US009965481B2

12 United States Patent 10) Patent No.: US 9.965.481 B2

Pauly 45) Date of Patent: May 8, 2018
(54) APPARATUS, SYSTEMS AND METHODS (56) References Cited
FOR DATA STORAGE AND/OR RETRIEVAL |
BASED ON A DATABASE U.S. PATENT DOCUMENTS
MODEL-AGNOSTIC, SCHEMA-AGNOSTIC
’ 4,796,218 A 1/1989 Tanaka et al.
AND WORKLOAD-AGNOSTIC DATA 5,555,392 A 9/1996 Chaput et al.
STORAGE AND ACCESS MODELS 6,202,128 Bl 3/2001 Chan et al.
6,865,657 B1* 3/2005 Traversat GO6F 12/0276
(71) Applicant: Edge Intelligence Software, Inc., 707/999.202
Guilford, CT (US) 7,035,998 Bl 4/2006 Nemurovsky et al.
! 7,546,512 Bl 6/2009 Xu et al.
(72) Inventor: Duncan G. Pauly, Bristol (GB) (Continued)
(73) Assignee: EDGE INTELLIGENCE FOREIGN PATENT DOCUMENTS
SOFTWARE, INC., Guliord, CT (US) P 5 040 180 Al 3/2000
JP 07-234879 A 9/1995
(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 573 days.
OTHER PUBLICATIONS

(21) Appl. No.: 14/256,421 |] _ o
Chinese Office Action for Application No. 201180026789.2 dated

(22) Filed: Apr. 18, 2014 Feb. 3, 2015, 32 pages.

(Continued)
(65) Prior Publication Data

US 2014/0317115 A1 Oct. 23, 2014 Primary Examiner — Khanh B Pham

(74) Attorney, Agent, or Firm — Nutter McClennen &
Related U.S. Application Data Fish LLP; David J. Powsner; Michael P. Visconti

(63) Continuation of application No. 13/080,988, filed on (57) ABSTRACT

Apr. _6f 201, no.w Pf'at. No. 8,738,608. A database access model and storage structure that efli-
(60) Provisional application No. 61/321,374, filed on Apr. ciently support concurrent OLTP and OLAP activity inde-

6, 2010. pendently of the data model or schema used, are described.

The storage structure and access model presented avoid the

(51) Imt. CL need to design schemas for particular workloads or query
Goot 17/30 (20006.01) patterns and avoid the need to design or implement indexing

(52) US. CL to support specific queries. Indeed, the access model pre-

CPC .. GO6F 17/30091 (2013.01); GO6F 17/30297 sented is independent of the database model used and can
(2013.01) equally support relational, object and hierarchical models

(58) Field of Classification Search amongst others.
CPC e, GO6F 17/30091
See application file for complete search history. 2 Claims, 14 Drawing Sheets

Transaction Handiles

Transaction Header

Segment Chains

CollectionPathC [|
{ Transaction X l
Transaction Y b oodion

Transaction
Segments

-

-
Watermark

US 9,965,481 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS JP 09-305622 A 11/1997
JP 10-091398 A 4/1998
8,738,608 B2 5/2014 Pauly JP 10-247203 A 9/1998
2002/0099918 Al* 7/2002 AVNEr ..oovoovevereeenn.. GO6F 12/023 JP 2000-155706 A 6/2000
711/170 JP 2001-043237 A 2/2001
2002/0152457 Al 10/2002 Jahnke IP 2007-034933 A~ 2/2007
2004/0001498 Al 1/2004 Chen et al. WO 00/58871 A2 1072000
2004/0002993 Al 1/2004 Toussaint et al.
2004/0059743 Al 3/2004 Burger OTHER PUBLICATTONS
2005/0165807 Al 7/2005 Srinivasan et al.
2005/0289188 Al* 12/2005 Nettleton GO6F 17/30008 Japanese Office Action for Application No. 2013-503887, dated
707/999.2 Feb. 17, 2015 (7 pages).
2007/0136546 Al* 6/2007 Krauss GO6F 11/3409 PCT Search Report for application No. PCT/US11/31405 dated Jun.
711/170 9, 2011, 37 pages.
2007/0192863 Al 8/2007 Kapoor et al. Singapore Office Search Report and Written Opinion for Applica-
2009/0043733 Al 2/2009 Kingsford et al. tion No. 201207444-9, dated Sep. 19, 2013. (10 Pages).
2010/0070727 Al1* 3/2010 Harrisoooooevvvvvnnn... GO6F 9/528 Extended European Search Report for Application No. 11766650.3,
711/163 dated Sep. 20, 2016 (11 pages).
2010/0082898 Al 4/2010 Mangold et al.
2011/0252073 Al 10/2011 Pauly * cited by examiner

U.S. Patent May 8, 2018 Sheet 1 of 14 US 9,965.481 B2

FiG. 1

CPU Cache

Maln Memory

Storage

LT T Y]

\ \
ﬁ .5 - -l'. . 1 '.-‘\-'- - 1 I .) L ‘_‘.‘ '.l:.h . :2 E
” T FE :ﬁl}:‘}}:}'ﬁ\t **n"ﬁh‘q‘q‘q‘-.'-.'-ﬂ-'ﬂ.hhhh“hhhhhhhh " '-.-"1'-’-. $ % 3 f %ﬁ%% h gkhxﬁ-\i ‘Etl“%ttﬂk‘ N .}?
. N e I LR W \ R R -
'\‘\ PSR A R R Y 1‘_‘.;-"4
W] 200X

"y
3

Soa N g i e My g .
3 ""«L‘

'l..l. L - *, » v . . " Lo
o for oftwer abwork} POV
- .
"
)

R
- . L
L NN I i

b

3 & O

.'.'5 o N i“-.w.i.u'-kk\.l.u'.;n".* ~
- o AR e

b CC

™

e

Developsy R EN

'l.-"h"h"b"h"u"v.-‘b‘n‘t‘i‘b‘h‘hh‘b‘h‘u‘b‘n‘n‘t‘h'h'h‘b‘b‘h‘u‘u:t .

Lt o o A 0 b b o af at ot o ol

38
A

aaaaaa

. . LS
t‘“‘hﬁxx*-;.;.;-;-:.:uxnw'“

5,

Fj
':F

v
e

,'.'.-.'.'.'.'.'.'.'.'Z.-.-{.'.'.'.'.'.'.'.'.-.'.'.'.'.'.:,

e

e et

P

gads

DE Seereer sfare

s
B A A o L L A A A ol sl g o 2
%-’f:’:’.’u’-r’t’t’r’f-’ff:’.’u’u’-:;f{fff

N . . e
R e R

U.S. Patent

4 & & 4 & 4 & & & & & & & & A & & & & & & & & & & & & & & & & & & 2 & A & b E A b ko ok b koA L b & & b A & & o d A A o h o d A b o h oA ok b ok oA ko b & & b A & b o d oA A ko d oA b o d oA o b koA ko b oA & b A & b o d A A o h o d oA b od oA o ko koA ko b oA b A & b o d oA A o h o d oA ok o d oA ok b ok oA ko b A o b A A b od oA A o h o d oA b ok oA o ok koA ok koA ok b A oA b o d A oA ok o d oA b ok oA o ok ok oA ko koA A ok oA oAk koA Ao dod oA A d o E oL X

Aimr i Aur R AR Ay, v AT AR S AR AR S A X,

A,
[U

May 8, 2018 Sheet 2 of 14

FilG. 3

Computer

Database

R R R ath R Rtk RN NN SR BN Nk B R R R -t Nl -t - T - - - e -

Liser Intertace

" 3
A,
w
r
A,
L1
a
A,
L1
F 3
A,
L'
a
A,
i
a
",
i
w
A,
i
r
A,
i
wr
A,
i
w
A,

SFEWSLEWLAERSFAS AR LA L

7
;
;
;
:
:
:
g
g
:
E
E
:
E
E
K
.::
K
:
K
:
K
::
K
E
:
E
:
:
:
:
:
:

R

Language Interface

o T e T T TS TS TS TS T O X KT R S ST T T T T T T T I

Schema Definition

AR A A fa i gl e AR e s AR AR ARG N SRR AT

Execurt

on Engine

;
|
|
|
E
E
:
,=.
,t.
|
i:
|
|
|
|
|
|
z
i
|
|
i
i
i
3
i
i

i
'
.
>
L3
.
by
“l
.
by
"I
"
™
o
"
b
o
n

i 0 A T N I ol 0, 0 A AT STl A 0, A A o B AT A A 0 A0 A A A 0 M A AN A

L I N N I N I L I I I I I I D I I I L I B R O I I I I B I L L O N N N I I I I D R L DL IO DL IO O D I D D I I D R DL DL D DL D D DO D DO D DO IO B |

ad Bz EEndEn e AN AE AP IR IR AR AT R I R A A RSP RE T RERFAE R AL FAL R FLCE YA FYE IV O I YO RV D @AY @ w

Operating Syste

US 9,965,481 B2

EAFARAARAATFARFAY P

ES S EE S AR EE T I R I AN AR A RN A RN A NN ARG RSBmO I8 AR LR YRR T R AR T. I 2T . A1V A1V NIl Il LTINS BT E N EE
H B " H A REHB REEN RBEEDRf ES AT S-S TESE TSRO EREL GO ESLIe AL BETel BTN EET S EESENEESENEECEEECDE S DR BB AN . A A AEE NEE -I-I'I--I'-'I-l'-"

AW YL YWy vy Ay AW iy a Y P AN A AR PR AP AP R R PR Ay g A P A Ay F AN AR Rl W A A L AN A

w

le System

Fawranrssrd s rdsnda

US 9,965,481 B2

Sheet 3 of 14

May 8, 2018

U.S. Patent

FiIG. 4

Users

age

T T T T T

X

ery Langu
(Synt

QU

1CS

Data Model
(Semant

-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-

r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L

L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-

-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-

r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L

L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-

-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-

r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L

L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-

-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-

r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L

L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-

-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-

r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L

L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-
L
-
-

-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
L
-
-+
-+

-
-+

* F PSS EFEFE S TE S E S E S TE S E S E S E S E S E S EFESET
L L N N N N N N N N N N N N N O O -+

L N N N L N N L N N N
* F FF S FF S F S E S S FFSF S ESEFT -

L N N N N N N N N N L N O N N N N O
iiiiiiiiiiiiiiiiiiiiiiiiiii i
i
-1
i

* F PSS EFEFE S TE S E S E S TE S E S E S E S E S E S EFESET
L L N N N N N N N N N N N N N O O
L N N N N N

+ 4+ LT 1iiii L N N N N
L L N N N N N N N N N

ii.‘iii.‘ii.‘

4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
L N N r
4 8 FF .
* F £ FFEL L
4+ FFTrr r

. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -
L -
r L
. -

+ ¥
L L N N N N N N N N N
+ + TP
* F FFFE S E S E S E S E
4 4 84 5SS F S F S EP TSRS
* F F FFFEFEFEPESFEESF RS
+ F FfFFFF S F S E SRS
L L L N N N N N N
+ + TP
* F FFFE S E S E S E S E
4 4 F 45 F S F P EF S ES
L L N N N N
+ F FfFFFF S F S E SRS
L L N N N N N N N N N
+ + TP

4 4 845 F S F SR
L N N N N
* F FF S FF S S FF S FEF + F F 5 585 EIE N B BE BE BT B B B
L L N N N N N N N N N N N
+ T
* F FFFEFEFEFEF S EESFEES
L L N N N N N L
L N L N N L
* F FF S FE S E S FF S FF ST
L L N N N N N N N N N N N
+ + TP
* F FFFEFEF S EESFEES

L L N N N N
L N N R N N
L L N N N N N N N N N

* F FFFE S E S E S E S E
4 4 F 45 F S F P EF S ES
L L N N N N
+ F FfFFFF S F S E SRS
L L L N N N N N N
+ F Ff FFFFFEF SRS
* F FFFE S E S E S E S E
4 4 F 45 F S F P EF S ES
L L N N N N

L N N N N N

-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-+
-+
-
-
-+
-
-+
-+
-
+ T -+
-+

- LOL L
EIE DR SE DEE D Y
L LN
LREBE D OE O 3F O
L LI
ERE DD D O 0 O
L LI
LR N NN N
EIE DR | L L LN
LI A IR N A N N N A N N A EIENE S RENE DE N Y
EIE N DE BE R B N D R N L LI
L L
L

.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
r
.
L
L
.
L
r
.
L
r
.
L

* F £ F P

L N N
L N N N N
* F F FFEFFEL
L L N N

. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
L
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
* T
. 4
* ¥
-+

LUE B B NE BE B UL B N UL B B UL N B L B N N N B N N B N B B L B B N N B N N B N N B N N B N N B N N N N N B N N B B B

L L N N N N N N N N N
+ + PR
* F FFFE S E S E S E S E

* F PSS EFEFE S TE S E S E S TE S E S E S E S E S E S EFESET

R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
ENE R N N N D A A R e A N N R I A A A A A D A e e S D R D O N N A B D B
._.._.._.._.._.._.._.._.._.._.._.1++1++E+1++1++1++1++1++1._.._.
* F FFFEFEF S EESFEES * F ¥ FFFEFEFE S E S E S ER
R e N N D D A A R A A M D I e A e e A A e R D A A N A N D D N
LOEDE DR SE NE N BE B DR D DR D N0 E BE BE Bk T EIESERE NE S N DE D D DE DK DE AE 0 0k 0k 0F B
L N N N N L N N N .] L + F FfFFFF S FF S F S FF S FFS
ERERERE S A N e B D DE A D N e e B M - EIEIE R A A N e D D E D R e A 0 B O B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk L] EDESENE E SE ML S DE DE DR D DE E ME 0E 0E B
* F FFFE S E S E S E S E - * F ¥ FFFEFEFE S E S E S ER
EREREE SE N BE B D E D D N NE N B B B , ERESERERE A AR S DE DE D O D ME e M B M T
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 EIESERE NE S N DE D D DE DK DE AE 0 0k 0k 0F B
+ F FfFFFF S F S E SRS * F FF S FF S E S S FE S EFSF
ERERERE S A N e B D DE A D N e e B M ERESE R R A A S DE D DE F D NE N 0 0 B 0 B
E N N N L N L N N L N L N N N L
* F FFFEFEF S EESFEES * F £ F 4P + F F FFFFF T
ERERESE S S B B D DE D D N NE e B ERE E NN | EIEDE D N e M A
EBEDE DR SE SE NE B B DR E DR D 0 0E 0 0 LIE SN LOEDE DR O O B
+ F FfFFFF S F S E SRS + 5 + FFFFFF
ERERERE S A N e B D DE A D N e e B M LR E EIEDE DR A B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk LR L LR DE DR BE A B
* F FFFE S E S E S E S E + 4 ¢ 8 2 * F £ FFFr
EREREE SE N BE B D E D D N NE N B B B LR EREDE D E N0 M 0
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 LBEDE D BE O EDEDE DR BE O O B
* F FF S FF S FF S S FE S F ST * F £ FFEL * F FFFEF T
ERERERE S A N e B D DE A D N e e B M LR DE D EREDE R DE A O B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk EIEDE B 3 K EDEDE DR B 0 ME M 0
* F FFFE S E S E S E S E * F £ F P + FFFFFF T
EREREE SE N BE B D E D D N NE N B B B ERE E M EREDE D E N0 M 0
* F FFFFEFEF S EPESF S ET * F F F 4P + F F FFFFFF
+ F FfFFFF S F S E SRS + FFF L I B N N R R R R
EIEDERE S E N B B D e D N N B M EIE DR R NE L N BB DR B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk EIEDE B 3 K DR DE D BE NE ME L DE DR DE O B
* F FFFEFEFEFEF S EESFEES + F FFFp + F FFFFF S FFF T
EIE R A S e D DE AE D A A B D D D N N Il It B B A D N N N EREDE D E N0 M 0
EBEDE DR SE SE NE B B DR E DR D 0 0E 0 0 LIEDE DK EDEDE DR BE O O B
* F FF S FF S S FF S FEF + FFF * F FFFEF T
EREDE R S S NE B B D E D D N NE N I ERE D N N I I I R e N A B
EREDE SE SE SE BE DR DR E D D AE K 0 0 0 EDEDE D NE NE BE 0L 0 EDEDE DR B 0 ME M 0
* F FFFFFEFE S E S E ST * F FFFFFF + FFFFFF T
EREREE SE N BE B D E D D N NE N B B B R BE N D N N EREDE D E N0 M 0
LIEDE D SE NE N B B DR D D D A N0 0 BE 0 Bk LR N NE N0 BE ML I EDEDE DR BE O O B
+ F FfFFFF S F S E SRS L N N N N * F FFFEF T
EREDE R S S NE B B D E D D N NE N I LI SEDE D N N B B AE A EREDE R DE A O B
EREDE SE SE SE BE DR DR E D D AE K 0 0 0 EREDE N N EDEDE DR B 0 ME M 0
* F FFFEFEF S EESFEES * F £ F P + F F FFFFF T
EIEDEE SE S B M D AR E N N N N LR E N L DD N L]
EIEIERE SE AL S DE D DR DE DK DE AE ME BE D Bk I e 3 w3k B MR BE N LR DE DK B 0
. N L N N N N B R * F FFFEF T
e A A A N N D A A A A A M D A A A M B AR N EREDE R DE A O B
IR e A A M D D A D E e AR D D D DR A K BE ME MR DR E 0K B EDEDE DR B 0 ME M 0
* F FFFE S E S E S E S E S E S E S ET + F F FFFFF T
LR A A N M R D A A R A A D M D D A NE B MR BE DE O N LBEDEDE DE A 0 A0 M
LIEDE DR SE NE N BE B DR D DR B O N0 0E BE BE Bk 0 4 LIEDE DK LI E NE B B 0E B
L N N R N N L + F # 5 - * F FFFEF T
ERERERE S A N e B D DE A D N e e B M - EIENE N EREDE R DE A O B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk L] LR L ’ EDEDE DR B 0 ME M 0
* F FFFE S E S E S E S E - * F £ F P + FFFFFF T
EREREE SE N BE B D E D D N NE N B B B , LR L EREDE D E N0 M 0
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 4 LIEDE DK EIEDENE ME 3E B 0E B
+ F FfFFFF S F S E SRS + FFF + FF P F S FFF
EIEDERE S E N B B D e D N N B M LR SE N R N A L B A D R e N B M B
+ F FfFFFF S FF S FF S E S ESES + F FF * F FFFEF T
* F FFFE S E S E S E S E d ¥ F F & 5 + FFFFFF T
EREREE SE N BE B D E D D N NE N B B B = EIENE N EREDE D E N0 M 0
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 LI N NE N BE 0 EDEDE DR BE O O B
+ F FfFFFF S F S E SRS * F ¥ FFEET * F FFFEF T
ERERERE S A N e B D DE A D N e e B M ERE DE D A EREDE R DE A O B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk LIE SN EDEDE DR B 0 ME M 0
* F FFFE S E S E S E S E + 5 + F F FFFFF T
EREREE SE N BE B D E D D N NE N B B B EIE D I ar D D N N A A A M T
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 LIE D ERERENE BE BE BE DR DR O B
. N L N N N N B R L N N N N N N
ERERERE S A N e B D DE A D N e e B M ERERENE S N B B D A B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk EDEDE DR B 0 ME M 0
* F FFFE S E S E S E S E + FFFEFF
EREDE D NE N B B D L D D N e e B B B LIE DD N N N L]
* F FFFFEFEF S EPESF S ET * F LS FF S F ST
+ F FfFFFF S F S E SRS * F £ FFEL L
ERERERE S A N e B D DE A D N e e B M ERE DE D B 0
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk LIE D DE S N 0 L]
* F FFFE S E S E S E S E + F FFFFFF
EREREE SE N BE B D E D D N NE N B B B ERE DE N B 0 N N ,
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 L N e N NE B DR
+ F FfFFFF S F S E SRS F F F F FFFF L
ERERERE S A N e B D DE A D N e e B M ERE D E N N B N
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk LIE D DE S N 0 L]
* F FFFE S E S E S E S E + FFFEFF
EIERE A S S BE D D A D R A A B B B D N T e ERE D N N N ,
LOEDE DR SE NE N BE B DR D DR D N0 E BE BE Bk LB K LR DE DK B 0
L N N N N L N N N .] + F 1 5 * F £ FFEL L
EIEDERE S E N B B D e D N N B M LN LB N N e N
+ F Ff FFFFFEF SRS + F F P * F F FFFP L
* F FFFE S E S E S E S E + F FFFFFF
EREDE D NE N B B D L D D N e e B B B LR E N L]
EREDE D SE S0 NE D B DR DE DR B NE K 0E 0E 0k 0 LOEDE DR O O B
+ F FfFFFF S F S E SRS + FFFFFF
ERERERE S A N e B D DE A D N e e B M LR DERE B A N B
EREDEE NE NE BE B DR D D DR NE 0K 0E BE BE Bk L) EREDE DR S N NE N N
* F FFFE S E S E S E S E + 5 + F F FFFFF T
ENE R A N e R D A A D A e N B A B ERESERERE A AR S DE DE D O D ME e M B M T
EBEDE DR SE SE NE B B DR E DR D 0 0E 0 0 EIESERE NE S N DE D D DE DK DE AE 0 0k 0k 0F B
* F FF S FE S E S FF S FF ST * F FF S FF S E S S FE S EFSF
EREDE R S S NE B B D E D D N NE N I ERESE R R A A S DE D DE F D NE N 0 0 B 0 B
EREDEE NE NE B D DR D D D NE K 0E BE 0k Bk L IEIERE SE A S DE DR D E DK DE AE ME 0L B D 0E 2 0
* F FFFEFEF S EESFEES [* F ¥ FFFEFEFE S E S E S ER
ERERESE S S B B D DE D D N NE e B LI S S ME D D E M R N A A D D D A
* F £ FFEFEFEESFEEF RS * F £ FFFEFEFEPFESFEESF SR
* F FF S FF S S FF S FEF L L N N N N N N N N L N N
EIEDERE SE S NE B B D R D N N - LIRS RE N S N B D D E D R NE N 0 0 B
+ F FFFFF S FE S FEFEES L LR N N N N N N N N N N L N N
* F FFFEFEF S EESFEES - * F ¥ FFFEFEFE S E S E S ER
EREREDE S N BE B B E A D N e N N N + . EIE I A S S DE D DE E D R A A A D D D A
EIEDE D SE E N M D D E D DE 0E 0E 0E 0 0 LR A N N e D D E DR E AE MR L D DE DR MK B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
E N N N N N N N N N N N N L N N N N N N N N N N N N N N L N
L R N N N R R N N
EIE R A N N D D A A R e A M R N A A A A B A N A N D D D D N N D D
L N N N N N N N L N N I
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L N N N N N N N L N N I
E L N N N N N N N N N L N N N N L N
LR e N N D D A R A A N D R A A A A A D A e A N D D D D N N kB D B
E N N N N N N N N N N N N L N N N N N N N N N N N N N N L N
L R R I N R N N R N
LR A N B B R A A e e A N M D D A D R A A D D D N R A A B R D N e N N L]
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
E N N N N N N N N N N N N L N N N N N N N N N N N N N N L N
L R N N N R R N N
LR A N B B R A A e e A N M D D A D R A A D D D N R A A B R D N e N N L]
L N N N N L R R R N R R N
E L N N N N N N N N N L N N N N L N
LR e N N D D A R A A N D R A A A A A D A e A N D D D D N N kB D B
E N N N N N N N N N N N N L N N N N N N N N N N N N N N L N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
LR e N N D D A R A A N D R A A A A A D A e A N D D D D N N kB D B
E N N N N N N N N N N N N L N N N N N N N N N N N N N N L N
L R N N N R R N N
EIE R A N N D D A A R e A M R N A A A A B A N A N D D D D N N D D
L N N N N N N N L N N I
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N
R e e N N D A A e A A A M N I A A A A A B A N A A A e D D A D N A D D D
L R A N N D A A e A A N D R N A A A A A D D B e A N D D DR D D NE Nk 0k DL DE B
E L N N N N N N N N N L N N N N L N
e R N N N A A A A A A A M N A A A A A D A e A A D D D O D E NE A 0 B D B
IR e A N N N D A A e e A D B I A A A A A D A A A D D D D D A R N D D N N
L R N N N R R N N

U.S. Patent

May 8, 2018

Sheet 4 of 14

FIG. 5

h‘-‘*—‘\“‘""""““‘f‘“‘?ﬁ‘ﬁnﬁ_

\'.\-\\wﬂﬁ:} R
o ‘:"'.:':\." .'5:".._1:.':&'..l

Path: Val

. RN
"-.1._'-‘&"'2!."1'-"'-."-":"'.‘-“‘HHHHH“-“E‘:NR u*«!'-”""':'ﬁ'} TN
AN e 2 o ™ S
o ‘hq\-.ﬂ;u:-.'-.‘-. ‘.‘-h"'.."-..:n.;_ﬁ._-.ﬁhx _.‘::-. \ﬁ.%::}?*
-;-t"-""":'“ ' x"""ﬁ-'h"\ & s
o TR ¢ o
o BN ¥
&
i
N e,
> & Ny
R & Path ™
a,j.‘x‘-q"'-."'-'."-"'-\“q % = . Va I Y
i §
) \, X)
st b ‘ \ >
$+ \‘-‘3“‘ _ ,q:_.q.:«.“-':- AN
$ "ﬁ"'t‘t‘.,_'-.,_‘-.._'-.l_-.q_-.a.‘b;h.:-,".‘;‘:q‘:' _,'.q‘x"'n"'-r"' ""1.""':""."'-.&
o "N_\‘.‘
§ ¢ it
) .)
% \ Path:Val \
Y Path ™ H
_ Mg ¥
d 2o o
%Hﬂ%ﬂx_x._nxx ‘m\ﬁf‘n‘?mﬁtxxx_\‘r‘\xx*& “:‘-.‘n.""-"ﬂﬂxwﬁﬂ.x‘w.‘xﬂmx-. n '
A
-t.":".h \'"1 .
b -
§ Path:Val "y
% . ¥ d
'.",.':
, \\‘\‘ 1.:'-.1"‘1}
Ll x>
xx}""‘-\'ﬁ‘\:&h‘x‘qs}t‘:‘;ﬂh‘h‘ oy - HH\K‘I;HH‘:‘:‘:‘:‘:‘.EE‘QLH"E
b & T
l 'I
l.-_‘) Pa th . VEI | 1'-., AL ALY AL .
. = RS o bl AR
\;“‘ L -‘l\ J.,.'::. *:.,l"l.\"-.."".“- H“‘h\.‘
at *~. .
H‘:"““T*-‘u‘ﬁ'wu e Rﬁ\h\““‘ﬂ‘:‘*‘w‘w‘u‘ﬂcﬁm\mﬂx\u S :"? Fja th : V I \
. T ¥
\:\\ \%‘-«. 1‘\"3 .
" 2 o -
\\:":“h.. \\ SRS ATRRINEA LR a "':'f
HXH&“‘H&H& o &
‘L‘fﬂn;u.u.w:-.,xxx*-‘u‘tw"h \\ -.;3":'
- l\‘ .::"
N &
A SN q-‘-..‘t“*‘:h&
AN e
I G' 6
““‘:‘1‘:{‘-

-.,.‘-.L‘.
Y m
o ey

US 9,965,481 B2

Element

Collection

A
\:":{\“*-‘k\\.\

o \1‘:““““‘ \"-,
At h b L . : 8
S S g
a}*“& \‘:“Rw
A - Ay,
‘:::1-1" 8 "-"-‘~‘-“-“-“"“"“’“““xxxxxxxxxxxxxxﬁ‘ﬂm_& ﬂ‘ﬁ.._xxu:m:axxxn*.*-.mxxu‘:-‘-:-:-mx IEEEETERETLLLLLLLLLL L
& e B o ' RO
> S NN N u . fr TNRNNG X
T N regg - GG Ny
§ .S:;h 1n N am e, __ "‘\\:‘\ T S . S ome St T[:lwn I I 't ‘*‘u‘w._‘*;‘\\.._\\ \\\
& 3 e .] Sm |th \ R‘i\"“?ﬂ‘ﬁxxy ! SV |e \}%
‘h\ﬁ,ﬂ_x_w&w\ 3 A e e e e e e _ o "."'-:""""*‘:":ﬂa
x_:‘,._x Y $ ‘%‘-‘u‘u‘u‘uxxxxxmxxxxxxxxmmnxxxxxx-.*~:-.'-:-:-‘-‘-‘-‘-‘~‘3‘-"*-‘*v .
) o
-.::::::‘ \\::"""N_"«-, -».1"-""::} UL I
o %, .
o T ,;3'-‘*"‘ E‘“\\ §
X & A i” Ny T
3 § Salary”: 50 §
I.".) | DD .,:-l.l' ‘-1._
Ry RTINS n E PR ' o
-_.\}."'E-\-‘-Eu‘\"b-‘h‘h‘x‘“ w..j.‘:"‘"*:xﬂ xx\xﬁi\"-‘\‘_\\ m plﬂyee ! “:‘ﬂ\ 'l.:.."_ :'1:*\} \\\
S RN o Ny > ‘.ﬁ
.':.:'.‘:‘. R\\\H\ i:"'::. 'l‘. .f '] :‘:. !‘.‘
- 1 3 2N d ' \\ 7 3
N F o a g - =
3 0" 3412 $ | - g S 3
= " : = N R -
LN = 2 N
N "§ % % ‘”-""1"{-..‘\2*.xxxyxxxxxxx‘hmuxxﬁ =~ N"-""-q.\ .5?
.* & RS \ o
S e A Wy & X §
SN e g o e o
-""-."'“"3‘3‘31““;‘:‘-1"“"‘ N - AR, o
" ‘\‘\1‘%&"‘ -‘,.:::,:._"-." ".:'.1-.._ R ""':"'l."'l:'ql"qlh"‘ - .‘1.-._""1:"
Hﬁi"&‘i‘ﬁ.}ﬂ._ﬁ._ﬁ.h\-q.-q:‘.-‘_-‘ﬂh‘ﬂﬂnxh e \“bﬁ. K \\. ‘:":'
anv ™ x o
& “J 0 b” | \\\ 3 ﬂh‘_“x‘.
3 . S I 0
- AN
é} = dles \ %‘x‘q}-ﬂh X
a .
\ R §
3 §
2 &
\\\ 4 g
: \\ = ,5-.":‘
.\ ' \\:\\ﬁ. e .‘.‘ 1.,"1::::‘
' x‘-‘\"x) - '\1.,"\,‘_ .,,_".,"-."':'
N Ex;\“:‘.,‘ﬁ:&.'_ o "-..'-.."'-"":" 1"‘-"“-.."\.*_\,& 2 a
-.,S.,_uh"'-"":‘ N LCETERETT Ay R Ly

\'{1"‘&
NN .
x‘*“x‘ﬁxxxxxxﬁuﬁxﬂ-ﬁ“

NN

N
™
"Q&h‘ e

U.S. Patent May 8, 2018 Sheet 5 of 14 US 9,965,481 B2

FIG. 7

T;..:.ﬂ-.‘-_“ﬂh'*\“-"l‘."ﬁ.j.‘ut _
" RN “_::‘a:-"‘- B Xy -:c-‘"-":""‘“"‘&mHﬁmﬁ“"*‘x‘xx\xi
‘:"'q,::"""" \M ":.,":" \ 2 1::-:':' .\1
TN o "'\::F‘b \}:2‘
Ay aa SRR o - X
o B SR S -
A \1"‘._‘_"“) -
'-1"-""':‘:“:..| \.‘:“\i‘u
& N w____‘,_:._..._..,ﬁ..,uw.x.xxx*-.nxxxxxxxxxxx‘aﬁm&m&m‘~.‘-:-:-:~..w.:.:., . s
o o NN ‘1\\1‘-‘
& e W . = NNt ™
¥ o i .
§ o engine[1].temp”: 542 AN N
§ i, &
:':.' w._ﬁ.‘w.‘rw.:-.;-u.'-v.,"q}-._‘q}{"-HHHHHEKHHHHH‘*.‘*.‘*.‘*.&R":QQM | ‘xxxh'&ﬁ‘ﬁ“:ﬂ"'iﬂ,.xxx -‘.-‘:-_\,‘n‘:“:hﬂq- t..‘\
Y
3 H.x.“_axx-uxﬁ“‘*"‘:‘-""‘ NN "‘-Hm*-:-:-hmxnaﬁxx*-:mxx«.ﬁhmmxxxxxxwmw.a:-:-:-w:ﬁ'h Y
A e ' "‘\"‘"‘Q’*-."*-._ I"H‘-.
ey & Y engine[d " = %
o ' - .
SN .engine[1].status™: OK N
o BRLEREER MR Hw._ﬁ.:.y.,'-.."-.."-.,"-"-:"-""-:':':‘:‘="-Hiﬁi":‘:‘:‘:ﬁh"-"-":ﬁ?*.‘x‘\‘x‘ﬁh‘nhmﬁ;r.‘ : W
’3? "‘““"‘““‘«‘«mxxxxxxxxxxannwmx‘c-:-r-r-?n“-‘-*'-‘%‘ﬂ““'"'“'“"‘m oo AR AR SN -:-‘:":.
"
3 op e & v I 11 KHN‘“‘K‘\ -»h‘:“::q k
\;\ A|rp|ane" 1‘“{{\\ -englnE[Z].Status r OK A \:‘{_\
.:.:.xx‘-‘\-?\"‘*“f‘*"”“"““x“““u““""-"-"u‘mxx KK‘“\&\.‘MR -..«-.u‘ﬂ"":"- X
"_‘:.1_"'.."'\1"- Bty "i_'\‘) ‘.:““"“HHH‘.HQ'CQH‘:.}._M‘ el .,:.:u.L'l.."L"' 1'.,::
S 0 a OO 3
§ model”; “747" Y 3
%, 2 &
= . &
o Y
"'-‘i‘*a._ q.n*?:“" q.*-"":'EH- RN o : w::"}
‘iw.:.k LU a~ W . o . s
B L r,) o
xﬁh\mxxxxxxxxxxﬁxxxmm_ Ny N 20 g ne [2] . t EIm IJ . 49 B 1"‘-\\\ i{\‘ ey
. ﬂ.‘%."'\..,_ a."i:- Mﬂ:'*-. i ,:;-.,\:"‘-"'
Nﬂ""k‘*-‘*."‘-.‘*-."‘h""-."ﬁ-; ‘:‘:h“‘}}-». :.h""““":'ﬁ"ﬁ“
-)
H"'ﬂ"'“:‘:“"k“w‘h‘ﬂ-h‘ﬂhhhhxxaaaau:.;n:.Luxxxxxx‘u‘-‘-‘h‘w‘x‘x‘-‘-‘:ﬁh“ §
"“-'-.\,:,ﬂ_ ﬁ«
A &
=% d
T E: .,..-\..,:.l."
\\ > X
a =
\::\' \\ ‘:'Q:k"*-‘\.\.. ﬁxx““*"ﬂhx
- .
E"‘*-H.‘x\ N ﬁ“ R
e, WY »
TR : ﬁu‘."i"&
S
\‘h ﬁ.,‘x"':‘
\'ﬁ. '\‘_ - .:.,,}.1":“".
T
Ll
F I G. 8
1_\,‘1‘11‘:*-‘*-‘*-‘1‘*.‘&'&'&‘\
Q_*._*.H.‘x‘-‘-“—“—”‘“‘“‘"‘"‘"‘“ﬂt‘-.\,},h ‘-_':_}:.;-.,'i.‘-n."-"*- """'-.""-..H*-__ ,“\ ﬂh.:__,hMxxx‘u‘n‘-ﬁx‘x‘x‘-.‘-h‘«h‘wxha
_:_1-:-;-»'”' "-,"-«.'*_\.\H ‘:::-."?' ‘:\.}b‘.ﬁﬁi" "*-;.\\
R 0 " X
-.:-&x"'-"'?'-"-"‘“1":‘T‘h‘.ﬂkﬁxxxuﬁhxx‘x‘x‘“ﬁ\qx ":':ph H-::t ‘::"ﬁb \
o ? ‘1.',"-: n ~
e i
) g
-a:i:'q":qi \ «.:sh'u-q.ﬂmmw-:-ﬁw-xw*-».&‘-‘-‘-"—‘*—‘t‘*“‘“"‘"”""'""“:‘"H"“H‘H‘H‘ﬁ'ﬁ'ﬁ‘ﬁ“\“ﬁhﬁwﬁh&xxxxﬁ'\'\:‘b‘m‘*‘“““‘“T‘-"‘:‘:‘:‘:‘:‘*“‘»‘u‘uxxxxxxx ‘\b‘:"."-“*-.
& N) I T
- o AR . oy
% “/page<l>/paragraph<l1>": " DR S
§ N, paragraph<1>": "The N
§ 11&“&“‘7‘-\“}\“:‘;_‘;:;-11‘% Y 1.._";."".1'}.
e e
N DR S -n;,_n-.n.xw-%‘-“ﬁ“‘*‘x' g X
3 - NN UALHLEELAR RN R SRR b B
%'«*2*“““% e n AN 3
e - -~ . 5"'-."'-‘,"«,_1.,‘& -
o . f f h 1, N 3
& N page<l>/paragraph<2=": “At .." Ny §
N R : "t 3
& TN A
~ AN o
2 SN
3 ALIMALTLRARLRAAEREERER RS A ﬂﬂ-'c' %
b} 1 ir w R
N Book N
- b
ot "’-.,"-.:-.‘_ .
1."-"' N "..,__“ ﬁ
- RAJY B fF, n | N
5 I . | ’” '\\ 3
Q_\ <title="; "A Tale X
= N *-.‘-.‘-.‘-\H"-u."-n."uMIIWXXR‘&'&'&H‘«HHH‘}-“-‘-W‘*‘HH ‘-'f:'
e & @‘maxm%‘*‘*“"‘““'"*"“““‘“ O RN &
s N AN - A 3
\“‘““*-‘umx‘tu. W 1.3..&*.1.1%‘*“"""'“ & A f page <2 TR “w%“"‘x‘\‘xxx \:\“\ o
e e fr h . Fr : Wby
A b‘:\“:"-“x g pa I'a g 1= [:l < 1 = D n_ "u."-..th‘ \ w_ﬁﬁx
| N & Rt
TR et P
e N R M A A A A A A A A R q-,xxw.w.x‘*c\‘:'-"-"“"‘ﬁ':“' S
AR AR A A A A OD R SN R &
v
bt

.S. Patent May 8, 2018 Sheet 6 of 14 US 9,965,481 B2

FIG. 9

.S. Patent May 8, 2018 Sheet 7 of 14 US 9,965,481 B2

FIG. 11

FIG. 12

.S. Patent May 8, 2018 Sheet 8 of 14 US 9,965,481 B2

ok F rord & #

FIG. 14

E LY
‘i‘i.i.'il‘i‘ L
LI |

i:i:i - -iii‘i‘l‘ .

4
ERE T B A e i]

U.S. Patent May 8, 2018 Sheet 9 of 14 US 9,965,481 B2

Tunnel
Viscid ity

IIIIIIIII" S BN N BN R NS N BN I N AN N BN BE N B
NERENENEEE b 5 oo 0o 00 0 05 08 NE 0 3 08 00 501 100 30 00000 D0 W8 0% DOE

Navigation

HERNEEBRNE: INNNEEEEREEENRRANENNNNERRN
BEEREEREERNE:Z 1NN EERENEEEEEREEEEEEEER
HEEEREESE: INNNEEEEEEEEEENEEENEEEE
NEENENENES Ilﬂlﬂﬂll!llﬁlﬂlﬂﬂlI.‘.EI?
IIIIIIIIIIIIIIIII EEEREE {:Gn HECtiVE TU nnels

SRNRNET [ANNNNRRENNRNNNRNNANANEER
SEERREI [AANANERRRRRRRNRANANNNRER
T T Characteristic Tunnels
T
R [IREEER LR

LTI combinative Tunnels

Tunnel iEEE i!“ﬂ@@@ Collective Tunnels

Velocity

U.S. Patent May 8, 2018 Sheet 10 of 14

! Connective '

FIG. 16

Database

IURRRURMMRUNNNN =/ - | 4 S

US 9,965,481 B2

l Characteristic |

Collection Collection 1 Collection
o PathA e PathA

Frame
File X

-LI:.

Frame File

Entity Path
- Tunneil

Frame
Fiie X

FilG. 17

' Entity Path

Collection

Dath £

Frame |
File X

U.S. Patent

May 8, 2018 Sheet 11 of 14

FIG. 18

US 9,965,481 B2

Ordina: 1 Address

Craingt 2 Address

FIG. 19

Next Frame MNext Address Tunnel...
FIG. 20
Collection Transaction | Next Collection Next Element Ceails, .,

iandle

I Collection Path T |

I Transaction X 1o ,..
i Transactiocn Y l

 Fath Segmisnt | Transaction

- Segment

FIG. 21

Transaction Header

Watermark

..

Transaction Handles

Segment Chains

Transachion
Segmenis

U.S. Patent May 8, 2018 Sheet 12 of 14 US 9.965.481 B2
FIG. 22
Celi Size | Path Domain Byte Sequence
FIG. 23
Ceil Size | Path Domain Sign | Exponent | Significand
FIG. 24
Cell Size | Fath Domain Froperty Size | Property Byte Sequence
FIG. 25
Ceil Size | Path Domain Flement Size L ink
FIG. 26
Inverted Inverted Inverting
Frame Tunnel Tunnel
Number Number Number
FIG. 27
Cell Size Digest Tunnel Number

U.S. Patent May 8, 2018 Sheet 13 of 14 US 9,965,481 B2

FIG. 28
Digest Call Digest Celi Digest Cell
FIG. 29
Ceil Count Cell Count Cell Count
FIG. 30
Digest Tunnel | Digest Tunnel |Digest Tunnel
Number Number MNumber
FIG. 31
Rank Cell Rank Cell Rank Cell
FIG. 32
Cell Count Cell Count Cell Count
FIG. 33

Cell Count Cell Count Cell Count

U.S. Patent May 8, 2018 Sheet 14 of 14 US 9,965,481 B2

FIG. 35

Database Engine (A)

Language A2 || Presentation
Parsear A3

Command AS

Model Translation (B}

Operator B4
{_onversion

Entity Bl | | Operztion B2

Data Type B3
COnvVersion . Conversion |

Conversion

Storage Engine (C)

Path C1 Expression C2{ Operator €3 {}peramr C4q
Definition Refactoring - Fetching Bmdmg

Retrieval LS5 | Storage Structure
& Merging

US 9,965,481 B2

1

APPARATUS, SYSTEMS AND METHODS
FOR DATA STORAGE AND/OR RETRIEVAL
BASED ON A DATABASE
MODEL-AGNOSTIC, SCHEMA-AGNOSTIC
AND WORKLOAD-AGNOSTIC DATA
STORAGE AND ACCESS MODELS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority of U.S.
Provisional Patent Application No. 61/321,374, filed on Apr.
6, 2010, the entire contents of which are incorporated herein
by reference.

BACKGROUND OF THE INVENTION

The mmvention pertains to digital data processing and,
more particularly, to apparatus, systems and methods for
data storage and retrieval. The invention has application, by
way ol non-limiting example, 1n the creation, updating and
access of operational and analytic databases.

Databases store data within a framework known as a data
model. Current data models include the network model,
hierarchical model, object model, key-value model, graph
model, document model and the relational model amongst
others. The relational model 1s by far the most popular and
ubiquitous 1n its use.

The relational model views data as relations or tables
contaiming multiple rows and columns. Each relation stores
information about a particular type of entity, such as
employees and departments, with each row 1n a table storing
information about one instance of the entity to which the
table relates. Each column in the table 1s an attribute for the

entity and contains a value 1n each row that corresponds to
an entity instance. The set of table and column definitions 1s
known as the database schema.
The following are example tables for Emplovees, Depart-
ments and Regions.
TABLE 1
Emplovees Table
Commuission Department
Name Employee Number Salary Rate Number
Simon Smith 10 10000 100
John Jones 20 20000 10.00% 200
Bob Brown 30 30000 15.00% 200
TABLE 2
Departments Table
Name Department Number Region Number
Admuinistration 100 2000
Sales 200 1000
Support 300 3000
TABLE 3
Regions Table
Name Region Number
North 1000
East 2000

5

10

15

20

25

30

35

40

45

50

55

60

65

2
TABLE 3-continued

Regions Table

Name Region Number
South 3000
West 4000

SQL 1s a language used with relational databases to both
define database schemas and to mamnipulate data stored
within those schemas. The SQL statements to define the

example tables above might be as follows:

create table Employees

(Name varchar(64) not null,
EmployeeNumber number primary key,
Salary number(8,2) not null,
CommussionRate number(4,2),
DepartmentNumber number references
Departments(Department Number));

create table Departments

(Name varchar(64) not null,
DepartmentNumber number primary key,
RegionNumber number references Regions(RegionNumber));

create table Regions

(Name varchar(64) not null,
RegionNumber number primary key);

Each employee has a name and a umque employee
number that are used to 1dentily them; each employee has a
salary and a commission plan and 1s employed by a single
department. Each of these attributes for an employee are
stored 1n a separate column 1n the table.

Similarly, each department has a name and number and 1s
located in one region; each region has a name and number
that identifies it.

Thus the “Smith” employee belongs to the “Administra-
tion” department which 1s 1n the “East” region. This 1s
discerned from the department and region numbers that are
common across the tables. These relationships are indicated
by ‘primary key’ and ‘foreign key’ constraints in the above
SQL statements,

Relational tables are typically normalized to remove any
duplication of data contained within them. In the above
example, 1t would be possible to rearrange the data into a
single table such that a department’s information 1s dupli-
cated against every employee that belongs to that depart-
ment. Such duplication 1s sub-optimal from both a storage
s1ze and update overhead perspective because every item of
department data has to be stored and updated in multiple
locations. The process of normalization moves groups of
columns with duplicate data into a single row into a separate
table.

Relational databases support the concept of a table join
whereby rows from separate tables are joined together by a
common column value such that all rows with a correspond-
ing join column are correlated together. In the example
above, the employee table may be joined to the department
table by the department number column in both tables.

Normalized data requires a join at query time to reproduce
de-normalized data.

Relational databases are often used in two distinct ways—
as an operational or analytical database. An operational
(OLTP) database records and manages business process
transactions. It provides a detailed and reliable reference for
business procedures. Each transaction in an operational
system 15 only likely to be interested in a handful of entity

US 9,965,481 B2

3

instances at any given time. In contrast, an analytical
(OLAP) database provides a broad analysis across a large
body of data. Conventionally, the data retained by an ana-
lytical system 1s less detailed than the operational system to
assist with the performance of analytical queries.

When considered 1in a relational database context, an
operational transaction or query is likely to touch a large
proportion of columns across a very small proportion of
rows; conversely, an analytical query 1s likely to touch a
small proportion of columns 1n a very large proportion of
rows. This has led to a trend in relational databases to
organize operational databases 1n row orientation (complete
rows stored together) and to organize analytical databases in
column orientation (complete columns stored together).
These approaches attempt to co-locate data 1n storage
according to anticipated access patterns so that retrieval
requests from storage are kept to a minimum.

Conventional operational and analytical databases are
typically highly normalized and highly de-normalized
respectively. Operational databases are highly normalized to
avoid the overheads associated with the update of duplicated
data; whereas analytical database are often de-normalized to
avoid the overhead of joins at query time. This difference 1n
approach to normalization creates a diflerence 1n the data-
base schemas because different table definitions are
required.

Therelore conventional relational databases are organized
differently depending on whether an operational or analyti-
cal workload 1s anticipated. A highly normalized schema
stored 1n row orentation 1s considered sub-optimal for
analytical queries because the analytical queries are forced
to process entire rows and perform extensive 10in process-
ing; while a highly de-normalized schema 1n column orien-
tation 1s considered sub-optimal for operational systems
because of the spread of individual rows across multiple
storage areas and the overhead of updating duplicated data.

With the flat table structure (row and column) so {far
described, 1s only possible to find a row that contains a
specific column by scanning a whole table 1n a row store, or
a whole column 1n column store. With very large sets this
becomes a resource and time consuming process. 1o assist
with this process, indexes are layered on top of the flat table
structure to enable fast navigation to specific rows by
column value. Indexes can take many forms and include
mechanisms such as B-Trees, hashing, bit maps and parti-
tioming amongst others. However, regardless of the form of
indexing used, it 1s effectively performing part of the query
processing work ahead of query time. In eflect, indexing
moves the overhead of query processing to data update time.
This may be reasonable if the volume of query activity 1s
much greater that update activity such as an analytical
system—but this 1s not the case 1n operational systems or
even 1n analytical systems that require constant updates.

Hence conventional operational and analytical databases
are designed differently and while a single relational data-
base can support operational or analytical workloads efli-
ciently 1t typically cannot support both workloads at the
same time within the same database instance. This often
leads to the use of multiple database instances to support
common data sets with each database designed differently to
support different workloads. This creates complexity involv-
ing integration and data transformation activities, latency 1n
data availability and additional capital and operational
expenditure.

When considering the performance of a database archi-
tecture 1t 1s important to understand the hardware context in
which it operates.

10

15

20

25

30

35

40

45

50

55

60

65

4

Current computer architectures consist of CPU, memory
and storage components which operate at vastly difierent
speeds. A contemporary CPU contains one or more CPU
caches that have a limited size but operate at near CPU clock
speed; main memory 1s typically much larger but operates at
lower speeds because of the cost of fabrication of fast
memory. Storage will typically operate at several orders of
magnitude slower speed because of the different technolo-
gies used. Even flash storage typically operates at two orders
of magnitude slower than main memory. The speed of these
components can be expressed in fetch frequencies which
measure the rate at which data fetch operations can be
requested and fulfilled. The fetch frequency of a component
1s an 1nverse measure of 1ts access latency.

As shown 1 FIG. 1, data 1s fetched from storage into
memory, then fetched from memory into CPU cache. Data
also moves 1n the opposite direction between these compo-
nents, as i1llustrated.

If the CPU requires data that i1s not currently available 1n
the CPU cache, 1t must make a request to fetch 1t from
memory and/or storage. The CPU must then wait for the
slower components to service the request and this 1s com-
monly known as a CPU stall. During a CPU stall, the CPU
1s unable to perform any useful work and this has an adverse
ellect on processor throughput and overall performance.

While fetch frequencies are radically different across
computer components, the rate at which data can be trans-
ferred 1n bulk between components 1s much more similar.
Therefore, to minimize the number and the aflect of CPU
stalls, computer components will bulk fetch data that 1s near
the explicitly requested data address in the hope that the
unsolicited data 1s relevant to the following CPU operations
and avoid immediately subsequent fetch requests.

The bulk fetch strategy will only amortize a CPU stall 11
the unsolicited data 1s indeed relevant and usetul to subse-
quent CPU operations; 1f not, the CPU will be forced into
another stall until useful data 1s explicitly fetched to replace
the unsolicited data. Bulk fetched data that 1s not useful can
be viewed as cache pollution and degrades performance by
engendering CPU stalls. Cache pollution occurs both 1n the
CPU cache and within main memory when irrelevant data 1s
fetched from storage.

To avoid cache pollution, it 1s necessary to align storage
structures with the storage address dimension so that each
bulk fetch pulls 1n information relevant to the current access
path. This 1s known as good spatial locality.

Row oriented relational databases are designed to reduce
cache pollution in operational workloads where whole rows
are being queried by ensuring the rows are aligned with the
address dimension. However, with analytical workloads
where only specific columns are required, this storage ori-
entation causes cache pollution because 1rrelevant columns
are also fetched into cache.

Conversely, column oriented relational databases are
designed to reduce cache pollution in analytical workloads
where specific columns are being queried by ensuring the
columns are aligned with the address dimension. However,
with operational workloads where only specific rows are
required, this orientation causes cache pollution because
irrelevant rows are also fetched into cache.

For both row and column orientated storage, cache waill
always be polluted by irrelevant rows where non-consecu-
tive rows are required by a query.

Moreover, the use of hierarchical block structures, such as
a B-Tree index, to navigate to rows also pollutes cache.
Typically, only a part of each block fetched from the higher
levels of a hierarchy will be relevant to a query, while the

US 9,965,481 B2

S

remainder of the block pollutes the cache. This 1s exacer-
bated by navigating down such hierarchies causing cache

pollution at each step.

These hierarchical structures are routinely used 1n data-
bases of both storage orientations.

An object of the mvention 1s to provide improved appa-
ratus, systems and methods for digital data processing.

A further object of the invention 1s to provide such
apparatus, systems and methods as can be used for data
storage and retrieval.

Yet a still further object of the invention 1s to provide such
apparatus, systems and methods as can be utilized 1n support
of legacy and new database models, schemas and workloads.

Yet a still further object of the mnvention 1s to provide such
apparatus, systems and methods as support OLTP and OLAP
activity independently of the data model, schema and/or
workload.

Yet a still further object of the mnvention is to provide such
apparatus, systems and methods as support such activity
with improved efliciency and speed.

SUMMARY OF TH.

INVENTION

(L]

The foregoing are among the objects attained by the
invention, which provides improved systems for data stor-
age and/or retrieval aspects as characterized in the attached
claims.

In one aspect, a data storage and/or retrieval system
implemented on one or more digital data processing systems
1s provided that includes storage media including a plurality
of data tunnels for each entity type and a fixed plurality of
data tunnels for each attribute, one or more of which data
tunnels comprise a plurality of data cells. Each of the data
cells contain data associated with a respective instance of an
attribute for a respective 1stance of an entity type. For one
or more of the data tunnels, the data cells 1n each of which
have data for which a respective operator evaluates to a
boolean result indicating either the likely possibility or the
impossibility of a respective instance of an attribute being
characterised by said operator for a given set of one or more
operands. The system also includes a storage engine that 1s
in communications coupling with the storage media and that
accesses one or more data tunnels based on one or more of
said operators and a given set of one or more operands.

Related aspects of the invention provide a system, e.g., as
described above, that includes storage media including a
plurality of connective data tunnels for each entity type and
a fixed plurality of connective data tunnels for each attribute,
one or more of which connective data tunnels comprise a
plurality of connective data cells. Each of the connective
data cells contain data associated with a respective instance
of an attribute for a respective instance of an entity type and
cach respective instance of an attribute has one respective
connective data cell 1n only one respective connective data
tunnel. For one or more of the connective data tunnels, the
connective data cells 1n each of which have data for which
a respective equivalence operator evaluates to a boolean
result which indicates either the likely possibility or impos-
sibility of a respective 1nstance of an attribute being equiva-
lent for a given set of one or more operands. The system also
includes a storage engine that 1s 1n communications coupling
with the storage media and that accesses one or more
connective data tunnels based on one or more of said
equivalence operators and a given set of one or more
operands.

Related aspects of the invention provide a system, e.g., as

described above, that includes storage media including a

10

15

20

25

30

35

40

45

50

55

60

65

6

plurality of connective data tunnels for each entity type and
a fixed plurality of connective data tunnels for each attribute,
one or more of which connective data tunnels comprise a
plurality of connective data cells. Each of the connective
data cells contain data associated with a respective nstance
of an attribute for a respective instance of an entity type. For
one or more of the connective data tunnels, the connective
data cells 1n each of which have data for which a respective
equivalence operator evaluates to a boolean result which
indicates either the likely possibility or impossibility of a
respective instance of an attribute being equivalent for a
given set of one or more operands and where the majority of
connective data cells yield a like result for a given set of one
or more operands. The system also includes a storage engine
that 1s 1n communications coupling with the storage media
and that accesses one or more connective data tunnels based
on one or more of said equivalence operator and a given set
of one or more operands.

Related aspects of the invention provide a system, e.g., as
described above, in which the connective data cell contains
a digest of the respective mnstance of the attribute and the
respective connective data tunnel 1s chosen from a defined
hash encoding of the respective instance of the attribute and
by applying a modulo of the number of the plurality of
connective data tunnels to said hash encoding.

Related aspects of the invention provide a system, e.g., as
described above, 1n which the digest of the respective
instance ol the attribute 1s the value of the respective
instance itsell when the size of the respective instance 1s
sufliciently small, whereby the equivalence operator can be
certain of equivalence.

Related aspects of the invention provide a system, e.g., as
described above, that includes storage media comprising a
plurality of combinative data tunnels for each entity type and
a fixed plurality of combinative data tunnels for each attri-
bute, one or more of which data tunnels comprise a plurality
of combinative data cells. Each of the combinative data cells
contain data associated with a respective instance of an
attribute for a respective nstance of an entity type and each
respective instance of an attribute has one respective com-
binative data cell 1n all respective combinative data tunnels.
For one or more ol the combinative data tunnels, the
combinative cells 1n each of which have data for which a
respective bounding operator evaluates to a boolean result
which indicates either the likely possibility or the impossi-
bility of a respective instance of an attribute being bounded
for a given set of one or more operands. The system also
includes a storage engine that 1s 1n communications coupling
with the storage media and that accesses one or more
combinative data tunnels based on one or more of said
bounding operator and a given set of one or more operands.

Related aspects of the invention provide a system, e.g., as
described above, 1n which each instance of a respective
attribute 1s expressed 1n unitary scale and as a significand
with respect to a fixed radix point, each combinative data
tunnels 1s respective to part of the said significand, all
combinative data tunnels are mutually exclusive in respect
of the said significand, and all combinative data tunnels
enclose the whole of the said significand.

Related aspects of the invention provide a system, e.g., as
described above, in which the further improvement for the
evaluation of a bounding operator during the read access of
said combinative tunnels of said attribute of said storage
system, includes the steps of converting each respective
boundary operand in the said bounding operator to a sig-
nificand of unitary scale with a fixed radix point and
comparing the significand bits of respective boundary oper-

US 9,965,481 B2

7

ands 1 descending significance order to find the first sig-
nificand bit that differs between said operands and taking all
prior common bits as a determinant data value. The
improvement also includes the steps of finding the combi-
native data tunnel of lowest significance that comprises a
strict subset of the significance of said determinant value and
taking said combinative data tunnel as the determinant data
tunnel, accessing the said determinant data tunnel first
before other combinative data tunnels respective of said
attribute, and nspecting all combinative data cells of said
determinant data tunnel and deeming the relevance of each
respective entity instance as impossible for said bounding
operator where said combinative data cell 1s not equal to the
said determinant data value. Only combinative data cells,
respective of entity instances not deemed of impossible
relevance, 1n combinative data tunnels other than said deter-
minant data tunnel need be 1nspected for the purposes of
determining relevance of respective entity instances to the
respective bounding operator and 1ts respective operands.

Related aspects of the invention provide a system, e.g., as
described above, that includes storage media comprising a
plurality of characteristic data tunnels for each entity type
and a fixed plurality of characteristic data tunnels for each
attribute, one or more of which characteristic data tunnels
comprise a plurality of data cells. Each of the characteristic
data cells contain data associated with a respective instance
ol an attribute for a respective instance of an entity type and
cach respective instance of an attribute has one respective
characteristic data cell 1n all respective characteristic data
tunnels. For one or more of the characteristic data tunnels,
the characteristic data cells 1n each of which have data for
which a respective possessive operator evaluates to a bool-
can result which indicates either the likely possibility or the
impossibility of a respective mnstance of an attribute pos-
sessing a property for a given set ol one or more operands.
The system also includes a storage engine that 1s 1n com-
munications coupling with the storage media and that
accesses one or more characteristic data tunnels based on
one or more of said possessive operator and a given set of
one or more operands.

Related aspects of the invention provide a system, e.g., as
described above, 1n which each characteristic data tunnel 1s
respective of one or more properties and a characteristic data
cell contains a boolean indication of possession of a respec-
tive property by the respective mstance of the attribute.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a characteristic tunnel 1s chosen
to be respective of a property by hash encoding the property
identity and applying a modulo of the number of plurality of
characteristic data tunnels to said hash encoding.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a characteristic tunnel 1s chosen
to be respective of a property by assigning a strictly mono-
tonically increasing ordinal to each unique property 1dentity
and applying a modulo of the number of plurality charac-
teristic data tunnels to said ordinal. The possessive operator
can be certain of possession 1f (M-T)<P<2T where P 1s the
ordinal of the property; M 1s the maximum ordinal assigned
and T 1s the number of characteristic tunnels.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a characteristic tunnel 1s chosen
to be respective of a property by assigning a strictly mono-
tonically increasing ordinal to each unique property 1dentity
for the respective attribute and applying a modulo of the
number of plurality characteristic data tunnels to said ordi-
nal. The possessive operator can be certain of possession 1t
(M-T)<P<2T where P 1s the ordinal of the property; M is the

10

15

20

25

30

35

40

45

50

55

60

65

8

maximum ordinal assigned for the respective attribute and T
1s the number of characteristic tunnels.

Related aspects of the invention provide a system, e.g., as
described above, that includes storage media comprising a
plurality of collective data tunnels for each entity type, one
or more of which collective data tunnels comprise a plurality
of collective data cells. Each collective data tunnel contains
data associated with a respective instance of an entity type
and each of the collective data cells contain data associated
with a respective instance of an attribute for a respective
instance of an entity type. Each of the collective data cells
contain data which 1s characterised as one of identity,
measurement, enumeration or opacity.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a collective data cell characterised
as one of 1dentity comprises of a sequence of bits that denote
the 1dentity such that certainty of equivalence of identity for
the respective instance of the respective attribute can be
determined by comparison of said bits 1 like sequence
order.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a collective data cell characterised
as one of measurement comprises of a sign bit, a plurality of
significand bits and a plurality of exponent bits such that
certainty of a respective instance of the respective attribute
being bounded by a range can be determined by comparison
of the respective sign, significand and exponent bits.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a collective data cell characterised
as one of enumeration comprises of a plurality of properties
wherein each property 1s comprised of a sequence of bits
such that certainty of possession ol a property by the
respective istance of the respective attribute can be deter-
mined by a comparison of said bits 1n like sequence order for
one or more respective properties.

Related aspects of the invention provide a system, e.g., as
described above, 1n which each data tunnel 1s individually
encrypted during write access to storage and individually
decrypted during read access from storage.

Related aspects of the invention provide a system, e.g., as
described above, 1n which each data cell 1s individually
encrypted during write access to storage and individually
decrypted during read access from storage.

Related aspects of the invention provide a system, e.g., as
described above, in which a specific set of one or more
tunnels are accessed for each of the said operators and their
respective operands, that comprise a query.

Related aspects of the invention provide a system, e.g., as
described above, 1n which one or more data tunnels are
accessed mdependently and simultaneously for the evalua-
tion of each said operators and their respective operands

Related aspects of the invention provide a system, e.g., as
described above, 1n which each operator evaluation includes
a boolean indication of certainty or uncertainty for each
respective mstance deemed likely possible.

Related aspects of the invention provide a system, e.g., as
described above, 1n which operator evaluations are com-
bined conjunctively for a common respective enfity type
such that some uncertain respective entity mstances may be
discarded from operator evaluations.

Related aspects of the invention provide a system, e.g., as
described above, 1n which subsequent materialisation of an
operator evaluation can resolve any uncertainty by inspect-
ing the respective collective data cell for the respective
instance ol an attribute deemed uncertain.

Related aspects of the invention provide a system, e.g., as
described above, 1n which data tunnels are read accessed 1n

US 9,965,481 B2

9

bulk from storage media for the evaluation of each said
operators and their respective operands.

Related aspects of the invention provide a system, €.g., as
described above, 1n which distinct attributes may be corre-
lated by the equivalence of their respective instances by
comparison of their respective data cells 1n corresponding
data tunnels.

Related aspects of the invention provide a system, e.g., as
described above, 1n which distinct attributes may be corre-
lated by the equivalence of their respective instances by
comparison ol their respective connective data cells 1n
corresponding connective data tunnels.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of data tunnels and
respective operators relate to imstances of entities of arbi-
trary structure.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of connective data
tunnels and respective operators relate to instances of enti-
ties of arbitrary structure.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a plurality of combinative data
tunnels and respective operators relate to mstances of enti-
ties of arbitrary structure.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a plurality of characteristic data
tunnels and respective operators relate to instances of enti-
ties of arbitrary structure.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of data tunnels and
respective operators relate to instances of an enfity type
wherein distinct mstances of said entity type difler 1n struc-
ture.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of connective data
tunnels and respective operators relate to instances of an
entity type wherein distinct instances of said entity type
differ in structure.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of combinative data
tunnels and respective operators relate to instances of an
entity type wherein distinct instances of said entity type
differ in structure.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of characteristic data
tunnels and respective operators relate to instances of an
entity type wherein distinct instances of said entity type
differ in structure.

Related aspects of the invention provide a system, e.g., as
described above, in which data cells consist of data inde-
pendent of the domain and the encoding for the respective
attribute whereby distinct instances of said attribute may
differ 1n domain or encoding.

Related aspects of the invention provide a system, e.g., as
described above, 1n which connective data cells consist of
data imndependent of the domain and the encoding for the
respective attribute whereby distinct instances of said attri-
bute may differ in domain or encoding.

Related aspects of the invention provide a system, e.g., as
described above, 1n which combinative data cells consist of
data independent of the domain and the encoding for the
respective attribute whereby distinct instances of said attri-
bute may differ 1n domain or encoding.

Related aspects of the invention provide a system, e.g., as
described above, 1n which characteristic data cells consist of
data independent of the domain and the encoding for the

10

15

20

25

30

35

40

45

50

55

60

65

10

respective attribute whereby distinct instances of said attri-
bute may differ in domain or encoding.

Related aspects of the invention provide a system, e.g., as
described above, in which the further improvement for
discerning from a database schema the operators and respec-
tive data tunnels that are applicable to a respective attribute
includes the steps of discerning an applicability of an
equivalence operator from relationship constraints for said
attribute such that data for instances of said attribute are
stored 1n connective data cells within connective data tun-
nels respective of said attribute and discerning the applica-
bility of a bounding operator from the numerical or time
domain or arithmetic domain constraints for said attribute
such that data for instances of said attribute are stored in
combinative data cells within combinative data tunnels
respective of said attribute. The improvement also icludes
the steps of discerning the applicability of a possessive
operator from the character domain or enumeration domain
constraints for said attribute such that data for instances of
said attribute are stored in characteristic data cells within
characteristic data tunnels respective of said attribute and
discerning the inapplicability of said operators from the
object or binary domain or external reference for said
attribute such that data for instances of said attribute are not
stored 1n any connective, combinative or characteristic data
tunnels respective of said attribute.

Related aspects of the invention provide a system, e.g., as
described above, in which the further improvement for
discerning from a relational database schema the operators
and respective data tunnels that are applicable to a respective
attribute includes the steps of discerning an applicability of
an equivalence operator from primary key and foreign key
constraints for said attribute such that data for instances of
said attribute are stored in connective data cells within
connective data tunnels respective of said attribute and
discerning the applicability of a bounding operator from the
numerical or time domain or arithmetic check constraints for
said attribute such that data for instances of said attribute are
stored 1n combinative data cells within combinative data
tunnels respective of said attribute. The improvement also
includes the steps of discerning the applicability of a pos-
sessive operator from the character domain or enumeration
check constraints for said attribute such that data for
instances of said attribute are stored in characteristic data
cells within characteristic data tunnels respective of said
attribute and discerning the mapplicability of said operators
from the large object domain or external reference for said
attribute such that data for instances of said attribute are not
stored 1n any connective, combinative or characteristic data
tunnels respective of said attribute.

Related aspects of the invention provide a system, e.g., as
described above, 1n which the further improvement for
accessing data tunnels for the purpose of materialising a
query result includes the steps of re-factoring the query
expression to produce a disjunctive normal form expression
of operators and their respective operands and removing
cach operator and respective operands from each conjunc-
tive term of said disjunctive normal form expression where
the outcome of said operator 1s implied by one or more other
operators 1n the same said conjunctive term. The improve-
ment also includes the steps of removing each conjunctive
term from said disjunctive normal form expression where
said conjunctive term contains an operator and respective
operands that 1s deemed to be always false; evaluating each
operator of said disjunctive normal form expression where
said operator 1s respective of a single entity type to produce
a separate relevant set of entity instances for each said

US 9,965,481 B2

11

operator independently and simultaneously for each said
operator, for storage in computer memory; reducing said
relevant sets of entity instances where said sets are respec-
tive of a common entity type such that members of said sets
not respective to every said set for said entity are discarded
to produce a common set of entity mstances for said entity
type independently and simultaneously for each respective
entity type 1 each conmjunctive term of said disjunctive
normal form, for storage in computer memory; and corre-
lating said common sets of entity instances for said entity
types paitred by binding operators 1n a sequence to produce
a correlated set of entity mstances for each respective entity
type independently and simultaneously for each said con-
junctive term, for storage in computer memory. The
improvement also includes the steps of accessing data
tunnels respective to each said correlated set of entity
istances to produce a set of query result instances indepen-
dently and separately for each respective entity type inde-
pendently and simultaneously for each said conjunctive
term, for storage 1n computer memory; marking query result
instances as void where query result instances contlict with
the respective conjunctive term independently and simulta-
neously for each said conjunctive term, for storage in
computer memory; and merging said sets ol query result
instances for each said conjunctive term such that respective
query result instances from each said set are combined 1nto
a single set of query result instances, for storage 1n computer
memory;

Related aspects of the invention provide a system, e.g., as
described above, i which the further improvement for
correlating said common sets of entity instances within said
conjunctive term for the purpose of producing a correlated
set of entity 1nstances includes the steps of correlating pairs
of common sets of entity mnstances across a mutually respec-
tive bind operator mn a defined visit sequence of bind
operators, for storage in memory and updating the cardinal-
ity of enftity instances in respective correlated sets of entity
instances in reverse order of said visit sequence, for storage
1n memory.

Related aspects of the invention provide a system, e.g., as
described above, in which the further improvement for
deciding said visit sequence of said bind operators with said
conjunctive term includes the steps of selecting a common
set of entity instances with the least number of respective
entity instances within said conjunctive term as the origin set
of enftity instances; selecting one of the said bind operators
respective to the said origin set of entity instances as the first
bind operator 1n the said visit sequence; selecting a subse-
quent bind operator from those bind operators respective to
the same common set of entity instances as the bind operator
most recently visited and which have not appeared in the
said visit sequence or which have already appeared 1n said
visit sequence but have been affected by a bind operator
subsequently visited; and repeating the prior step until no
more bind operators are available to be selected; such that
correlated sets of entity instances are produced in the said
visit sequence for storage 1n computer memory.

Related aspects of the invention provide a data storage
and/or retrieval system implemented on one or more digital
data processing systems that includes storage media com-
prising a plurality of data segments for each instance of an
entity type mampulated by a database operation 1n a respec-
tive database transaction. All data segments are maintained
within a contiguous data heap of arbitrary size and all new
data segments are appended to the data heap and assigned to
respective transactions and respective entity instances in
arbitrary order. The system also includes a storage engine

10

15

20

25

30

35

40

45

50

55

60

65

12

that 1s 1n communications coupling with the storage media
and writes said data heap to storage media 1n a minimal
number of storage write operations when any one of said
transactions commits its state.

Related aspects of the invention provide a system, e.g., as
described above, in which storage write operations are
performed such that all said data segments within said data
heap are written to storage in a mimimum of storage write
requests.

Related aspects of the invention provide a system, e.g., as
described above, 1n which storage write operations for said
data heap only occur at prefined regular intervals, such that
transactions committing their state cannot complete said
commit until the next storage write operation for said data
heap has successiully completed.

Related aspects of the invention provide a system, e.g., as
described above, in which an instance of a entity type 1s
logically deleted by appending an inversion of the respective
istance. Said mversion appears identical to the respective
instance 1n all respective connective, combinative and char-
acteristic data tunnels and a single inversion data tunnel for
cach entity type contains a plurality of data cells wherein a
data cell denotes an 1nversion of a respective mstance of said
entity type.

Related aspects of the invention provide a system, e.g., as
described above, 1n which append access to data tunnels and
data heaps occurs 1n chronological order, read access to data
tunnels and data heaps occurs in reverse chronological order,
and read access resolves entity instance mversion by accu-
mulating iversions and discounting corresponding entity
instances as they are encountered.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of the cells of at least
one said tunnel are grouped in frames based on common
characteristics of their respective entity instances.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of the cells of at least
one said tunnel are grouped in frames based on common
characteristics of the respective entity instances such that
cells across all tunnels respect common frame boundaries.

Related aspects of the invention provide a system, e.g., as
described above, that includes a database engine that is
coupled to the storage engine and that manages a retention
of cells 1n the storage media with respect to the age of the
data retained.

Related aspects of the invention provide a system, e.g., as
described above, that includes a database engine that is
coupled to the storage engine and that eliminates frames
from read access during a query with respect to a time
threshold expressed within said query.

Related aspects of the invention provide a system, e.g., as
described above, i1n which said common characteristic 1s
volume of respective entity instances.

Related aspects of the invention provide a system, e.g., as
described above, that includes a database engine that is
coupled to the storage engine and that manages a retention
of cells 1n the storage media with respect to the volume of
the data retained.

Related aspects of the invention provide a system, e.g., as
described above, 1n which a plurality of data cells respective
of a plurality of data tunnels respective of a plurality of
frames are accumulated within a single logical storage
system file of a plurality of logical storage system files.

Related aspects of the invention provide a system, e.g., as
described above, that includes a database engine that is
coupled to the storage engine and that manages a retention
of cells 1n the storage media.

US 9,965,481 B2

13

Related aspects of the invention provide a system, e.g., as
described above, i1n which a common characterisation of
respective cells within a plurality of frames 1s maintained
across a plurality of frame intervals and across a plurality of
frame interval sizes whereby a plurality of frames and
respective data cells may be eliminated from consideration
by a respective operator and 1ts operands.

Related aspects of the invention provide a system, €.g., as
described above, in which a plurality of bit sequences
common to all respective instances of attributes for data
cells within a plurality of frames 1s maintained across a
plurality of frame intervals and across a plurality of frame
interval sizes whereby a plurality of frames and respective
data cells may be eliminated from consideration by a respec-
tive equivalence operator and 1ts operands.

Related aspects of the invention provide a system, e.g., as
described above, 1n which bounds common to all respective
instances of attributes for data cells within a plurality of
frames 1s maintained across a plurality of frame intervals
and across a plurality of frame interval sizes whereby a
plurality of frames and respective data cells may be elimi-
nated from consideration by a respective bounding operator
and 1ts operands.

Related aspects of the invention provide a system, e.g., as
described above, 1n which properties common to all respec-
tive 1nstances of attributes for data cells within a plurality of
frames 1s maintained across a plurality of frame intervals
and across a plurality of frame interval sizes whereby a
plurality of frames and respective data cells may be elimi-
nated from consideration by a respective possessive operator
and 1ts operands.

Related aspects of the invention provide a system, e.g., as
described above, in which a plurality of said data segments
are grouped 1n frames based on common characteristics of
their respective enfity instances.

Related aspects of the invention provide a system, e.g., as
described above, in which said common characteristic 1s
time period.

Related aspects of the invention provide a system, e.g., as
described above, 1n which said common characteristic 1s
volume of respective enfity instances.

Related aspects of the invention provide a system, e.g., as
described above, that includes a storage engine that appends
data cells to respective data tunnels for instances of respec-
tive enfities contained in data segments that comprise a
complete frame.

Related aspects of the invention provide a system, €.g., as
described above, that includes a storage engine and that
appends data cells to respective data tunnels for mstances of
respective entities contained 1n data segments that comprise
a complete frame, as and when each frame becomes com-
plete.

Related aspects of the invention provide a system, e.g., as
described above, that includes a storage engine and that
appends data cells to respective data tunnels for mstances of
respective entities contained 1n data segments that comprise
a plurality of complete frames, as and when said plurality of
frames become complete.

Related aspects of the invention provide a system, e.g., as
described above, in which a complete definition of respec-
tive enfity types and respective attributes 1s stored within
distinct storage system file 1dentified by a unique version
identity whenever said definition 1s changed.

Related aspects of the invention provide a system, e.g., as
described above, in which each distinct entity type definition
1s assigned a unique ordinal identity from a single mono-
tonically increasing ordinal number sequence.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Related aspects of the invention provide a system, e.g., as
described above, 1n which each distinct attribute definition 1s

assigned a unique ordinal identity from a monotonically
increasing ordinal number sequence for the respective entity
type.

Related aspects of the invention provide a system, e.g., as
described above, 1 which each complete definition 1s
assigned a unique version identity from a single monotoni-
cally increasing version number sequence.

Related aspects of the invention provide a system, e.g., as
described above, i which each complete definition 1s
assigned the i1dentity of the respective frame 1 which said
definition 1s created.

Further aspects of the mnvention provide methods for data
storage and/or retrieval paralleling operation of the systems
characterized in the attached claims.

Still further aspects of the invention provide apparatus for
data storage and/or retrieval operating in accord with the
alforementioned systems and methods.

Yet still further aspects of the invention are evident 1n the
text and drawings that follow.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 1s a schematic diagram of an exemplary computer
architecture;

FIG. 2 depicts a digital data processing system and
environment according to one practice of the invention that
supports OLTP and OLAP activity independently of the data
model or schema;

FIG. 3 depicts a software architecture for a database
server 1n a system according to one practice of the invention;

FIG. 4 1illustrates how an access model and a storage
model relate to a query syntax and a data model employed
by users 1 a system according to one practice of the
invention;

FIG. 5 1llustrates a logical collection and logical elements
within 1t 1n a system according to one practice of the
invention;

FIG. 6 1illustrates that a collection path 1s equivalent to a
table name and an element path corresponds to the column
name 1n a system according to one practice of the invention;

FIG. 7 illustrates that, for example, an element path may
model a nested object structure 1n a system according to one
practice of the mvention;

FIG. 8 illustrates that, for example, an element path may
preserve an XML hierarchy 1 a system according to one
practice of the mvention;

FIGS. 9-14 provide an example of the how collection sets
can be visited and have their visit ordinals assigned during
the second phase of the bind process 1n a system according
to one practice of the invention;

FIG. 135 1llustrates that tunnels and cells can be arranged
such that cells between tunnels correspond so that traversal
can move between tunnels as required 1n a system according
to one practice of the ivention;

FIG. 16 1llustrates that a file sequence can be located 1n a
directory path which 1s determined from a tunnel family and
a collection path identity, and that a file can contain the
frame number within 1ts name 1n a system according to one
practice of the mvention;

FIG. 17 1llustrates that a closed frame can be arranged as
a hierarchy of storage sectors where a sector relates to a
particular entity path (collection or element) and can be
composed of multiple sub-sectors and where a sub-sector
relates to a specific tunnel 1 a system according to one
practice of the mvention;

US 9,965,481 B2

15

FIG. 18 1llustrates that sector maps can arranged as a one
dimension array of fixed sized entries that contain the
starting address of the sub-sector for a sub-sector ordinal 1n
a system according to one practice of the ivention;

FIG. 19 illustrates that a tunnel can be arranged with a
fixed sized frame number and a fixed sized tunnel address

which identily the frame and the address within the frame
file respectively 1n a system according to one practice of the
invention;

FI1G. 20 1llustrates that a segment can contain a header that
identifies a collection path and transaction 1t belongs to and
a segment can contain a pointer to the next transaction
segment in the chain and a pointer to the next segment 1n the
same collection path 1n a system according to one practice
of the invention;

FIG. 21 illustrates that transaction information pertaining,
to transaction segments can be stored within a header of a
heap file 1n a system according to one practice of the
imnvention;

FIG. 22 1illustrates that an identification cell can be a
sequence of bytes with a preceding cell size, path and
domain 1n a system according to one practice of the inven-
tion;

FI1G. 23 1llustrates that a measurement cell can hold a cell
length, domain, sign indicator, an exponent and a significand
that represent the magnitude of an element 1n a system
according to one practice of the invention;

FIG. 24 illustrates that an enumeration cell can be a
sequence ol property identifiers a preceded by a property
size and an enumeration sequence preceded by a cell size,
path and domain 1n a system according to one practice of the
imnvention;

FIG. 25 1llustrates that an opaque cell can contain a cell
s1ze, path, domain, opaque element size and a link to where
opaque data 1s stored 1n a system according to one practice
of the invention;

FI1G. 26 illustrates that an inversion cell can contain fixed
s1ze frame and tunnel numbers 1n a system according to one
practice of the invention;

FI1G. 27 1llustrates that a digest cell can contain a cell size,
digest and fixed size tunnel number 1n a system according to
one practice of the invention;

FIG. 28 1llustrates that a digest tunnel can be arranged
with cells appended in strict chronological order within a
tunnel 1n a system according to one practice of the invention;

FIG. 29 illustrates that a frame can also contain a cell
count per digest tunnel number which 1s a one-dimensional
array addressed by tunnel number (1 . . . N) to yield a count
of cells 1n that tunnel 1n a system according to one practice
of the invention;

FIG. 30 1llustrates that a digest tunnel map can be a
one-dimensional array addressed by collection tunnel num-
ber to vield a corresponding digest tunnel number 1n a
system according to one practice of the mvention;

FIG. 31 illustrates that a rank tunnel can be arranged with
cells appended 1n strict chronological order within a tunnel
in a system according to one practice of the invention;

FI1G. 32 1llustrates that a frame can contain a one-dimen-
sional array per rank tunnel addressed by byte value (O . . .
2535) to yield the count of cells 1n that rank tunnel that
contain the corresponding cell value 1n a system according
to one practice of the invention;

FI1G. 33 1llustrates that a frame can contain a one-dimen-
sional array addressed by property tunnel number (1 ... N)
to yield the count of TRUE cells 1n that tunnel in a system
according to one practice of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 34 illustrates that, advantageously, collection sets
can be hosted 1n memory to assist rapid access and an
advantageous structure for a collection set 1s a list of
fixed-sized memory blocks 1n a system according to one
practice of the invention; and

FIG. 35 illustrates layers and components of an architec-

ture of a database 1n a system according to one practice of
the 1nvention.

DETAILED DESCRIPTION OF TH.
ILLUSTRATED EMBODIMENT

(Ll

FIG. 2 depicts a digital data processing system and
environment according to one practice of the imnvention that

supports OLTP and OLAP activity independently of the data
model or schema. This can include, for example, persisting
and retrieving data in the storage layer of a database system
that supports any of a number of data models, e.g., relational
or hierarchical data models, and their concomitant query
languages and, yet, that 1s independent of those models and
languages.

In the illustrated embodiment, the system includes digital
data processors 20-40, which may be personal computers,
workstations, mainframes, or other digital data processing
apparatus of the type known 1n the art capable of executing
applications, programs and/or processes. Although three
digital data processors 20-40 are shown here, those skilled
in the art will appreciate that the functionality attributed to
them herein may be combined onto a lesser number of such
digital data processors or distributed onto a greater number,
all consistent with the teachings hereof. Illustrated digital
data processors 20-40 are coupled for communication 1n the
conventional manner known 1n the art, here, for example, via
a network 70, such as the Internet, a local-area network
(LAN), wide-area network (WAN), or otherwise, that may
be public, private, IP-based, etc.

Ilustrated digital data processor 20 comprises a personal
computer, workstation, mainirame, or other digital data
processing apparatus, as discussed above, and 1s used by a
developer to build, test, and deploy a database system 1n
accord with the teachings hereof. To that end, the digital data
processor 20 executes a variety of applications for creating
such a system, including, for example, a computer language
compiler.

Ilustrated digital data processor 30 comprises a personal
computer, workstation, mainirame, or other digital data
processing apparatus, as discussed above, and 1s employed
by a user to persist and/or retrieve miformation from the
database system and more particularly, for example, from a
data store 50. To this end, the digital data processor 30
provides an interface 32 (e.g., graphical, textual, batch-
oriented or otherwise) that accepts user requests for data
storage and retrieval-—and, more specifically, for example,
requests for creating, reading, updating and deleting data in
the database system—and that generates corresponding noti-
fications, data records or other information of the type
conventionally known 1n the art as adapted in accord with
the teachings hereof. In typical applications, requests by the
user and information generated by the mterface 32 are made
with respect to relational or hierarchical data model or
schema and, more generally, with respect to a data model or
schema around which the user perceives the database system
to be organized. Accordingly, digital data processor 30 may
execute any variety of conventional database application,
including, for example, a relational database, all as adapted
in accord with the teachings hereof.

US 9,965,481 B2

17

[lustrated digital data processor 40 comprises a personal
computer, workstation, mainirame, server, or other digital
data processing apparatus, that executes a digital data infor-
mation storage and retrieval application (e.g., a database
server) 1n accord with the teachings hereotf that stores,
retrieves, updates, deletes, and otherwise manages data
maintained on networked attached storage device 50, which
may be a hard disk drive and/or other persistent storage
device of the type known in the art. The digital data
processor 40 and data store 50 operate in the conventional
manner known 1n the art as adapted in accord with the
teachings hereof to persist and retrieve data using storage
and access models heretofore unknown 1n the art.

FIG. 3 depicts a soiftware architecture for database server
40. As shown 1n the drawing, 1t includes database manage-
ment software (labelled “Database’) that includes user inter-
face functionality, language interface functionality, schema
definition functionality and an execution engine, all of the
type known 1n the art as adapted 1n accord with the teachings
hereof. The software architecture further includes an opera-
tion system and file systems, again, of the type known 1n the
art as adapted 1n accord with the teachings hereot. Construc-
tion and operation of a storage engine of the type illustrated
here are detailed below. The storage engine 1s alternatively
referred to herein as “the database system,” “the 1llustrated
database system,” “digital data storage system,” “digital data
retrieval system™ and the like, as will be evident 1n context
in the following.

The 1llustrated database system supports a particular data
model such as the relational or hierarchical data model and
provides a query language to the users of the database to
support data definition, data manipulation and data retrieval.
The data model defines the semantics of the data stored
within the database while the query language defines the
syntax for using the data model.

Discussed herein 1s an access model and storage model
that support the data model used—yet are independent of 1t
such that virtually any data model can be efliciently sup-
ported. The access model defines the primitive operations
required to efliciently support the data model; while the
storage model defines the storage structures required to
suiliciently support the access model.

FIG. 4 1llustrates how that access model and storage
model relate to the query syntax and data model employed
by users.

Access Model

For the purpose of independence from a data model, the
access model views the data population as collections of
atomic elements wherein a collection instance 1s just a
bundle of element instances with no inherent structure and
an element instance 1s a pairing of a distinguishing reference
path and a data value associated with 1t. All collection
instances are referenced by a unique collection path that
distinguishes between collection nstances of diflering char-
acteristics.

Collection 1stances may be inserted and deleted in their
entirety; they may also be updated (by adding and removing
clement instances within them). Therefore a collection
instance 1s viewed as a cloud of element instances which can
be added or removed at will. FIG. 5 illustrates a logical
collection and logical elements within it.

In FIG. 5, the path at the centre of the cloud represents a
logical collection path while the path 1n each logical element
represents an element path. These collection and element
paths define the meta-data for the collection instances that
might appear in this collection path.

10

15

20

25

30

35

40

45

50

55

60

65

18

Notice that this model knows nothing about any logical
relationships that might exist between element paths or
relationships between element mstances within a collection
instance or any relationships that might exist between ele-
ment 1nstances across collection instances.

When compared to the relational model, a collection
instance 1s analogous to a table row and each eclement
instance corresponds to a table column value. The collection
path 1s equivalent to the table name and the element path
corresponds to the column name. This 1s illustrated 1n FIG.
6.

The non-existence of an element instance 1s analogous to
a null column value 1n a row. The 1nsertion and deletion of
table rows corresponds to the insertion and deletion of whole
collection 1nstances. The update of a row 1s modelled as the
removal and/or addition of one or more element instances to
an existing collection instance.

In view of the above 1t will be appreciated that the access
model supports a relational data structure.

When compared to the object model, a collection instance
1s analogous to an object instance and each element 1nstance
corresponds to an atomic field within the object instance.
Notice however, that the structure of the object (which may
be an aggregate of other objects) 1s not reflected 1n the
collection instance but i1s reflected 1n the element path
reference. In other words, the collection instance flattens out
the object structure while the element paths preserve it. For
example an element path may model a nested object struc-
ture such as “.Object.Array[N].Field”. See the example in
FIG. 7.

In view of the above it will be appreciated that the access
model supports an object data structure.

When compared to the hierarchical model, a collection
instance 1s analogous to the root of the hierarchy and the
clement 1nstances correspond to the atomic attributes stored
within the lierarchy. Much like the object model, the hier-
archy 1s flattened out by the collection instance, but pre-
served by the element paths. For example an element path
may preserve an XML hierarchy such as “book/page/para-
graph”. See the example in FIG. 8.

In view of the above it will be appreciated that the access
model supports a hierarchical data structure.

Notice that 1n each case an element instance 1s a simple
scalar data type while its associated path preserves any
complex structure around it and, 1n essence, the element path
performs a structure serialisation function.

In view of the above 1t will be appreciated that structure
ol a data model 1s preserved by the access model meta data
paths.

All non-scalar data structures are resolved into multiple
reference paths with associated values of scalar number,
scalar text or scalar object. For example, a composite
coordinate structure (X, Y) will be resolved into path and
scalar number pairs (element instances) of (“X”: number)
and (Y. number) respectively. Thus arbitrarily complex
data types can be resolved into multiple scalar element
instances with their element paths preserving the structure of
the complex data type.

In view of the above 1t will be appreciated that the access
model can support arbitrarily complex data structures.

In view of the above 1t will be appreciated that the access
model 1s independent of any specific data model.

For the purpose of clarity, collections and elements relate
to entities and attributes as recognised 1n standard Entity
Relationship Modelling as follows,

US 9,965,481 B2

19
TABLE 4

ERM Concept Access Model Concept

Entity Type Collection Path
Entity Instance Collection Instance
Attribute Element Path

Attribute Instance Element Instance

This access model allows for an arbitrary set of element
instances to be included 1n a collection 1nstance at any time.

This fluidity allows the access model to accept any schema
changes supported by the native data model without 1mpos-
ing constraints unrelated to the native data model.

In view of the above, 1t will be appreciated that the access
model does not unnecessarily constrain the native data
model.

In view of the above, 1t will be appreciated that the access
model allows collection paths and element paths to be
arbitrarily and dynamically created at wall.

The access model requires that a collection path 1s unique.
Theretfore, a collection path must contain suflicient infor-
mation to resolve 1ts identity. The access model requires that
an element path 1s unique within a collection path; but need
not be unique across collection paths. Therefore, an element
path must always be qualified by the collection path to which
it belongs to resolve 1ts 1dentity.

For example, 1n a relational context, a column named ‘C’
(clement path) may appear in multiple distinct tables (col-
lection paths). Therefore, the identity of element path ‘C’
can only be resolved by the context of the collection path to
which it belongs.

The access model does not consider that the data type,
domain, encoding or size ol an element instance to be
significant. Instead, element intent 1s regarded as significant
wherein the intent defines the purpose of the element path in
providing information pertaining to the collection. The
intent ol an element path 1s categorised as exactly one of the
following: (Identification Intent, Measurement Intent, Enu-
meration Intent, and Opaque Intent)

Identification Intent. The element path 1s used as an
identifier. Such an element path 1s only used in whole to
reference a collection 1nstance or parts of 1t. For example, an
‘emplovee number’ element path has identification intent
and 1s used to reference a particular employee 1nstance and
has no other significance. An 1dentification element instance
can only possess one value at any one time within a
collection instance and that value 1s only meaningful in 1ts
entirety and has no implied ordering or merit 1n comparison
to any other 1dentifier values within the same element path.
For example, an employee number may only have one value
for a particular employee at any one time; and the entire
employee number 1s used to identity the employee; and
turthermore, a comparison of employee numbers yields no
usetful information.

Measurement Intent. The element path 1s used as a
measure of some property. Such an element path supports
comparisons between element instances to determine an
order of merit. For example, an ‘employee salary’ element
path has measurement mtent and may be used to compare
employees—but would not be used to 1dentity any particular
employee. A measurement element 1nstance can only pos-
sess one value at any one time and that value i1s only
meaningiul 1 its entirety (no meaningiul nformation 1s
provided by part of the value). For example, an employee
salary only has one value for a particular employee at any
one time; and the salary 1s specified by the entire salary
value.

10

15

20

25

30

35

40

45

50

55

60

65

20

Enumeration Intent. The element path 1s used to express
ownership of one or more discrete properties. For example,
an ‘employee gender’ element path would be considered to
be a singleton ownership of either a male or female property;
and the ‘employee address’ element path would be consid-
ered to be an ownership of multiple word properties. Subsets
of the properties within the enumeration element instance
can 1impart useful information. For example, the city name
property in an address instance can provide useful informa-

tion independently of the other properties i the same
address.

Opaque Intent. The element contains foreign information
and 1t has no intent relevant to the access model. For
example, an attached employee contract 1n a PDF document
cannot be used for the identification, measurement or enu-
meration of the employee 1n any useful way.

The corollary to fully dynamic collection instances of
clement mstances belonging to element paths with a specific
intent 1s that the intent must be specified whenever a new
clement path 1s created. Therefore, 1n this embodiment, the
creation ol an element path must indicate its intent.

There 1s no direct analogy to element intent in a traditional
data model. However, relationship and value domain con-
straints can be used to ascertain intent. The table below
presents a summary of how intent may be discerned from
fundamental data types in a native data schema. The table
assumes that every element istance value can be expressed
as a scalar number, scalar text or scalar object. For example,

time data can be represented as a number of time units
within an epoch.

TABLE 5
Number Text Object
Is a relationship Identity Identity N/A
Is not a Measure Enumeration Opaque
relationship

In view of the above, 1t will be appreciated that the only
information needed to be known about an element path 1s 1ts
canonical name and intent which are readily determined
from the native data model.

The following table provides a list of rules for discerning
clement path intent 1n a relational database schema. The
rules are applied in ascending order of precedence and when
a condition 1s met the corresponding intent 1s used.

TABLE 6
Precedence Condition Intent
1 Has a primary key constraint Identification
2 Has a foreign key constraint Identification
3 Has a unique constraint Identification
4 Has an enumerated check constraint Enumeration
5 Has a arithmetic check constraint Measurement
6 Has an inverted-list index Enumeration
7 Has a bit-map ndex Enumeration
8 Has a B-tree index Identification
9 Is a time data type Measurement
10 Is a boolean data type Enumeration
11 Is a numeric data type Measurement
12 Is a character type Enumeration
13 Is a large object data type Opaque
14 Is an external link Opaque

US 9,965,481 B2

21

Using these rules, the table definitions given in the earlier
example would vyield the following intents

create table Employees

(Name varchar(64) not null, => Enumeration
EmployeeNumber number primary key, => Identification
Salary number(8,2) not null, => Measurement
CommuissionRate number(4,2), => Measurement
DepartmentNumber number references
Departments(DepartmentNumber)); => Identification

create table Departments

(Name varchar(64) not null, => Enumeration
DepartmentNumber number primary key, => Identification
RegionNumber number references
Regions(RegionNumber)); => Identification

create table Regions

(Name varchar(64) not null, => Enumeration
RegionNumber number primary key); => Identification

In view of the above, 1t will be appreciated that the only
information needed to be known about an element path
within a relational model 1s easily determined from the
relational schema.

Access Model Operations

The data manipulation operations that this access model
supports are as follows.

A) Add a whole new collection imstance to a collection
path. Every element instance contained within the collection
instance 1s mdividually specified as an element path and
value parr.

B) Drop a whole existing collection instance from a
collection path. A whole collection instance 1s removed,
including every element 1nstance contained within 1t.

C) Add an element instance to an existing collection
instance with a collection path. The element instance 1is
specified as an element path and value pair.

D) Drop an element instance from an existing collection
instance within a collection path. The element instance 1s
specified by 1ts path only.

E) Retrieve collection instances that match element
instance criteria. The criteria include expressions for both
the element path and element 1nstances of interest.

A combination of these primitive operations 1s suilicient
to support the data manipulation operations found in tradi-
tional database systems such as an RDBMS.

For a relational database system,

Inserting a new row with specific column values into table
1s 1mplemented by

A) Inserting a new collection instance (row) that contains
specific element nstances (column values)

Querying rows {from a table that match column criteria 1s
implemented by

A) Retrieving collection instances (rows) that match the
required element path (column) criteria

Deleting rows from a table that match column criteria 1s
implemented by

A) Retrieving collection instances (rows) that match the
required element path (column) criteria

B) Dropping the retrieved collection instances.

Updating column values 1n a set of table rows 1s 1mple-
mented by

A) Retrieving collection mnstances (rows) that match the
required element path (column) criteria

B) Removing predecessor element instances (column
values) from each collection instance (row) retrieved

C) Adding successor element imnstances (column values) to
cach collection 1nstance retrieved

10

15

20

25

30

35

40

45

50

55

60

65

22

In view of the above, 1t will be appreciated that the access
model supports the fundamental data manipulation opera-
tions required by a relational database system.

This access model allows retrieval of collection 1nstances
by applving predicates to one or more element paths such
that only collection instances that conform to the predicate
criteria are retrieved. For example, it would be possible to
retrieve an employee collection with a specific employee
number by predicating that the employee number path
contain the required employee number.

The nature of a predicate 1s inextricably linked with the
intent of the element path against which 1t 1s expressed and
the access model allows the following predicates for each
intent,

A) All mtents. Collection 1nstances can be predicated on
the existence or non-existence of an element 1nstance 1n an
clement path of any intent.

B) Identification intent. Collection instances can be predi-
cated on the equivalence of i1dentification element instances
to a sought 1dentity. There 1s no ordering or merit implicit to
an 1dentifier and therefore no other predicates apply. In
reality, a real world identifier may contain some implied
notion of ordering but this 1s not known or assumed by this
access model.

C) Measurement intent. Collection instances can be predi-
cated on measurement element instances falling within a
bounded range. There can be no attempt to test part of a
measurement value as 1t represents a single point on a
spectrum of possible values and any attempt to match part of
a measurement value implies some knowledge about the
internal representation of the value—which 1s beyond this
access model and 1s non-deterministic. The access model
allows the bounded range to be reduced to a single point
using a common boundary and also allows the lower bound
to be expressed as negative infinity and/or the upper bound
to be expressed as positive infinity.

D) Enumeration imtent. Collection mstances can be predi-
cated on whether enumeration element 1nstances contain one
or more properties within them.

E) Opaque intent. Element instances of opaque intent
offer no useful information other than their existence or
non-existence.

Therefore, each intent 1s associated with specific predicate
operators that pertains to 1t and the following predicate
operators are provided,

A) Operator ‘1s’. Predicates that an identification element
instance 1s equivalent to an identifier.

B) Operator ‘in’. Predicates that a measurement element
instance falls 1n a bounded range.

C) Operator ‘has’. Predicates that an enumeration element
instance ‘has’ ownership of one or more properties.

D) Operator ‘exists’. Determines 11 an element instance
‘exists” and can be used with an element path of any intent.

Each of the predicate operators returns a Boolean result
for each collection instance as follows,

TABLE 7
Operator Returns Notes
exists(e) TRUE if element instance Requires only an element

in element path e exists; path as an operand

false otherwise

TRUE 1if the element
instance 1 element path e
1s equivalent to value a;
false otherwise

Requires an element path and
an identification constant as
operands

is(e,a)

US 9,965,481 B2

23
TABLE 7-continued

Operator Returns Notes
in(e,a;,a,) TRUE if the element Requires an element path and
instance in element path e exactly two measurement
is bounded by a, and a, constants where a, < a,. The
first operand may be
negative mfinity and the
second operand may be
positive infinity to support
open range boundaries.
has(e,a;, = TRUE 1if the element Requires an element path
a ...) instance in element path e and one or more

contains all of the identification constants.

properties included 1n a,,
a . ..

In the table above, each predicate operator 1s used in the
context of an element path e which 1s fully qualified by 1ts
containing collection path.

The following relational examples illustrate the use of
cach predicate operator,

C 1s not null; translates to exists(C)

C = 123456; translates to 1s(C, 123456)

C BETWEEN 1 AND 10; translates to in(C, 1, 10)

C LIKE “%JOHN%SMITH%’ ; translates to has(C, “‘JOHN’, “SMITH")

In the examples above, C 1s a column name (element path)
which 1s assumed to be qualified by the table name (collec-
tion path) to which it belongs.

The criteria supported by the predicate operators 1n this
access model may not be as rich as the native data model
operators. For example, the expressiveness ol the ‘has’
operator 1s more restricted than the SQL LIKE operator.
However, these predicate operators provide suilicient
expression to allow a strict superset of collection 1nstances
to be 1dentified and retrieved and then reduced further by the
native data model operators.

In one embodiment, the ‘1s” operator supports an arbitrary
number of identification constants and predicates that the
identification element instance 1s equivalent to any one of
the constants.

In one embodiment, the ‘in’ operator supports left and

right inclusive bounding indicators which specily whether
the left bound and right bound should each be considered as
inclusive or exclusive for determining the enclosure of a
measurement element instance.

In one embodiment, the ‘has’ operator supports a regular
expression operand which 1s applied to each enumeration
clement 1nstance to determine 1ts conformity.

In one embodiment, each element path may have more
than one intent and every element path 1s assumed to have
identification intent 1n addition to its measurement or enu-
meration intent.

In view of the above, 1t will be appreciated that the access
model predicate operators support equivalence or useiul
near equivalence to the predicate criteria possible 1n the
native data model.

Element paths with identification intent may be involved
in expressing relationships between collection paths and
another operator 1s provided to support the binding together
of multiple collection instances through the equivalence of
their 1dentification element instances. This operator 1s a bind
operator which predicates the equivalence of eclement
instances across two element paths. The bind operator is

defined as

10

15

24
TABLE 8

Operator Returns Notes

bind(el,e2) TRUE if the element Requires two element paths fully

instances in element paths qualified by their collection paths
el and e2 are equivalent
in value

This operator 1s equivalent to an nner equi-join 1n a
relational data model. For example, a join in a SQL state-

ment such as,
where
Employees.DepartmentNo=Departments.DepartmentNo
can be expressed by a bind operator as,
bind(*Employees.DepartmentNo’, *Department.Depart-
mentNo’)
which returns TRUE for each combination of collection
instances in the ‘Employees’ and ‘Departments’ collection
paths where they have equivalent element instances in the

0 ‘DepartmentNo’ element path.

25

30

35

40

45

50

55

60

65

In view of the above, it will be appreciated that the access
model supports the common predicate and equijoin condi-
tions 1n the relational model.

Clearly, the bind operator can be extended to include
options whereby bind operations equivalent to relational
outer-joins, cross-joins and self-joins are supported. For
outer joins, one or both collection paths can be associated
with an outer-join indicator. For cross-joins, the element
path operands can be omitted. For self-joins collection path
alias operands are associated with each collection path so
that the same collection path can appear under different
aliases and be treated eflectively as a separate collection path
under each distinct alias. This 1s similar to the alias mecha-
nism used 1n relational SQL.

In view of the above, it will be appreciated that the access
model supports self-join, cross-join and outer-join condi-
tions 1n the relational model.

In one embodiment, the ‘bind’ operator supports equi-
joins between different element paths within common col-
lection 1nstances of a collection path to model the relation
query where columns 1n the same table are compared for
equality.

This access model requires that a relationship 1s 1mple-
mented through the equivalence of identification element
instances and allows relationships between collection paths
to be established at retrieval time by binding their respective
identity element paths. Any two element paths with identity
intent may be bound together arbitrarily and this access
model need not be aware that those separate element paths
enforce a relationship until the element paths are explicitly
bound together at query time. Note that the native database
schema may be aware of explicit relationships between
entities but that these need not be made apparent to this
access model until query definition.

In view of the above, 1t will be appreciated that the access
model does not require the defimition of relationships
between entities before they are expressed for the purpose of
a query.

While this model assumes that any 1dentity element path
may be bound to any other 1dentity element path, 1t requires
that measurement, enumeration and opaque element paths
will never be bound as they do not express equivalence for
the purpose of equivalence binding.

This access model allows the combination of multiple
predicate and bind operators using Boolean algebra to create
compound expressions that incorporate multiple conditions
and element paths.

US 9,965,481 B2

25

Some statements 1n the native data model may combine
together multiple queries 1 a single statement. In a rela-
tional context this occurs with sub-queries and set operations
such as unions and intersections. The individual queries can
be serviced by the access model operators as described
above and the logic of the compound statement can be
resolved by the query execution engine.

Bind Operator Resolution

The following describes a method for resolving bind
operators across a compound Boolean expression whereby
predicate operators may be evaluated independently and
whereby bind conditions may be applied independently;
allowing multiple CPU and storage resources to be applied
simultaneously.

In this embodiment of resolving bind operators, it 1s
required that a compound operator expression must be
expressed i Disjunctive Normal Form (DNF), which 1s a
disjunction of conjunctive terms each contaiming a conjunc-
tion of operator literals.

It has been mathematically proven elsewhere that every
composite Boolean expression can be re-factored into a
DNF by using Boolean axioms and laws such as associa-
tivity, distributivity and DeMorgan’s Law. Methods for
transforming Boolean expressions into DNF 1s extensively
covered elsewhere and will not be considered further here.

In this embodiment of resolving bind operators, it 1s
required that a conjunctive term contain at least one predi-
cate operator for every collection path that appears any-

where within the same conjunctive term of the DNF. For this
purpose, the following trivial predicate operator 1s provided
by the access model.

TABLE 9

Operator Returns 1 Notes

TRUE for all

instances in
collection path ¢

true(c) Requires a collection path

as an operand

In this embodiment of resolving bind operators, it 1s
required that within each conjunctive term, any operators or
conjunctive terms that universally equate to TRUE or
FALSE respectively be removed as follows.

TABLE 10
Expression Reduction Notes
in(e,a,b) Remove term Where a > b
in(e,a,b) Remove operator Where a 1s negative infinity and b is

positive infinity

In this embodiment of resolving bind operators, it 1s
required that within each conjunctive term, two or more
operators against a common element path be reduced to a
single operator to simplity the conjunctive term as follows.

TABLE 11
Expression Reduction Notes
exists(e)) lexists(e) FALSE An element mmstance cannot both
exist and not exist at the same time
is(e,a) is(e,b) FALSE An identity cannot have two
values at the same time
is(e,a) lis(e,b) is(e,a) The is(e,a) is sufficient and

the !is(e,b) 1s redundant

10

15

20

25

30

35

40

45

50

55

60

65

26
TABLE 11-continued

Expression Reduction Notes
is(e,a) : exists(e) is(e,a) The 1s(e,a) implies exists(e)
is(e,a) lexists(e) FALSE An 1dentity cannot have a
value if it does not exist
lis(e,a)) lexists(e) lexists(e) If an identity does not exist it
implies that it cannot
have a value
in(e,a,b) infe,c,d) in(e,g,h) Where (a,b) and (c,d)
overlap at (g,h)
in(e,a,b) infe,c,d) FALSE Where (a,b) and (c,d)
do not overlap
ine,a,b) lin(e,c,d) FALSE Where (a,b) within (c,d)
in(e,a,b) : exists(e) in{e,a,b) The in(e,a,b) implies exists(e)
in(e,a,b) lexists(e) FALSE A measurement cannot have a
value if does not exist
lin(e,a,b) lexists(e) lexists(e) II a measurement does not exist it
cannot be fall within a range.
has(e,a) : exists(e) has(e,a) The has(e,a) implies exists(e)
has{e,a) !exists(e) FALSE If an enumeration does not exist
it implies that it cannot
posses any properties
thas(e,a) i lexists(e) lexists(e) If an enumeration does not exist it
implies that it cannot
posses any properties
has(e,a)) has(e,b) has(e,a,b) The has() operator accepts an
arbitrary number of operands.
bind(e,e) TRUE An element instance is always

equivalent to itself.

In this embodiment of resolving bind operators, the
true() operator 1s removed from a conjunctive term where
another predicate operator for the same collection path
already exists within the same conjunctive term.

In this embodiment of resolving bind operators, the reduc-
tion rules are applied iteratively to simplify a conjunctive
term as much as possible.

In this embodiment of resolving bind operators, the con-
junctive terms are de-duplicated by removing conjunctions
that contain combinations of operators and operands that are
identical to other conjunctive terms in the same DNF.

The following illustrates the conversion of a SQL—where
clause mto a Boolean DNF of the access model operators

described

...where (Employees.salary between 10000 and 35000)

and (Employees.Commuission is not null)

and (Employees.DepartmentNo = Departments. DepartmentNo)
and (Departments.RegionNo = Regions.RegionNo)

and ((Regions.Name="North’) or (Regions.Name="East’))

The above SQL clause becomes the following Boolean
expression when using the access model operators described

in(*Employees.Salary’, 10000, 35000)

and exists(‘Employees.Commission”)

and bind(*Employees.DepartmentNo’, ‘Departments.DepartmentNo’)
and bind(*Departments.RegionNo’, ‘Regions.RegionNo’)

and ((1s(*Regions.Name’, ‘North’) or 1s(*Regions.Name’, ‘East’))

When this Boolean expression 1s converted mto DNE, it
becomes

(in(*Employees.Salary’, 10000, 35000)

and exists(‘Employees.Commission”)

and bind(‘Emplovees.DepartmentNo’, ‘Departments.DepartmentNo’)
and bind(*Departments.RegionNo’, ‘Regions.RegionNo’)

US 9,965,481 B2

27

-continued

and 1s(*Regions.Name’, ‘North’)

and true(‘Departments’)

or

(in(*Employees.Salary”, 10000, 35000)

and exists(‘Employees.Commission’)

and bind(*Employees.DepartmentNo’, ‘Departments.DepartmentNo’)
and bind(*Departments.RegionNo’, ‘Regions.RegionNo’)

and 1s(‘Regions.Name’, ‘East’)

and true(‘Departments’)

Notice that the true() operator has been introduced for the
‘Departments” collection path in each conjunctive term
because 1t appears within a bind operator but there are no
predicate operators applied to 1t 1in same the conjunctive
term.

In this embodiment of resolving bind operators, it 1s
required that each predicate operator evaluates itsellf by
generating a set of collection instances. This set 1s known as
a collection set and contains one member for each collection
instance where the predicate operator 1s TRUE. Each set

member 1s a vector of the following information,

Identity. This uniquely 1dentifies the mstance of a collec-
tion. For purposes of the present discussion this identity 1s
assumed to be the ordinal position of a collection 1nstance
within the collection path

Cardinality. This defines the number of times a member
must be repeated within a bind. When a collection set 1s first

generated by a predicate operator this cardinality 1s always
1.

Sequence. This defines the order in which the collection
instances must be bound. When an collection set 1s first
generated by a predicate operator this sequence 1s always 0.

Theretfore, 1n the example above, the operator evaluation
for m(“Employees.Salary”, 10000, 35000) would be the
tollowing collection set

TABLE 12
Identity Cardinality Sequence
1 1 0
2 1 0
3 1 0

While the operator evaluation for exists(*Employ-
ces.Commission’) would be the following collection set

TABLE 13
Identity Cardinality Sequence
2 1 0
3 1 0

In this embodiment of resolving bind operators, it 1s
required that collection sets that correspond to the same
collection path within a conjunctive term are then combined

whereby any members that do not appear in every set are
discarded.

In the example, this yields the following collection set for
the ‘Employees’ path when combined from the two collec-
tion sets above.

10

15

20

25

30

35

40

45

50

55

60

65

28

TABLE 14
Identity Cardinality Sequence
2 1
3 1

In one embodiment, the collection sets generated for each
predicate operator can be shared (rather than regenerated)
across conjunctive terms where the same operator and
operand combination appears elsewhere.

In one embodiment, combined collection sets can also be
shared where they combine exactly the same operators and
operands. In this example, the combined collection set above
can be shared across both conjunction terms as it has been
generated from the same combination of operators and
operands.

Based on the first conjunctive term 1n the example above,
the collection set for the ‘Employees’, ‘Department’ and
‘Regions’ collection paths would be

TABL.

L1l

15

Emplovees Collection Set

Identity Cardinality Sequence
2 1 0
3 1 0
TABLE 16

Departments Collection Set

Identity Cardinality Sequence
1 1 0
2 1 0
3 1 0
TABLE 17
Regions Collection Set
Identity Cardinality Sequence

1 1 0

Note that in this example, the predicate operators (‘in” and
‘exists’) against the ‘Employee’ collection path appear with
the same operands 1n both conjunctive terms of the DNF
expression and therefore the collection sets that are gener-
ated from them can be shared across both conjunctive terms.
Similarly for the ‘true’ operator i1n the ‘Departments’ path;
whereas the 1s operator for the ‘Regions’ path cannot be
shared because 1t uses different operands.

In this embodiment of resolving bind operators, every
collection set 1s then bound by the bind operators that appear
within the same conjunctive term to update the bind
sequences and cardinality for each collection path. The
method for binding collection sets 1s described 1n detail later,
but for the purpose of the present discussion the bind process
would generate the following collection sets for each col-
lection path.

US 9,965,481 B2

29
TABL.

(Ll

18

Emplovees Collection Set

Identity Cardinality Sequence
2 1 2
3 1 3
TABLE 19

Departments Collection Set

Identity Cardinality Sequence
1 0 1
2 2 2
3 0 3
TABLE 20
Regions Collection Set
Identity Cardinality Sequence

1 2 1

In this embodiment, after the bind process has completed,
the collection instances can be retrieved for each collection
set independently and 1n parallel to materialise the results
required by the query. The collection instances for each
collection set are returned in the order of the set sequence
and each collection 1nstance repeated according to 1ts set
cardinality. For a cardinality of N the collection instance
appears exactly N times such that for a cardinality of 0 the
collection 1nstance 1s omitted entirely.

In this embodiment, any collection sets for collection
paths that are not required in the final result, but appear only
because of bind dependencies, can be discarded and need not
be retrieved.

This example would yield the following results where
only the ‘Name’ element path 1s required from the ‘Employ-
ces’ and ‘Region’ collection paths.

TABLE 21
‘Employees.Name’ ‘Regions.Name’
John Jones North
Bob Brown North (repeated)

This example provides the required result for a single
conjunctive term and the above process must be repeated for
all conjunctive terms in the DNF expression.

In this embodiment, the results from each conjunctive
term are generated independently and simultaneously and
subsequently accumulated to provide the final and full
result. There 1s a possibility that a result may be duplicated
across conjunctive terms. Therefore, the results from each
conjunctive term must be de-duplicated at accumulation
time.

In one embodiment, this 1s done by generating a hash map
of vectors of collection instance identities as conjunctive
results are accumulated and any results that have a vector
identity that corresponds with a previous result can be
discarded.

In view of the above, 1t will be appreciated that this
method of retrieval allows collection 1nstances within each

10

15

20

25

30

35

40

45

50

55

60

65

30

collection path and within each conjunctive term to be
processed imndependently and 1n parallel allowing multiple
hardware resources to be employed concurrently.

Bind Propagation

The following describes a method for binding collection
sets within a conjunctive term wherein collection sets are
combined prior to the query results being retrieved from
storage; allowing the query results from each collection path
to be retrieved independently.

As described above, the bind operator accepts two fully
qualified element paths and i1s used within the context of a
conjunction that forms part of the overall DNF expression.
Each bind operator i1s coupled to exactly two collection sets
within the same conjunctive term.

Within a bind operator, a ‘correlated binding’ occurs
where a given element instance within a collection instance
in the collection set on one side of the operator has at least
one equivalent element instance 1n one or more collection
instances 1n the collection set on the opposite side of the bind
operator.

Consider bind(‘Employees.DepartmentNumber’,* Depart-
ments.DepartmentNumber”) for the example collection sets

above

TABL.

L1l

22

Emplovees Collection Set

Identity Cardinality Sequence
2 1 2
3 1 3
TABLE 23

Departments Collection Set

Identity Cardinality Sequence
1 1 1
2 1 2
3 1 3

TABLE 24
Emplovees Table
Identity Department Number
1 100
2 200
3 200
TABLE 25
Departments Table
Identity Department Number
1 100
2 200
3 300

It can be seen that collection identities 2 and 3 1in the
‘Employees’ collection path have a ‘DepartmentNumber’ of
200 which have a correlated binding in the ‘Departments’
collection path at collection i1dentity 2. However, in the
‘Departments’ collection path, collection identity 3 does not
have a correlated binding.

US 9,965,481 B2

31

Each correlated binding has a cardinality that reflects the
number of matching element 1nstances on each side of the
binding. Thus for a given element 1stance on one side of a
correlated bind there will be a number of equivalent element
instances on the other side which defines the bind cardinal-
ity.

In the above example, the bind cardinality for collection
identities 2 and 3 in the ‘Employees’ collection path have
bind cardinality of 1; whereas 1n the ‘Departments’ collec-
tion path, collection 1dentity 2 has a bind cardinality of 2 (in
the opposite direction across the same correlated bind).

In this embodiment, the following method 1s used to
implement the bind process within a single conjunctive
term. The method assumes an arbitrary number of collection
sets with an arbitrary number of bind operators coupling
pairs of distinct collection sets 1n an arbitrary arrangement.
A bind operator cannot bind a collection set to itself.

In this embodiment of the bind process, a visit ordinal
attribute 1s 1ncluded in the vector already described above
for a member of a collection set. This visit ordinal 1s
assigned a value of zero prior to binding.

Theretfore a collection set with collection instances 11, 12,
13 would appear as follows prior to the binding process

TABLE 26
Collection Visit
Identity Ordinal Sequence Cardinality
11 0 0
12 0 0
13 0 0

Without any binding, this collection set would be used to
fetch collection instances 11, 12, 13 1n that order and without
repetition.

In this embodiment, during the bind process, bind opera-
tors and collection sets are visited 1n a specific order and
cach bind operator 1s assigned a unique Visit Ordinal and
cach collection set 1s assigned a unique Visit Ordinal and a
Propagation Count.

In this embodiment, the process of bind resolution follows
three phases 1n order wherein a subsequence phase 1s only
started once the previous phase has completed, as follows.

Phase 1

This phase 1s known as the Origin Selection Phase.

A single collection set (within the conjunctive term) 1s
chosen to be the origin collection set. A set may be chosen
arbitrarily, but advantageously, the chosen set can be the
smallest set from amongst those that correspond to a col-
lection path 1ncluded in the query result.

The chosen origin set 1s assigned visit ordinal O.

The members of the origin set have their sequence
updated 1n a strict monotonically incrementing sequence,

starting at 1 for the first member in the set. It the set above
were chosen, 1t would become

TABLE 27
Collection Visit
Identity Ordinal Sequence Cardinality
11 0 1
12 0 2
13 0 3

10

15

20

25

30

35

40

45

50

55

60

65

32

Phase 2

This phase 1s known as the Member Propagation phase
and mvolves propagating members across every bind opera-
tor.

During this phase, the order of bind operator visits 1s
decided and recorded. Each bind operator 1s assigned a visit
ordinal number which starts at 1 for the first bind operator
chosen and increments for each subsequent bind operator
chosen.

Each bind operator couples two collection sets and of

those two, the collection set without a visit ordinal assigned
or with the lowest visit ordinal of the two collection sets 1s

assigned the visit ordinal of that bind operator.

The first bind operator, which 1s assigned visit ordinal 1,
1s chosen arbitrarily from one of the bind operators directly
attached to the origin set. The collection set on the opposite
side of the bind operator to the origin set 1s assigned the visit
ordinal of 1.

In this embodiment, the collection set members are propa-
gated from the originating set (with the lower visit ordinal)
to the terminating set (with the higher visit ordinal) attached
to the chosen bind operator as follows.

For each non-zero cardinality member 1n the originating,
set with a visit ordinal one less than the visit ordinal of the
current propagating bind operator, a member 1s duplicated
and appended within the terminating set for each terminating
member that has a corresponding bind with the originating
member.

For each member appended to the terminating set, the
collection 1dentity 1s assigned to be the same as the termi-
nating member it 1s copied from; the visit ordinal 1s assigned
the wvisit ordinal of the propagating bind operator; the
sequence 1s assigned from the originating member; and the
cardinality 1s assigned as 1.

In this embodiment, any member in the onginating set
which has no corresponding binds in the terminating set has
its cardinality assigned to zero. Thereafter, the originating
member 1s considered void and 1s not propagated any
turther.

In this embodiment, members are propagated from the
originating set in membership order. Other embodiments
may choose an alternative order.

The sum of the cardinalities across all of the propagated
entries with the current visit ordinal 1s assigned to the
terminating set as its propagation count. If the propagation
count for a terminating set 1s reduced from a previous
assignment, then any other bind operators attached to the
terminating set with assigned visit ordinals and attached to
another collection set with the same visit ordinal as that bind
operator has 1ts operator visit ordinal de-assigned.

Thereaftter, the next bind operator i1s chosen from all bind
operators without a wvisit ordinal assigned but directly
attached to a set which does have a visit ordinal assigned;
and from those, a bind operator which 1s connected to the
collection set with the highest visit ordinal assigned 1is
chosen; 11 one or more of the bind operators that can be
chosen are also attached at the other end to sets with visit
ordinals already assigned then the operator attached to the
set with the lowest visit ordinal 1s chosen.

The chosen bind operator and the terminating set on the
other side of the operator are assigned the next visit ordinal.
If the set on the other side has a wvisit ordinal already
assigned, 1t 15 overwritten with the new visit ordinal.

This 1s repeated until a bind operator without a visit
ordinal but attached to a set with a visit ordinal assigned can
no longer be found. If at the end of this phase, a set exists
without a visit ordinal, the query 1s considered to be mal-
formed and the query as a whole 1s aborted.

US 9,965,481 B2

33

Consider the following two collection sets wherein the
first set 1s the origin set. In this example, there 1s assumed to
be a bind operator between them with a visit ordinal of 1 and
for clarity it 1s assumed that only members with the corre-
sponding suilix letter in their terminating identities have
corresponding binds across the bind operator.

Collection Path 1 (Before Member Propagation)

TABLE 28
Collection Visit
Identity Ordinal Sequence Cardinality
11B 0 1
12A 0 2
13C 0 3

Collection Path 2 (Before Member Propagation)

TABLE 29
Collection Visit
Identity Ordinal Sequence Cardinality
21C 0 0
22B 0 0
23B 0 0

Propagating member 11B results 1n the following termi-
nating collection set.

Collection Path 2 (after propagating member 11B wia
operator 1)

TABLE 30
Collection Visit
Identity Ordinal Sequence Cardinality
21C 0 0
22B 0 0
23B 0 0
22B 1 1
23B 1 1

Member 12A has no corresponding bind and therefore no
member 1s created 1n the terminating set, but the cardinality
of this entry 1s set to zero in the originating set. This yields
the following for the originating set.

Collection Path 1 (after Propagating Member 12A)

TABLE 31
Collection Visit
Identity Ordinal Sequence Cardinality
11B 0 1 1
12A 0 2 0
13C 0 3 1

Propagating member 13C results 1n the following termi-
nating set,

Collection Path 2 (after Propagating all Members Via
Operator 1)

TABLE 32
Collection Visit
Identity Ordinal Sequence Cardinality
21C 0 0 1
22B 0 0 1

5

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 32-continued
Collection Visit
Identity Ordinal Sequence Cardinality
238 0 0
228] 1
23B 1
21C 3

Note that the terminating set above may then be propagated by another bind operator into
another set, but only the members with visit ordinal 1 would be propagated.

Phase 3
This phase 1s known as the Cardinality Reflection Phase

wherein each bind operator 1s visited in strict reverse visit
ordinal order. The bind operator visited 1s known as the

reflecting operator.
At each reflecting operator, the cardinality of each mem-

ber in the originating set with a visit ordinal one less that the
reflecting operator 1s multiplied by the sum of the cardinali-
ties for all terminating members with the same sequence as
the originating member and the same visit ordinal as the
reflecting operator.

In the above example, the cardinalities of the originating

set would be updated as follows
Collection Path 1 (after Cardinality Retlection)

TABLE 33
Collection Visit
Identity Ordinal Sequence Cardinality
11B 0 1 2
12A 0 2 0
13C 0 3 1
TABLE 34
Collection Visit
Identity Ordinal Sequence Cardinality
21C 0 0
228 0 0
23B 0 0
228] 1
23B 1
21C 3

The following provides an example of the how four
collection sets may be visited and have their visit ordinals
assigned during the second phase of the bind process. The
rectangles represent collection sets and the lines represent
bind operators between them.

FIG. 9: The ornigin set 1s chosen and assigned visit ordinal
0.

FIG. 10: The first bind operator 1s chosen from those
attached to the origin set and the chosen bind operator 1s
assigned visit ordinal 1. The terminating set on the other side
of the chosen bind operator 1s assigned the same visit ordinal
as that of the bind operator.

FIG. 11: The second bind operator 1s chosen from those
without a visit ordinal assigned and attached to the collec-
tion set with the highest visit ordinal.

FIG. 12: I the propagation count of the terminating set for
operator 2 1s reduced, then any other operators attached to
that collection set and with a with an operator visit ordinal
the same as the collection set visit ordinal at the other end
has its operator visit ordinal de-assigned.

FIG. 13: The next bind operator is chosen from those
without a visit ordinal assigned and attached to the collec-
tion set with the highest visit ordinal.

US 9,965,481 B2

35

FIG. 14: If the propagation count of set 3 1s not reduced
by operator 3 then the subsequent operators will be assigned
as shown.

No more operators without an assigned visit ordinal can
be found and this phase of the bind process completes. All
sets have an assigned ordinal and therefore the bind 1s
considered well formed and can proceed to the next phase.

In this embodiment, once all three bind phases have
completed, collection instances for each collection set can be
retrieved independently for query matenalisation and their
independent results merged. Collection instances are
retrieved only for members with the same visit ordinal as the
visit ordinal assigned to the collection set itself as follows.

Each member 1n the collection set with a cardinality of
zero 1s 1gnored; each entry with a cardinality of 1 1s retrieved
once; each entry with cardinality greater than 1 1s retrieved
once but duplicated to respect the cardinality of the bind.
In one embodiment, each set member 1s retrieved 1n
sequence order and entries with identical sequence numbers
are fetched 1n collection i1dentity order.

In an alternative embodiment, members are retrieved 1n
collection 1nstance 1dentifier order first (rather than sequence
order) and results sorted in memory 1n sequence order just
prior to merging.

In an alternative embodiment, consecutive collection
instances or nearly consecutive collection instances within a
common storage area may be may be retrieved from storage
in a single storage read request.

It will be appreciated that the temporary structures
manipulated by the bind process can reside within physical
memory to assist rapid resolution of a conjunctive term.

It will be appreciated that the bind process can operate and
complete within physical memory prior to materialising any
results required by the query.

It will be appreciated that after a conjunctive term has
been fully resolved the storage engine can retrieve each
collection set independently and in parallel to vyield the
results required by the query.

Results for collection paths marked for an outer join are
resolved by retrieving any collection instances from that
collection set that have a zero cardinality and including them
in the final result.

Cross joins are resolved by forcing every member 1n an
originating collection set to correlate with every member 1n
a terminating collection set across a bind operator marked
for a cross join.

In one useful embodiment, the collection set of a true()
operator 1s lazily evaluated by the first bind() operator
which attempts to bind 1t wherein the collection set of the
true() operator 1s created from the corresponding binds of
the originating collection set. In this embodiment, the col-
lection set of a true() operator 1s never chosen as the origin
set. It will be appreciated that in this embodiment with lazy
evaluation, the size of the collection set of a true() operator
1s likely to be much reduced compared to an eager evalua-
tion.

Storage Structure

The following describes the storage structure which 1s
used to efliciently persist and retrieve data 1in support of the
access model described above.

The storage 1s structured as a multitude of linear tunnels
wherein each tunnel 1s aligned with storage address space
and contains information about collection istances which 1s
relevant to one collection path and/or one element path, one
operator and a subset of operands.

A single element path tunnel provides partial information
about every element instance for a large population of

10

15

20

25

30

35

40

45

50

55

60

65

36

clement instances within an element path. A collection path
tunnel provides complete information about a single collec-
tion instance within a collection path.

The structure of a tunnel varies according to the access
model operator and the operations 1t 1s required to support.
Each tunnel contains the minimum information required to
support 1ts corresponding operator such that every tunnel 1s
optimally aligned with the storage address dimension and
cach operator can traverse its relevant tunnels 1n an eflicient
mannet.

The minimal information contained within a cell may
only be suflicient for the related access model operator to
indicate either the likely possibility or the impossibility of an
entity instance being relevant to given operands.

A different tunnel family 1s provided for each operator
within the access model. Connective tunnels provide infor-
mation to support the access model IS operator; character-
1stic tunnels provide information to support the access model
HAS operator; combinative tunnels provide iformation to
support the access model IN operator; each of these families
provides a tunnel to support the EXISTS operator; while
collective tunnels provide information to support eflicient
collection retrieval.

Each tunnel 1s arranged as a linear sequence of cells
whereby new tunnels and new cells are appended 1n chrono-
logical order while tunnels are traversed 1n reverse chrono-
logical order. Tunnels and cells are arranged whereby cells
between tunnels correspond so that traversal can move
between tunnels as required. This 1s 1llustrated i FIG. 15.

Each tunnel family 1s considered to have both viscidity
and velocity characteristics. The viscidity indicates how
much information 1s held locally about a collection instance
within a tunnel. The velocity of a tunnel indicates the size of
the collection instance population held locally within a
tunnel. These characteristics are inverse of each other, such
that a highly viscid tunnel that contains much nformation
locally about specific collection 1nstances also contains little
information about the population as a whole.

Tunnels that relate to access model predicate and bind
operators exhibit high velocity and low viscidity. Tunnels
used for collection 1nstance retrieval exhibit high viscidity
and low velocity.

Collective Tunnels group element instances into collec-
tion instances. Every collection path contains a separate
tunnel for every collection instance and an entire collection
instance can be retrieved by traversing 1its collection tunnel
allowing a collection instance to be rapidly retrieved. These
tunnels are considered to have a very low velocity across
collection 1nstances because of their high element 1nstance
viscidity within each collection 1nstance.

Connective Tunnels group i1dentification element
instances by their equivalence similarity. These tunnels
support the IS and BIND access model operators; allowing
the IS operator to generate a collection set for collection
instances that contain an i1dentification element instance
which 1s equivalent to the operator operand; while allowing
the BIND operator to efliciently resolve correlated binds
between collection sets created by other access model opera-
tors. There are multiple connective tunnels for each 1denti-
fication element path. These tunnels are considered to have
very high velocity across collection instances.

Characteristic Tunnels group enumeration element
instances by the properties they contain. These tunnels
support the HAS access model operator allowing 1t to
generate a collection set for collection mstances that have an
enumeration element nstance which contains one or more
properties which are equivalent to the operator operands.

US 9,965,481 B2

37

There are multiple characteristic tunnels for each i1dentifi-
cation element path. These tunnels are considered to have a
high velocity across collection instances.

Combinative Tunnels group the partial magmtude of
measurement element instances relative to the radix point.
These tunnels support the IN access model operator allow-
ing 1t to generate a collection set for collection istances that
have a measurement element instance which 1s bounded by
the operator operands. These tunnels also support aggregate
operations allowing measurement element instances to be
accumulated and classified without the need to refer back to
the full collection instance. There are multiple combinative
tunnels for each identification element path. These tunnels
are considered to have moderate velocity across collection
instances.

Every element path has a corresponding existence tunnel
to support the EXISTS access model operator. There 1s one
existence tunnel for each element path. These tunnels are
considered to have a high wvelocity across collection
instances.

Theretfore, in this embodiment, there 1s a comprehensive
tunnel family maintained for every element path with a
predicate operator.

The predicate operator used 1 a query determines the
tunnel family to be traversed while 1ts operands determine
the collection path, element path and tunnel number(s).

In view of the above, 1t will be appreciated that any
predicate operator can efliciently traverse the population of
collection instances without the need for separate index
structures and without the need for a multitude of optimi-
sation strategies to cater for index structures that might or
might not exist.

It will be appreciated that the homogenous cell structure
of tunnels are apt for processing by CPUs that provide vector
instructions that operate on multiple items of data simulta-
neously.

When an operator 1s evaluated it creates a memory based
collection set wherein each member of the set provides
information about each collection instance included in the
evaluation. As previously mentioned, an operator may only
be able to provide an indication of likely possibility or
impossibility of relevance of a collection instance to the
operator operands; but an operator may also have complete
certainty of relevance. Therefore, each collection set mem-
ber contains an indicator of certainty such that later query
materialisation can determine the need for additional mate-
rialisation for the purposes of element mspection and veri-
fication.

Usetully, the process of binding collection sets whereby
collection sets are combined and correlated will serve to
increase certainty by discarding uncertain collection set
members.

Time 1s sub-divided into absolute time frames whereby
every frame covers a fixed and predefined time interval
relative to a predefined epoch date such that any given time
1s assigned a frame number derived from the number of time
frame 1ntervals that have occurred since the epoch date such
that the epoch date occurs at the start of time frame O.

The epoch date and frame duration are chosen so that
frame numbers are positive and their magnitude can be
contained within reasonable precision.

In one useful embodiment, the epoch date 1s chosen to be
the start of the current century and a frame duration 1s
chosen to be 1 hour.

All tunnels are sub-divided 1nto absolute time frames such
that any given time frame corresponds across all tunnels.
The alignment of frames across tunnels allows retrieval

5

10

15

20

25

30

35

40

45

50

55

60

65

38

operations to switch between tunnel families at frame
boundaries and choose the optimal tunnel family for the
direction ol navigation required. For example, a search for
a specific collection instance may use a connective tunnel
initially and switch to the collective family 1n a correspond-
ing iframe when a likely element instance cell has been
found.

In this embodiment, tunnels are stored as contiguous cell
sequences within one or more files; whereby each tunnel
family (collective, connective, characteristic, combinative)
has multiple sequences of {files; whereby there 1s one file
sequence for each collection path; and where each file
sequence has a separate file for each time frame. Each file
sequence 1s located 1n a directory path which 1s determined
from the tunnel family and collection path 1dentity; and each
file contains the frame number within 1ts name. This
arrangement 1s illustrated i FIG. 16.

Where multiple distinct databases exists, the directory
structure for each database will reside under a separate
database path.

In an alternative embodiment, the tunnel family (connec-
tive, characteristic, combinative, collective) are placed at the
top of the hierarchy with each database path immediately
below them. This allows tunnel families to be easily located
on diflerent storage systems with performance characteris-
tics most appropriate for each tunnel family.

Therefore, 1n this embodiment each file contains a sepa-
rate contiguous sequence of cells for a tunnel within a frame
and each tunnel relates to a specific collection path, element
path, operator and its operands allowing an access model
operator to read the relevant tunnel(s) from storage with
minimal read requests and navigate the tunnel with minimal
cache pollution.

Therefore, 1n this embodiment, populations of collection
instances with similar creation times are localised within
common frame files.

In view of the above, 1t will be appreciated that large
populations of collection instances of similar age can be
deleted by removing the frame files 1n which they reside.

In an alternative embodiment, frames boundaries are
determined by a defined threshold for the number of col-
lection 1nstances for which they are respective, whereby a
frame 1s closed once the threshold is reached within each
collection path.

In view of the above, 1t will be appreciated that the size
of an individual collection path population can be precisely
managed by removing one or more of the oldest frame files.

Operational (OLTP) queries are selective in nature and
will predominantly use the IS and BIND access model
operators and therefore navigation for an operational query
1s likely to be along one or more connective (very high
velocity) tunnels to rapidly identify the collection instances
relevant followed by navigation along one or more collec-
tive tunnels (low velocity) to retrieve the specific collection
instance data. The majority of the bind resolution work will
occur within physical memory and will yield a small number
ol specific collection 1nstance addresses allowing the query
result to be returned quickly through a small number of
random storage read operations.

Analytical (OLAP) queries are broad ranging and unlikely
to use collective tunnels at all and will be entirely contained
within connective (very high velocity), characteristic (hugh
velocity) and combinative tunnels (moderate velocity)
allowing OLAP queries to traverse populations of collection
instances rapidly. The majority of any aggregation work can

US 9,965,481 B2

39

be performed directly on rank tunnels which can be read into
memory through a small number of large sequential storage
read operations.

Advantageously, the separation of file sequences by col-
lection path and tunnel family allows diflerent tunnel fami-
lies to be located on different file storage areas with different
performance characteristics. Collective tunnels are predomi-
nantly used for operational access and contain short collec-
tive tunnels. These files can be located on storage media
most suitable for smaller random read requests; while other
tunnel families can be located on storage media most
suittable for larger sequential read requests.

In view of the above, 1t will be appreciated that both
selective and collective queries can be efliciently supported
for both operational and analytical workloads.

In this embodiment, tunnels are appended to 1 forward
chronological order and use collection append and collection
inversion semantics to create, delete and update collection
instances. The deletion of a collection involves appending a
collection inversion to all the tunnels relevant to the original
collection instance such that all operations concerning the
original collection instance are aware of any subsequent
1nversion.

Therefore, 1n this embodiment, there are no update-in-
place operations and all updates to a tunnel family within a
collection path are localised.

In view of the above, 1t will be appreciated that all updates
to any given tunnel or any given tunnel family within a
collection path can be efliciently applied using a single or
mimmal number of storage write requests.

In view of the above, 1t will be appreciated that all updates
to any given tunnel or any given tunnel family can exploit
the high transfer rates exhibited by contemporary storage
systems.

In view of the above, 1t will be appreciated that a complete
life-cycle history 1s maintained for every collection instance.

In view of the above, 1t will be appreciated that the data
necessary to resolve queries arising from compliance and
auditing investigations 1s retained.

In view of the above, 1t will be appreciated that predicate
operators can include an optional temporal operand such that
predicate operators can start their queries from a historic
time frame usefully providing historic point-in-time queries.

A collection instance can only be 1nverted after 1t has first
been created. In this embodiment, tunnels are traversed in
reverse chronological order to allow collection inversions to
be detected prior to their corresponding earlier collection
append operations so that the existence of a collection
instance can be efliciently determined and imverted collec-
tion instances can be eflicaciously discarded.

In view of the above, 1t will be appreciated that a predicate
operator will not encounter cells that have been created since
the operator navigation began and advantageously does not
need to account for them.

In one alternative embodiment, all frames 1n each tunnel
family prior to a specified frame 1n a specified collection
path may optionally be consolidated whereby the contents of
cach prior frame file 1s scanned and copied into a new
version of the frame file but where all discovered 1inverting
collection instances and their corresponding inverted col-
lection instances are discarded. A consolidated frame file
will not contain a full collection instance history but will be
more compact than the frame file it replaces.

Each element path contains a frame map with every frame
that imparts partial information about all element instances
within a single or multiple of frames that precede the current
frame. Each frame map allows an access model operator to

10

15

20

25

30

35

40

45

50

55

60

65

40

determine which preceding frames are relevant to its oper-
ands and allows the operator to exclude frames that contain
no relevant information.

In this embodiment, the frame map for an element path of
identification intent contains information about which bits
within an identity byte sequence contain common values for
all element 1nstances within the frame interval.

Therefore, 1n this embodiment, where element instances
within an 1dentification element path exhibit a consistently
monotonically increasing or decreasing sequence in one part
or multiple parts of the identification byte sequence such that
some parts of all element instances are common across a
frame interval; then one or more frame intervals can be
usefully eliminated where the common aspects of all ele-
ment 1nstances within those frame intervals do not conform
to the 1dentifier sought.

In this embodiment, the frame map for an element path of
measurement mtent contains mformation about the minima
and maxima for all element instances within the frame
interval.

Theretfore, 1n this embodiment, where measurement ele-
ment mstances within an element path exhibit a consistently
monotonically increasing or decreasing value; then one or
more frame intervals can be usefully eliminated where the
minima and maxima for those frame intervals do not enclose
the measurement sought.

In this embodiment, the frame map for an element path of
enumeration intent contains iformation about which prop-
erties exist 1n at least one element 1nstance within the frame
interval.

Therefore, 1n this embodiment, where enumeration ele-
ment instances within an element path exhibit a sparse
distribution of properties; then one or more frame intervals
can be usefully eliminated where an enumeration sought
contains properties that do not exist within those frame
intervals.

In view of the above, 1t will be appreciated that an access
model operator 1s able to ethiciently navigate tunnels by
avoilding frames that do not contain data relevant to the
operator and 1ts operands.

In view of the above, 1t will be appreciated that access
model operators are able to efliciently traverse the tunnels
for both selective and collective query access without any
need for any additional navigation structures, such as
indexes, to support specific query requirements and there-
fore removing the design, administration and maintenance
cellort and resource investment typically required for such
structures.

In view of the above, it will be appreciated that the access
model operators are able to navigate tunnels such that
neither the separate gathering of statistics for cost-based
query optimisation nor multiple optimisation strategies are
required.

Tunnel and map structures within historic frames (that
occur prior to the current time frame) are stored 1n contigu-
ous storage arrangements so that complete structures can be
read with a single storage read request.

Advantageously, non collective tunnels from multiple
frames can be accumulated from prior frames and written
contiguously to subsequent files for new frames to minimise
the number of frame files that must be consulted when
traversing a given tunnel. This minimises the number of
storage read requests required to traverse a given tunnel and
better exploits the transier rates possible from storage sys-
tems.

In this embodiment, for a predefined interval V, for frame
number N, where N 1s an exact multiple of V, each tunnel in

US 9,965,481 B2

41
frame N 1s accumulated by reading the tunnel from frames
N-1 ... N-V and then appending the tunnel content for

frame N and storing the accumulation 1 frame N. This
continues 1n subsequent frames until insuflicient memory 1s
available to accumulate tunnels efliciently; whereupon tun-
nels 1 frame N only contain content for frame N.

Therefore an access operator navigating a frame 1s able to
navigate multiple prior frames and the avoid the need to visit
the frame files that have been accumulated in the current
frame file and 1s able to read a tunnel spanning multiple
frames 1n a single large read request.

In view of the above, 1t will be appreciated that the access
model operators can navigate tunnels efliciently by exploit-
ing the high transfer rates common to contemporary hard-
ware environments and navigate tunnels with minimal cache
pollution.

In one useful embodiment, the value of V above 1s 1 such
that every frame accumulates as much content as possible
from immediately prior frames. In this embodiment, the
clliciency of operator navigation 1s optimised.

In another useful embodiment, the value of V above 1s
infinity such that no frame accumulates any content other
than 1ts own frame. In this embodiment, the efliciency of
updates 1s optimised and the utilisation of storage 1s maxi-
mised.

In view of the above, 1t will be appreciated that the value
of V above can be set to optimise specific performance
aspects. It will also be appreciated that the value o1 V can be
dynamically altered to optimise specific performance
aspects 1n response to particular performance demands at
any point in time.

Advantageously, each file sequence can be truncated such
that the oldest frame files are removed as and when desired.
This can be performed for each collection path separately
allowing the database to precisely manage the life-cycle of
data retained for each collection path individually.

In view of the above, 1t will be appreciated that data
life-cycles can be managed precisely by collection path and
time frame granularity.

In one embodiment, 1t 1s possible to securely encrypt
collective tunnels individually so that the whole information
relating to any single collection instance 1s not available 1n
a single file location. Advantageously, each collective tunnel
can be encrypted and decrypted individually allowing the
best possible performance when a single collective tunnel 1s
addressed. Advantageously, the encryption key for a collec-
tive tunnel can be based on a private seed, collection path,
frame number and the tunnel number to ensure each collec-
tion 1nstance has a unique encryption key. Methods for two
way encryption/decryption are extensively covered else-
where and are not considered further here.

In an alternative embodiment, 1t 1s possible to securely
encrypt and decrypt collective cells within a collective data
tunnel separately and individually.

In view of the above, 1t will be appreciated that collection
instance data can be efliciently encrypted and decrypted
individually to prevent unauthorised access to whole col-
lection data without the need to encrypt and decrypt whole
files.

In this embodiment, active transactions are accumulated
in a heap file for the current time frame. There will be one
heap file relating to the current time frame and zero or more
heap files relating to recently closed time frames. The name
of each heap file contains the number of the time frame 1n
which i1t was created.

The heap file 1s structured as a heap of fixed sized
segments whereby each segment relates to a specific trans-

10

15

20

25

30

35

40

45

50

55

60

65

42

action, specific collective tunnel within a specific collection
path. Once closed, the content of a heap file 1s migrated to
multiple frame {files corresponding to the same time frame.
Each frame file 1s composed 1n memory by coalescing
segments that correspond to the same collection path, ele-
ment path and tunnel number.

In this embodiment, the current time {frame 1s arranged as
a single heap of interleaved segments of collective tunnel
information for currently and recently active transactions
allowing active transactions to remain isolated from each
other. The entire heap can be written 1n a single large storage
write request containing all segments thus allowing multiple
transactions to persist their state within a single sequential
storage write request; enabling large numbers of transactions
to operate concurrently.

In view of the above, 1t will be appreciated that a large
number of transactions can remain isolated and operate
concurrently and be persisted 1in storage with minimal stor-
age write requests.

In view of the above, 1t will be appreciated that the
separation of heap files and frame files allows heap files to
be located on storage media with minimum write latency
such that transactions are able to persist their state 1n the
shortest possible time.

Each heap file corresponds to a single time frame and new
heaps are opened as and when time moves across absolute
time frame boundaries. When this occurs, the previous heap
1s deemed closed and can no longer be appended to.

When a transaction 1s closed all of the segments relating
to the transaction are considered to exist within the time
frame that corresponds to the transaction closure, regardless
of when the segments were created or when the transaction
was lirst opened.

In one embodiment, a heap file 1s closed once its time
frame has expired and segments in the closed heap file which
pertain to closed transactions are immediately migrated to
corresponding frame files.

In another embodiment, a heap file 1s closed once its time
frame has expired and heap files are retained until sutlicient
transactions segments have been accumulated; whereupon
the segments 1n all closed heap files which pertain to closed
transactions are migrated to corresponding frame files.

Transaction segments within a heap file are created and
assigned to a transaction that has been opened. Within an
open transaction any number of collection instances across
any number of collection paths may be arbitrarily created or
inverted. Therealter the transaction may be abandoned or
applied.

When a transaction 1s abandoned, all of the transaction
segments created within the context of the transaction are
logically discarded by marking their assigned transaction as
abandoned. When a transaction 1s applied, the transaction 1s
marked as such and all transaction segments within the
current heap file are persisted to storage, regardless of their
transaction status.

Only transaction segments that relate to applied transac-
tions are migrated to frame files. Therefore all frame files
contain only applied transaction cells and can be considered
available to all query operators.

In view of the above, 1t will be appreciated that operators
navigating the frame files do not to be involved 1n transac-
tion 1solation or read-consistency synchronisation activities
as the transactional context of all frame files 1s static and
transaction 1solation need only be accounted for during heap
file navigation.

In this embodiment, all collection paths; element paths
within collection paths; and tunnels within paths and frames

US 9,965,481 B2

43

are uniquely 1dentified by ordinal numbers which are never
re-used and are assigned sequentially to avoid missing
ordinals. These ordinals are used throughout to address paths
and tunnels to allow access structures to be both dense and
contiguous.

In this embodiment, ordinal numbers for collection and
clement paths are used within directory and file names rather
than their corresponding path names to allow for path names
to be arbitrarily changed within meta data and without undue
impact on the storage system.

The storage structure 1s required to persist definitions of
ordinals, collection paths, element paths and element intent.
In this embodiment, these definitions are maintained in
memory and the complete set of path definitions 1s also
persisted on storage within a new and separate meta-data file
as and when a definition 1s changed. Fach meta-data file
name includes a strictly monotonically increasing version
number and the time frame number at the time of the update.
These 1dentifiers also appear within the content of the file.

A data definition command cannot complete until the new
meta-data file has been successiully written and synchro-
nised to storage.

Advantageously, in this embodiment, a process failure 1s
recovered by finding the meta-data file with the highest
version number 1n 1ts name and a consistent version number
within 1t.

In view of the above, 1t will be appreciated that meta-data
files may be deleted where they correspond to frames that
precede the oldest frames retained in all collection paths.

In view of the above, 1t will be appreciated that 1f the
content of the database need to be reverted back to a
previous time frame, then all frame, heap and meta-data files
that contain subsequent frame numbers can simply be
deleted.

In view of the above, it will be appreciated that collection
paths and element paths may be dynamically and arbitrarily
introduced at any point 1n time and that their corresponding
definitions are retained indefinitely.

Frame File Structure

Each closed frame 1s arranged as hierarchy of storage
sectors where each sector relates to a particular entity path
(collection or element) and 1s composed of multiple sub-
sectors and where each sub-sector relates to a specific
tunnel.

The hierarchy 1s arranged as shown in FIG. 17.

Every sector 1s stored contiguously and each higher level
sector contains a sector map to the enclosed sub-sectors at
the next level down in the hierarchy. The sector map for
sub-sectors 1s located at the start of the super-sector.

These sector maps are arranged a one dimension array of
fixed sized entries that contain the starting address of the
sub-sector for each sub-sector ordinal-—as shown 1n FI1G. 18.

The address of sub-sector N 1s found by looking at the
oflset N. The size of sub-sector N can be determined from
the subsequent entry as sectors are stored contiguously.

To reach tunnel T 1n element path E requires navigation
via the element path sector map and the tunnel sector map.

Each tunnel contains a tunnel link at its start to link the
tunnel to 1ts corresponding tunnel in the preceding frame.
The tunnel link allows navigation along a tunnel across
frames without the need to visit sector maps 1n each frame.
Therefore, each tunnel 1s arranged as shown 1n FIG. 19 with

a 1ixed sized frame number and fixed sized tunnel address
which identily the frame and the address within the frame
file respectively where the tunnel continues.

10

15

20

25

30

35

40

45

50

55

60

65

44

Heap File Structure

Transaction segments are accumulated within a heap {ile.
The heap file has a watermark which 1s extended when more
space 1s required. The contents of the heap file are synchro-
nised back to storage (up to the watermark) whenever one or
more transactions are applied.

The heap space up to the watermark 1s arranged as
discrete fixed length collective tunnel segments where seg-
ments are interlinked to create segment chains within a
transaction. The heap watermark 1s extended by adding one
Or more segments.

Each transaction segment belongs to one transaction. As
the transaction adds collective tunnel cells 1t adds one or
more segments to the chain.

Each segment contains a header that identifies the collec-
tion path and transaction it belongs to. It also contains a
pointer to the next transaction segment in the chain and a
pointer to the next segment 1n the same collection path as

shown i FIG. 20.
The transaction information pertaining to the transaction

segments 1s stored within the header of the heap file. FI1G. 21
illustrates the structure of a single heap file.

The head of every collection path chain and transaction
chain 1s maintained in memory. Therefore, 1t 1s possible to
find all segments relating to a specific transaction or all
segments relating to a specific collection path.

Both the chain headers and segment pointers contain a
frame number and a segment number wherein the frame
identifies the frame number of the heap file 1n which the
segment belongs and the segment number identifies the
ordinal position of the segment within the heap file. In this
embodiment, chains of transaction segments are able to
extend across heap files to allow segments that belong to a
single collection path or transaction to be located by fol-
lowing a single chain.

In view of the above, 1t will be appreciated that the
structure of the heap file allows predicate operators to
swiltly navigate the heap storage in search of information
relevant to 1t.

In view of the above, 1t will be appreciated that the
segments contain suflicient information to be able to recon-
struct the in-memory chain headers should the database need
to recover from a process failure.

Segments relating to applied transactions are migrated to
frame files after a heap file has been closed. A heap file must
be retained until all applied transaction segments within 1t
have been migrated; thereafter 1t may be deleted.

When an operator scans both heap files and frame files, it
ignores any irame files with a number corresponding to a
previously scanned heap f{ile.

In view of the above, 1t will be appreciated that frame files
can be created and safely synchronised to storage before a
heap file 1s removed to ensure that every collection instance
sately exists in one or other or both heap file and frame file
at any given time.

Long running transactions may contain transaction seg-
ments 1 multiple heap files. When the transaction 1s finally
closed, heap files between the open and closure frame must
be visited to migrate the transaction segments into a frame
file.

Transaction Management

There 1s an upper limit to the number of concurrently open
transactions and there 1s a fixed set of unique transaction
handles which get re-cycled. A transaction handle remains
active until the transaction has been closed (abandoned or
applied) and the heap file has been closed. The heap file 1s
closed when the current frame expires or when transaction
handles need to be reclaimed.

US 9,965,481 B2

45

A pool of transaction handles 1s maintained 1n memory to
allow rapid transaction nspection and allocation of free

handles.

A useful upper limit for transaction handles 1s 65535.

Any open transactions when the database system 1s
stopped—_1or whatever reason—are considered to be aban-
doned. When the database system 1s started or restarted a
new heap file 1s created and all transaction handles are
reclaimed and made available for reuse. An open transaction
cannot last beyond a storage engine shut down.

Each predicate operator navigates segments within the
context of an open transaction and operators scanning seg-
ments need to be aware of foreign transaction state and skip
or include the content of segments that correspond to foreign
transactions depending on the precise transaction semantics
being obeyed.

Prior to inverting one or more collection instances, a
transaction must identify which collection istances may be
inverted and acquire an exclusive mversion lock on each
one. A transaction that 1s not granted an inversion lock
immediately must wait for the lock to be acquired and 11 the
lock has not been granted within a defined time period, the
transaction must release all of the mversion locks 1t has
acquired to resolve potential deadlocks. Thereafter, the
transaction must either be abandoned or repeat the attempt
to 1dentily and lock the collection instances that may be
inverted.

In large concurrent user environments where many trans-
actions are active and short lived resulting in frequent
transaction applications, 1t 1s useful to provide a cycle
whereby transactions apply at predefined intervals. Any
transaction wishing to apply waits for the next available
apply cycle and cannot continue until the apply cycle has
completed. While this may delay an individual transaction,
it does not degrade throughput as very many transactions
can complete at the same time.

A useful interval for an apply cycle 1s 10 ms. This
reasonably limits the number write requests to storage and
provides a negligible delay to transactions waiting to apply.

An apply cycle 1s skipped 11 no transactions are waiting to
apply.

In one embodiment, the duration of the apply cycle 1s
decided by the number of currently active transactions, such
that this duration 1s zero 1f there exists only one active
transaction and this duration increases with the number of
open transactions up to a defined maximum time.

In view of the above, it will be appreciated that multiple
transactions can be applied and synchronised to storage
using a single or minimal number of large storage write
requests thereby providing good transaction throughput by
exploiting the high data transfer rates provided by contem-
porary storage systems.

Each open transaction 1s assigned a serialisation number
when 1t 1s first opened wherein this number 1s one greater
than the largest serialisation number of all currently open
transactions. This serialisation number 1s 1 when no other
transactions are open. The transaction serialisation number
1s used to ensure that operators respect the transaction
semantics required by a query.

When a query requires no 1solation from other open
transactions 1t can include all open transactions encountered.

When a query requires no isolation from other applied
transactions 1t can include all applied transactions encoun-
tered.

When a query requires 1solation from transactions applied
since the query began, 1t can 1gnore transactions that have a

10

15

20

25

30

35

40

45

50

55

60

65

46

serialisation number higher that the highest senialisation
number at the start of the query.

When a query requires 1solation from transactions applied
since the query transaction began, 1t can 1gnore transactions
that have a serialisation number higher that the highest
serialisation number at the start of the query transaction.

In view of the above, 1t will be appreciated that multiple
transaction 1solation modes can be provided and that mul-
tiple transaction 1solation modes can be supported simulta-
neously.

In view of the above, 1t will be appreciated that there 1s no
need for any additional mechanisms to resolve separate
transaction states within the context of multiple concurrent
open transactions.

Frame Maps

Each element path within a frame contains a frame map
that summaries the population of element instances for the
clement path over preceding frames. This map 1s arranged as
a two dimensional array addressed by scales 1n one dimen-
sion and intervals 1n another dimension. Each entry in the
array contains summary information for the path which
varies according to path type.

The number of scales S and the number of intervals I 1n
a frame map 1s fixed across all element paths.

At scale s where s<<S, each entry relates to a frame interval
of size I's.

For example, with a scale of 4 and an interval of 8;

At scale 0, each interval covers 1 frame;

At scale 1, each interval covers 8 frames:

At scale 2, each interval covers 64 frames:

At scale 3, each interval covers 512 frames;

Overall, this map can cover 4096 frames (8x512).

The number of scales and 1ntervals 1s chosen such that VS
1s larger than the number of time frames to be retained.
Advantageous values are 4 and 256 for scales and 1ntervals

respectively. This allows for the retention of over 4 billion
time frames of data.

The interval number 1 1n a frame map for scale s and time
frame F 1s derived as follows:

1=(F/(I"s) modulo I), for s in 0 . . . (§=1); where S 1s the
number of scales and I 1s the number of intervals.

As each frame boundary 1s crossed,

The frame map entry for the current frame F 1s set for

interval 1 at every scale s in 0 . . . S-1.
If the interval 1=0 at scale s where s>0 and s<(S-1), then
the map entries for every imterval (O . . . I) are reset for all

scales less than s.

The frame map for the new frame 1s 1nitialised to be the
same as the immediately prior frame.

Frame maps operate as accumulators and are copied from
the prior frame 1nto each new frame.

Frame maps are used to navigate across frames by elimi-
nating frames that are deemed irrelevant.

Within each visited frame an operator consults the frame
map to determine the next relevant frame. The map intervals
are consulted by decreasing interval number (from the
currently visited frame number) and increasing scales as
cach scale 1s exhausted (when the number of inspected
intervals at a scale reaches the maximum number of inter-
vals). When a relevant interval 1s found, the first frame
number within that interval and scale 1s visited next.

The following example shows the coverage for a frame
map with a scale of 4 and an mterval of 4 at frames 191 and
192. Each intersection of scale and interval shows the frame
coverage provided at that intersection. The cells that change

between frame 191 and 192 have been highlighted.

US 9,965,481 B2

Frame map with S=4;I=4 at frame 191
TABLE 35
Interval
Scale 0 1 2 3
0 18% 189 190 191
1 176->179 180->183 184->187 188->191
2 128->143 144->159 160->175 176->191
3 1->63 64->127 128->191 -
Frame map with S=4;1=4 at frame 192
TABLE 36
Interval
Scale 0 1 2 3
0 192 189 190 191
1 192 180->183 184->187 188->191
2 192 144->159 160->175 176->191
3 1->63 64->127 128->191 192

Identification Flement Frame Map

Each frame map entry for an i1dentification element path
contains 1nformation about which bits within the element
instance values are common to all element instances within
the frame interval. A frame interval 1s discounted from a
connective tunnel search i1f the common bits i the frame
interval do not correspond with the bits in the value of the
identity being searched {for.

Each entry in the frame map comprises ol two bit
sequences as long as the longest possible identification
element 1nstance,

A commonality mask M

A commonality sequence B

Mask M contains a set bit where the corresponding bit in
all element instances within the iterval 1s either always set
or always clear. The corresponding bit in B indicates 1f that
bit 1s always set or always clear. For example, 1t the
maximum number of bits 1n the element path 1s 8 then M=0
implies all bits differ while M=1 and B=1 implies that the
least significant bit 1s always set for the element instances 1n
that interval.

As each element instance E 1s added to the frame, the bit
patterns M and B are updated as follows,

It this 1s the first element instance of the frame then B
becomes E and all bits are set in M.

Otherwise, 1f (E AND M)=(B AND M) then do not change
M or B;

Otherwise derive the following

Difference D=NOT((E AND M) XOR (B AND M))

M becomes (M AND D)

B becomes (B AND D)

A frame interval 1s excluded when searching for identi-
fication element instances equivalent to a candidate identity
C 1f (C AND M) 1s not equal to (B AND M).

Measurement Element Frame Map

Each frame map entry for a measurement element path
contains 1nformation about the minimum and maximum
clement instance values across the frame interval. A frame
interval 1s discounted from a combinative tunnel search 1f
the frame interval bounds do not overlap with the bounds
being searched {for.

Each frame map entry contains two values for all element
instances in the interval,

10

15

20

25

30

35

40

45

50

55

60

65

48

An eclement minima N that represents the minimum
clement 1nstance value across the interval

An eclement maxima X that represents the maximum
clement 1nstance value across the interval

As each element instance E 1s added to the frame, the
values N and X updated as follows,

If this 1s the first element 1n the frame then N and X are
both set to E

Otherwise 1f E>X then X 1s set to |

Otherwise if E<N then N 1s set to E.

A Trame 1nterval 1s excluded when searching for measure-
ment element mstances within a bounded range of minimum
A and maximum B 1f (B<N) OR (A>X).

Enumeration Element Frame Map

Each frame map entry in an enumeration element path
contains a sequence of T bits wherein there 1s one bit
corresponding to each property tunnel.

As each element instance E 1s added to the frame, the bit
sequence 1s updated as follows,

If this 1s the first element 1n the frame then all bits are
cleared first

The bit that corresponds to tunnel t 1s set for each tunnel
t that contains a TRUE cell for this element instance.

A frame 1nterval 1s excluded when searching for enumera-
tion element mstances that contain a property P 1f bit P 1s
clear in T.

Collection Path Frame Map

Frame maps are also maintained for each collection path
within collective tunnel frames.

Each frame map entry for a collection path contains two
numbers,

A count of collection tunnels C

A count of collection inversions D

These are maintained as follows,

I1 this 1s the first mnstance being added to the frame then
they are set to C=1;D=0 for a non mnverted collection and
C=1:D=1 for an inverted collection.

Otherwise, C 1s incremented for each collection added;
and both are incremented for each inversion.

These counts are used to assess whether inversions will
need to be resolved within the frame mterval and for
inferring the frame boundaries 1n accumulated tunnels
within element path tunnels.

Cells

Each tunnel comprises of a sequence of cells. The struc-
ture of a cell varies according to the tunnel family in which
it appears and the operator it supports. The following

describes the cell types that are used.

Identification Cell

This represents a whole instance of an identification
clement for a single collection instance within a collective
tunnel. It 1s a sequence of bytes with a preceding cell size,
path and domain—as shown 1 FIG. 22.
The path 1dentifies the element path to which the element
instance belongs.

The domain denotes the number system or character set
used to encode the identifier.

An 1dentification element cell 1s considered equivalent to
a candidate identifier 11 and only 1f 1t has the same length,
encoding domain and byte sequence as the candidate value.

This type of cell 1s used to store and retrieve the value of
an 1dentification element instance from a single collection
instance.

Measurement Cell

This represents a whole instance ol a measurement ele-
ment for a single collection instance within a collective

tunnel. It holds a cell length, domain, sign indicator, an

(L1 (L]

US 9,965,481 B2

49

exponent and a significand that represent the magnitude of
the element—as shown in FIG. 23.

The path 1dentifies the element path to which the element
instance belongs.

The domain defines the number system or time zone used
to encode the native value.

The si1gn imndicates 11 the magnitude 1s positive or negative.

The exponent defines how many bits the significand must
be shifted to be normalised 1nto a fix radix point.

The significand contains only suflicient bits or bytes to
represent the precision of the magnitude of the measure-
ment.

A measurement cell 1s compared to a candidate measure-
ment by examination of their relative magnitudes. Compari-
sons must assume a common oflset and scale to perform
consistent comparisons. For example, time values are rep-
resented 1 standard UTC with the domain denoting the
original time zone.

This type of cell 1s used to store and retrieve the value of
a measurement element instance from a single collection
instance.

Enumeration Cell

This represents a whole mnstance of an enumeration ele-
ment for a single collection instance within a collective
tunnel. It 1s a sequence of property identifiers each preceded
by a property size and the enumeration sequence preceded
by a cell size, path and domain—as shown 1n FIG. 24.

The path 1dentifies the element path to which the element
instance belongs.

The domain defines the number system or character set
used to encode the native property value.

An enumeration cell 1s considered to contain a candidate
property if the domain encodings are the same and the
sequence of properties contains a property of the same size
and byte sequence.

This type of cell 1s used to store and retrieve the value of
an enumeration element instance from a single collection
instance.

Opaque Cell

This represents a link to a whole 1nstance of an opaque
clement for a single collection istance within a collective
tunnel. It contains the cell size, path, domain, opaque
clement size and the link to where the opaque data is
stored—as shown 1 FIG. 25.

The path 1dentifies the element path to which the element
instance belongs.

The domain defines the encoding system used to store the
opaque value at the link location.

The element size specifies the size of the opaque object
contained at the link location.

The link denotes the location where the contents of the
opaque element instance are stored. The opaque element 1s
considered to be a large data object such as a document and
1s stored at an external location such as a file. Usetully, the
link may be a URL.

This type of cell 1s used to retrieve the value of an opaque
clement instance from a single collection 1nstance.

Inversion Cell

This represents an inversion of a previously created
collection instance within a collective tunnel. This cell
contains fixed size frame and tunnel numbers—as shown 1n
FIG. 26.

The inverted frame and inverted tunnel numbers refer to
the location of the collection 1nstance that has been 1nverted.
The mverting tunnel number refers to the tunnel location of
the iverting cell in the current frame.

10

15

20

25

30

35

40

45

50

55

60

65

50

This type of cell 1s used to indicate the inversion of a
collection 1nstance within a collective tunnel.

Digest Cell

This represents a partial mnstance of an 1dentification
element within a connective tunnel. Each cell contains a cell

s1ze, digest and fixed size tunnel number—as shown in FIG.
27.

The digest 1s computed from the domain and byte
sequence of an identification element instance and the tunnel
number refers to the collective tunnel that contains the
respective collection instance for which the digest was
computed.

This type of cell appears 1n a connective tunnel for each
clement instance i1n an identification element path and 1is
used by the IS operator to evaluate the likelihood of equiva-
lence between the element instance and the operator oper-
and; whereby a cell digest that 1s equivalent to the digest of
the operator operand 1s considered to be a likely equiva-
lence; or impossible otherwise.

The digest calculated 1s the value of the identification
clement 1tself for identification element instances below a
certain size. In this case, the equivalence of eclement
instances are considered as certain rather than just likely.

For element instances at or above the size threshold, the
digest can be calculated from an industry standard digest
algorithm such as MD?5.

In each case, the digest 1s derived from the combined
domain and identification byte sequence.

Rank Cell

This contains a single unsigned byte from a measurement
of fixed precision and fixed radix point and without sign. For
example, a measurement may be normalised mto 2048 bits
of precision with a fixed radix point immediately aiter the
10247 bit. This is divided into 256 rank cells of rank 1 . . .
256 with rank 1 being the most significant rank.

This type of cell appears 1n a combinative tunnel for each
clement 1nstance 1n a measurement element path and 1s used
by the IN operator to evaluate the likelihood of the element
instance being bounded by the operator operands. It 1s also
used by aggregation operations to accumulate part of the
clement 1nstance value.

Boolean Cell

This 1s a fixed size cell that contains an indicator of TRUE
or FALSE. In 1ts most eflective form this cell 1s a single bat
that indicates TRUE when set. This type of cell 1s used by
HAS and EXISTS operators to determine the existence of a
property or element instance respectively. It appears in
multiple tunnel types described below.

-

T'unnels
The following describes the tunnels created within each
tunnel family.

Collective Tunnels

The following collective tunnels are created for each
collection path.
There 1s one collection tunnel created for every collection
instance created. This tunnel contains one cell per element
instance within the collection instance. Each cell 1s one of
the 1dentification cell, measurement cell, enumeration cell or
opaque cell type.

There 15 one collection tunnel created for every collection
instance logically removed. This contains one mversion cell
tollowed by one cell per element istance copied from the
collection 1nstance that has been deemed removed.

The order 1n which these tunnels are created reflects the
order which collection instances are created and removed

and the number of these tunnels 1n each frame will vary. The

US 9,965,481 B2

51

tunnel numbers for collection tunnels are assigned 1n strict
incremental order starting at 1 for a new frame.

There 1s exactly one inversion tunnel per frame. This
contains one inversion cell for every inverting collection
tunnel. This tunnel 1s always assigned tunnel number O.

Connective Tunnels

The following connective tunnels are created for each
identification element path.

There 1s a fixed number (N) of digest tunnels per frame
where each digest tunnel contains zero or more digest cells.

For every identification element instance 1n this element
path in this frame, a digest cell 1s created where the digest
1s computed from the domain and byte sequence of the
clement value and the tunnel number of the corresponding
collective tunnel 1s assigned to this digest cell. The digest
cell 1s assigned to the digest tunnel given by a hash function
whichmapsto 1...N andis computed from the domain and
byte sequence of the element value.

Each digest tunnel 1s arranged as shown in FIG. 28 with
the cells appended 1n strict chronological order within each
tunnel.

Connective tunnels are traversed by the IS operator to
evaluate the likelihood or impossibility of equivalence of an
clement instance to an operator operand. Where a cell has
the same digest as the digest of the operator operand, then
equivalence 1s deemed likely; otherwise 1t 1s deemed 1mpos-
sible.

Where the digest cell 1s sufliciently small and comprised
of the element instance then equivalence 1s deemed as
certain rather than likely.

There 1s exactly one existence tunnel per frame. This
contains one boolean cell for every collection tunnel 1n the
corresponding {frame and indicates if the element instance
tor this element path exists in the corresponding collection
tunnel. This tunnel 1s always assigned tunnel number O.

Each frame contains the count of boolean cells that are
TRUE 1n the existence tunnel.

Each frame also contains a cell count per digest tunnel
number. This 1s a one-dimensional array addressed by tunnel
number (1 ... N) to yield the count of cells 1n that tunnel—as
shown 1n FIG. 29.

Each collection instance appears 1n one digest tunnel only.
Therefore, there 1s a digest tunnel map within each frame for
an 1denftification element. This map 1s a one-dimensional
array addressed by collection tunnel number to yield a
corresponding digest tunnel number—as shown 1n FIG. 30.

The digest tunnel map contains one entry per collection
tunnel in the frame. Where a corresponding element instance
does not exist within a collection tunnel, the digest tunnel
number set as 0.

To find the digest cell for a collection instance requires
ispection of the digest tunnel map by collection tunnel
number to find the digest tunnel and then mnspection of digest
cells 1n that digest tunnel to find the corresponding collec-
tion tunnel number.

To find collection instances that correspond to an identi-
fication value requires a calculation of the digest and digest
tunnel number to retrieve all matching digest cells for the
calculated digest.

An effective number for N 1s 65533.

Combinative Tunnels

The following combinative tunnels are created for each
measurement element path.

There 1s a fixed number (N) of rank tunnels per frame
where each rank tunnel contains zero or more rank cells.

For every element instance 1n this element path in this
frame, N rank cells are created where the cell 1n rank tunnel

"y

10

15

20

25

30

35

40

45

50

55

60

65

52

N represents rank N 1n the normalised measurement repre-
sentation. The position of each cell 1n a rank tunnel corre-
sponds with the collective tunnel number that contains the

clement 1nstance for this cell.

Each rank tunnel 1s arranged as shown 1n FIG. 31 with the
cells appended 1n strict chronological order within each
tunnel.

There 1s exactly one sign tunnel per frame. This contains
one boolean cell for every collection tunnel 1n the corre-
sponding frame and indicates 1f the element 1instance for this
clement path has a negative magmitude 1n the corresponding
collection tunnel. This tunnel 1s always assigned tunnel
number N+1.

Combinative tunnels are traversed by the IN operator to
cvaluate the likelthood or impossibility of an element
instance being bounded by the operator operands. Where a
sign cell or rank cell has a value that cannot fall within the
operator bounds then the bounding 1s deemed impossible;
otherwise 1t 1s deemed likely. For a likely bounding the IN
operator may inspect further rank cells for the same element
instance to further determine impossibility or certainty.

There 1s exactly one existence tunnel per frame. This
contains one boolean cell for every collection tunnel 1n the
corresponding frame and indicates if the element instance
for this element path exists in the corresponding collection
tunnel. This tunnel 1s always assigned tunnel number O.

Each collection mstance appears once 1n every combina-
tive tunnel.

Each frame contains the count of boolean cells that are
TRUE 1n the existence tunnel.

Each also frame contains a cell count per possible
unsigned cell value per rank tunnel. This 1s a one-dimen-
sional array per rank tunnel addressed by byte value (0.253)
to yield the count of cells 1n that rank tunnel that contain the
corresponding cell value—as shown 1n FIG. 32.

The cell counts are used directly for the purposes of
summation where there are 1s a common sign and no
iversions across the frame and no predicate operators. In
these circumstance, each byte value 1s multiplied by corre-
sponding cell count and these are combined with respect to
rank.

In other circumstances aggregation works on each rank
tunnel 1n turn to minimise cache churn. For summation, each
rank 1s summed (with the corresponding sign cell) separately
and these sums are combined for the accumulated result.
Mimma and maxima use the sign tunnel to determine which
sign and whether mimimum or maximum magnitude are
sought; then scans the highest rank tunnel which contains
non-zero cell values first, to find candidate cells; thereafter
the candidates are reduced by consulting corresponding
lower rank tunnels directly in candidate order and then
descending rank order.

To find collection 1nstances that correspond to a measure-
ment value requires a scan of the sign and rank tunnels that
are relevant. The position of each cell found corresponds to
the collection tunnel number.

To find the value of a byte at rank R for a collection
instance C requires that the cell in tunnel R at position C be
ispected.

When searching for a measurement within a bounded
range, the rank bytes of the low and high bounds are
compared to determine the highest rank where the bounds
differ. This 1s the determinant rank and rank tunnels below
the determinant rank need only be mspected for specific
collection instances identified as of possible relevance by
scanning the ranks higher than determinant rank first.

US 9,965,481 B2

53

In view of the above, 1t will be appreciated that many cells
may be deemed as of impossible relevance without the need
to examine all rank tunnels.

The cell counts for ranks above the determinant rank
values are consulted prior to a scan to quickly determine 1t
the required rank value exists in the corresponding rank
tunnel or not. If not, the entire frame 1s discounted.

An effective number for N 1s 256, which provides a
precision of 2048 bits.

Characteristic Tunnels

The following characteristic tunnels are created for each
enumeration element path.

There 1s a fixed number (N) of property tunnels per frame
where each property tunnel contains zero or more boolean
cells.

For every element instance 1n this element path in this
frame, an enumeration cell 1s appended to every property
tunnel.

A hash function which maps to 1 . . . N from a property
domain and byte sequence 1s calculated for each property
within the enumeration element and for each property tunnel
number returned by the property hash calculation the cell in
that tunnel 1s set otherwise the cell 15 cleared.

In a useful alternative embodiment, a monotonically
increasing ordinal 1s assigned to each unique property 1den-
tifier. The tunnel number 1s derived by applying a modulo of
N to the property ordinal.

In another useful alternative embodiment, a monotoni-
cally icreasing ordinal 1s assigned to each unique property
identifier within each element path. The tunnel number 1s
derived by applying a modulo of N to the property ordinal.

Characteristic tunnels are traversed by the HAS operator
to evaluate the likelithood or impossibility of possession of
a property by an element instance. Where a cell indicates
possession then possession 1s deemed likely; otherwise it 1s
deemed 1mpossible.

Where the tunnel number 1s derived from a property
ordinal, possession 1s deemed as certain rather than likely if
(M-N)<P<2N where P i1s the ordinal of the property 1den-
tifier, M 1s the maximum ordinal assigned and N 1s the
number of tunnels.

The position of each cell 1n a property tunnel corresponds
with the tunnel number of the collection tunnel that contains
the corresponding element instance.

There 1s exactly one existence tunnel per frame. This
contains one boolean cell for every collection tunnel 1n the
corresponding {frame and indicates if the element instance
tor this element path exists in the corresponding collection
tunnel. This tunnel 1s always assigned tunnel number O.

Each collection instance appears once in every tunnel.

Each frame contains the count of boolean cells that are
TRUE 1n the existence tunnel.

Each frame also contains a count of true cells per enu-
meration tunnel. This 1s a one-dimensional array addressed
by property tunnel number (1 . . . N) to yield the count of

TRUE cells 1n that tunnel-—as shown in FIG. 33.

An effective number for N 1s 653533.

Tunnel Example

The following provides an example of a storage layout for
cells and tunnels for the Employee table described earlier.
Cells are 1llustrated as enclosed 1n square brackets; cell sizes
are shown as S and domains are shown as D. For clarity, 1t
1s assumed that all employee collection instances exist
within the same time frame and that no employee instances
have been deleted.

5

10

15

20

25

30

35

40

45

50

55

60

65

Name

Simon Smith
John Jones
Bob Brown

Element

Path

Name

Employee Number

Salary

Commission Rate
Department Number

TABLE 37
Employees Table
Employee Commission
Number Salary Rate
10 10000
20 20000 10.00%
30 30000 15.00%
TABLE 38
Collection Collection
Path Path #
Employees
Department
Region
TABLE 39
Element Collection
Path # Path #
1
2
3
4
5

TABL.

=, 40)

Collection Path 1

Department

Number

100
200
200

Intent

Enumeration

Identification
Measurement
Measurement

Identification

Collective
Tunnel #

0 (1nversion)
1

Collective
Tunnel

(empty)

'S,1,D,5,*Simon’,5,*Smith’][S,2,D,10]
'S,3,D,+,0,10000][S,5,D,100]

2 S,1,D.4,°John’,5," Jones™][S,2,D,20]
5,3,D,+,0,20000][S.,4,D,+,-2,1000][S,5,D,200]
3 S,1,D,3,°Bob’,5,* Brown’|[S,2,D,30]
5,3,D,+,0,30000][S.4,D,+,-2,1500][S,5,D,200]
TABLE 41
Flement Path 1
Characteristic Characteristic
Tunnel # Tunnel
0 (existence) [1][1][1]
hash(*Simon”) 1][0][O]
hash(‘Smith”) 1][0][0
hash(*John’) O][1][0]
hash(*Jones’) O][1][0]
hash(‘Bob’) O][0][1
hash(*Brown’) O][O][1]

65535

S
TABLE 42

Element Path 2

US 9,965,481 B2

Connective

Tunnel #

0 (existence)

hash(10)

Connective

Tunnel

[L][1]1]

S.digest(10),1°
hash(20) S,digest(20),2] 10
hash(30) 'S,digest(30),3]
65335
15
TABLE 43
Element Path 3
Combinative Combinative
Tunnel # Tunnel 20
0 (existence) 1][1]]1
1 (rank 1) 11[2][3
2 (rank 2) O][0][0
3 (rank 3) O1[0][0
4 (rank 4) O][0][0 75
5 (rank 3) O1[O0][O
(radix point)
6 (rank 6) O1[O][O]
7 (rank 7) O][O][O]
8 (rank 8) O][O][O] 10
9 (rank 9) O][O][O]
10 (rank 10) O][O][O]
11 (sign) +][+][+]
. 335
TABLE 44
Element Path 4
Combinative Combinative
Tunnel # Tunnel
40
0 (existence) O][1][1
1 (rank 1) O][0][0]
2 (rank 2) O][0][0]
3 (rank 3) O][0][0]
4 (rank 4) O][1][1]
5 (rank 5) O][0][5] 45
(radix point)
6 (rank 6) O1[O][O]
7 (rank 7) O1[O][O]
& (rank 8) O1[O][O]
9 (rank 9) O][O][O] 50
10 (rank 10) O][O][O]
11 (sign) +][+][+]
TABLE 45 55
Element Path 5
Connective Connective
Tunnel # Tunnel
. 60
0 (existence) [1][1][1]
hash(100) S,digest(100),1]
hash(200) S,digest(200),2]
hash(300) S,digest(200),3]
65535 63

56

The following provides example operator navigation
routes

EXISTS(‘Employees.Commission’)—Follow existence
tunnel O in element path 4. This yields collection tunnel
numbers 2 and 3.

IS(*Employees.EmployeeNumber’,10)—Follow digest
tunnel given by hash(10) in element path 2. This yields
collection tunnel number 1.

IN(‘Employee.Salary’,0,10000)—Follow sign tunnel 11
and rank tunnel 1 in element path 3. This yields collection
tunnel 1.

HAS(*Employees.Name’,*Simon’, Jones’ }—Follow and
combine property tunnels given by hash(*Simon’) and hash
(‘Jones’) 1n element path 1. This yields no collection tunnels.

Tunnel Compression

Many of the tunnels described are usefully compressed
using conventional lossless run length encoding to reduce
tunnel size and to make the scanning of a tunnel faster.
Methods of run length encoding 1s exhaustively covered
clsewhere and so 1s not discussed any further here.

Existence and property tunnels are elflectively bit
sequences where contiguous sub-sequences of set or clear
bits are likely. Therefore these tunnels are usefully run
length encoded.

Within rank tunnels for a measurement element, bytes
values at a given rank are likely to be similar—especially at
extreme distances from the radix point where there will be
large populations of zero byte values. Therefore rank tunnels
are usefully run length encoded.

Collection Sets

Each of the predicate and bind operators defined generate
and manipulate collection sets of collection imstance mem-
bers.

Each collection set 1s generated by a predicate operator
evaluation and contains the following information for each
collection 1instance considered relevant to the operator evalu-
ation,

The Collection Frame and Collective Tunnel Number that
unmiquely 1dentifies the collection instance considered rel-
evant to the predicate operator evaluation;

The Certainty of the predicate operator evaluation. A
boolean indicator assigned by the predicate operator evalu-
ation to 1ndicate either certainty or likely possibility of the
relevance of the collection 1nstance to the predicate operator
evaluation;

The Visit Ordinal assigned during bind operations and

assigned as zero by the predicate operator evaluation;
The Sequence number assigned during bind operations
and assigned as zero by the predicate operator evaluation;
The Cardinality assigned during bind operation and
assigned to be one by the predicate operator evaluation;

The Digest Tunnel number for the binding element
instance assigned during bind operations and assigned as
zero by the predicate operator evaluation;

The Member’s Ordinal position within the collection set
and incrementally assigned by predicate operator evalua-
tion;

The Diagest value for the digest cell for the binding
clement imstance for the collection mstance. Assigned during
bind operations and assigned as zero by the predicate

operator evaluation.

After being generated by a predicate operator, each col-
lection set will exhibit good frame locality and collection
instances will be ordered within each frame.

US 9,965,481 B2

S7

Advantageously, collection sets are hosted 1n memory to
assist rapid access and an advantageous structure for a

collection set 1s a list of fixed-sized memory blocks. This 1s
illustrated 1n FIG. 34.

Advantageously, unused memory blocks are pooled to
allow rapid construction of collection sets without a need to
make calls to low level memory allocation services at the
operating system level.

Advantageously, as the bind operation progresses, any
block that only contains members 1rrelevant to the current
and subsequent stages of the bind process are removed from
the list and returned to the pool of unused memory blocks.

A collection sets are used to materialise the query result
by accessing combinative and/or collective tunnels. The
certainty indicator for each collection member 1s used by
query materialisation to determine 1f 1t 1s necessary to
retrieve an element instance to resolve uncertainty.

Database Processes

The access model and storage structures defined above are
used to persist data within storage and retrieve query results

Method

createDatabase(d,p)

dropDatabase(d)
createTable(d,t)
createColumn(d.,t,c,l)

renameTable(d,o.n)

renameColumn(d,t,o,n)

dropTable(d,t)
dropColumn(d.t,c)
truncateTable(d,t)

openSesion(d) return s

closeSession(s)
openTransaction(s,i)
return n
commutTransaction(s)

rollbackTransaction(s)

10

15

rollbackTransaction(s,n)

openRow(s,t) return r

setNull(r)
setNull(r,c)
setColumn(zr,c,v)
insert(r)
closeRow(r)

openUpdateCursor(s.t)

returns u
setWhereClause(u,w)
execute(u)
setFirstRow(u)
setNextRow(u)
isNull(u,c¢)

getColumnValue(u,c,v)

setColumnValue(u,c,v)

getRowldentity(u)

update(u)

delete(u)

close(u)
openQueryCursor(s)
returns q
setWhereClause(q,w)

addSelectExpression(q,x)
addGroupExpression(q,x)

execute(q)

58

from storage within a database. The architecture of that
database consists of the layers and components illustrated 1in
FIG. 35.

The three major layers consist of the Database Engine A
which 1s responsible for the overall coordination of user
commands within the context of a native data model, such
as a relational model, and a native command language, such
as SQL. A Model Translation Layer B 1s responsible for
conversion between the native data model and the access
model used by the Storage Engine C. The Storage Engine C
1s responsible for persisting changes path definitions and
persisting changes to collection instances and for the
retrieval of collection and element instances required by
queries.

The interface provided by Model Translation B to the
Database Engine A depends on the native data model
supported by the Database Engine A. For a relational data

model, 1n one useful embodiment, this interface 1s as follows
Model Translation Interface

TABLE 46

Notes

Creates a new database instance with identity d and storage location
path p. This creates a new storage structure and meta data path.
Drops an existing database instance with identity d.

Creates table t within database instance d

Creates column ¢ with constraint 1 within an existing table t 1n database
instance d

Renames an existing table o to new name n within database instance d
Renames an existing column o to new name n in an existing table t
within database instance d

Drops an existing table t in database instance d

Drops an existing column c in existing table t in database instance d
Truncates existing table t in database instance d

Opens a transactional session s in database instance d

Closes the transactional session s

Opens a new transaction n within session s (potentially within the context
of an existing open transaction) using transaction isolation semantics 1
Commuits and close all currently open transactions in session s

Rollback and close all transactions open 1n session s

Rollback and close all open transactions in session s up to transaction n
Returns a row context r for inserts into table t within the current
transaction in session s.

Sets all columns as null 1n row context r

Sets column ¢ as null 1n row context r

Sets column ¢ to value v in row context r

Inserts row context within the current transaction

Closes row context r.

Opens a cursor u for row updates against table t within

the current transaction of session s.

Sets the where clause w 1n cursor u

Executes the cursor u for the current where clause

Sets the first row context for cursor u

Advances the row context for cursor u

Indicates 1f the value for column ¢ 1n the current row
context of cursor u 1s null

Returns the column value into v for column ¢ from the
current row context of cursor u.

Sets the value v for column ¢ in the current row

context of cursor u.

Returns the row identity of the current row context of
cursor u.

Updates the current row context within the table

Deletes the current row context from the table

Closes the cursor u

Opens a query cursor q for query within the current transaction
of session s.

Sets the where clause w 1n cursor q

Adds an expression X to the query select clause 1n cursor q
Adds a group by expression for aggregation

Executes the cursor q for the current where clause, select expression and
group eXpression

US 9,965,481 B2

59 60
TABLE 46-continued

Method Notes
setFirstRow(q) Sets the first row context for cursor q
setNextRow(q) Advances the row context for cursor q
isNull(qg,x) Indicates if select expression x of the current row i1s null
getExpression(q,x,v) Gets the value of select expression x 1nto v for the current row context of
Cursor q

close(q) Closes the cursor q

The mterface provided by Storage Engine C to the Model Storage Engine Interface

Translation Layer B supports the access model operations
and operators. In one useful embodiment, this interface 1s as

follows
TABLE 47

Method Notes
createDatabase(d,p) Creates a new database instance with identity d at storage location

path p. This creates a new storage structure and meta data path.
dropDatabase(d) Drops an existing database instance with identity d.
defineCollectionPath(d,c) Defines collection path ¢ within database instance d
defineElementPath(d,c,e.1) Defines element path e with intent 1 within collection path ¢ within

database instance d

redefineCollectionPath(d,o,n) Renames existing collection path o to new name n within database
instance d

redefineElementPath(d,c,o,n) Renames existing element path o within collection path ¢ to new name
n within database instance d

undefineCollectionPath(d,c) Removes existing collection path ¢ in database instance d

undefineElementPath(d,c) Removes existing element path e within collection path ¢ 1n database
instance d

truncateCollectionPath(d,c,f) Truncates existing collection path ¢ in database instance d, removing
all frames prior to {

openSesion{d) return s Opens a transactional session s 1in database instance d

closeSession(s) Closes the transactional session s

openTransaction(s,i) Opens a new transaction n within session s (potentially within the

return n context of an existing open transaction) using transaction isolation
semantics 1

applyTransaction(s) Applies and closes all currently open transactions i session s

abandonTransaction(s) Abandons and closes all transactions open in session s

abandonTransaction(s,n) Abandon and close all open transactions 1n session s up to transaction n

openCollectionlnstance(s,c) Returns a collection context ¢ for appending to collection

return ¢ path ¢ within the current transaction in session s.

setNotExists(c) Sets all element nstances as non existent for all element paths in
collection instance context ¢

setNotExists(c,.e) Sets element 1nstance as non existent for element path e in collection
instance context ¢

setElementInstance(c,e,v) Sets element 1nstance to value v for element path e in collection
instance context ¢

append(c) Appends collection instance context ¢ in the current transaction

closeCollectionlnstance(c) Closes collection mmstance context c.

openUpdateCursor(s,c) Opens a cursor u for collection instance updates against

returns u collection path ¢ within the current transaction of session s.

setUpdateCriteria(u,b) Sets the update criteria for update cursor u to boolean expression b of
predicate operators

execute(u) Executes the cursor u for the current update criteria

setFirstInstance(u) Sets the first collection instance context for cursor u

setNextlnstance(u) Advances the collection 1nstance context for cursor u

exists(u,e) Indicates 1f the instance for element path e exists 1n the current context
of cursor u

getlnstanceValue(u,e,v) Gets the nstance value into v for element path e from the current
context of cursor u.

setInstanceValue(u,e,v) Sets the instance value for element path e from v for the current
context of cursor u.

getCollectionldentity(u) Returns the collection identity of the current context of cursor u.

replace(u) Inverts the existing collection instance for the current cursor context
and appends the current context

invert(u) Inverts the existing collection instance for the current cursor context

close(u) Closes the cursor u

openQueryCursor(s) returns q Opens a query cursor q for query within the current transaction
of session s.

setQueryCriteria(q,b) Sets the query criteria for query cursor q to boolean expression b of
predicate and bind operators
addElementPath(q.c,e) Adds element path e 1n collection path ¢ to the result path in query

CUrsor g

US 9,965,481 B2

61
TABLE 47-continued

62

Method Notes

execute(q) Executes the cursor q for the current query criteria and result paths
setFirstInstance(q) Sets the first collection instance context for cursor q
setNextInstance(q) Advances the collection instance context for cursor q

Exists(qg,c,e)
the context of cursor q
getElementlnstance(q.c,e,v)

Indicates 1f an instance exists for element path e in collection path ¢ n

Gets the value of the element inatnce into v for element path e in

collection path ¢ in the current context of cursor q

close(q)

Closes the cursor q

Commands are accepted 1n a native language by the User
Interface Al and parsed by a native Language Parser A2.

Commands that involve changes to the native schema
update the Schema Definition A4 and are passed through

Model Translation B into Entity Conversion B1 for conver-
s10n from native entities into access model entities. Schema

changes that involve changes to collection path and/or

clement path definitions are passed into the Storage Engine
C for persistence by Path Definmition C1. Any declared
schema constraints are passed into Entity Conversion Bl to
allow 1t to ascertain the intent of each element path defined.

Commands that 1involve transactional updates pass
through Command Execution A5 and through Model Trans-
lation B 1nto the Storage Engine C via Entity Conversion B,
Operation Conversion B2, and Data Type Conversion B3
into the Storage Structure C6 via Path Definition C1. During
the pass though, Entity Conversion Bl converts native data
model entities 1nto collection and element path entities; Path
Defimition C1 resolves collection and element path 1denti-
ties; Operation Conversion B2 converts any collection
instance updates mto access model collection instance mver-
sion and creation operations; Data Type Conversion B3
converts native data types into access model data types for
identification, measurement, enumeration and opaque ele-
ment 1nstances.

Commands that involve queries pass through Command
Execution A5 and through Model Translation B into the
Storage Engine C via Entity Conversion Bl, Operation
Conversion B2, Data Type Conversion B3, Operator Con-
version B4, Path Definition C1, Expression Re-factoring C2,
Operator Fetching C3 and Operation Binding C4, Retrieval
and Merging C5. During the pass though, Entity Conversion
B1 converts native data model entities into collection and
clement path entities; Operation Conversion B2 converts
any compound query statements into 1ts component queries;
Data Type Conversion B3 converts native data types into
access model data types for identification, measurement,
enumeration element and opaque nstances; Operator Con-
version B4 converts all native language operators into the
access model operators (IS, IN, HAS, EXISTS and BIND).
The Storage Engine C uses Path Definition C1 to resolve
collection path names and element path names; Expression
Re-factoring C2 to converts composite boolean expressions
into Disjunctive Normal Form form; with Operator Fetching
C3 from the Storage Structure C6 to generate collection sets
for each operator; with Operator Binding C4 binding col-
lection sets from operators 1 conjunctive terms; with
Retrieval and Merging C5 retrieving and merge all results
from all bound collection sets and conjunctions via the
Storage Structure C6. Query results pass back through
Operation Conversion B2 for any aggregation and expres-
sion evaluation operations and then through Data Type
Conversion B3 for the conversion of access model data
types 1nto native model data types. These results are ulti-

15

20

25

30

35

40

45

50

55

60

65

mately pass back to Presentation A3 for final rendering for
the user who 1nitiated the query. Presentation A3 1s respon-
sible for the final sorting and ordering of the results pre-
sented.

During query execution, Operator Conversion B4 1ndi-
cates any potentially lossy predicate operator translation to
Operation Execution B2 which can elect to request the
predicated element instances as well as the result set sought
so that 1t can verily the results returned by applying the
original operator criteria and filter results that arise from a

lossy translation.

Constraints, such as domain definitions, are defined
within the native Schema Definition A4 and enforced within
the Database Engine A by Command Execution AS5. Com-
mand Execution A5 will 1ssue queries as described above to
determine the existence or otherwise of entities when
enforcing uniqueness and logical relationship constraints.

The following 1s described with the context of a relational
database but applies similarly to any other data models
supported by the access model described.

When a user submits a command using the SQL language
via Al to create a new database 1nstance, the SQL statement
1s parsed 1nto 1ts language components by A2 wherein the
database name and database location are extracted. The
database engine will verity that 1t 1s a valid command and
update the schema definition accordingly via A4. The data-
base and location names are passed through B1 for deriva-
tion of the storage location path into the Storage Engine C
wherein a new file system directory 1s created for the new
database 1nstance and subdirectories and meta data files are
created within C6.

When a user submits a command using the SQL language
via Al to create a open an existing database instance, the
SQL statement 1s parsed into 1ts language components by A2
wherein the database name 1s extracted. The database engine
will venity that 1t 1s a valid command using 1ts schema
definition in A4. The location associated with the database
name 1 A4 1s passed through B1 for derivation of the
storage location path nto the Storage Engine C wherein the
file system directory 1s assigned to the user and the latest
meta-data file 1s loaded into memory from C6.

When a user submits a command using the SQL language
via Al to drop an existing database instance, the SQL
statement 1s parsed into its language components by A2
wherein the database name 1s extracted. The database engine
will venity that 1t 1s a valid command using 1ts schema
definition 1n A4. The location associated with the database
name 1 A4 1s passed through Bl for derivation of the
storage location path mto the Storage Engine C wherein the
file system directory, its sub-directories and files contained
within are deleted from within C6.

When a user submits a command using the SQL language
via Al to create a table structure, the SQL statement 1s
parsed into 1ts language components by A2 wherein the table

US 9,965,481 B2

63

and column names are extracted. The database engine will
verily that 1t 1s a valid command and update the schema
definition accordingly via A4. The table and column names
are passed along with the column data types and constraints
into Model Translation B. Therein, the table name (including
any schema and database qualifiers) 1s interpreted as a
collection path; each column name is interpreted as an
clement path; each constraint i1s used to determine element
path mtent by B1l. The collection path, element paths and
clement path intents are passed to C1 wherein the collection
path 1s assigned a unique collection path ordinal and each
clement path 1s assigned a unique ordinal within the collec-
tion path. File system directories for the new collection path
are created within each tunnel family directory by C6. The
database meta data 1s persisted within C6.

When a user submits a command using the SQL language
via Al to add one or more columns to an existing table
structure, the SQL statement 1s parsed nto its language
components by A2 wherein the table and column names are
extracted. The database engine will verity that 1t 1s a valid
command and update the schema definition accordingly via
A4. The table/column identifiers are resolved nto collection
path and element paths respectively by B1 and element path
intent derived from the column data type and constraints.
The collection path, element path and element path intent are
passed to C1 wherein the element path 1s assigned a unique
ordinal within the collection path. The database meta data 1s
persisted within C6.

When a user submits a command using the SQL language
via Al to drop a table structure, the SQL statement 1s parsed
into 1ts language components by A2 wherein the table name
1s extracted. The database engine will verify that 1t 1s a valid
command and update the schema definition accordingly via
A4. The table name 1s passed into the Model Translation
Layer B where the collection path 1s 1dentified via B1. The
directories specifically relating to the collection path and all
files within are deleted from the file system within C6. Then
the collection path 1s marked as deleted and the database
meta data 1s persisted within C6.

When a user submits a command using the SQL language
via Al to drop one or more columns from a table structure,
the SQL statement 1s parsed 1nto 1ts language components by
A2 wherein the table and column names are extracted. The
database engine will verify that 1t 1s a valid command and
update the schema definition accordingly 1n A4. The table
name and column names are passed into the Model Trans-
lation Layer B wherein the collection path and element paths
are 1dentified by Bl. Then the element path 1s marked as
deleted and the database meta data 1s persisted within C6.

When a user submits a command using the SQL language
via Al to rename a table structure, the SQL statement 1s
parsed 1nto 1ts language components by A2 wherein the old
and new table names are extracted. The database engine will
verily that 1t 1s a valid command and update the schema
definition accordingly in A4. The table names are passed
into the Model Translation Layer B wherein the collection
path 1s 1dentified from the old table name by B1. Therein, the
collection path for the old name 1s assigned the new collec-
tion path name 1n C1 and the database meta data 1s persisted
within C6.

When a user submits a command using the SQL language
via Al to rename a column within a table structure, the SQL
statement 1s parsed into 1ts language components by A2
wherein the table and column names are extracted. The
database engine will verity that 1t 1s a valid command and
update the schema definition accordingly 1n A4. The table
name and column names are passed into the Model Trans-

10

15

20

25

30

35

40

45

50

55

60

65

64

lation Layer B wherein the collection path and element path
for the old column name are i1dentified by B1l. The element
path 1s assigned the new column name i C1 and the
database meta data 1s persisted within C6.

When a user submits a command using the SQL language
via Al to truncate a table structure, the SQL statement 1s
parsed into 1ts language components by A2 wherein the table
name 1s extracted. The database engine will verify that 1t 1s
a valid command using A4. The table name 1s passed into the
Model Translation Layer B wherein the collection path 1s
identified by Bl. Within C6, all frame files relating to the
collection path are deleted; all transaction segments for the
truncated collection path that belong to closed transactions
are deassigned from the collection path.

When a user submits a command using the SQL language
via Al to insert an explicit row into a table structure, the
SQL statement 1s parsed into its language components by
A2. The database engine will verity that 1t 1s a valid
command via A4 and associate column values with column
names. The table name, column names and column values
are passed into the Model Translation Layer B wherein, the
collection path and element paths are 1dentified by B1 and
C1. Each column value supplied is converted into an ele-
ment cell (1dentification, measurement, enumeration or
opaque cell) according to the element path intent by B3.
Within C6, one or more transaction segments are created 1n
the current heap file and the element cells are added to them.

When a user submits a command using the SQL language
via Al to query rows from one or more table structures, the
SQL select statement 1s parsed into 1ts language components
by A2 which will create a hierarchical expression tree for
cach select clause and a hierarchical SQL operator tree for
cach where clause. These are passed 1nto the Model Trans-
lation Layer B. Therein, the collection path and element
paths in the expression trees and the operator trees are
identified by B1. Any compound SQL query statements are
decomposed nto distinct queries by B2 which submits them
as separate queries. For each query, the SQL operators 1n an
operator tree are converted to the predicate and bind opera-
tors of the access model by B4 and passed together with a
list of collection and element path names from the expres-
s1on tree mnto the Storage Layer C wherein the operator tree
1s refactored 1nto disjunctive normal form by C2. Thereatter,
separate collection sets are generated for each predicate
operator by C3; then collection sets within conjunctive terms
of the operator tree are bound by bind operators in C4.
Instances for the required collection paths and element paths
are fetched from C6 via each collection set in each conjunc-
tive term ol the operator tree via C5 and de-duplicated
between conjunctive terms in the operator tree 1 C5 and
returned to the Model Translation Layer B. Wherein B2 will
perform any required filtering, aggregation or recombination
of component queries. These results are converted back to
SQL data types from the access model data types and the
results handed back to the Database Engine A for presenta-
tion by A3.

When a user submits a command using the SQL language
via Al to query rows from a table structure for the purpose
of updating or deleting rows, the SQL select statement 1s
parsed 1nto 1ts language components by A2 which will create
a hierarchical SQL operator tree that defines the predicate
conditions for the query. The name of the table and the
operator tree are passed 1nto the Model Translation Layer B.
Therein, the collection path and element paths are 1dentified
by B1; the SQL operators in the operator tree are converted
to the predicate operators of the access model by B4. The
collection path and operator tree passed into the Storage

US 9,965,481 B2

65

Engine C wherein the operator tree 1s re-factored into a
disjunctive normal form by C2. Thereafter, separate collec-
tion sets are generated for each predicate operator by C3 and
merged within each conjunctive term within the operator
tree. Collection sets are de-duplicated between conjunctive
terms 1n the operator tree by C5. An exclusive imnversion lock
1s requested for ever member of the final collection set prior
to processing that result. Where the user has chosen to delete
rows, each collection instance 1n the result set 1s retrieved

from its collective tunnel by and copied to create a collection
instance inversion by C35 wherein one or more transaction
segments are created and appended with an 1nversion cell
and the collection 1nstance element cells. Where the user has
chosen to update rows, each original collection instance is
inverted as described above and then a new collection
instance 1s mserted with the modified element cells where
one or more transaction segments are created 1n the heap file
and the element cells are added to them.

The following operations occur 1n the Storage Engine C
independently of the native data model used.

When a transaction 1s opened an available transaction
handle 1s assigned from the pool of available transaction
handles and the heap file transaction header 1s updated with
the transaction status (open) but 1s not written back to
storage.

When a transaction 1s applied, the heap file transaction
header 1s updated with the transaction status (applied) but 1s
not written back to storage. The transaction then waits for
the next apply cycle to complete. Any mversion locks held
by the transaction are relinquished.

When a transaction 1s abandoned, the heap file transaction
header 1s updated with the transaction status (abandoned)
but 1s not written back to storage. Any update lock held by
the transaction are relinquished.

When an apply cycle completes, all new and updated
content 1n the heap file 1s written and synchronised back to
storage.

When a collection 1nstance 1s appended to a heap file by
a transaction, a collective tunnel 1s created for the transac-
tion. The tunnel number used 1s one greater than the last
collective tunnel number for the same collection path within
this heap file. One or more transaction segments are created
for the collective tunnel and a cell corresponding to each
clement instance value 1s appended to transaction segments
created.

When a collection 1nstance inversion i1s appended to a
heap file by a transaction, a collective tunnel is created for
the transaction. The tunnel number used 1s one greater than
the last collective tunnel number for the same collection path
within this heap file. One or more transaction segments are
created for the collective tunnel. One inversion cell 1s
appended to the created segments followed by a cell corre-
sponding to each element instance value from the original
collection 1nstance.

When a DNF expression 1s being evaluated within the
context of a query within an open transaction,

For each conjunctive term within the DNF a collection set
1s created for each predicate operator literal in that conjunc-
tive term as described below. Each operator can generate its
own collection set simultancously with other operators
across the DNF.

All collection sets for the same collection path alias are
merged together within each conjunctive term such that only
set members that occur with the same frame number and
collective tunnel number 1n every collection set in that
collection path are retained.

10

15

20

25

30

35

40

45

50

55

60

65

06

The collection sets within each conjunctive term are
bound by the bind operators appearing within the same
conjunctive term as described below. The binding of a
conjunctive terms can happen simultaneously with the bind-
ing of other conjunctive terms.

Each collection set 1s sorted by sequence order. Collection
sets may be sorted simultaneously across the DNF.

Each collection set 1s used to retrieve data from corre-
sponding collective tunnels and/or combinative cells 1den-
tified 1n those collection sets and retrieved 1n sequence order.
The entries for each collection set are retrieved entry by
entry synchronously across all collection sets 1n the con-
junctive term and merged entry by entry. Retrieval occurs
sequentially across conjunctive terms in the DNF and results
de-duplicated so that the same result produced by two
conjunctive terms 1s not repeated.

Where a query only requires measurement element
instances to be returned, for each member retrieved, the
corresponding combinative tunnels are read from frame files
using the collection set frame number; and the collective
tunnel numbers are used to address specific rank cells 1n the
rank tunnels; otherwise collective tunnels are read from the
frame files using the collection set frame number and
collective tunnel numbers.

When a DNF expression (for a single collection path) 1s
being evaluated within the context of an update within an
open transaction,

For each conjunctive term within the DNF a collection set
1s created for each predicate operator literal 1n that conjunc-
tive term as described below. Each operator can generate its
own collection set simultanecously with other operators
across the DNF.

All collection sets are merged together within each con-
junctive term such that only entries that occur with the same
frame number and collective tunnel number 1n every col-
lection set are retained. Thereatter, there will only be one
collection set per conjunctive term.

Each collection set 1s used to directly return the frame
number and collective tunnel number. Retrieval occurs
sequentially across conjunctive terms and results de-dupli-
cated so that the same result produced by two conjunctive
terms 1s not repeated.

As each result 1s retrieved, an exclusive lock 1s requested
against the combined frame number and tunnel number. If
the lock 1s not granted immediately, the process must wait
until 1t 1s granted. A transaction that already owns a lock 1s
granted the lock immediately.

If after a configurable time-out period, the lock has still
not been granted, the process relinquishes all collection set
resources and locks acquired so far and continues to wait for
the lock to be granted. Once the lock has been granted the
lock 1s retained and the DNF evaluation as described here 1s
re-started

When binding collection sets within the context of a
conjunctive term within a DNF,

The collection sets and bind operators are visited 1n the
order as described previously.

As each collection set 1s visited, the digest tunnel number
for each member 1s populated directly from the digest tunnel
map for the binding element path which 1s accessed by
corresponding collection tunnel number; the member ordi-
nal position 1s populated with the ordinal position of the
member within the set.

The digest tunnel and ordinal position are then sorted and
re-arranged into ascending frame and digest tunnel and
position order; then the digest entries are populated for all
entries 1n tunnel number order 1n each frame.

US 9,965,481 B2

67

As each bind operator 1s visited, the terminating collec-
tion set 1s attenuated whereby any members that have no
corresponding digest tunnel numbers 1n the originating set
have their cardinality reset to zero. This 1s determined from
the cell counts associated with the originating digest tunnels.

The correlated originating members are propagated
through the bind operator as described previously. Any two
correlating entries across collection sets must have an
equivalent digest tunnel number and equivalent digests. If
cither the tunnel number or digest diflers, the members are
discounted from potential correlation; otherwise the entries
are correlated.

The bind cardinalities are reflected back through the bind
operator 1nto the origination collection set as described
previously.

As the bind process proceeds, all members relating a
previous propagation sequence—that 1s with a visit ordinal
less than the set visit ordinal are discarded.

When generating a collection set for the exists() operator
in the context of an open transaction,

For each heap file 1n reverse frame order, the transaction
segments for this collection path and relevant to this trans-
action or any closed transaction are navigated in reverse
chronological order. For each cell that contains an inversion
add the combined frame number and collective tunnel
number to a memory based set of inversions. Any cells that
contain an element cell for the required element path are
included 1n the collection set provided 1ts combined frame
number and collective tunnel number 1s not included in the
memory based set of imversions.

The memory resident frame map for the element path 1s
examined in ascending scale order and within that in
descending frame order from the current frame number.

Where a matching frame interval 1s found (where there
exists at least one element) then the frame number that starts
that interval 1s chosen. Ignore frame numbers that relate to
heap files already scanned.

If the chosen frame number 1s not the frame number of the
currently open frame file, then the frame file for the collec-
tion path collective tunnels and the frame file for the element
path tunnel family with the chosen frame number are
opened.

The 1inversion tunnel for the collection path and the
existence tunnel for the required element path are read from
the opened frame files. A bit map map ol inversions 1s
created with a clear bit for each collection tunnel i the
current frame.

The inversion tunnel 1s scanned for inversion cells and for
each cell found, the combined inverted frame and inverted
tunnel number are added to the memory based set of
inversions and a bit corresponding to the inverting tunnel 1s
set 1 the bit map of 1nversions.

The existence tunnel i1s scanned for cells that indicate
clement existence. Any cell that has a corresponding entry 1n
the memory based set of iversions 1s 1gnored; otherwise
cach cell that has a corresponding bit set 1in the bit map of
inversions 1s 1gnored; otherwise the frame number and
collective tunnel number are added to the collection set.

A collection set entry 1s always marked as certain.

The element path frame map is read from the currently
open frame file related to the element path to determine the
next relevant frame and continues as described above until
no more {frames can be found.

When generating a collection set for the 1s() operator in
the context of an open transaction,

The connective tunnel number and digest number 1s
derived from the operator operand.

10

15

20

25

30

35

40

45

50

55

60

65

08

For each heap file 1n reverse frame order, the transaction
segments for this collection path and relevant to this trans-
action or any closed transaction are navigated in reverse
chronological order. For each cell that contains an inversion
add the combined frame number and collective tunnel
number to a memory based set of 1nversions. Any cells that
contain an identification element cell for the required ele-
ment path with an equivalent value to the operator operand
are included in the collection set provided i1ts combined
frame number and collective tunnel number 1s not included
in the memory based set of inversions.

The memory resident frame map for the element path 1s
examined 1n ascending scale order and within that 1n
descending frame order from the current frame number.

Where a matching frame interval 1s found (where no
common bits in the interval differ from the operator operand)
then the frame number that starts that interval 1s chosen.
Ignore frame numbers that relate to heap files already
scanned.

I1 the chosen frame number 1s not the frame number of the

currently open frame file, then the frame files for the
collective tunnels and connective tunnels for the collection
path with the chosen frame number are opened.
The 1nversion tunnel for the collection path and the digest
tunnel derived from the operator operand are read from the
opened frame files. A bit map map of inversions 1s created
with a clear bit for each collection tunnel in the current
frame.

The mversion tunnel 1s scanned for inversion cells and for
each cell found, the combined inverted frame and inverted
tunnel number are added to the memory based set of
iversions and a bit corresponding to the inverting tunnel 1s
set 1n the bit map of inversions.

The digest tunnel 1s scanned for matching digest cells.
Any digest cell that has a corresponding entry in the memory
based set of inversions 1s 1gnored; otherwise each cell that
has a corresponding bit set in the bit map of inversions 1s
ignored; otherwise the frame number and collective tunnel
number are added to the collection set.

A collection set entry 1s marked as certain 1f the digest cell
1s suiliciently otherwise 1t 1s marked as uncertain where the
entry arises from a frame file; whereas entries arising from
heap files are always marked as certain.

The element path frame map 1s read from the currently
open frame file related to the element path to determine the
next relevant frame and continues as described above until
no more frames can be found.

When generating a collection set for the 1n() operator 1n
the context of an open transaction,

I1 both operator operands are positive then let the required
sign be positive and let the required range be between the
low and high absolute magnitude of the operator operands;
otherwise 1f both operands are negative then let the required
sign be negative and the required range be between the low
and high absolute magnitude of the operator operands;
otherwise divide the search into two with a required range
between the minimum operator operand and zero and a
required sign of negative and a range between zero and the
maximum operator operand and zero and a required sign of
positive.

Both bounds of the required range are normalised into a
fixed number of significand bytes around a fixed radix point.
The determinant rank 1s determined from the normalised
bounds where the pivot rank 1s the lowest rank with a
common significand byte 1n both normalised bounds. Refer
to the common byte value at the pivot rank as the pivot
value.

US 9,965,481 B2

69

For each heap file in reverse frame order, the heap
segments for the collection path and relevant to this trans-
action or any closed transaction are navigated in reverse
chronological order. For each cell that contains an inversion
add the combined frame number and collective tunnel
number to a memory based set of inversions. Any cells that
contain a measurement element cell for the required element
path with a value within the required range and required sign
are included in the collection set provided i1ts combined
frame number and collective tunnel number 1s not included
in the memory based set of inversions.

The memory resident frame map for the element path 1s
examined in ascending scale order and descending frame
order from the current frame number.

Where a matching frame interval 1s found (where the
frame interval range overlaps the operator operand range)
then the frame number that starts that interval 1s chosen.
Ignore frame numbers that relate to heap files already
scanned.

If the chosen frame number 1s not the frame number of the
currently open frame file, then the frame files for collective
tunnels and combinative tunnels for the collection path with
the chosen frame number are opened.

The existence tunnel, sign tunnel and all combinative
tunnels for the element path are read from the element path
frame file and the mnversion tunnel 1s read from the collection
path frame file. A bit map map of inversions 1s created with
a clear bit for each collection tunnel 1n the current frame.

The inversion tunnel 1s scanned for inversion cells and for
each cell found, the combined inverted frame and inverted
tunnel number are added to the memory based set of
inversions and a bit corresponding to the inverting tunnel 1s
set 1 the bit map of inversions.

The cell counts for the combinative tunnel for the pivot
rank are examined to see 1l any relevant cells exist for the
pivot value. I not, move on to the prior frame 1n the current
frame map and continue as above.

For each rank from the highest rank down to the pivot
rank, use the cell counts to find the lowest rank where all
cells are zero 1n the tunnels above that rank and where the
corresponding rank value 1n both operands 1s zero. Refer to
this rank as the high rank.

For each rank from the lowest rank up to the pivot rank,
use the cell counts to find the highest rank where all cells are
zero 1n the tunnels below that rank and where the corre-
sponding rank value 1n both operands 1s zero. Refer to this
rank as the low rank.

The combinative tunnel for the pivot rank 1s scanned for
rank cells that match the pivot byte. A rank cell that does not
have a corresponding existence cell 1s 1gnored; otherwise a
rank cell that has a corresponding entry in the memory based
set of mversions 1s 1gnored; otherwise each cell that has a
corresponding bit set 1n the bit map of mversions 1s 1gnored;
otherwise consult the corresponding sign cell and rank cells
between the high rank and low rank to ensure that the sign
1s the required sign and combined tunnel rank magnitude 1s
within the required range and if so, the frame number and
collective tunnel number are added to the collection set.

A collection set entry 1s marked as certain.

The element path frame map is read from the currently
open frame file related to the element path to determine the
next relevant frame and continues as described above until
no more {frames can be found.

When generating a collection set for the has() operator in
the context of an open transaction,

The characteristic tunnel numbers are derived from the
operator operands.

10

15

20

25

30

35

40

45

50

55

60

65

70

For each heap file in reverse frame order, the heap
segments for the collection path and relevant to this trans-
action or any closed transaction are navigated in reverse
chronological order. For each cell that contains an inversion
add the combined frame number and collective tunnel
number to a memory based set of inversions. Any cells that
contain an enumeration element cell for the required element
path which contain all of the operator property operands are
included 1n the collection set provided 1ts combined frame
number and collective tunnel number 1s not included in the
memory based set of inversions.

The memory resident frame map for the element path 1s
examined 1n ascending scale order and then in descending
frame order from the current frame number.

Where a matching frame interval 1s found (where all
required characteristic tunnel numbers have their bits set)
then the frame number that starts that interval 1s chosen.
Ignore frame numbers that relate to heap files already
scanned.

I1 the chosen frame number 1s not the frame number of the
currently open frame file, then the frame files for collective
tunnels and characteristic tunnels for the collection path with
the chosen frame number are opened.

The existence tunnel and the required characteristic tun-
nels derived from the operator operands are read from the
clement path frame file and the inversion tunnel 1s read from
the collection path frame file. A bit map map of inversions

1s created with a clear bit for each collection tunnel in the
current frame.

The mversion tunnel 1s scanned for inversion cells and for
each cell found, the combined inverted frame and inverted
tunnel number are added to the memory based set of
iversions and a bit corresponding to the inverting tunnel 1s
set 1n the bit map of inversions.

The required characteristic tunnels are conjunctively
combined as a bit map wherein only bit positions that have
a bit set at corresponding collection nstances 1n all required
characteristic tunnels are set. The combined bit map 1is
scanned for set bits and any set bit that does not have a
corresponding existence cell 1s 1gnored and any set bit that
has a corresponding entry in the memory based set of
inversions 1s 1gnored; otherwise each cell that has a corre-
sponding bit set 1n the bit map of inversions 1s 1gnored;
otherwise the frame number and collective tunnel number
are added to the collection set.

A collection set entry 1s marked as certain where the
property tunnel number 1s dertved from a unique property
ordinal and (M-N)<P<2N where P 1s the property ordinal,
M 1s the maximum ordinal assigned and N 1s the number of
property tunnels where the entry arises from a frame file;
whereas entries arising from heap files are always marked as
certain.

The element path frame map 1s read from the currently
open frame file related to the element path to determine the
next relevant frame and continues as described above until
no more frames can be found.

When generating a collection set for the true() operator
in the context of an open transaction,

For each heap file 1n reverse frame order, the transaction
segments for this collection path and relevant to this trans-
action or any closed transaction are navigated in reverse
chronological order. For each cell that contains an inversion
add the combined frame number and collective tunnel
number to a memory based set of mnversions. Any collection
instance 1dentities for the required collection path are
included 1n the collection set provided 1ts combined frame

US 9,965,481 B2

71

number and collective tunnel number 1s not included in the
memory based set of inversions.

The memory resident frame map for the collection path 1s
examined at the lowest scale 1n descending frame order from
the current frame number. Ignore frame numbers that relate
to heap files already scanned.

Where a frame map entry indicates one or more nver-
sions then open the collective frame file and read the
inversion tunnel; a bit map map of inversions 1s created with
a clear bit for each collection tunnel 1n the current frame;
scan the mversion tunnel and for each inversion cell found
add the combined mverted frame and 1nverted tunnel num-
bers to the memory based set of inversions for each mver-
s1ion found and the bit corresponding to the inverting tunnel
1s set 1n the bit map of inversions.

Append a contiguous sequence ol collection instance
tunnels starting at tunnel 1 and finishing at the number of
collection 1nstances specified by the frame map but exclud-
ing those that either have an bit set 1 the bit map of
inversions or have a corresponding entry in the memory
based set of mversions. The frame number of these entries
1s the frame number used to mspect the frame map entry.

A collection set entry 1s always marked as certain.

The collection path frame map 1s read from the currently
open Irame file continues as described above with the
preceding frame. This continues as described above until no
more frames can be found.

When materialising a conjunctive term 1n the context of
an open transaction,

For each uncertain entry in a collection set the corre-
sponding collective tunnel must be read and the correspond-
ing clement 1mstance must be inspected to determine cer-
tainty or impossibility.

Where an element instance 1s subsequently deemed
impossible, 1ts cardinality 1s marked as zero and the entry 1s
treated as void 1n the collection set and voids all correspond-
ing entries during the merge of collection sets within a
conjunctive term.

When migrating segments from a heap file into a frame
file,

Only segments that that relate to applied transactions
which have not yet been migrated are migrated. Segments
that relate to abandoned transactions are 1gnored. Segments
that relate to open transactions are counted.

Migrate each collection path individually 1n turn.

Create a memory sector map and tunnels for each tunnel
family and each element path within the collection path.
Initialise the tunnel link at the start of each tunnel as the prior
frame.

Prior to migrating a collection path, read the frame maps
for the collection path and 1ts related element paths into
memory from the frame files that precede the frame being
migrated.

Prior to migrating a collection path, read the storage
maps; the mversion tunnel for the collection path and the
tunnels for all related element path tunnels into memory
from any frame files that are required to be accumulated into
the frame being migrated.

For each segment being migrated, create a new collective
tunnel 1 memory and copy the segment cells into the
collective tunnel. For an mnversion, append an inversion cell
to the mversion tunnel. Update the collection path frame
map as described previously. Then migrate each element cell
within the segment and update the collection path storage
map.

For each identification element construct a digest cell, as
described previously, and append 1t to the related digest

10

15

20

25

30

35

40

45

50

55

60

65

72

tunnel. Append the digest tunnel number to the tunnel map.
Append an existence cell to the element path existence
tunnel. Update the element path frame map from the element
value as described previously and update the element path
storage map.

For each measurement element construct a rank cell for
cach rank tunnel, as described previously, and append them
to the related rank tunnels. Append an existence cell to the
clement path existence tunnel. Update the element path
frame map from the element value as described previously
and update the element path storage map.

For each enumeration element construct a property cell
for each property tunnel, as described previously, and
append them to the related property tunnels. Append an
existence cell to the element path existence tunnel. Update
the element path frame map from the element value as
described previously and update the element path storage
map.

After migrating every element cell in a segment, append
a non-existence cell to the existence tunnel for every ele-
ment path not included 1n the segment; append zero rank
cells to every rank tunnel 1n all non-existent element paths
in the segment; append non-existent property cells to every
property tunnel in all non-existent element paths in the
segment.

After migrating all segments, create frame files using the
highest heap file frame number and overwrite any such
frame files that might already exist. Write the sector maps,
frame maps and tunnels to each frame {ile.

Mark all migrated transaction handles 1n the heap file as
migrated and synchronise the heap file back to storage.

Make each migrated transaction handle available for
re-use.

If the heap file contains any segments relating to open
transactions then retain the heap file otherwise delete it.

Described above are apparatus, systems, and methods
meeting the objects set forth previously, among others. It
will be appreciated that the embodiments discussed and
shown herein are merely examples of the invention and that

other embodiments, incorporating changes to that shown

and described here, fall within the scope of the invention, of
which I claim:

The mvention claimed 1s:
1. A method of data storage and/or retrieval implemented
on one or more digital data processing systems, comprising:
storage media comprising a plurality of data segments for
cach instance of an enfity type manipulated by a
database operation 1n a respective database transaction;
where each data segment contains a plurality of data cells
wherein each data cell corresponds to an 1nstance of an
attribute 1n an enftity type;

where all data segments are maintained within a contigu-
ous data heap of arbitrary size;

where all new data segments are appended to the data
heap and assigned to respective transactions and
respective entity instances in arbitrary order;

a storage engine that 1s 1n communications coupling with
the storage media and writes said data heap to storage
media in a mimmal number of storage write operations
when any one of said transactions commits 1ts state;

where an instance of an entity type 1s logically deleted by
appending an inversion of the respective instance;

where said inversion contains an identical copy of the
respective instance; and

US 9,965,481 B2
73

where a single inversion data tunnel for each entity type
contains a plurality of data cells wherein a data cell
denotes an inversion ol a respective instance of said
entity type.

2. The method of claim 1, wherein: 5

all new data segments are appended in the order of
transaction operations such that a segment correspond-
ing to the logical deletion of an instance of an enfity
type 1s necessarily appended after the data segment that
corresponds to the logical insertion of the same 10
instance of the same entity type,

append access to data tunnels and data heaps occurs in
chronological order,

read access to data tunnels and data heaps occurs 1n
reverse chronological order, and 15

read access resolves entity instance inversion by accumu-
lating inversions and discounting corresponding entity
instances as they are encountered.

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

