovery 1n the event of a failure during the bootstrap
procedure 1n one embodiment. In effect, 1n such embodi-
ments, 1 addition to or instead of being used for commit
processing decisions, the journal-based registers may be
used as a highly available persistent repository for small
amounts of application state information at various stages of
an application’s lifecycle.

Transaction Requests

FIG. 4 illustrates an overview of transaction requests
which may be submitted to a journal manager implementing
an optimistic concurrency control protocol, according to at
least some embodiments. As shown, a transaction request
444 may include some combination of a conflict check
delimiter 402, a read set descriptor 404, a write set descriptor
406, write payload(s) 408, logical constraint descriptors
(such as required transaction descriptors 410 or forbidden
transaction descriptors 412), and/or a register processing
section 414 1n the depicted embodiment. In various embodi-
ments, transaction requests 444 may include other elements
not shown in FIG. 4, such as a version number of a
data-store-independent transaction language or journal
schema used to formulate the transaction request, the type of
transaction (e.g., whether the transaction mcludes a write
operation directed to a data object or to a journal schema),
etc. In some embodiments, authorization to submait transac-
tion requests similar to request 444 may be granted to data
store managers at various materialization nodes, as well as
to client-side components of the database.

In the depicted embodiment, a transaction-submitting
component 432 may comprise one or more client libraries
which may be utilized to assemble or prepare the transaction
request. For example, a register manipulation library 442
may provide programmatic interfaces for various register-
level operations such as those described below 1n the context
of FIG. 5. In at least one embodiment, the transaction-
submitting component 432 may include or have access to an
optional register language compiler 447, which may be used
to generate an executable version of a register processing
section for inclusion 1n a transaction request.

In at least some embodiments, the transaction submitter
may automatically record information about the read targets
461A, 4618, and 461C respectively within data stores 430A,
430B and 430C from which data i1s read during the trans-
action. In some embodiments, the read set descriptor 404
may be generated by applying transformation functions
(e.g., hash functions) to the read query predicates. For

5

10

15

20

25

30

35

40

45

50

55

60

65

18

example, 1f a read request logically equivalent to the SQL
(Structured Query Language) statement “select salary from
EmployeeTable where (name equals ‘Alan’) or (employ-
eelD equals “123°)” were 1ssued by the transaction-submitter
432, the following procedure may be used to represent the
portion of the read set corresponding the select statement in
one implementation. First, the query predicates (name
equals ‘Alan’) or (employeelD equals ‘123’) may be nor-
malized mto a tuple (e.g., ‘name:Alan,employeell):1237)
expressed 1n a particular format indicated 1n journal schema
943. Then, a hash function or other transformation function
(which may also be specified in the journal schema as the
function to be used to generate the read descriptor) may be
applied to convert the normalized tuple(s) into integers (e.g.,
“-535, 1312”). The output of the transformation function may
be 1ncluded 1n the read set descriptor 404 1n the transaction
request 444 1 some embodiments. In other embodiments,
such transformations of read queries may not be used. In at
least some embodiments, the entire text of the read queries
corresponding to the read set (e.g., “select salary from
EmployeeTable where (name equals ‘Alan’) or (employ-
eelD equals ‘123°)” 1n the above example) may also or
instead be included 1n a transaction request 444.

Information about the write target 471 (of data store 430C
in the depicted example) to which data i1s written 1n the
proposed transaction may also be recorded by the transac-
tion submitter 432, e.g., by applying similar transformation
functions to queries whose results may be atfected by the
writes. For example, in one embodiment, a journal schema
defined for the journal may indicate one or more query
restriction descriptors indicating the sets of data object
attributes for which read-write conflicts are going to be
detected at the database. A set of queries (Q1, Q2, . . .)
directed to such attributes may be 1dentified by the transac-
tion submitter, such that results of the queries would be
allected by the proposed write directed to target 471. The
predicates ol those queries may then be converted into
integers using an algorithm involving normalization fol-
lowed by transformation 1n one implementation, 1n a manner
similar to the approach described for the read set descriptor
above, and the mtegers may be included in write set descrip-
tor 406. In embodiments 1n which both the read set and the
write set are represented using sets of 1ntegers produced by
transformation functions applied to corresponding queries,
the task of 1dentitying potential read-write contlicts may be
simplified to checking whether any of the integers of a read
set description of a proposed transaction are present in the
write set descriptors of transactions that have been commuit-
ted since the operations to read the objects indicated in the
read set were performed. Of course, depending on the
transformation functions used, the presence of the same
integer 1n a read set and a committed write set may represent
a false positive 1 some embodiments: e.g., the query
predicate “attrl:valuel™ of a read set may have been hashed
to the same integer as a different predicate “attr2:value2” of
a query aflected by a committed write. In at least some
embodiments, 1n addition to or instead of a transformed
representation of the write set descriptor, the full text of the
proposed write operation directed to target 471 may be
included in the transaction request 444.

In some 1mplementations, the transaction submitter may
also obtain, from each of the data stores 430, a correspond-
ing latest-applied commit sequence number (LACSN) 431
(e.g., 431A-431C) of the most recent transaction whose
writes have been applied at the data store. In one embodi-
ment, such LACSNs 431 may be retrieved before any of the
reads of the transaction are 1ssued to the corresponding data

USs 9,971,822 Bl

19

stores, for example. In another embodiment, the LACSNs
431 may be retrieved from a given data store 430 just before
the first read that 1s directed to that data store within the
current transaction 1s 1ssued.

The conftlict check delimiter 402 may be dertved from a
function to which the LACSNs 431 are provided as iput 1n
some embodiments. For example, in one implementation,
the mimmum sequence number among the LACSNSs
obtained from all the data stores read during the transaction
may be used as the delimiter. In another implementation, a
vector or array comprising the LACSNs from each of the
data stores may be included as the contlict check delimiter
402 of the transaction request. The conflict check delimiter
402 may also be referred to herein as a committed state
identifier, as i1t represents a committed state of one or more
data stores upon which the requested transaction depends.
The contlict check delimiter 402 may be used by the journal
manager to identily the subset of committed transaction
entries to be used to perform contlict detection with respect
to the transaction request 444 1n various embodiments.

As discussed above, in some embodiments, transtforma-
tion functions may be applied to read queries to generate the
read set descriptor 404, and/or similar transformation func-
tions may be applied to write-aflected queries (a set of
queries whose results may be aflected by the proposed
writes) to generate write set descriptor 406. In some embodi-
ments, instead of the query-based transformation, a selected
transformation function may instead be applied to the loca-
tions/addresses of the read targets to obtain a set of hash
values to be included in read descriptor 404. Similarly, a
selected transformation function (either the same function as
was used for the read descriptor, or a different function,
depending on the implementation) may be applied to the
location of the write(s) of a transaction to generate the write
set descriptor 404 1n some embodiments. In another embodi-
ment 1n which read set descriptors and/or write set descrip-
tors are generated based on locations rather than query
contents, hashing may not be used; istead, for example, an
un-hashed location identifier may be used for each of the
read and write set entries. The write payload 408 may
include a representation of the data that 1s to be written for
cach of the writes 1included 1n the transaction.

A required transaction descriptor 410 may indicate a
signature of a transaction whose commit 1s a prerequisite for
committing the currently-requested transaction. In some
embodiments, a given transaction T1 may not be considered
committable 1f another transaction T2 has already been
committed. A forbidden transaction descriptor 412 may
indicate a signature of such a transaction whose commit
would result 1n an abandonment of the currently-requested
transaction. Forbidden transaction descriptors may be used
for duplicate detection/elimination 1n some embodiments,
while required transaction descriptors may be used for
sequencing specified transactions before or after other trans-
actions in some embodiments. Register processing section
414 may 1nclude a collection of requested register operations
to be performed by the journal manager; examples of the
kinds of register operations which may be supported in
various embodiments are provided 1n FIG. 5. Some or all of
the contents of the transaction request 444 may be stored as
part of the journal entries (e.g., committed transaction
records) 1n some embodiments. In some embodiments, for
example, the full text of the read queries corresponding to
the read set, the full text of the write operations correspond-
ing to the write set, and/or the full text of the register
processing section may be stored in the commuitted transac-
tion entries.

10

15

20

25

30

35

40

45

50

55

60

65

20

It 1s noted that the read and write targets from which the
read set descriptors and/or write set descriptors are gener-
ated may represent diflerent storage granularities, or even
different types of logical entities, 1n different embodiments
or for different data stores. For example, for a data store
comprising a non-relational database 1n which a particular
data object 1s represented by a combination of container
name (e.g., a table name), a user name (indicating the
container’s owner), and some set of keys (e.g., a hash key
and a range key), a read set may be obtained as a function
of the tuple (container-1D, user-1D, hash key, range key). For
a relational database, a tuple (table-1D, user-1D, row-1D) or
(table-1D, user-ID) may be used. In various embodiments,
the journal manager may be responsible, using the contents
of a transaction request and the journal, for identifying
conflicts between the reads indicated 1n the transaction
request and the committed writes imndicated in the journal.
Register Operations

Very high rates of transaction requests may be supported
by the journal manager i some embodiments. I each
transaction request contains complex register manipulation
directives (e.g., 1 the form of programs written 1n modern
high-level programming languages), register-related pro-
cessing and storage requirements may become a substantial
overhead for the journal manager. If the register processing
sections contained loops or method/function calls of arbi-
trary recursion depths, 1t may even be possible for a trans-
action request to result 1n a crash of a journal manager, or for
the journal manager to enter an ifinite loop. To avoid these
kinds of problems and still support a reasonable set of
register-based functions for replicated state management, in
some embodiments a restricted register manipulation lan-
guage or library may be used, in which for example loops
and method calls may not be supported 1n the manner that
such constructs are supported 1n high-level programming
languages. Generally speaking, the language restrictions
may be imposed in an attempt to avoid scenarios 1n which
unbounded computations can occur. The language restric-
tions may ensure, for example, that the total amount of
register-related computation that can be performed for a
given transaction request 1s at most linearly proportional to
the number of register commands 1ssued in the transaction
request, and cannot grow exponentially or at other non-
linear rates with respect to the size of the register processing
section. FIG. 5 1llustrates examples of register-based opera-
tions which may be supported by a journal manager, accord-
ing to at least some embodiments.

A set of primitive register manipulation instructions 503
may be used in some embodiments to read, write and
perform computations on register contents. A stack-oriented
istruction set may be used in the depicted embodiment,
which does not directly support looping constructs (such as
while loops which could potentially result in 1nfinite loop-
ing) and function calls. A transaction submitter may utilize
“load” and “store” instructions to write and read (respec-
tively) from the top of the stack 1n one such implementation,
a “dup” mstruction to duplicate the contents of the current
top-of-stack entry, a “branch” instruction to jump to a
specified other 1nstruction, a “swap” instruction to exchange
the values of the top-of-stack entry with the next entry, a
“pi1ck” 1nstruction to read a particular entry at a specified
depth 1n the stack, a “roll” mstruction to move an entry at a
specified depth to the top of the stack, and so on.

In addition to the primitive mstructions 503, any of a set
of register pool management operations 505 and/or transac-
tion management operations 507 may be included in the
register processing section of transaction requests 1n some

USs 9,971,822 Bl

21

embodiments. Register pool management operations may
include, for example, a create_register operation to add a
new register, a delete_register operation to relinquish further
access to a specified register, a count_registers operation to
indicate the number of registers accessible to the transaction
submitter, a list_registers operation to obtain a list of register
names, a list_register_values command to obtain values of
some or all accessible registers, and the like. In some
embodiments, a given client instance or transaction submit-
ter may request that access to a specified register or set of
registers be granted to a diflerent client instance or transac-
tion submitter, e.g., using a grant_access_to_register opera-
tion. The transaction management operations 307 may
include operations to abort the transaction (e.g., based on a
result of a register write operation or read operation), or to
commit a transaction. Other types of register mampulation
primitives, register pool management operations and/or
transaction management operations may be supported in
different embodiments. In at least one embodiment, the
register processing section of a transaction request may be
formatted 1n a specified context-iree language correspond-
ing to a particular pushdown automaton.

An example segment of register processing section
pseudo-code 553 for which the actual code may be prepared
using supported primitives 503 and operations 305 and 507
1s shown 1n FIG. 5. In the pseudo-code, a register R1 1s
incremented (e.g., by loading contents of R1 to the top of the
stack and adding 1), and the requested transaction 1s aborted
(e.g., using a primitive branch instruction) if the result of the
increment exceeds a threshold T1. Then, contents of register
R2 are set to the sum of contents of registers R2 and R3. If,
as a result, R2 exceeds a different threshold, the requested
transaction may also be aborted. If neither the increment to
R1 nor the addition to R2 results 1n an abort, a new register
R12 is created and set to valuel. Using the relatively simple
constructs supported for the registers, the core optimistic
concurrency control logic implemented by the journal man-
ager (e.g., the read-write conflict detection logic and the
logical constraint checking logic) may be extended in a
customizable manner in the depicted embodiment. For
example, 1n one content management application, a unique
integer 1tem 1dentifier may have to be assigned to each new
content entry. As new i1tems are added to the content
management application’s database, item 1dentifiers may be
incremented. If the increment results 1n an overtlow, the
transaction to insert the corresponding item may have to be
aborted. The logic for enforcing such an abort may be
implemented using the register processing section of the
item 1nsertion transaction requests in some embodiments.

In at least one embodiment, a higher-level library to
manage various commonly-used types of data objects may
be constructed from the primitive operations, and a trans-
action submitter may utilize such a library instead of using
the primitives. For example, a library 517 for manipulating,
integer counters may be implemented using journal-based
registers. The library may include functions to create and
delete counters, set counters, increment or decrement coun-
ters, and so on, and to take various actions (e.g., abort or
commit a transaction) based on the results of the counter
manipulations. The underlying operations for implementing
the library functions may be performed using lower-level
instructions such as the stack-based instructions discussed
above. Several such libraries for diflerent types of program-
ming constructs (e.g., trees, arrays, etc.) built on top of
journal registers may be implemented and made accessible
to transaction submitters 1n various embodiments. As men-
tioned earlier, in some embodiments the register processing,

10

15

20

25

30

35

40

45

50

55

60

65

22

section may be compiled into an executable format (e.g., at
a host at which the transaction submitter runs) before 1t 1s
transmitted as part of a transaction request to the journal
manager.

In at least some embodiments, the register processing
section of a transaction request may include intrinsic func-
tions or methods. An intrinsic function may be handled by
a byte code execution engine of the journal 1mn a different
manner than standard byte code, and may be used to model
components and behaviors which cannot be handled easily
in the standard byte code. For example, in one embodiment,
journal registers may be defined as 64-bit integers, but a
transaction submitter may wish to perform string operations
(or operations on other non-integer data types) using the
journal registers. In one such scenario, intrinsic string
mamipulation functions may be permitted in the register
processing section. The execution engine of the journal may
translate the intrinsic functions into the approprnate set of
lower-level 1nstructions (e.g., 1nstructions 1 a native
instruction set of the host at which the execution engine
runs) 1 some implementations. Results of such intrinsic
functions may also be used for commit/abort decisions 1n
some embodiments, just as the results of other register
commands may be used for commait/abort decisions. Librar-
ies of itrinsic functions for supporting various types of
constructs using registers may be available to transaction
submitters 1 some embodiments. Restrictions similar to
those discussed above regarding unbounded or exponential
computations may also be imposed on the intrinsic opera-
tions 1n various embodiments.

Read-Write Contlict Detection

In at least some embodiments the commait decision for a
grven transaction may be based on results of several different
operations of the journal manager, including for example
read-write conflict detection, logical constraint checks, and
register manipulations. FIG. 6 illustrates an overview of
read-write conflict detection operations which may be per-
formed by a journal manager, according to at least some
embodiments. In the depicted example, committed transac-
tion entries (CTEs) 6352 stored at journal 610 are shown
arranged 1n order of increasing commit sequence numbers
from the top to the bottom of the figure. The latest or most
recently committed transaction 1s represented by CTE 652F,

with commit sequence number (CSN) 604F and write set
descriptor (WSD) 605F. Each of CTEs 652A, 6528, 652C,

652D and 652E comprises a corresponding CSN 1004 (¢.g.,
CSNs 604A-604E respectively) and a corresponding WSD
705 (e.g., WSDs 605A-605E).

As shown, transaction request 644 includes a conflict
check delimiter (or commutted state 1dentifier) 642, a read set
descriptor 646, a write set descriptor 648 and register
processing section 649. (The write payload and various
other elements of the requested transaction such as the
clements discussed in the context of FIG. 4 are not shown 1n
FIG. 6). The contlict detector of the journal manager may be
required to 1dentity a set of CTEs of journal 610 that are to
be checked for contlicts with the read set of the requested
transaction. The contlict check delimiter 642 indicates a
lower-bound CSN that may be used by the conflict detector
to 1dentily the starting CTE of set 609 to be examined for
read-write contlicts with the requested transaction in the
depicted embodiment, as indicated by the arrow labeled
“Match”. Set 609 may include all the CTEs starting with the
matching sequence number up to the most recent commuitted
transaction (CTE 632F) in some embodiments. If any of the
writes indicated by the CTE set 609 overlap with any of the
reads indicated 1n the transaction request 644, such a read-

USs 9,971,822 Bl

23

write conflict may lead to a rejection of the requested
transaction. A variety of algorithms may be used to check
whether such an overlap exists 1n different embodiments. In
one embodiment, for example, one or more hashing-based
computations or probes may be used to determine whether
a read represented in the read set descriptor 646 contlicts
with a write imndicated 1n the CTE set 609, thereby avoiding,
a sequential scan of the CTE set. In some implementations,
a sequential scan of CTE set 609 may be used, e.g., 1f the
number of records 1n the CTE set 1s below a threshold. IT
none of the writes indicated in CTE set 609 overlap with any
of the reads of the requested transaction, the transaction may
be considered free of read-write conflicts, since none of the
data that were read during the preparation of the transaction
request can have changed since they were read. In at least
one embodiment, a transaction request may also indicate an
upper bound on the sequence numbers of journal entries to
be checked for conflicts—e.g., the conflict check delimiter
may indicate both a starting point and an ending point within

the set of CTEs 652.

In embodiments 1n which hash functions or other similar
transformation functions are used to represent queries cor-
responding to reads (in the read set descriptors) and queries
which would be aflected by writes (in the WSDs), 1t may
sometimes be the case that a detected conflict 1s a false
positive, e.g., due to hash collisions. For example, 1f a the
read set descriptor includes the integer “10” as the repre-
sentation of a read query RQ), and one of the WSDs of the
CTE set 609 happens to include the integer “10” as the
representation of an unrelated query WAQ (write-aflected
query) whose result would be aflected by a commutted write,
the transaction request 644 may be rejected despite the fact
that the two queries RQ and WAQ did not truly represent a
read-write contlict. By choosing transformation functions
with appropriate statistical properties, the probability of
such collisions and false positives may be reduced in various
embodiments.

Logical Constraint Violation Detection

FI1G. 7 1llustrates an overview of commit processing for a
transaction request which may include logical constraints,
according to at least some embodiments. A number of
different kinds of logical constraint-related operations may
be evaluated to make commit decisions in some embodi-
ments, mncluding for example checking for forbidden trans-
actions and/or for required transactions. In one embodiment,
storage service clients may wish to ensure that duplicate
entries are not written to one or more data stores; that 1s,
duplicate transactions may be forbidden. The semantics of
some applications may require that 1f a given transaction T'1
1s committed, a different transaction 12 may not be com-
mitted (and vice versa—=e.g., 1f T2 has been committed, T1
cannot be committed); such mutual exclusion may also be
implemented using forbidden transaction constraints. Simi-
larly, 1n some embodiments, an application’s semantics may
require that for a given transaction T1 to be committed, a
different transaction 12 must have been committed earlier.
In such scenarios, logical constraints may be expressed 1n
the form of prerequisite or required transactions.

As shown, the transaction request 744 comprises a read-
write contlict check delimiter 712, a read-set descriptor 714,
a write-set descriptor 716, a register processing section 749
and two logical constraint delimiters: a forbidden transaction
descriptor 718 and a required transaction descriptor 719.
Forbidden transaction descriptors such as 718 may also be
referred to as transaction exclusion descriptors. The write
payload of the transaction request 1s not shown 1n FIG. 7. As
shown, forbidden transaction descriptor 718 may include a

5

10

15

20

25

30

35

40

45

50

55

60

65

24

corresponding forbidden transaction check delimiter 720,
and one or more forbidden transaction signature(s) 722 1n
the depicted embodiment. Required transaction descriptor
719 may include a corresponding required transaction check
delimiter 725, and one or more required transaction signa-
ture(s) 726 in the depicted embodiment.

In order to determine whether to accept the requested
transaction, journal manager may have to perform at least
three types of checks in the depicted embodiment (e.g.,
independently of the register processing section’s opera-
tions, which may also aflect commit/abort decisions as
discussed above): one for detecting read-write contlicts, one
for verifying that forbidden transactions have not been
committed, and one for verilying that required transactions
have been committed. The committed transaction entries
752 1n the journal 710 may each include respective commiut
sequence numbers (CSNs 704), write set descriptors
(WSDs) 705, and transaction signatures (I'Ss) 706 in the
depicted embodiment. To determine whether a read-write
conilict has occurred, the journal may identify CTE set 709,
starting at a sequence number corresponding to read-write
conilict check delimiter 712 and ending with the most-recent
CTE 752F, whose write sets are to be evaluated for overlaps
with the requested transaction’s read set descriptor 714. If a
read-write contlict 1s detected (1.e., 11 such an overlap exists),
the requested transaction may be rejected.

To determine whether any forbidden transaction with
respect to the requested transaction has been committed,
another CTE set 759 may be 1dentified in the depicted
embodiment starting at a sequence number corresponding to
forbidden transaction check delimiter 720, and ending at the
most recent CTE 752F. For each of the CTEs 1n set 759, the
journal manager may check whether any of the transaction
signatures stored 1 the CTE match the forbidden
signature(s) 722 of the requested transaction. The requested
transaction may be rejected 1f a forbidden transaction 1s
found among the CTEs, even il no read-write conflicts were
detected. Similarly, to verity that required transactions with
respect to the requested transaction have been committed, a
third CTE set 761 may be 1dentified 1n the depicted embodi-
ment starting at a sequence number corresponding to
required transaction check delimiter 725, and ending at the
most recent CTE 752F. For each of the CTFEs 1n set 761, the
journal manager may check whether any of the transaction
signatures stored 1n the CTE match the required signature(s)
726 of the requested transaction. The requested transaction
may be rejected 11 at least one of the required transactions 1s
not among the CTE set 761, even 11 no read-write contlicts
were detected and no forbidden transactions were detected.

In at least some embodiments, a transaction signature 706
may be generated from one or more of the other elements of
a transaction request, e€.g., by applying a hash function to the
other elements. In some embodiments 1 which write set
descriptors are also prepared using hash functions, a difler-
ent hash function may be used for write set descriptors than
1s used for transaction signatures. For example, for some
applications, clients may be much more concerned about
detecting duplicates accurately than they are about occa-
sionally having to resubmit transactions as a result of a
false-positive read-write contlict detection. For such appli-
cations, the acceptable rate of errors in read-write contlict
detection may therefore be higher than the acceptable rate of
duplicate-detection errors. Accordingly, in some implemen-
tations, cryptographic-strength hash functions whose output
values take 128 or 256 bits may be used for forbidden
signatures, while simpler hash functions whose output 1s
stored using 16 or 32 bits may be used for the write

USs 9,971,822 Bl

25

signatures included in the write set descriptors. In some
scenar10s, forbidden transaction checking or de-duplication
may be required for a small subset of the data stores being
used, while read-write contlicts may have to be checked for
a much larger set of transactions. In such cases, storage and 5
networking resource usage may be reduced by using smaller
write set signatures than transaction signatures in some
embodiments. In other embodiments, write set descriptors
may be used for both read-write contlict detection and
torbidden/required transaction constraints. Similarly, 1 10
some embodiments, the same sequence number value may
be used as a read-write conflict check delimiter, a forbidden
transaction check delimiter, and/or a required transaction
check delimiter (e.g., separate delimiters may not be
required with respect to read-write conflicts, forbidden 15
transactions or required ftransactions). In at least one
embodiment, checking for duplicate may be performed by
default, e.g., using the write-set descriptors, without the
need for inclusion of a separate forbidden transaction
descriptor in the transaction request. 20

For some applications, clients may be interested in
enforcing a commit order among specified sets of transac-
tions—e.g., a client that submits three different transaction
requests for transactions T1, T2 and T3 respectively may
wish to have T1 committed before T2, and T3 to be 25
committed only after T1 and T2 have both been commaitted.
Such commit sequencing constraints may be enforced using
required transaction descriptors in some embodiments. In
some embodiments, more complex sequencing constraints
may be enforced. For example, instead of simply requesting 30
the journal manager to verily that two transactions T1 and
12 must have been committed (1in any order) prior to the
requested transaction’s commit, a client may be able to
request that T1 must have been committed prior to T2.
Similarly, in some embodiments a client may be able to 35
request negative ordering requirements: e.g., that some set
of transactions {T1, T2, Tk} should have been committed
betore the requested transaction 1n some specified order (or
in any order), and also that some other set of transactions
{Tp, Ts} should not have been committed. Such constraints 40
may be implemented using more sophisticated versions of
the required and forbidden transaction descriptors of FIG. 7
in some embodiments.

If no read-write conflict 1s detected, no forbidden trans-
actions are found in the journal, and all required transactions 45
have been committed, the register processing section may be
executed 1n the depicted embodiment. Some register opera-
tions may potentially result i abandoning/aborting the
transaction as discussed earlier. I the operations in the
register processing section are completed without requiring 50
abandonment of the requested transaction, the requested
transaction may be accepted for commit by the journal
manager and a new committed transaction entry for 1t may
be appended to the journal. It 1s noted that in various
embodiments, logical constraints need not be specified in a 55
transaction request, or only one kind of logical constraint (a
required transaction constraint or a forbidden transaction
constraint) may be included in a given transaction request.
Register Values Matenalized at Member Data Stores

In some embodiments, register values may be material- 60
1zed not only at one or more journal nodes (e.g., the acceptor
node shown 1n FIG. 2), but also at the member data stores
of the state management system, e.g., as part of the propa-
gation of committed writes to the data stores. FIG. 8
illustrates an example of asynchronous processing of journal 65
entries to materialize writes at various data stores, according
to at least some embodiments. At a point of time corre-

26

sponding to FIG. 8, the journal 810 comprises a plurality of
entries 827 inserted 1n order of respective commit sequence
numbers (CSNs) 828, with the most recent entry 840 being
entry 827E with CSN 828E. The most recent entry may
sometimes be referred to as the “head” of the journal.

At least some of the journal entries may include values of
(or changes to) one or more journal registers as of the time
that the corresponding transaction request was accepted for
commit (including any register writes that were part of the
committed transaction)—e.g., entry 828B includes register
section 877. In some embodiments each journal entry may
indicate values of one or more registers. In one embodiment,
a given journal entry may comprise only the values of those
registers which were modified 1n the corresponding trans-
action, while 1n other embodiments values of all the registers
which were accessible to the transaction submitter may be
included. In some embodiments, instead of the materialized
values of the registers, a representation ol the changes
applied to the registers may be stored 1n journal entries 828.

In the depicted scenario, the journal-based storage system
has at least three data stores 830A-830C. Two of the three
member data stores materialize the values of one or more
registers 1 local data objects. Data store 830A stores a
locally-materialized version of a counter 836A, into which
the values of a register R1 are stored as a result of a
propagation of one or more writes from the journal. At data
store 8308, register R1 values are used to update a data
object 837, while register R2 values are used for a local
version of a counter 836B. Register values are not materi-
alized at data store 830C.

Each of the data stores may maintain a cursor onto the
sequence ol commit entries of the journal, and process the
entries 1n the order in which the entries were inserted 1nto the
journal in the depicted embodiment. For example, cursor
832 A 1s established for data store 830A, cursor 832B 1s
maintained for data store 830B, and cursor 832C 1s main-
tamned for data store 830C in the depicted scenario. As
indicated by arrow 820, each of the cursors processes the
entries of journal 810 1n the same order, e.g., 1n increasing
order of CSNs 828 of the entries. At the point of time
illustrated 1n FIG. 8, entries with CSNs up to 828C have
been processed at data store 830A, entries corresponding to
CSNs up to 828D have been processed at data store 830B,
and entries corresponding to CSNs up to 828A have been
processed at data store 830C. Each data store manager may
keep track of the latest applied commit sequence number at
the corresponding data store, which represents the state of
the database as materialized at the data store. Each of the
data store cursors or write appliers may process journal
entries independently of the others in the depicted embodi-
ment, and may not necessarily be aware of the existence of
other journal consumers. When a register value (or register
state change) 1s indicated 1n a given committed transaction
entry, the corresponding data objects (if any) at the data store
may be modified accordingly. In some embodiments, as
mentioned above, some or all of the committed transaction
entries of the journal may contain the values of the journal
registers as of the time of the corresponding commit (or the
changes 1f any that were applied to the journal registers 1n
the corresponding transaction requests), and these journal
entries may be used to update the register-dependent data
objects (such as counters 836A and 836B and object 837) at
the data stores.

Methods for State Management Using Journal-Based Reg-
1sters

FIG. 9 1s a flow diagram 1llustrating aspects of operations
that may be performed at a journal-based replicated state

USs 9,971,822 Bl

27

management system which supports register processing,
according to at least some embodiments. As shown 1n
clement 901, a set of one or more journal registers may be
allocated to a group of transaction submitters associated
with an application. The application’s replicated state
machine may be maintained using an optimistic concurrency
control protocol by a journal manager: for example, respec-
tive committed transaction entries representing state
changes of the application may be stored sequentially 1n a
journal. Part of the application’s state may be stored using,
the journal registers in various embodiments. In some
embodiments, a given journal manager may establish a pool
of registers from which some number of individual registers
may be allocated to transaction submitters, e.g., on demand
or at the time that the corresponding application 1s initial-
1zed.

A transaction request may be recerved at the journal
manager (element 904). The transaction request may include
a register processing section indicating various operations
directed to the journal registers allocated to the transaction
submitter. The register operations may be expressed 1n a
restricted or limited register language which does not sup-
port loops or function/method calls 1n some embodiments.
Such restrictions may be imposed, for example, to try to
ensure that the journal manager does not get overwhelmed
by (or hang/crash as a result of) register processing opera-
tions themselves. In one embodiment a context free lan-
guage corresponding to a selected pushdown automaton
model may be used for register operations. In addition to the
register processing section, the transaction request may
include various other elements, including for example a read
set descriptor indicating objects read during transaction
preparation, a write set descriptor indicating objects to
which writes are to be applied if the transaction 1s commuit-
ted, the write payloads corresponding to the writes, and/or
one or more logical constraint descriptors. A logical con-
straint descriptor may, for example, indicate a signature of a
required transaction (e.g., a value obtained by applying a
hash function to one or more elements of the corresponding,
transaction request) whose commit 1s a prerequisite for the
commit of the currently-requested transaction. A signature
ol a forbidden transaction (a transaction which, 11 1t has been
committed prior to the commit analysis of the currently
proposed transaction, would result 1n the abandonment or
abort of the currently proposed transaction) may be included
in some logical constraint descriptors.

Depending on the kinds of commit-decision-related ele-
ments included in the transaction request, the journal man-
ager may perform read-write contlict detection (e.g., 1f the
transaction request comprises a non-null read set) and or
check for logical constraint violations (element 907) 1n
addition to performing the operations proposed 1n the reg-
ister processing section. For example, with respect to read-
write conflicts, a subset of previously added committed
transaction entries may be identified from the journal, and
the read set of the proposed transaction may be checked for
contlicts with the write sets of the previously-committed
transaction entries in one embodiment. With respect to
logical constraints, subsets of the committed transaction
entries (which may include respective transaction signa-
tures) may be examined to determine whether a forbidden
transaction was committed earlier, and/or to verily that a
required transaction was in fact committed. The register
processing section itself may include some operations whose
results may be used to make an abort decision or a commit
decision—e.g., a given register operation may increment a
counter value, and the transaction may have to be aborted 1f

10

15

20

25

30

35

40

45

50

55

60

65

28

the incremented counter value exceeds a threshold, causes
an integer overtlow, etc. Results of the read-write contlict
detection operation, logical constraint checking operations,
and register processing operations may all have to be taken
into consideration 1n some embodiments before a decision to
accept the transaction for commit can be made—e.g., any of
these operations may result 1n an abort. In some embodi-
ments the operations may be performed in a particular
sequence—e.g., the read-write conflict detection may be
performed first, followed (1 no read-write conflict 1s
detected) by the logical constraint checking, followed (if no
logical constraints are violated) by the register processing. In
other embodiments, a different ordering may be used, or at
least some of the operations may be performed 1n parallel
with others. In some embodiments, read-write contlict detec-
tion may not be performed for at least some transactions,
and/or logical constraint checking may not be performed—
¢.g., a transaction’s commit decision may be based on
register operations alone.

If the results of the contlict detection, logical constraint
checking, and/or register processing operations indicate that
the transaction 1s acceptable for commit (element 910),
materialized versions of the registers may be updated if
needed (element 913), e.g., at one or more nodes of a
directed acyclic graph of nodes of the journal. Such updates
may not be required if the register processing section did not
include any writes. A new committed transaction entry
representing the approved-for-commit transaction (element
916) may be added to the journal, and may also be replicated
along the replication pathway of the directed acyclic graph
in some embodiments. In some embodiments, a response
indicating the commuit (and 1n some cases imncluding the most
recently-updated values of one or more journal registers
including the registers on which operations were performed
in the register processing section) may be sent to the
transaction submitter. The new committed transaction entry
may include various elements of the transaction request in
different embodiments, such as for example the write set
descriptor, the read set descriptor, a transaction signature
which can be used for subsequent logical constraint check-
ing, and/or the register processing section. In one embodi-
ment, at least some committed transaction entries may
include values of one or more registers (e.g., as opposed to
the register processing sections themselves).

In some embodiments, respective write appliers associ-
ated with one or more member data stores of the state
management system may propagate committed writes (e.g.,
including register writes) to the member data stores from the
journal (element 919). Transaction submitters may retrieve
register values using programmatic interfaces provided by
the journal manager 1n some embodiments (element 922).

If a read-write conflict or a logical constraint violation
was detected, and/or 1f the register processing section’s
operations direct the journal manager to abort the transaction
(as detected 1n element 910), the transaction request may be
rejected (element 9235). In some embodiments, a rejection
message may be sent to the transaction submitter. The
rejection message may include the current values of one or
more registers mm some embodiments (not including any
writes proposed as part of the register processing section,
since those writes would only be applied if the transaction
had been commutted).

It 1s noted that in various embodiments, some of the
operations shown 1n the flow diagram of FIG. 9 may be
implemented in a different order than that shown in the
figure, or may be performed 1n parallel rather than sequen-

USs 9,971,822 Bl

29

tially. Additionally, some of the operations shown in the flow
diagram may not be required 1n one or more 1implementa-
tions.
Use Cases

The techniques described above, of enhancing the commit
processing capabilities of a state management system using
journal-based registers, may be useful 1n a variety of envi-
ronments. In many large enterprises at which a journal-based
state management technique may be employed, commit
decision-making logic that takes read-write contlicts,
required transactions and/or prohibited transactions into
account may not suflice for some sophisticated applications.
Providing registers whose contents can be manipulated 1n
transaction requests, and used in conjunction with the other
commit processing decision factors, may allow application
designers to implement more tlexible commait decision logic.
In addition, by materializing registers at the journal manager
itself, so that for example the updated contents of a register-
based counter become available to client-side components as
soon as the corresponding transaction 1s committed, delays
and multiple-round trip messages may be avoided with
respect to viewing updated application state information.
The use of restricted languages (e.g., based on pushdown
automata) for register manipulation may help avoid over-
loading the journal manager with register-specific opera-
tions.
[llustrative Computer System

In at least some embodiments, a server that implements
one or more of the techniques described above for journal-
based state management (including for example the opera-
tions of various kinds of journal manager nodes, data store
managers, client-side components such as transaction sub-
mitters, write appliers, and the like) may include a general-
purpose computer system that includes or 1s configured to
access one or more computer-accessible media. FIG. 10
illustrates such a general-purpose computing device 9000. In
the illustrated embodiment, computing device 9000 includes
one or more processors 9010 coupled to a system memory
9020 (which may comprise both non-volatile and volatile
memory modules) via an input/output (I/O) mterface 9030.
Computing device 9000 further includes a network interface
9040 coupled to 1I/O interface 9030.

In various embodiments, computing device 9000 may be
a uniprocessor system including one processor 9010, or a
multiprocessor system including several processors 9010
(e.g., two, four, eight, or another suitable number). Proces-
sors 9010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 9010 may be general-purpose or embedded pro-
cessors 1implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 9010 may commonly, but not
necessarily, implement the same ISA. In some 1mplemen-
tations, graphics processing umts (GPUs) may be used
instead of, or 1n addition to, conventional processors.

System memory 9020 may be configured to store instruc-
tions and data accessible by processor(s) 9010. In at least
some embodiments, the system memory 9020 may comprise
both volatile and non-volatile portions; 1n other embodi-
ments, only volatile memory may be used. In various
embodiments, the volatile portion of system memory 9020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the
non-volatile portion of system memory (which may com-
prise one or more NVDIMMs, for example), in some

10

15

20

25

30

35

40

45

50

55

60

65

30

embodiments flash-based memory devices, including
NAND-flash devices, may be used. In at least some embodi-
ments, the non-volatile portion of the system memory may
include a power source, such as a supercapacitor or other
power storage device (e.g., a battery). In various embodi-

ments, memristor based resistive random access memory
(ReRAM), three-dimensional NAND technologies, Ferro-

clectric RAM, magnetoresistive RAM (MRAM), or any of
various types of phase change memory (PCM) may be used
at least for the non-volatile portion of system memory. In the
illustrated embodiment, program instructions and data
implementing one or more desired functions, such as those
methods, techniques, and data described above, are shown
stored within system memory 9020 as code 90235 and data
9026.

In one embodiment, I/O mterface 9030 may be configured
to coordinate I/O traflic between processor 9010, system
memory 9020, network interface 9040 or other peripheral
interfaces such as various types of persistent and/or volatile
storage devices. In some embodiments, I/O interface 9030
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
(e.g., system memory 9020) into a format suitable for use by
another component (e.g., processor 9010). In some embodi-
ments, I/0 mterface 9030 may include support for devices
attached through various types of peripheral buses, such as
a Low Pin Count (LPC) bus, a variant of the Peripheral
Component Interconnect (PCI) bus standard or the Umiversal
Serial Bus (USB) standard, for example. In some embodi-
ments, the function of I/O interface 9030 may be split mto
two or more separate components, such as a north bridge and
a south bridge, for example. Also, 1n some embodiments
some or all of the functionality of I/O interface 9030, such
as an interface to system memory 9020, may be incorporated
directly into processor 9010.

Network interface 9040 may be configured to allow data
to be exchanged between computing device 9000 and other
devices 9060 attached to a network or networks 9050, such
as other computer systems or devices as 1illustrated 1n FIG.
1 through FIG. 9, for example. In various embodiments,
network interface 9040 may support communication via any
suitable wired or wireless general data networks, such as
types of Ethernet network, for example. Additionally, net-
work interface 9040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber commumnications networks, via
storage area networks such as Fibre Channel SANs, or via
any other suitable type of network and/or protocol.

In some embodiments, system memory 9020 may be one
embodiment of a computer-accessible medium configured to
store program 1nstructions and data as described above for
FIG. 1 through FIG. 9 for implementing embodiments of the
corresponding methods and apparatus. However, 1in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-acces-
sible medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 9000 via I/O
interface 9030. A non-transitory computer-accessible stor-
age medium may also include any volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc., that may be included 1n
some embodiments of computing device 9000 as system
memory 9020 or another type of memory. Further, a com-
puter-accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital signals,

USs 9,971,822 Bl

31

conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 9040. Portions or all of multiple comput-
ing devices such as that illustrated in FIG. 10 may be used
to implement the described functionality 1n various embodi-
ments; for example, software components running on a
variety ol different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
age devices, network devices, or special-purpose computer
systems, 1n addition to or instead of being implemented
using general-purpose computer systems. The term “com-
puting device”, as used herein, refers to at least all these
types of devices, and 1s not limited to these types of devices.

CONCLUSION

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may 1nclude storage media or memory media
such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, volatile or non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

The various methods as illustrated i1n the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented 1n software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It 1s intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:
1. A journal-based state management system comprising
a plurality of nodes, wherein individual ones of the plurality
of nodes are implemented at one or more computing
devices:
wherein the plurality of nodes are configured to:
allocate a plurality of journal registers to a group of one
or more transaction submitters, wherein a {irst jour-
nal register of the plurality of journal registers com-
prises a data object represented 1n a replicated state
machine of an application associated with the group,
and wherein the first journal register 1s materialized
at one or more nodes of the plurality of nodes;
receive a transaction request from a particular transac-
tion submitter of the group, wherein the transaction
request indicates (a) a read set of a proposed trans-
action, (b) a write set of the proposed transaction and
() a register processing section, wherein the register
processing section includes an update operation
directed to the first journal register;
determine, based at least in part on one or more of: (a)
a result of a contlict detection operation with respect
to the read set and one or more committed transac-
tion entries stored previously at one or more nodes of
the plurality of nodes, or (b) a result of the update
operation, that the transaction request 1s accepted for
commit;

10

15

20

25

30

35

40

45

50

55

60

65

32

store, at one or more nodes of the plurality of nodes, a
value assigned to the first journal register by the
update operation;

store, at one or more nodes of the plurality of nodes, a
new committed transaction entry corresponding to
the first transaction request, wherein the new com-
mitted transaction entry includes an indication of the
write set; and

provide, to the particular transaction submitter, the
value assigned to the first journal register by the
update operation.

2. The journal-based state management system as recited
in claim 1, wherein the register processing section 1s for-
matted 1n a register manipulation language, wherein the
register manipulation language does not support one or more
of: (a) loop instructions or (b) function calls.

3. The journal-based state management system as recited
in claim 1, wherein the plurality of nodes are configured to:

prior to providing the value assigned to the first journal

register to the transaction submitter, verity that the new

committed transaction entry has been replicated at a

selected plurality of replication nodes of a directed

acyclic graph of replication nodes.

4. The journal-based state management system as recited
in claim 1, wherein the plurality of nodes are configured to:

recetve a second transaction request indicating (a) a

second read set of a second proposed transaction and

(b) a second register processing section;

determine, using the second read set and a second set of

one or more committed transaction entries stored pre-

viously, that the second proposed transaction does not
have a read-write conflict with respect to previously-
committed transactions; and

abort the second proposed transaction based at least in

part on a result of a particular operation indicated in the

second register processing section.

5. The journal-based state management system as recited
in claim 1, wherein a particular node of the plurality of nodes
comprises an execution engine, wherein the register pro-
cessing section comprises an executable version of one or
more register commands, wherein the executable version 1s
obtained at the particular transaction submitter using a
compiler, and wherein the particular node 1s configured to:

execute at least a portion of the register processing section

using the execution engine to obtain the result of the
update command.

6. A method, comprising:

performing, by one or more nodes of a journal-based state

management system, wherein individual ones of the

one or more nodes are implemented at one or more
computing devices:

receiving a transaction request from a particular trans-
action submuitter of the journal-based state manage-
ment system, wherein the transaction request indi-
cates a register processing section, wherein the
register processing section includes an operation
directed to a first journal register allocated to at least
the particular transaction submitter, wherein the first
journal register comprises a data object represented
in a replicated state machine of an application asso-
ciated with the particular transaction submutter;

determining, based at least in part on one or more of:
(a) a result of a contlict detection operation per-
formed with respect to the transaction request, or (b)
a result of the operation directed to the first journal
register, that the transaction request 1s accepted for
commit;

USs 9,971,822 Bl

33

storing, at a particular node of the one or more nodes,
a value of the first journal register obtained after the
operation directed to the first journal register has
been completed; and

providing, to the particular transaction submitter, the
value of the first journal register.

7. The method as recited 1n claim 6, wherein the register
processing section 1s formatted in a register manipulation
language defined by the journal-based state management
system, wherein the register manipulation language does not
support one or more of: (a) loop instructions or (b) function
calls.

8. The method as recited 1n claim 6, wherein the register
processing section 1s formatted in a context-free language
corresponding to a particular pushdown automaton.

9. The method as recited 1n claim 6, wherein the operation
directed to the first journal register 1s represented using byte
code 1n the register processing section, wherein the register
processing section includes an intrinsic function, further
comprising;

obtaining, at a particular computing device of the one or

more computing devices, a result of the intrinsic func-
tion using one or more instructions of a native nstruc-
tion set, wherein said determiming that the transaction
request 1s accepted for commit 1s based at least in part
on the result of the intrinsic function.

10. The method as recited 1in claim 6, wherein the trans-
action request includes a read set, and wherein the conflict
detection operation comprises determining whether a write
set of a committed transaction for which a committed
transaction entry has been stored at the journal-based state
management system conflicts with the read set.

11. The method as recited 1n claim 6, wherein the trans-
action request includes a particular required transaction
signature, and wherein said determining that the transaction
request 1s accepted for commit 1s based at least 1n part on
verilying that a committed transaction entry with the par-
ticular required transaction signature has been stored at the
journal-based state management system.

12. The method as recited in claim 6, wherein the trans-
action request includes a particular forbidden transaction
signature, and wherein said determining that the that the
transaction request 1s accepted for commit 1s based at least
in part on verifying that a commaitted transaction entry with
the particular forbidden transaction signature has not been
stored at the journal-based state management system.

13. The method as recited 1n claim 6, further comprising
performing, by the one or more nodes:

assigning, to a group of one or more transaction submit-

ters including the particular transaction submitter, a
particular logical partition of a replicated journal to
store committed transaction entries of the group,
wherein the particular logical partition has an associ-
ated register namespace which includes an i1dentifier of
the first journal register.

14. The method as recited in claim 6, wherein said
providing the value of the first journal register comprises
including the value 1n a response to the transaction request.

15. The method as recited in claim 6, wherein said
providing the value of the first journal register comprises

10

15

20

25

30

35

40

45

50

55

34

responding to a read request submitted to the one or more
nodes via a programmatic iterface by the particular trans-
action submitter.

16. The method as recited 1n claim 6, further comprising
performing, by the one or more nodes:

allocating another journal register to the particular trans-
action submitter 1n response to a register allocation
request.

17. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors:

recerve a transaction request from a particular transaction
submitter of a state management system, wherein the
transaction request indicates a register processing sec-
tion, wherein the register processing section includes
an operation directed to a first journal register allocated
to at least the particular transaction submitter, wherein
the first journal register comprises a data object repre-
sented 1n a replicated state machine of an application
associated with the particular transaction submitter;

determine, based at least 1n part on one or more of: (a) a
result of a contlict detection operation performed with
respect to the transaction request, or (b) a result of the
operation directed to a first journal register, that the
transaction request 1s accepted for commiut;

store, at a persistent storage device, a value of the first
journal register; and

provide, to the particular transaction submitter, the value
of the first journal register.

18. The non-transitory computer-accessible storage
medium as recited 1n claim 17, wherein the register pro-
cessing section 1s formatted 1 a register manipulation
language which does not support one or more of: (a) loop
instructions or (b) function calls.

19. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the register pro-
cessing section 1s formatted 1n accordance with a library of
integer counter functions.

20. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the instructions
when executed at the one or more processors:

recerve a second transaction request from a second trans-
action submitter of the state management system,
wherein the second transaction request indicates a
second register processing section, wherein the second
register processing section includes a second operation
directed to the first journal register; and

perform the second operation on the first journal register.

21. The non-transitory computer-accessible storage
medium as recited 1in claim 17, wherein the transaction
request 1ncludes a read set, and wherein the contlict detec-
tion operation comprises determining whether a write set of
a previously-committed transaction conflicts with the read
set.

	Front Page
	Drawings
	Specification
	Claims

