12 United States Patent

Dhuse et al.

US009971649B2

(10) Patent No.: US 9,971,649 B2

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

DEPLOYING AND GROWING A SET OF
DISPERSED STORAGE UNITS AT AND BY
NON-INFORMATION DISPERSAL
ALGORITHM (IDA) WIDTH MULTIPLES

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Greg R. Dhuse, Chicago, IL (US);
Manish Motwani, Chicago, IL (US);
Jason K. Resch, Chicago, IL (US); Ilya
Volvovski, Chicago, IL (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/283,196
Filed: Sep. 30, 2016

Prior Publication Data

US 2017/0123698 Al May 4, 2017

Related U.S. Application Data

Provisional application No. 62/248,752, filed on Oct.
30, 2015.

45) Date of Patent: *May 15, 2018
(52) U.S. CL
CPC Go6l’ 11/1092 (2013.01); GO6F 3/064
(2013.01); GO6F 3/0604 (2013.01);
(Continued)
(58) Field of Classification Search
CPC GO6F 3/067;, GOoF 17/30371; GO6F
2003/06935; GO6F 3/0608; GO6F 3/0614;
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.

(Continued)

OTHER PUBLICATTONS

Shamir; How to Share a Secret; Communications of the ACM: vol.
22, No. 11; Nov. 1979, pp. 612-06135.

(Continued)

Primary Examiner — Mardochee Chery

(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison; Shayne X. Short

(57) ABSTRACT

Methods and apparatus for use 1n a dispersed storage net-
work (DSN) to deploy and grow a set of dispersed storage
(DS) units for use in the DSN memory. In an example of
operation, a DS client module assigns one or more additional
DS units to a storage set to form a new storage set, where
data 1s encoded in the DSN utilizing a dispersed storage
error encoding function in accordance with an information
dispersal algorithm (IDA) width. For each encoded data

slice stored 1n the existing storage set, the DS client module

utilizes a distributed agreement protocol function to select a
Int. CL £ P
GO6F 12/00 (2006.01) storage unit of the new storage set for storage of the encoded
GOGF 11/10 (2006.01) data slice.
(Continued) 20 Claims, 11 Drawing Sheets
computing device 12 computing device 16
computing core 26 computing core 26 —— {J&ta object 40
e DS cient _
module J4 module 34 computing
T core 26
' i ! 1
interface 32 | inteface 32 | | interface 30 |e——¥ »| interface 30
a | |
I camputing device 14
b[interface 33
!
computing
core 26
3 manraging
interface 33 e e e e e e e e e o e e e Ut L
: : L * E
torage unit ,
computing | ° rag;_&s BU1 eee storage unit 36-n : distributed, or dispersed, storage
care 26 i ; network (DSN) 10
: : : ! ;
mlegntzngaz&ﬁsmg E- ““““““““ 0 Ebimjwfri% ________ :

US 9,971,649 B2

Page 2
(51) Int. CL 2003/0065617 Al 4/2003 Watkins et al.
GO6F 3/06 2006.01 2003/0084020 Al 5/2003 Shu
HO3IM 13/15 (2006 0) 2004/0024963 Al 2/2004 Talagala et al.
(2006.01) 2004/0122917 Al 6/2004 Menon et al.
HO4L 12/26 (2006.01) 2004/0215998 Al 10/2004 Buxton et al.
P (2006.01) 20050100022 Al 32005 Ramprashad
: 1 prasha
Gool 11720 (2006'():“) 2005/0114594 Al 5/2005 Corbett et al.
HO3M 13/37 (2006.01) 2005/0125593 Al 6/2005 Karpoff et al.
(52) U.S. CL 2005/0131993 Al 6/2005 Fatula, Jr.
CPC oo GOGF 3/067 (2013.01); GO6F 3/0611 ovonaarD a0y Redlich et al
(2013.01); GO6F 3/0619 (2013.01); GO6F 7005/0229069 Al 10/2005 Hassner
3/0659 (2013.01); GO6F 3/0665 (2013.01); 2006/0047907 Al 3/2006 Shiga et al.
GOoF 3/0689 (2013.01); GOoF 11/2094 2006/0136448 A 6/2006 Ci_alini et al.
(2013.01); HO3M 13/1515 (2013.01); HO3M gggggé ggggg i lggggg gltamll;r%
13/3761 (2013.01); HO4L 43/9864 (2013.01); 20070079081 AL 42007 Gladwin ef al
HO4L 43/16 (2013.01); HO4L 67/1008 2007/0079082 Al 4/2007 Gladwin et al.
(2013.01); HO4L 67/1097 (2013.01); GO6F 2007/0079083 Al 4/2007 Gladwin et al.
2201/805 (2013.01) 2007/0088970 Al 4/2007 Buxton et al.
(58) Field of Classification Search T es ‘a1 2007 Cladwin et al
CPC ... GO6F 3/0644;, GO6F 3/061; GO6F 17/30194 2007/0234110 A 10/2007 Soran et‘al*
U S PO e e e 711/171 2007/0283167 A1 12/2007 Venters, 111 et al.
See application file for complete search history. 2009/0094251 A1 42009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
: 2010/0023524 Al 1/2010 Gladwin et al.
(56) References Cited 2010/0250751 Al* 9/2010 Leggette GOGF 17/30194
U.S. PATENT DOCUMENTS 709/226
5,485,474 A 1/1996 Rabin OTHER PUBLICATIONS
5,774,643 A 6/1998 Lubbers et al.
g ’gggggg i g?iggg %?ﬁatoé et al. Rabin; Efficient Dispersal of Information for Security, Load Bal-
558903156 A 3/1990 Rnlak?:ta ot al ancing, and Fault Tolerance; Journal of the Association for Com-
5,987,622 A 11/1999 1.0 Verso et al. puter Machinery; vol. 36, No. 2; Apr. 1989, pp. 335-348.
5991414 A 11/1999 Garay et al. Chung; An Automatic Data Segmentation Method for 3D Measured
6,012,159 A 1/2000 Fischer et al. Data Points; National Taiwan University; pp. 1-8; 1998.
g’ogg’ggi i 18?3888 gerlz}fhte;lal* Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
65T75j571 R 1/200° le.a,lzicdofk et‘ al Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
6,192,472 Bl 2/2001 Garay et al. pp. 1-74. |
6,256,688 Bl 7/2001 Suetaka et al. Wildi; Java 1SCSi1 Initiator; Master Thesis; Department of Computer
6,272,658 Bl 8/2001 Steele et al. and Information Science, University of Konstanz; Feb. 2007; 60
6,301,604 B1 10/2001 Nojima pes.
g%ggaggg g 3? 3883 gfﬁ’aﬂdftezlet al. Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
1 ilkov et al. . .
S _ and Matching Rules; IETF Network Working Group; RFC 4517,
6,374,336 Bl 4/2002 Peters et al. |
6415373 Bl 7/2002 Peters et al. Jun. 2006, pp. 1-50.
6.418.539 Bl 7/2007 Walker Zellenga; Lightwelght Directory Access Protocol (LDAP): Interna-
6,449,688 Bl 0/2002 Peters et al. tionalized String Preparation; IETF Network Working Group; RFC
6,567,948 B2 5/2003 Steele et al. 4518; Jun. 2006; pp. 1-14.
6,571,282 Bl 5/2003 Bowman-Amuah Smith; Lightweight Directory Access Protocol (LDAP): Uniform
6,609,223 Bl 8/2003 Woligang Resource Locator; IETF Network Working Group; RFC 4516; Jun.
6,718,361 Bl 4/2004 Basani et al. 2006; pp. 1-15.
6,760,808 B2 7/2004 Peters et al. Smith; Lightweight Directory Access Protocol (LDAP): String
6,785,765 B2 8/2004 Peters et al. Representation of Search Filters; IETF Network Working Group;
6,826,711 B2 11/2004 Moulton et al. . Ry . . N
6870 506 BRI 4/2005 Doopl Zellenga; Lightweight Directory Access Protocol (LDAP): Direc-
73003j688 B1 212006 Pittelfk}(;w ot al tory Information Models; IETF Network Working Group; RFC
7,024,451 B2 4/2006 Jorgenson 45125 Jun. 2006; pp. 1-49.
7,024,609 B2 4/2006 Wolfgang et al. Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
7.080,101 Bl 7/2006 Watson et al. for User Applications; IETF Network Working Group; RFC 4519;
7,103,824 B2 9/2006 Halford Jun. 2006, pp. 1-33.
7,103,915 B2 9/2006 Redlich et al. Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
7,111,115 B2 9/2006 Peters et al. tication Methods and Security Mechanisms; IETF Network Work-
7,140,044 B2 11/2006 Redlich et al. ing Group; RFC 4513; Jun. 2006; pp. 1-32.
gji?ggg E% 1%? 3882 IS{Edhih ft al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
1 u et al. . . :
] . cal Specification Road Map; IETF Network Working Group; RFC
7,222,133 Bl 5/2007 Raipurkar et al. 4510; Jun. 2006; pp. 1-8.
7,240,236 B2 7/2007 Cutts et al.
7272.613 B2 9/2007 Sim et al. Zellenga; Lightweight Directory Access Protocol (LDAP): String
7636724 B2 12/2009 de la Torre et al. Representation of Distinguished Names; IETF Network Working
2002/0062422 Al 5/2002 Butterworth et al. Group; RFC 4514; Jun. 2006; pp. 1-15.
2002/0166079 Al 11/2002 Ulrich et al. Sermersheim; Lightweight Directory Access Protocol (LDAP): The
2003/0018927 Al 1/2003 Gadir et al. Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2003/0037261 Al 2/2003 Meftert et al. 1-68.

US 9,971,649 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Satran, et al.; Internet Small Computer Systems Interface (1SCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
Storage Systems; 13th IEEE International Symposium on High
Performance Distributed Computing; Jun. 2004; pp. 172-181.

Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-

ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

o\
aa
oA R TE T T T e }
N m Z¢ owsu NS(M
y— i
-~ Y : : oo
o~ 01 (NSQUT) omsU R “ O — m 57 8100
=N abeiojs ‘pesiedsip 10 ‘paINqUISID | Torunebeins | eee i m Bugndiios
7 m w (NS} nun abeios m _
~ m M Y mwm S
a1 Hun I A A ot
Buibsuew ,
G7 210D S &
_ Bunndwios m
y—
= _ b
— Lo doBLiul) N
~
Q2 erreeeee—o—————————
Qs
=
7
o
0 n
« 51 901nap bupndwiod
£,
. &
nVaJ (TSRS 0121 RE2 1V N SR—— S ¢ sousul 7T s0RLISH! FASKE

§7 2100

BT ajnpoiy
el 8¢

GUINOWIOD

¢

2109 Bunndiuos

iy 108lgo eep

L 2oinap Bunnduwion

U.S. Patent

rr

P,

BT QInpouw

L RNY
87 8100 Bunnauo

21 9niasp Dunnduwios

US 9,971,649 B2

Sheet 2 of 11

May 15, 2018

U.S. Patent

g thd
aaaaaaaaaaaaaaaaaaaaaaaaa st oo o e oo o e e e e e e o e e e e e e e e
| ;
57 SInpoi ST anpows |} FT enpow soepsil A7 sinpouw 0 aInpou 53 sinpow w
St NN 30RLIB (M sey SOBLSIUL SHOMIBU SOBLIBI Y soeueIM gSA |
m
++ m
|
m
|
e |
aG 208U D 70 SOIG m
NOY m
|
|
- 70 2INpOL m
0B LISI w
BOAED O] |
:
. i
- - - u
S 04 (G SnpoLw |
AJOWIBLY UleUl | JBlIoAU0s Aouisul 01119380040 |
SRR I AU— L S m
m
m
e m
€T uun Buissanoia |
S dRID OBDIA |
+++ m
G¢ 2100 bunndiuoo |

9 Ui

OjU "AS)

gipelgoeiep | glunea | ¢ juswbes eep

8

US 9,971,649 B2

peX £8X 26X LSX s Ol o U W
L ppX EPX TPX LPX — | 3 w
EX EEX ZEX IEX ATt R U O B
PEX £ZX ZzX g | T]8G40 90 & % a p
— P EIX TIX LIX o vat@ 0 id N
e 0198 ,
o i (0} {s) ()
¢,
D
D -y o - _
m_.\ﬂu WD) o h | ,. (73} xupeu
f_. XLIEW DBDCS = (G xueuiBlep 1 ok BufDomS . L T
—r—] e
v o
o
~ S0HS BIED PAPOIUS = SO
B.,, SLBU B8 = NS ITE]
e
~~ N N § IS | SRR § U I ORI T S
> A nisuibes

Blep

BUiLLBU
g Bugs
‘BUNOUS
0B

G—

L Jueiubas
glep

ll

U.S. Patent

g Ol

US 9,971,649 B2

| l .
“ ,, o) (, 7)) s .
Qi Wwahageweep | = xuyew pepos | k¥ w:ﬁoﬁmv G
N 008,
TII 7 s e 7 Tll q)Ilqm
o
y—
T
S
.4
~
Qs
Qs
7
2JlS Blep DapO0US = Q04 M:J%
SLUBU 20HS = NS _
o0
=
~ . A JUstbss
_ HV 21ep
- Buiponap
M A0

» Buiolssp

L JUBWIDSS
T | e

U.S. Patent

!!

T 00lg0 |
BIED |

lll

WA o S R PR RERT UINE WA o R e PR R RS LR W WP TR L PR PR R WL R el e iy R ot AN e R T R Y Feea e AR WP BPLR Wy TR el TP AR

U-G¢ U lun 8@

¢ yun
fuissaooid Aubspu

Jeeinpowr | | 5T empow
uognoaxe | | I W80 gQ

G mmm wM. 2100
Bunnduios

US 9,971,649 B2

o 8@35_

¥
{
¥
¥
i
i
i
§
i
i
i
X
¥
j
}
i
}
i
i
i
i
i
i
i

aﬂilﬂﬂﬂﬂﬂﬂﬂwmmwﬂﬂﬂﬂﬂm‘ﬂiﬂﬂﬂﬂﬂmm

£8 BINDOL
DUISS230
o
— e o o o e -
Cop
0 ¥ W0 0N DOE I IR0 N0 DA 0O 0D 200 TE DI MR TG T0E 00 WX DA e 08
~— “ +
S Ugt SSOHS PAASLIS “ -
- : S @Qw M._mm@xm
7 » B I 3
N 70 DUISS2001G :
RS ; u
U dnos o) SIS mméc@ w . ——
w @ ; . +__ L m ++++++++ N@ mwmm
= sonll : !
2 - I M :
Tel — ; ;
= \ ey m
m AL . el jened : -
- SEHS POABLIAS .+ - w _
E | m m ASUL 10 Duisss00ud :
4 vise} eed L S(1 punogino m
S _ T - 76 Elep
J# anod aofs sbudnolb aous

PE SINDOW U0 SQ

:
:
J
i
b
;
|
B

d
LR N OO 0K OCR XD OO DK DGR OO EIDD DK OLER KX DO DT DOy

U.S. Patent

US 9,971,649 B2

Sheet 6 of 11

May 15, 2018

U.S. Patent

SCC UONBULIO!
DULIOOS DOMUR]

‘E!!*iiiﬂ:Etiii:al!ﬁiiiﬂeEF3iiiea!!SiE‘l‘.l_v.l___..l_..!._.._l.n‘_ﬁ?l‘.lw_.l__._.l_.!i‘l‘_ge!!i.iii#e!!i.iiiget!iin‘l‘.li.lw..l___.’_.-!...._I..n‘.ﬁ‘.li.lw.l___.l_...l....‘.n_i.l‘.!u.lw..l___.l_.i.iiieaE*iiittatﬁiii:ealiiigiﬂﬂa!!!i

NGvE ubem uogeaoy |

DD D ERE DD DD XEGDDEDDE X SCDD D EESSSOOD0E K XSO DO o n

JOIoUNy |
Bunigs |

+

+*
+
+ +
+*

+

+*
+
+ +
+
+
+*
+
+
+*
+
+
+
+*

YOl i

+

e [—
LHONOUNY NG gy —

*
+
* +
+
LR =
-+
+ + + +
+]
- -
]
* *
]
* *
]
* *
- Lt ¥ . E
]
+ +
]
+ +
]
* *
= JKHEEREREEEEEIEERIEREREKERERRREX B

C-Ghe JUDIBM Lo

+
+*
+
+ +
6 e g s e A
+ + + + + F + + + 41+ F + +F + + FF F At - %+ + +
+ +
+
+ PP
+ n
+
[+ 3
. N
. _F_t._

Z-GhE Jhom LioReoo;

ST 51005

T-GRT 1yDem uoneao] |

| TOVT 21008

+
++++++++++++++++++++++++

A | £ZFE uonoun; |

BULI0DS

| 777 vogoun) |
M..m.mw fuzeucy | FTRE

+
+

_”msw@ LTI | THEREIRIHESIE
PaZiietllOu

UOROUN]

BULOOS

+
+ + +
+ +
T T
LI
+
+

(B TFBE uonaun

JonoUN Buzijeutoy | To7ee

* ERE NN NN ”
Buposs | 9474 O S— I
. JnSal UiligU
- a

NazZiBLUIoU
GG sinpow ustieaibe pezipausiep

6-0pt uiiouny

i+

NBee
(] UOLEI0| 4

N-(Pg UORSUR 1

I
"6t
(q} LolRI0;

+ +
+ +
]

JUSIURLISIS D

11111111111111111111111111111111111111
+++++++++++++

++++++++++++++++++++++++++++++++++++

Z-(pe Hogouny §
oiSiisien |

1%

(] usHRIY)

T uogouny |
JSiuiLeeD |

+++++++++++++++++++++++++++++++++++++

95%
(11 19588

(1l 19858

95¢
(1 19558

9G¢
(1) Josse

%
R
?
?
2
5
5
L1
4
R
v
7
?
%
5
'
4
R
"
?
9
5
%
L1
]
R
¢
2
2
5
1
%
4
2
@
2
5
.
5
1
R
e
a
2
5
.]
1
1
R
P
@
3
5
5
1
1
4
2
7
2
5
5
%
1
R
e
@
2
]
5
1
L+
4
s
?
?
5
5
L
1
Q
2
]
5
5
1
L
4
s
2
5

aiiiteaii‘i“taaiiii‘aa!iiii‘taa‘ii_n‘.nl_li.lw!.:___’__-I.-'.n!.lw_le_..’_____I_.-,g.ﬂl_l-!!.’.iin"I‘!!.’.i!Elllﬁa.l.’_i!n!_n‘I-_!’__..!_iin‘l‘.lu_!.l___.’__in‘_n‘.l‘Iw.l_-_.l___l._.,-_I.n!_lvIw_l_-_.l___.!__‘iiia!!‘iEEGE¥!‘ii‘¢a!!‘i“aa!iiingh

#GC 150nDa)
UCIRULICIU
DULICOS payues

US 9,971,649 B2

Sheet 7 of 11

May 15, 2018

U.S. Patent

Aljus bunssnba
AU 0} LOBLLIOM DULI0oS payues syl Indino

LONBLLLIOIU BULIOOS
paURS asnpoid OF $91008 JO 19 2Ul JBPI0 YUB)

SGI0IS
10185 B 10 84008 & 8onpoid 03 Jnsas wisiul
SU} UMM DBIBISOSSE S0/N0SD. BIEDIDUED B BY)

i peieinosse Jubem uoneoo) e Buizign Jnss) |

LULIBIE DSZIBLLIOY S U0 UOiIuUn BULINOS
B RUOLIBE UNSSL WIS PaZHBULIOU 4083 10}

L)

NSS4 LWL PRZIBULIOL

e aanpoid 0 INsed WLISIUE SYl U uonIURY
Buizieutiou g wuopsd nsss LRI U0BS 0]

1SS WS ue
30nP04d 01 158nbas UOTBLUIOIU BULIOOS DaYUR)
SUL IO (11 19558 UB DUB S3IN0SSS sleDIpue:
SUL IO (3 UONBSO! B UC LORDUN MISIILLIRID

€ WHOKSd ‘OUN0sS3I SIEDIDUBD YIes 10}

m 580iN0S3 SJRPIPUED |
| 10105 e 0} spJeBas yyw A1nus Bunsanbal e wolj |
- 139nbar uoneuLOU BULIOOS DONURS B aAIB08) |

US 9,971,649 B2

Sheet 8 of 11

May 15, 2018

U.S. Patent

S0F Ol

WEEEEEE¥EEE.._ll._EEE..I.l_".rl..l.EEE_.I._.EEE*EEEEEEEEEEEEEEEEEEE*EEkE;EEEgEEE;

:
w
S—— ;
: N-O0P [ood Jun g
;
L o 0 . o 0 0 o o0 10 0 s 10 300 . 0 0 S 0t 10 3 S 0 6 2 0 0 0 08 0 0 ¢ 08 0 2 0 08 0 2 0 0> 4 2 8 0 0 o s 20
&
ped
&
L e e T
M ¢-00F 1000 1un SO ﬁ
m
E o 20 oo . s 2 e et o 300 a0 o 200 20 0 s 2 . o0 o 00 20 1o o 5 s 2 . . 0 0 o s 2o 30 0 20 00 00 0 00 200 0 0 00 9 o &
ﬁEEEEEEEEEEEEEEEEEEEEHEEEEEEEEEEEEEEEEEEEEEEEEHEEHEEEEE&
P o o et o s ot g S o e :
%msmitmiuiiaiwt‘a&.Eiiiwig1!1514!:E‘wn*mtwt1WE'EF&EeEE#E—EEaiwt‘i!-&iitwitu!ni#?i;@‘ﬁslE*#iwtinimiiitfgiﬁiuirli‘Eaitwirgiﬁi:itsﬁ
b opo ; ﬂ bog ! Pl
m ik i ; K b : .
g gk “ w by ; i
F oy gl m ; i m .
1 : : b g : A
SN : ; b g | P
H w¢@$” ”M : P
:] “ m | L L-N-B0F w -
G] | TNpOP N g | iNE0T
iy ; 4 .- by OuSH
b coe e o o0 cor o w0 e or om0 o cox 100 o cox g v 00 20 o 0 4 0 o o o0 o g 0 a0 4 oo o x 03 300 00 eun 0 o] o0 o o o B
Py : w i I & m
w ; 3 : Py : 2 :
b ; : N | ® :
b g oo o o o oo o o ot o e o o o o o o o g i o e o o e o o e
T : ; £y m g .
SN 1 I : : b g : b
e ﬂ ﬂ by ! :
SR : : b n g
Py : w b m P
Pl n ; b m g !
m w 8E i | 88¢ g § ; m
L TORTTIARE | ! ;
g | PNROY P B w ;b
B By oy - ST g LI TR Bt o : 8T -
o P RELVOPIUNGO |y P Tl vObminggy) T-bvObungg 0V
S 8 ;! S 1 3us !
} mh, 3 : B g g . :
A e e T -
ez ; gz ; T v ;
P N-OOpaepd Vo 90 aepid) T-90b Jeid :
¢ Bo oix axn war ome GOE ARE KA SR KX KM WO U0 DOE 3 Be ks wm o Goe KR KK G OOF WU AR Gor Do ke B Bk oor o0 Mo S O KK WA O LOY MK W0 06 G) b
w ;
m Ty :
3 1007 MQQQ HUTY S} g
} ane s s o s s st A S S 0 S o S S A St R o B S A 0 B Y A o o A o R A A o o s o o s o

- .
+++++++++++++

+
-
+ + * L
L] - p
-

FL
+++++++++++++++++++++++++++

Z¢ 3Npow
NS

" Y, sisanbal

~J anunosal

06t

7 Ge asuodsal
553038 BIED

SOSUGH ST (rmovanarmnravacsedororneannoronammns

CRET]
G3AN053)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

N W 0§ KT W NF W IR O 0D

oSO E DI

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
-

S5O 3E

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PE SINpow
WD 5]

ozl

et Lo

 11BULIO !
L FUI0DS
| DoMUES

U8t SiiPold
wsweaide |
P3ZY2IIUIIBP |

725 152009 553238 BIP

1}

PRE
SINN3
UG

WO UL
FUI0DS
A=V ily

Mnummmmu wmmmmnvﬂ R R L N PR e W S P T S B P R L A R e

Tk P A L I R L R W P R P T P R P P A PR P Ak W R T R R o R T B P T P R e R P

US 9,971,649 B2

Sheet 9 of 11

May 15, 2018

U.S. Patent

AIOLLIBW NSO SU} W0l Sasuodss)
SST00B D3IN0SA 2JOU IO SUO Lo paseq Aus

SIOAS] BOINOSSL
J0 Aeinid 9l 10 UoBS J0) SSN0SRI I0W IO

UOeULO BULIDOS pE)UES BU] UC POSEY
SAB] SOUN0SSI SU) LM DOIRIDOSSE S80IN0SS.
IO IO BUC 199195 ‘1BAS] BINOSAI UORY 10

UORBULIOIE BULIODS
DEMUR] BUILLISIRD '|ONS| 80IN0S3) YIBS IOk

AJDWISLU NSOT B Ui
NSIRIS0SSE SIBAB] 82IN0S8) J0 Aleinid 8 108185

1Sanbas wmmw@m Bep
SUI UMM DBIBIDOSSE SSRUDPE NS B SUiLLSIRD

Alue bunsanbal
B WOl 18enbal 88008 Blep B SAIB0a)

US 9,971,649 B2

Sheet 10 of 11

May 15, 2018

U.S. Patent

VL Old

Nt Pt Y Y e o S) Yl A e A e g Y B P T A S P T P R W R i P o o e P

(0 KK G0H WK K0 KR KR KK A0 G080 KKD OOU OKK KN KKE OGO KK R KNG OO0 CKOF GKE A0 U0 OOF G0N KIOL D00 OGL KN WG KGO0 K 00 OO0 OKK KO KK OO0 KKK KR 00 GO0 DA R W00 oo oo m@ﬂmi@@m wﬂmﬂnm!ml@@m ma!ia::sasaai:u:saﬁeﬂu:siuiun:!:ﬁisi

M Z-00G 188 sbelojs PRt 198 §0 wmgmm BT 2inpouw

m PR | 1S | _

: w +. ”

M w - m : m WS |5

o f OL-Qu i 0 1 p-oriun g gDy R] -Gy JUN G-9¢ R M

m obeiojs { | obesos | | sbesms | | abeiols abelos N o \

M e b M L V¢ puRRU AT ampow

M M H e E I

; ; :
wiwiaisis;;;as;;i3;;;;;;;3;;;as;;;s;ss;;;s;;;,.wim pazijefuagdap
L m [S—
SR e T — 1 — Jp— I o AL)
m m 4-Qr #ub p-Of Hun 6-Ug U 9% HUT L-9e HUb M M i 19S 10 A0S m o
o abesois 11 obesoys |1 sbeios § 1 abeios shelois i ” _ C ¢ Gl Hun OUISS800I0 §Q

: + + i ; : "

S SURERELAN i SURAGNGAT p SENENGA g S— e mmune I S
e e e o o o o o o o s e o M c0% 005
: T-00G 185 abeiois M 1935 O 58015

L]

US 9,971,649 B2

Sheet 11 of 11

May 15, 2018

U.S. Patent

dii 9id

JUN 8DBICIS DSl0s]eS St LIUlIM
NBI0IS ANUSSBIU 10U SE SOHS BIRD DSPOJUS
SUY USUM 188 abBIoIS 8l 10 Wun sbeiois

08109i9S oyl 01185 abeiols Bunsixe ou) Wwiol
I01IS BIBD Pap0ous aul Jo uoneiBiw sienioe)

301I5 BIeD PApOIUS
aul 10 a0rI0IS 10} 188 aDrI0IS MU BU) JO IR
afelols B 109195 0] HOROUN, 1000104d Jusiluaaibe
NAINALASID B SZin 195 abriols buisixe
SUL Ul PRICLS 8515 BIRp PapOooUa Yoes o}

195
Sbri0IS MaU B W) 01198 abriois buisixe ue
0} SHUN SHRI0IS [RUCHIDDE 240U 10 U ubisse

+

US 9,971,649 B2

1

DEPLOYING AND GROWING A SET OF
DISPERSED STORAGE UNITS AT AND BY
NON-INFORMATION DISPERSAL
ALGORITHM (IDA) WIDTH MULTIPLES

CROSS REFERENCE TO RELATED
APPLICATIONS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Appli-

cation No. 62/248,752, filed 30 Oct. 2015, entitled
“MIGRATING DATA IN A DISPERSED STORAGE NET-
WORK.,” which 1s hereby incorporated herein by reference
in 1ts entirety and made part of the present U.S. Utility Patent
Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable.

BACKGROUND OF THE INVENTION

Technical Field of the Invention

This mvention relates generally to computer networks,
and more particularly to cloud storage.

Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As 1s further known, a computer may effectively extend
its CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop 1s an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage™ as part of 1ts memory system. As 1s known,
cloud storage enables a user, via 1ts computer, to store files,
applications, etc. on a remote storage system. The remote
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for
storage.

In a RAID system, a RAID controller adds parity data to
the original data before storing 1t across an array of disks.
The parity data 1s calculated from the original data such that
the failure of a single disk typically will not result 1n the loss
of the original data. While RAID systems can address

10

15

20

25

30

35

40

45

50

55

60

65

2

certain memory device failures, these systems may suller
from eflectiveness, efliciency and security 1ssues. For
instance, as more disks are added to the array, the probability
of a disk failure rises, which may increase maintenance
costs. When a disk fails, for example, 1t needs to be manually
replaced betfore another disk(s) fails and the data stored in
the RAID system 1s lost. To reduce the risk of data loss, data
on a RAID device 1s often copied to one or more other RAID
devices. While this may reduce the possibility of data loss,
it also raises security issues since multiple copies of data
may be available, thereby increasing the chances of unau-
thorized access. In addition, co-location of some RAID
devices may result 1n a risk of a complete data loss in the
event of a natural disaster, fire, power surge/outage, etc.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 1s a schematic block diagram of an embodiment of
a dispersed, or distributed, storage network (DSN) 1n accor-
dance with the present disclosure;

FIG. 2 1s a schematic block diagram of an embodiment of
a computing core 1n accordance with the present disclosure;

FIG. 3 1s a schematic block diagram of an example of
dispersed storage error encoding of data in accordance with
the present disclosure;

FIG. 4 1s a schematic block diagram of a generic example
of an error encoding function 1n accordance with the present
disclosure;

FIG. 5 15 a schematic block diagram of a specific example
of an error encoding function 1n accordance with the present
disclosure:

FIG. 6 1s a schematic block diagram of an example of slice
naming information for an encoded data slice (EDS) in
accordance with the present disclosure;

FIG. 7 1s a schematic block diagram of an example of
dispersed storage error decoding of data in accordance with
the present disclosure;

FIG. 8 1s a schematic block diagram of a generic example
of an error decoding function 1n accordance with the present
disclosure:

FIG. 9 1s a schematic block diagram of an example of a
dispersed storage network in accordance with the present
disclosure;

FIG. 10A 1s a schematic block diagram of an embodiment
of a decentralized agreement module in accordance with the
present invention;

FIG. 10B 1s a flowchart illustrating an example of select-
ing the resource in accordance with the present invention;

FIG. 10C 1s a schematic block diagram of an embodiment
ol a dispersed storage network (DSN) 1in accordance with the
present 1nvention;

FIG. 10D 1s a tlowchart 1llustrating an example of access-
ing a dispersed storage network (DSN) memory in accor-
dance with the present invention;

FIG. 11A 1s a schematic block diagram of another
embodiment of a dispersed storage network (DSN) 1n accor-
dance with the present invention; and

FIG. 11B 1s a flowchart 1llustrating an example of migrat-
ing data in accordance with the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

FIG. 1 1s a schematic block diagram of an embodiment of
a dispersed, or distributed, storage network (DSN) 10 that
includes a plurality of dispersed storage (DS) computing

US 9,971,649 B2

3

devices or processing units 12-16, a managing umt 18, an
integrity processing unit 20, and a DSN memory 22. The
components ol the DSN 10 are coupled to a network 24,
which may include one or more wireless and/or wire lined
communication systems; one or more non-public intranet
systems and/or public internet systems; and/or one or more
local area networks (LAN) and/or wide area networks
(WAN).

The DSN memory 22 includes a plurality of dispersed
storage units 36 (DS units) that may be located at geographi-
cally different sites (e.g., one 1n Chicago, one 1n Milwaukee,
etc.), at a common site, or a combination thereof. For
example, 1f the DSN memory 22 includes eight dispersed
storage units 36, each storage unit 1s located at a different
site. As another example, 1 the DSN memory 22 includes
cight storage units 36, all eight storage units are located at
the same site. As yet another example, 11 the DSN memory
22 includes eight storage units 36, a first pair of storage units
are at a {irst common site, a second pair of storage units are
at a second common site, a third pair of storage units are at
a third common site, and a fourth pair of storage units are at
a fourth common site. Note that a DSN memory 22 may
include more or less than eight storage units 36.

Each of the DS computing devices 12-16, the managing
unit 18, and the integrity processing unit 20 include a
computing core 26, and network or communications inter-
taces 30-33 which can be part of or external to computing
core 26. DS computing devices 12-16 may each be a
portable computing device and/or a fixed computing device.
A portable computing device may be a social networking
device, a gaming device, a cell phone, a smart phone, a
digital assistant, a digital music player, a digital video
player, a laptop computer, a handheld computer, a tablet, a
video game controller, and/or any other portable device that
includes a computing core. A fixed computing device may be
a computer (PC), a computer server, a cable set-top box, a
satellite receiver, a television set, a printer, a fax machine,
home entertainment equipment, a video game console, and/
or any type ol home or oflice computing equipment. Note
that each of the managing unit 18 and the mtegrity process-
ing unit 20 may be separate computing devices, may be a
common computing device, and/or may be integrated into
one or more of the computing devices 12-16 and/or 1nto one
or more of the dispersed storage units 36.

Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, wvia the network 24, etc.)
between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 and 16 and the DSN memory
22. As yet another example, intertace 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

Computing devices 12 and 16 include a dispersed storage
(DS) client module 34, which enables the computing device
to dispersed storage error encode and decode data (e.g., data
object 40) as subsequently described with reference to one
or more of FIGS. 3-8. In this example embodiment, com-
puting device 16 functions as a dispersed storage processing,
agent for computing device 14. In this role, computing
device 16 dispersed storage error encodes and decodes data
on behalf of computing device 14. With the use of dispersed
storage error encoding and decoding, the DSN 10 1s tolerant

10

15

20

25

30

35

40

45

50

55

60

65

4

ol a significant number of storage unit failures (the number
of failures 1s based on parameters of the dispersed storage
error encoding function) without loss of data and without the
need for a redundant or backup copies of the data. Further,
the DSN 10 stores data for an indefinite period of time
without data loss and 1n a secure manner (e.g., the system 1s
very resistant to unauthorized attempts at accessing the
data).

In operation, the managing unit 18 performs DS manage-
ment services. For example, the managing unit 18 estab-
lishes distributed data storage parameters (e.g., vault cre-
ation, distributed storage parameters, security parameters,
billing information, user profile mnformation, etc.) for com-
puting devices 12-16 individually or as part of a group of
user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSN memory 22 for a user device, a group
of devices, or for public access and establishes per vault
dispersed storage (DS) error encoding parameters for a
vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
umt 20. The DS error encoding parameters (e.g., or dis-
persed storage error coding parameters) include data seg-
menting information (e.g., how many segments data (e.g., a
file, a group of files, a data block, etc.) 1s divided into),
segment security information (e.g., per segment encryption,
compression, mtegrity checksum, etc.), error coding infor-
mation (e.g., pillar width, decode threshold, read threshold,
write threshold, etc.), slicing information (e.g., the number
of encoded data slices that will be created for each data
segment); and slice security mnformation (e.g., per encoded
data slice encryption, compression, integrity checksum,
etc.).

The managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) 1 local
memory and/or within memory of the DSN memory 22. The
user profile information mcludes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The managing unit 18 creates billing information for a
particular user, a user group, a vault access, public vault
access, etc. For mnstance, the managing unit 18 tracks the
number of times a user accesses a non-public vault and/or
public vaults, which can be used to generate per-access
billing information. In another instance, the managing unit
18 tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate
per-data-amount billing information.

As another example, the managing unit 18 performs
network operations, network administration, and/or network
maintenance. Network operations includes authenticating
user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-
ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network operations can further include monitoring
read, write and/or delete communications attempts, which
attempts could be 1n the form of requests. Network admin-
istration includes monitoring devices and/or units for fail-

US 9,971,649 B2

S

ures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level opera-
tion that affects the performance level of the DSN 10.
Network maintenance includes {facilitating replacing,
upgrading, repairing, and/or expanding a device and/or unit
of the DSN 10.

To support data storage integrity verification within the
DSN 10, the mtegrity processing unit 20 (and/or other
devices in the DSN 10 such as managing unit 18) may assess
and perform rebuilding of ‘bad’ or missing encoded data
slices. At a high level, the integrity processing unit 20
performs rebuilding by periodically attempting to retrieve/
list encoded data slices, and/or slice names of the encoded
data slices, from the DSN memory 22. Retrieved encoded
slices are assessed and checked for errors due to data
corruption, outdated versioning, etc. If a slice imncludes an
error, 1t 1s flagged as a ‘bad’ or ‘corrupt’ slice. Encoded data
slices that are not received and/or not listed may be tlagged
as missing slices. Bad and/or missing slices may be subse-
quently rebuilt using other retrieved encoded data slices that
are deemed to be good slices i order to produce rebuilt
slices. A multi-stage decoding process may be employed 1n
certain circumstances to recover data even when the number
of valid encoded data slices of a set of encoded data slices
1s less than a relevant decode threshold number. The rebuilt
slices may then be written to DSN memory 22. Note that the
integrity processing unit 20 may be a separate unit as shown,
included 1 DSN memory 22, icluded 1n the computing
device 16, managing unit 18, stored on a DS unit 36, and/or
distributed among multiple storage units 36.

FI1G. 2 15 a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (I0) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic mput output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSN interface module 76.

The DSN interface module 76 functions to mimic a

conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),

disk file system (DFS), file transier protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system 1nterface (SCSI), imternet small computer system
intertace (1SCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or
more of the imterface 30-33 of FIG. 1. Note that the 10
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

FIG. 3 1s a schematic block diagram of an example of
dispersed storage error encoding of data. When a computing
device 12 or 16 has data to store it disperse storage error
encodes the data 1n accordance with a dispersed storage
error encoding process based on dispersed storage error
encoding parameters. The dispersed storage error encoding
parameters include an encoding function (e.g., information
dispersal algorithm, Reed-Solomon, Cauchy Reed-Solo-
mon, systematic encoding, non-systematic encoding, on-line
codes, etc.), a data segmenting protocol (e.g., data segment

10

15

20

25

30

35

40

45

50

55

60

65

6

s1ze, fixed, vanable, etc.), and per data segment encoding
values. The per data segment encoding values include a
total, or pillar width, number (T) of encoded data slices per
encoding of a data segment (1.e., 1n a set of encoded data
slices); a decode threshold number (D) of encoded data
slices of a set of encoded data slices that are needed to
recover the data segment; a read threshold number (R) of
encoded data slices to indicate a number of encoded data
slices per set to be read from storage for decoding of the data
segment; and/or a write threshold number (W) to indicate a
number of encoded data slices per set that must be accurately
stored before the encoded data segment 1s deemed to have
been properly stored. The dispersed storage error encoding
parameters may further include slicing information (e.g., the
number of encoded data slices that will be created for each
data segment) and/or slice security information (e.g., per
encoded data slice encryption, compression, imntegrity check-
sum, etc.).

In the present example, Cauchy Reed-Solomon has been
selected as the encoding function (a generic example 1s
shown 1n FIG. 4 and a specific example 1s shown 1n FIG. 5);
the data segmenting protocol 1s to divide the data object into
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of 5, a decode threshold of
3, a read threshold of 4, and a write threshold of 4. In
accordance with the data segmenting protocol, the comput-
ing device 12 or 16 divides the data (e.g., a file (e.g., text,
video, audio, etc.), a data object, or other data arrangement)
into a plurality of fixed sized data segments (e.g., 1 through
Y of a fixed size 1n range ol Kilo-bytes to Tera-bytes or
more). The number of data segments created 1s dependent of
the size of the data and the data segmenting protocol.

The computing device 12 or 16 then disperse storage error
encodes a data segment using the selected encoding function
(e.g., Cauchy Reed-Solomon) to produce a set of encoded
data slices. FIG. 4 illustrates a generic Cauchy Reed-
Solomon encoding function, which includes an encoding
matrix (EM), a data matrix (DM), and a coded matrix (CM).
The size of the encoding matrix (EM) 1s dependent on the
pillar width number (1) and the decode threshold number
(D) of selected per data segment encoding values. To pro-
duce the data matrix (DM), the data segment 1s divided into
a plurality of data blocks and the data blocks are arranged
into D number of rows with Z data blocks per row. Note that
7. 1s a function of the number of data blocks created from the
data segment and the decode threshold number (D). The
coded matrix 1s produced by matrix multiplying the data
matrix by the encoding matrix.

FIG. 5 1llustrates a specific example of Cauchy Reed-
Solomon encoding with a pillar number (1) of five and
decode threshold number of three. In this example, a first
data segment 1s divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,
where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a Tourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number. In the 1llustrated
example, the value X11=aD1+bD5+cD9, X12=aD2+bD6+
cD10, . . . X53=mD3+nD7+0D11, and X54=mD4+nD8+
oD12.

Returning to the discussion of FIG. 3, the computing
device also creates a slice name (SN) for each encoded data

US 9,971,649 B2

7

slice (EDS) 1n the set of encoded data slices. A typical format
for a slice name 80 1s shown 1n FIG. 6. As shown, the slice
name (SN) 80 includes a pillar number of the encoded data
slice (e.g., one of 1-T), a data segment number (e.g., one of
1-Y'), a vault identifier (ID), a data object identifier (ID), and
may further include revision level information of the
encoded data slices. The slice name functions as at least part
of a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

As a result of encoding, the computing device 12 or 16
produces a plurality of sets of encoded data slices, which are
provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN 5_Y.

FIG. 7 1s a schematic block diagram of an example of
dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored 1n the example of
FIG. 4. In this example, the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

In order to recover a data segment from a decode thresh-
old number of encoded data slices, the computing device
uses a decoding function as shown in FIG. 8. As shown, the
decoding function 1s essentially an inverse of the encoding
tunction of FIG. 4. The coded matrix includes a decode
threshold number of rows (e.g., three 1n this example) and
the decoding matrix 1n an mversion ol the encoding matrix
that 1includes the corresponding rows of the coded matrix.
For example, if the coded matrix includes rows 1, 2, and 4,
the encoding matrix 1s reduced to rows 1, 2, and 4, and then
inverted to produce the decoding matrix.

FIG. 9 1s a diagram of an example of a dispersed storage
network. The dispersed storage network includes a DS
(dispersed storage) client module 34 (which may be i DS
computing devices 12 and/or 16 of FIG. 1), a network 24,
and a plurality of DS units 36-1 . . . 36-» (which may be
storage units 36 of FIG. 1 and which form at least a portion
of DS memory 22 of FIG. 1), a DSN managing unit (not
shown—device 18 1n FIG. 1), and a DS integrity verification
module 20. The DS client module 34 includes an outbound
DS processing section 81 and an mmbound DS processing
section 82. Each of the DS units 36-1 . . . 36-» includes a
controller 86, a processing module 84 including a commu-
nications interface for communicating over network 24 (not
shown), memory 88, a DT (distrnbuted task) execution
module 90, and a DS client module 34.

In an example of operation, the DS client module 34
receives data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few
Terabytes), the content (e.g., secure data, etc.), and/or con-
cerns over security and loss of data, distributed storage of
the data 1s desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies,
etc.), data files, and/or any other large amount of data (e.g.,
greater than a few Terabytes).

Within the DS client module 34, the outbound DS pro-
cessing section 81 receives the data 92. The outbound DS
processing section 81 processes the data 92 to produce slice
groupings 96. As an example of such processing, the out-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

bound DS processing section 81 partitions the data 92 mto
a plurality of data partitions. For each data partition, the
outbound DS processing section 81 dispersed storage (DS)
error encodes the data partition to produce encoded data
slices and groups the encoded data slices into a slice
grouping 96.

The outbound DS processing section 81 then sends, via
the network 24, the slice groupings 96 to the DS units
36-1 . . . 36-n of the DSN memory 22 of FIG. 1. For
example, the outbound DS processing section 81 sends slice
group to DS storage unit 36-1. As another example, the
outbound DS processing section 81 sends slice group #n to
DS unit #n.

In one example of operation, the DS client module 34
requests retrieval of stored data within the memory of the DS
units 36. In this example, the task 94 1s retrieve data stored
in the DSN memory 22. Accordingly, and according to one
embodiment, the outbound DS processing section 81 con-
verts the task 94 into a plurality of partial tasks 98 and sends
the partial tasks 98 to the respective DS storage units

36-1 .. .36-n.

In response to the partial task 98 of retrieving stored data,
a DS storage unit 36 identifies the corresponding encoded
data slices 99 and retrieves them. For example, DS unit #1
receives partial task #1 and retrieves, in response thereto,
retrieved slices #1. The DS umts 36 send their respective
retrieved slices 99 to the inbound DS processing section 82
via the network 24.

The mbound DS processing section 82 converts the
retrieved slices 99 into data 92. For example, the inbound
DS processing section 82 de-groups the retrieved slices 99
to produce encoded slices per data partition. The inbound
DS processing section 82 then DS error decodes the encoded
slices per data partition to produce data partitions. The
inbound DS processing section 82 de-partitions the data
partitions to recapture the data 92.

FIG. 10A 1s a schematic block diagram of an embodiment
of a decentralized agreement module 350 that includes a set
of deterministic functions 340-1 . . . 340-N, a set of
normalizing functions 342-1 . . . 342-N, a set of scoring
functions 344-1 . . . 344-N, and a ranking function 352. Each
of the deterministic function, the normalizing function, the
scoring function, and the ranking function 352, may be
implemented utilizing the processing module 84 of FIG. 9.
The decentralized agreement module 350 may be imple-
mented utilizing any module and/or umit of a dispersed
storage network (DSN). For example, the decentralized
agreement module 1s implemented utilizing the distributed
storage (DS) client module 34 of FIG. 1.

The decentralized agreement module 350 functions to
receive a ranked scoring information request 354 and to
generate ranked scoring information 3358 based on the
ranked scoring information request 354 and other informa-
tion. The ranked scoring information request 354 includes
one or more ol an asset identifier (ID) 356 of an asset
associated with the request, an asset type indicator, one or
more location identifiers of locations associated with the
DSN, one or more corresponding location weights, and a
requesting entity ID. The asset includes any portion of data
associated with the DSN including one or more asset types
including a data object, a data record, an encoded data slice,
a data segment, a set ol encoded data slices, and a plurality
of sets of encoded data slices. As such, the asset ID 356 of
the asset includes one or more of a data name, a data record
identifier, a source name, a slice name, and a plurality of sets
of slice names.

Each location of the DSN 1ncludes an aspect of a DSN
resource. Examples of locations include one or more of a

US 9,971,649 B2

9

storage unit, a memory device of the storage umit, a site, a
storage pool of storage units, a pillar index associated with
cach encoded data slice of a set of encoded data slices
generated by an information dispersal algorithm (IDA), a
DS client module 34 of FIG. 1, a DS processing unit
(computing device) 16 of FIG. 1, a DS integrity processing
unit 20 of FIG. 1, a DSN managing unit 18 of FIG. 1, a user
device (computing device) 12 of FIG. 1, and a user device
(computing device) 14 of FIG. 1.

Each location 1s associated with a location weight based
on one or more of a resource prioritization of utilization
scheme and physical configuration of the DSN. The location
weight includes an arbitrary bias which adjusts a proportion
ol selections to an associated location such that a probability
that an asset will be mapped to that location 1s equal to the
location weight divided by a sum of all location weights for
all locations of comparison. For example, each storage pool
of a plurality of storage pools 1s associated with a location
weilght based on storage capacity. For instance, storage pools
with more storage capacity are associated with higher loca-
tion weights than others. The other information may include
a set of location identifiers and a set of location weights
associated with the set of location identifiers. For example,
the other information includes location 1dentifiers and loca-
tion weights associated with a set of memory devices of a
storage unit when the requesting entity utilizes the decen-
tralized agreement module 350 to produce ranked scoring
information 358 with regards to selection of a memory
device of the set of memory devices for accessing a par-
ticular encoded data slice (e.g., where the asset 1D includes
a slice name of the particular encoded data slice).

The decentralized agreement module 350 outputs sub-
stantially 1dentical ranked scoring information for each
ranked scoring information request that includes substan-
tially identical content of the ranked scoring information
request. For example, a first requesting entity 1ssues a first
ranked scoring information request to the decentralized
agreement module 350 and receives first ranked scoring
information. A second requesting entity 1ssues a second
ranked scoring information request to the decentralized
agreement module and receives second ranked scoring infor-
mation. The second ranked scoring imnformation 1s substan-
tially the same as the first ranked scoring information when
the second ranked scoring information request 1s substan-
tially the same as the first ranked scoring information
request.

As such, two or more requesting entities may utilize the
decentralized agreement module 350 to determine substan-
tially i1dentical ranked scoring information. As a specific
example, the first requesting entity selects a first storage pool
of a plurality of storage pools for storing a set of encoded
data slices utilizing the decentralized agreement module 350
and the second requesting entity identifies the first storage
pool of the plurality of storage pools for retrieving the set of
encoded data slices utilizing the decentralized agreement
module 350.

In an example of operation, the decentralized agreement
module 350 receives the ranked scoring information request
354. Each deterministic function performs a deterministic
function on a combination and/or concatenation (e.g., add,
append, interleave) of the asset ID 356 of the ranked scoring
information request 354 and an associated location ID of the
set of location IDs to produce an interim result 341-1 . . .
341-N. The deterministic function 1includes at least one of a
hashing function, a hash-based message authentication code
function, a mask generating function, a cyclic redundancy
code function, hashing module of a number of locations,

10

15

20

25

30

35

40

45

50

55

60

65

10

consistent hashing, rendezvous hashing, and a sponge func-
tion. As a specific example, deterministic function 340-2
appends a location ID 339-2 of a storage pool to a source
name as the asset ID to produce a combined value and
performs the mask generating function on the combined
value to produce interim result 341-2.

With a set of interim results 341-1 . . . 341-N, each
normalizing function 342-1 . . . 342N performs a normal-
1zing function on a corresponding interim result to produce
a corresponding normalized interim result. The performing
of the normalizing function includes dividing the interim
result by a number of possible permutations of the output of
the deterministic function to produce the normalized interim
result. For example, normalizing function 342-2 performs
the normalizing function on the interim result 341-2 to
produce a normalized interim result 343-2.

With a set of normalized interim results 343-1 . .. 343-N,
cach scoring function performs a scoring function on a
corresponding normalized interim result to produce a cor-
responding score. The performing of the scoring function
includes dividing an associated location weight by a nega-
tive log of the normalized interim result. For example,
scoring function 344-2 divides location weight 345-2 of the
storage pool (e.g., associated with location ID 339-2) by a
negative log of the normalized interim result 343-2 to
produce a score 346-2.

With a set of scores 346-1 . . . 346-N, the ranking function
352 performs a ranking function on the set of scores
346-1 . . . 346-N to generate the ranked scoring information
358. The ranking function includes rank ordering each score
with other scores of the set of scores 346-1 . .. 346-N, where
a highest score 1s ranked first. As such, a location associated
with the highest score may be considered a highest priority
location for resource utilization (e.g., accessing, storing,
retrieving, etc., the given asset of the request). Having
generated the ranked scoring information 358, the decen-
tralized agreement module 350 outputs the ranked scoring
information 338 to the requesting entity.

FIG. 10B 1s a tlowchart illustrating an example of select-
ing a resource. The method begins or continues at step 360
where a processing module (e.g., of a decentralized agree-
ment module) recerves a ranked scoring information request
from a requesting entity with regards to a set of candidate
resources. For each candidate resource, the method contin-
ues at step 362 where the processing module performs a
deterministic function on a location identifier (ID) of the
candidate resource and an asset ID of the ranked scoring
information request to produce an interim result. As a
specific example, the processing module combines the asset
ID and the location ID of the candidate resource to produce
a combined value and performs a hashing function on the
combined value to produce the interim result.

For each interim result, the method continues at step 364
where the processing module performs a normalizing func-
tion on the interim result to produce a normalized i1nterim
result. As a specific example, the processing module obtains
a permutation value associated with the deterministic func-
tion (e.g., maximum number of permutations of output of the
deterministic function) and divides the interim result by the
permutation value to produce the normalized interim result
(e.g., with a value between 0 and 1).

For each normalized interim result, the method continues
at step 366 where the processing module performs a scoring
function on the normalized interim result utilizing a location
welght associated with the candidate resource associated
with the interim result to produce a score of a set of scores.

US 9,971,649 B2

11

As a specific example, the processing module divides the
location weight by a negative log of the normalized interim
result to produce the score.

The method continues at step 368 where the processing,
module rank orders the set of scores to produce ranked
scoring information (e.g., ranking a highest value first). The
method continues at step 370 where the processing module
outputs the ranked scoring information to the requesting
entity. The requesting entity may utilize the ranked scoring
information to select one location of a plurality of locations.

FIG. 10C 1s a schematic block diagram of an embodiment
of a dispersed storage network (DSN) that includes the
distributed storage (DS) processing unit (computing device)
16 of FIG. 1, the network 24 of FIG. 1, and the distributed
storage network (DSN) module 22 of FIG. 1. Hereatter, the
DSN module 22 may be interchangeably referred to as a
DSN memory. The DS processing unit 16 includes a decen-
tralized agreement module 380 and the DS client module 34
of FIG. 1. The decentralized agreement module 380 being

implemented utilizing the decentralized agreement module
350 of FIG. 10A. The DSN module 22 includes a plurality

of DS unit pools 400-1 . . . 400-N. Each DS unit pool
includes one or more sites 402-1 . . . 402-N. Each site
includes one or more DS units 404-1-1 . . . 404-1-N. Each
DS unit may be associated with at least one pillar of N pillars
associated with an information dispersal algorithm (IDA)
(406-1 .. .406-N), where a data segment 1s dispersed storage
error encoded using the IDA to produce one or more sets of
encoded data slices, and where each set includes N encoded
data slices and like encoded data slices (e.g., slice 3°s) of two
or more sets of encoded data slices are included in a
common pillar (e.g., pillar 406-3). Each site may not include
every pillar and a given pillar may be implemented at more
than one site. Each DS umit includes a plurality of memories
(e.g. DS unit 404-1-1 includes memories 408-1-1-1 . . .
408-1-1-N. Each DS unit may be implemented utilizing the
DS unit 36 of FIG. 1 and the memories 408 of DS units can
be implemented utilizing memory 88 of DS unit 36 in FIG.
9. Hereaftter, a DS unit may be referred to interchangeably as
a storage unit and a set of DS units may be interchangeably
referred to as a set of storage units and/or as a storage unit
set.

The DSN functions to receive data access requests 382,
select resources of at least one DS unit pool for data access,
utilize the selected DS unit pool for the data access, and
1ssue a data access response 392 based on the data access.
The selecting of the resources includes utilizing a decen-
tralized agreement function of the decentralized agreement
module 380, where a plurality of locations are ranked
against each other. The selecting may include selecting one
storage pool of the plurality of storage pools, selecting DS
units at various sites of the plurality of sites, selecting a
memory of the plurality of memories for each DS unit, and
selecting combinations of memories, DS units, sites, pillars,
and storage pools.

In an example of operation, the DS chient module 34
receives the data access request 382 from a requesting entity,
where the data access request 382 includes at least one of a
store data request, a retrieve data request, a delete data
request, a data name, and a requesting entity 1identifier (ID).
Having received the data access request 382, the DS client
module 34 determines a DSN address associated with the
data access request. The DSN address includes at least one
of a source name (e.g., including a vault ID and an object
number associated with the data name), a data segment 1D,
a set of slice names, a plurality of sets of slice names. The
determining includes at least one of generating (e.g., for the

10

15

20

25

30

35

40

45

50

55

60

65

12

store data request) and retrieving (e.g., from a DSN direc-
tory, from a dispersed hierarchical index) based on the data
name (e.g., for the retrieve data request).

Having determined the DSN address, the DS client mod-
ule 34 selects a plurality of resource levels (e.g., DS umt
pool, site, DS unit, pillar, memory) associated with the DSN
module 22. The determining may be based on one or more
of the data name, the requesting entity 1D, a predetermina-
tion, a lookup, a DSN performance indicator, and interpret-
ing an error message. For example, the DS client module 34
selects the DS unit pool as a first resource level and a set of
memory devices of a plurality of memory devices as a
second resource level based on a system registry lookup for
a vault associated with the requesting entity.

Having selected the plurality of resource levels, the DS
client module 34, for each resource level, 1ssues a ranked
scoring information request 384 to the decentralized agree-
ment module 380 utilizing the DSN address as an asset 1D.
The decentralized agreement module 380 performs the
decentralized agreement function based on the asset ID (e.g.,
the DSN address), identifiers of locations of the selected
resource levels, and location weights of the locations to
generate ranked scoring mformation 386.

For each resource level, the DS client module 34 receives
corresponding ranked scoring information 386. Having
received the ranked scoring imnformation 386, the DS client
module 34 1dentifies one or more resources associated with
the resource level based on the rank scoring information
386. For example, the DS client module 34 1dentifies a DS
unit pool associated with a highest score and identifies a set
of memory devices within DS units of the identified DS unit
pool with a highest score.

Having i1dentified the one or more resources, the DS client
module 34 accesses the DSN module 22 based on the
identified one or more resources associated with each
resource level. For example, the DS client module 34 issues
resource access requests 388 (e.g., write slice requests when
storing data, read slice requests when recovering data) to the
identified DS unit pool, where the resource access requests
388 further i1dentily the identified set of memory devices.
Having accessed the DSN module 22, the DS client module
34 receives resource access responses 390 (e.g., write slice
responses, read slice responses). The DS client module 34
1ssues the data access response 392 based on the received
resource access responses 390. For example, the DS client
module 34 decodes received encoded data slices to repro-
duce data and generates the data access response 392 to
include the reproduced data.

FIG. 10D 1s a flowchart 1llustrating an example of access-
ing a dispersed storage network (DSN) memory. The method
begins or continues at step 410 where a processing module
(e.g., of a distributed storage (DS) client module) recerves a
data access request from a requesting entity. The data access
request includes one or more of a storage request, a retrieval
request, a requesting entity identifier, and a data i1dentifier
(ID). The method continues at step 412 where the processing,
module determines a DSN address associated with the data
access request. For example, the processing module gener-
ates the DSN address for the storage request. As another
example, the processing module performs a lookup for the
retrieval request based on the data identifier.

The method continues at step 414 where the processing
module selects a plurality of resource levels associated with
the DSN memory. The selecting may be based on one or
more ol a predetermination, a range ol weights associated
with available resources, a resource performance level, and
a resource performance requirement level. For each resource

US 9,971,649 B2

13

level, the method continues at step 416 where the processing
module determines ranked scoring information. For
example, the processing module 1ssues a ranked scoring
information request to a decentralized agreement module
based on the DSN address and receives corresponding
ranked scoring information for the resource level, where the
decentralized agreement module performs a decentralized
agreement protocol function on the DSN address using the
associated resource 1dentifiers and resource weights for the

resource level to produce the ranked scoring information for
the resource level.

For each resource level, the method continues at step 418

where the processing module selects one or more resources
associated with the resource level based on the ranked
scoring information. For example, the processing module
selects a resource associated with a highest score when one
resource 1s required. As another example, the processing
module selects a plurality of resources associated with
highest scores when a plurality of resources are required.

The method continues at step 420 where the processing
module accesses the DSN memory utilizing the selected one
or more resources for each of the plurality of resource levels.
For example, the processing module i1dentifies network
addressing nformation based on the selected resources
including one or more of a storage unit Internet protocol
address and a memory device identifier, generates a set of
encoded data slice access requests based on the data access
request and the DSN address, and sends the set of encoded
data slice access requests to the DSN memory utilizing the
identified network addressing information.

The method continues at step 422 where the processing
module 1ssues a data access response to the requesting entity
based on one or more resource access responses from the
DSN memory. For example, the processing module 1ssues a
data storage status indicator when storing data. As another
example, the processing module generates the data access
response to include recovered data when retrieving data.

In one example of operation, the DSN of FIG. 1 1s grown
to accommodate additional DS units. Further explanations
of this process of deploying and growing a set of ds units at
and by non-IDA width multiples are set out below 1n
conjunction with FIGS. 11A and 11B. When DS units are
deployed 1n a DSN memory with at least an IDA width
number of DS units at a time, then maximum failure
independence and accordingly, maximum reliability and
availability are achieved. This set of DS units may be used
to create or expand a storage pool for example. However,
when fewer than an IDA width number of DS units are
deployed, it 1s necessary that some DS units will store more
than one slice for the same data source (e.g. when storing 15
slices across 5 DS umnits, each DS unit might store 3 slices
cach for the same data source). At some future time, 1t may
become necessary to expand the DSN memory with more
DS units. If the DSN memory was mitially deployed with
tewer than IDA width number of DS units then it may be
desirable to use the additional DS units to more evenly
distribute slices across a larger number of DS units, thereby
improving reliability and availability. For example, two
options exist for growing the initial deployment of 5 DS
units when growing by an additional 5 DS umits. Option 1:
Treat each set of 5 DS units (each set) independently, and 1n
a 15-wide continue storing 3 slices each to each DS unit and
store all slices on either the first set of 5 DS units, or the
second set of 5 DS units. Option 2: Use the existing set of
5 DS units, together with the new set of 5 DS unaits, to form
a larger set containing 10 DS units, over which some no DS

10

15

20

25

30

35

40

45

50

55

60

65

14

unit need to store more than 2 slices of the same source. The
second option 1s preferable from a reliability and availability
perspective.

To grow the system 1in this second way, the existing
system expansion by reallocation via a Decentralized Agree-
ment Protocol (DAP) can, according to one example, be
used as follows:

1. Maintain the existing set of DS units as 1ts own 1indepen-
dent set 1n a storage pool;

2. Form a second set of DS units composed of the existing
DS units together with the new DS units;

3. Initiate a reallocation of slices between these two sets, e.g.
by setting the weight of the first set to “0” and the weight of
the newly formed composite set equal to the size of the total
number of DS units 1n the composite set;

4. Migrate slices from the smaller set to the larger set,
moving slices to their new location 1n the new set within
which each DS unit has a smaller fraction of the namespace;
and

5. When the migration of all slices 1s complete, eliminate the
original set of DS units, leaving behind only the new
composite set.

In this way a set of DS units can be grown by as little as one
DS unit at a time. However, once the set 1s grown to a size
equal to 2*IDA width, 1t may make sense to “break™ the
large set 1nto two smaller sets, each of size IDA width (set’s
in the sense of independent locations which slices may be
mapped to by a Decentralized Agreement Protocol). Once
the set 1s broken 1n this way, only the second set 1s grown,
while the previous sets (each containing IDA width DS
units) remain unchanged in the pool and 1s not expanded in
this manner. The motivation for breaking ofl sets 1s it makes
expanding the system by fewer than IDA width at a time
more eflicient. The fewer DS units 1n the set that 1s expanded
in this way, the less total data transier i1s required.

FIG. 11A 1s a schematic block diagram of another
embodiment of a dispersed storage network (DSN) that
includes the distributed storage (DS) processing unit 16 of
FIG. 1, the network 24 of FIG. 1, and at least two storage
sets 500-1 and 500-2. The DS processing unit (computing,
device) 16 includes the DS client module 34 of FIG. 1 and
a decentralized agreement module. The decentralized agree-
ment module may be implemented utilizing the decentral-
1zed agreement module 350 of FIG. 10A. Each storage set
includes a set of storage units 36-z and may be expanded to
accommodate 1ncreasing a storage capacity level of the
storage set. For example, the storage set 500-1 initially
includes storage units 36-1 to 36-5 and 1s expanded to
include storage units 36-6 to 36-10 to form the storage set
500-2. Each storage unit may be implemented utilizing the
DS units 36 of FIG. 1. The DSN functions to migrate data
when the set of storage units 1s expanded.

In an example of operation of the migrating of data, the
DS client module 34 assigns one or more additional dis-
persed storage units to the storage set 500-1 to form a new
storage set 500-2, where data 1s encoded utilizing a dis-
persed storage error encoding function in accordance with
an mformation dispersal algorithm (IDA) width to produce
a plurality of sets of encoded data slices that the DS
processing unit 16 stores 1n the storage set 500-1 and where
cach set of encoded data slices includes an IDA width
number of encoded data slices. For example, the DS pro-
cessing unit 16 stores three encoded data slices per storage
unit of the storage units 36-1 to 36-5 when the IDA width 1s
15. The assigning of the one or more additional storage units
includes one or more of determining a number of additional
storage units, 1dentifying available storage units, and select-

US 9,971,649 B2

15

ing from the dispersed storage units identified for assign-
ment by the middle storage units to produce the one or more
additional storage units. The determining of the number of
additional storage units to add may be based on one or more
of estimated future storage requirements, an existing storage
utilization level, and a predetermination.

For each encoded data slice stored in the existing storage
set 500-1, the DS client module 34 utilizes a distributed
agreement protocol function to select a storage unit of the
new storage set 500-2 for storage of an encoded data slice.
This function may be implemented utilizing any module
and/or unit of a dispersed storage network (DSN) including
the DS Managing Unit 18, the Integrity Processing Unit 20,
and/or by one or more DS units 36-1 . . . 36-» shown 1n FIG.
1. For example, the DS client module 34 utilizes the decen-
tralized agreement module to perform the distributed agree-
ment protocol function on a slice name associated with
encoded data slice utilizing updated weights for each of the
storage units of the existing storage set and newly estab-
lished weights for each of the additional storage units to
produce a score for each storage unit of the new storage set
and 1dentifies a storage unit associated with a highest score
as the selected storage unit of the new storage set for storage
of the encoded data slice.

Having selected the storage unit, the DS client module 34
facilitates migration of the encoded data slice from the
existing storage set 500-1 to the selected storage unit of the
new storage set 500-2 when the encoded data slice 1s not
presently stored in the selected storage unit. This could
include migration to new DS units 36-6 to 36-10. For
example, the DS client module 34 receives, via the network
24, encoded data slices of storage set 500-1 (502) that
includes encoded data slice, and sends, via the network 24,
encoded data slices of storage set 500-2 (504) that includes
the encoded data slice for migration, to the selected storage
unit of the new storage set 500-2 for storage.

FIG. 11B 1s a flowchart 1llustrating an example of migrat-
ing data. The method includes a step 600 where a processing
module of one or more processing modules of one or more
computing devices (e.g., of a distributed storage (DS) client
module) assigns one or more additional storage units to an
existing storage set to form a new storage set of a dispersed
storage network (DSN). The assigning includes one or more
of determining a number of additional storage units (e.g.,
based on one or more of a predetermination, estimated future
storage requirement, and existing storage utilization level),
identifying available storage units, and selecting from the
identified available storage units based on the number of
additional storage units.

For each encoded data slice stored in existing storage set,
the method continues at the step 602 where the processing,
module utilizes a distributed agreement protocol function to
select a storage unit of the new storage set for storage of the
encoded data slice. For example, the processing module
performs the distributed agreement protocol function on a
slice name associated with encoded data slice utilizing
updated weights for the storage units of the existing storage
set and newly established weights for the additional storage
units of the new storage set to produce a score for each
storage unit of the storage set and identifies a storage unit
associated with a highest score of a plurality of scores as the
selected storage unit.

The method continues at the step 604 where the process-
ing module facilitates migration of encoded data slice from
the existing storage set to the selected storage unit of the
storage set when the encoded data slice 1s not presently
stored within the selected storage unit. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

16

processing module retrieves encoded data slice from the
existing storage set and sends the encoded data slice to the
selected storage unit for storage.

The methods described above in conjunction with the
computing device and the storage units can alternatively be
performed by other modules of the dispersed storage net-
work or by other devices. For example, any combination of
a first module, a second module, a third module, a fourth
module, etc. of the computing device and the storage units
may perform the method described above. In addition, at
least one memory section (e.g., a {irst memory section, a
second memory section, a third memory section, a fourth
memory section, a fifth memory section, a sixth memory
section, etc. of a non-transitory computer readable storage
medium) that stores operational instructions can, when
executed by one or more processing modules of one or more
computing devices and/or by the storage units of the dis-
persed storage network (DSN), cause the one or more
computing devices and/or the storage units to perform any or
all of the method steps described above.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between 1tems. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent. Such relativity between 1tems ranges
from a difference of a few percent to magnitude differences.
As may also be used herein, the term(s) “configured to”,
“operably coupled to”, “coupled to”, and/or “coupling”
includes direct coupling between 1tems and/or indirect cou-
pling between 1tems via an 1ntervening item (e.g., an 1tem
includes, but 1s not limited to, a component, an element, a
circuit, and/or a module) where, for an example of indirect
coupling, the intervening item does not modily the infor-
mation of a signal but may adjust 1ts current level, voltage
level, and/or power level. As may further be used herein,
inferred coupling (1.e., where one element 1s coupled to
another element by inference) includes direct and indirect
coupling between two 1tems in the same manner as “coupled
to”. As may even further be used herein, the term “config-
ured to”, “operable to”, “coupled to™, or “operably coupled
to” 1ndicates that an item includes one or more of power
connections, input(s), output(s), etc., to perform, when acti-
vated, one or more 1ts corresponding functions and may
further include inferred coupling to one or more other items.
As may still further be used herein, the term “associated
with”, includes direct and/or indirect coupling of separate
items and/or one item being embedded within another item.

As may be used herein, the term “compares favorably”,
indicates that a comparison between two or more items,
signals, etc., provides a desired relationship. For example,
when the desired relationship 1s that signal A has a greater
magnitude than signal B, a favorable comparison may be
achieved when the magnitude of signal A 1s greater than that
of signal B or when the magnitude of signal B 1s less than
that of signal A. As may be used herein, the term “compares
unfavorably™, indicates that a comparison between two or
more items, signals, etc., fails to provide the desired rela-
tionship.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, “processor’, and/or “processing
unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputer, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on

US 9,971,649 B2

17

hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an ntegrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that if the
processing module, module, processing circuit, and/or pro-
cessing unit includes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that i1 the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more ol its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional 1nstructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational 1nstructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
clement can be included 1n an article of manufacture.

One or more embodiments have been described above
with the aid of method steps 1llustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claims. Further, the boundaries of these func-
tional building blocks have been arbitranily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

To the extent used, the flow diagram block boundaries and
sequence could have been defined otherwise and still per-
form the certain significant functionality. Such alternate
definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be
implemented as 1llustrated or by discrete components, appli-
cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereol.

In addition, a flow diagram may include a “start” and/or
“continue” indication. The “start” and “‘continue™ indica-
tions reflect that the steps presented can optionally be
incorporated 1n or otherwise used 1n conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue™
indication retlects that the steps presented may be performed

10

15

20

25

30

35

40

45

50

55

60

65

18

multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a tlow diagram 1ndi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

The one or more embodiments are used herein to illustrate
one or more aspects, one or more features, one or more
concepts, and/or one or more examples. A physical embodi-
ment of an apparatus, an article of manufacture, a machine,
and/or of a process may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from Figure to Figure, the embodiments may incorpo-
rate the same or similarly named functions, steps, modules,
ctc. that may use the same or different reference numbers
and, as such, the functions, steps, modules, etc. may be the
same or similar functions, steps, modules, etc. or different
ones.

Unless specifically stated to the contra, signals to, from.,
and/or between elements 1n a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, i a signal path 1s shown as a single-ended path, 1t
also represents a diflerential signal path. Similarly, 11 a signal
path 1s shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

The term “module” 1s used in the description of one or
more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate 1n association with a memory that stores operational
instructions. A module may operate independently and/or 1n
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
cach of which may be one or more modules.

As may further be used herein, a computer readable
memory includes one or more memory elements. A memory
clement may be a separate memory device, multiple
memory devices, or a set of memory locations within a
memory device. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-
volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital
information. The memory device may be 1n a form a solid
state memory, a hard drive memory, cloud memory, thumb
drive, server memory, computing device memory, and/or
other physical medium for storing digital information. A
computer readable memory/storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

While particular combinations of various functions and
features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present
disclosure 1s not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

US 9,971,649 B2

19

What 1s claimed 1s:

1. A method of growing a dispersed storage network, the
dispersed storage network including a first set of dispersed
storage units, wherein a first dispersed storage unit of the
first set of dispersed storage units stores a first encoded data
slice and a second encoded data slice and wherein the first
encoded data slice and the second encoded data slice origi-
nate from a first data source, the method comprising:

assigning one or more additional dispersed storage units

to the dispersed storage network including the first set
of dispersed storage units to form a second set of
dispersed storage units the second set of dispersed
storage units including the first set of dispersed storage
units and the one or more additional dispersed storage
units;

reallocating the first encoded data slice from the first

dispersed storage unit to at least one of the one or more
additional dispersed storage units of the second set of
dispersed storage units that does not presently store the
first encoded data slice; and

facilitating migration of the first encoded data slice from

the first dispersed storage unit to the at least one of the
one or more additional dispersed storage units of the
second set of dispersed storage umts that does not
presently store the first encoded data slice.

2. The method of claim 1, wherein the dispersed storage
units 1n the first set of dispersed storage units are fewer than
an mformation dispersal algorithm width number.

3. The method of claim 1, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network comprises determining a number of additional
dispersed storage units.

4. The method of claim 3, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network comprises i1dentifying the one or more additional
dispersed storage units.

5. The method of claim 4, further comprising selecting the
one or more additional dispersed storage units 1dentified for
assignment.

6. The method of claim 3, wherein determining the
number of additional dispersed storage units 1s based on one
or more of a predetermination, an estimated future storage
requirements and existing storage utilization levels.

7. The method of claim 1, wherein assigning one or more
additional dispersed storage units to the dispersed storage
network uses a distributed agreement protocol.

8. The method of claim 7, wherein the distributed agree-
ment protocol updates first weights for dispersed storage
units of the first set of dispersed storage units and establishes
second weights for the one or more additional dispersed
storage units.

9. The method of claim 1, wherein facilitating migration
comprises sending the first encoded data slice to a dispersed
storage computing device.

10. A first dispersed storage unit of a first set of dispersed
storage units for use 1n a dispersed storage network, the first
dispersed storage unit comprising;

a communications interface;

a memory; and

a Processor;

wherein the memory includes a first encoded data slice

and a second encoded data wherein the first encoded
data slice and the second encoded data slice originate
from a first data source and wherein the memory further
includes instructions for causing the processor to:
assign one or more additional dispersed storage units to
the dispersed storage network including the first set

10

15

20

25

30

35

40

45

50

55

60

65

20

of dispersed storage units to form a second set of

dispersed storage units the second set of dispersed

storage units including the first set of dispersed
storage units and the one or more additional dis-
persed storage units;

reallocate the first encoded data slice from the first
dispersed storage umit to at least one of the one or
more additional dispersed storage units of the second
set of dispersed storage units that does not presently
store the first encoded data slice; and

facilitate migration of the first encoded data slice from

the first dispersed storage unit to the at least one of

the one or more additional dispersed storage units of

the second set of dispersed storage units that does not

presently store the first encoded data slice.

11. The first dispersed storage unit of claim 10, wherein
the dispersed storage units in the first set of dispersed storage
units are fewer than an information dispersal algorithm
width number.

12. The first dispersed storage umit of claim 10, wherein
the memory further comprises instructions for causing the
processor to determine a number of additional dispersed
storage units.

13. The first dispersed storage umit of claim 12, wherein
the memory further comprises instructions for causing the
processor identity the one or more additional dispersed
storage units.

14. The first dispersed storage unit of claim 13, wherein
the memory further comprises instructions for causing the
processor to select the one or more additional dispersed
storage units for assignment.

15. The first dispersed storage umit of claim 12, wherein
the instructions for causing the processor to determine a
number of additional dispersed storage units uses one or
more ol a predetermination, estimated Ifuture storage
requirements and existing storage utilization levels.

16. The first dispersed storage umt of claim 10, wherein
the instructions for causing the processor to assign one or
more additional dispersed storage units to the dispersed
storage network uses a distributed agreement protocol.

17. The first dispersed storage unit of claim 16, wherein
the distributed agreement protocol 1s operable to update first
weights for dispersed storage units of the first set of dis-
persed storage units and operable to establish second
weights for the one or more additional dispersed storage
units.

18. The first dispersed storage umt of claim 10, wherein
the memory further comprises instructions for causing the
processor to send the first encoded data slice to a dispersed
storage computing device.

19. A dispersed storage network comprising:

a first set of dispersed storage umts including a first

dispersed storage unit;

the first dispersed storage unit including:

a communications interface;
a memory; and
a Processor;
wherein the memory includes a first encoded data
slice and a second encoded data wherein the first
encoded data slice and the second encoded data
slice originate from a first data source and wherein
the memory further includes nstructions for caus-
ing the processor to:
assign one or more additional dispersed storage
units to the dispersed storage network imncluding
the first set of dispersed storage units to form a
second set of dispersed storage units the second

Us 9,971,649 B2
21

set of dispersed storage units including the first
set of dispersed storage units and the one or
more additional dispersed storage units;
reallocate the first encoded data slice from the first
dispersed storage unit to at least one of the one 5
or more additional dispersed storage units of the
second set of dispersed storage units that does
not presently store the first encoded data slice;
and
facilitate migration of the first encoded data slice 10
from the first dispersed storage unit to the at
least one of the one or more additional dis-
persed storage units of the second set of dis-
persed storage umts that does not presently
store the first encoded data slice. 15
20. The dispersed storage network of claim 19, wherein
the dispersed storage units in the first set of dispersed storage
units are fewer than an information dispersal algorithm
width number.

20

22

	Front Page
	Drawings
	Specification
	Claims

