US009959160B2

a2y United States Patent (10) Patent No.: US 9,959,160 B2

Birkler et al. 45) Date of Patent: *May 1, 2018
(54) FAULT HANDLING IN A DISTRIBUTED IT (52) U.S. CL
ENVIRONMENT CPC ... GO6F 11/0793 (2013.01);, GO6F 11/0703
(2013.01); GO6F 11/0709 (2013.01);
(71) Applicant: International Business Machines (Continued)
Corporation, Armonk, NY (US) (358) Field of Classification Search
| CPC GO6F 11/3604; GO6F 11/3668; GO6F
(72) Inventors: Khirallah Birkler, Bad Saulgau (DE); 11/0703; GO6F 11/36; GO6F 11/0793:
Martin Oberhofer, Bondorf (DE); HO4L, 41/0893; HO4L. 41/5045
Boris Feist, Ehningen (DE); Torsten See application file for complete search history.
Wilms, Altdort (DE)
(56) References Cited
(73) Assignee: International Business Machines .
Corporation, Armonk, NY (US) U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this 6,526,529 B1* 272003 Miksovsky GUOE ;}22;
patent 1s extended or adjusted under 35 7,194,744 B2* 3/2007 Srivastava GOGF 9/3861
U.S.C. 154(]3) by 233 days. 712/E9.06
This patent 1s subject to a terminal dis- (Continued)

claimer. Primary Examiner — Paul Contino

(21) Appl. No.: 14/817,019 (74) Attorney, Agent, or Firm — Yudell Isidore PLLC

57 ABSTRACT
(22) Filed: Aug. 3, 2015 () | | o o
An improved method provides fault handling 1n a distributed
(65) Prior Publication Data IT environment. The distributed I'T environment executes a

/ workilow application interacting with at least one applica-
Us 2016/0026522 Al Jan. 28, 2016 tion by using interface information about the at least one
Related U.S. Application Data application. In response to receiving a {irst instance of a fault

response, a fault handler performing a first lookup of a fault

(63) Continuation of application No. 13/781,599, _ﬁIBd_ Ol handling policy corresponding to the fault response within a
Feb. 28, 2013, now Pat. No. 9,208,014, which 1s a fault handling descriptions catalog. The fault handler loads

(Continued) a first one or more fault handling descriptions that are

pointed to by the fault handling policy 1n order to continue

(30) Foreign Application Priority Data execution of the workflow application. After a second
| instance of the fault response, the fault handler performs a

Jun. 27, 2011 (DE) i, 111 71 372 second lookup of the fault handling policy which now points

to a second one or more fault handling descriptions which

(51) Int. CI. are loaded 1in order to continue execution of the worktlow

GOl 11/07 (2006.01)

application.
HO4L 12724 (2006.01)
(Continued) 15 Claims, 6 Drawing Sheets
30 "
N % -

Enterprige

Systerns

; Registry

Sewvice ||

* | Defintion ||
l Fautt

L ookup Faul Handling |t

Handling Policy Policy |
40 l I \
7

Application ! 34

'y

Workflow Runtime ngm:ﬁ?
Environment 240 Catalogue

Worifiow
Application

Fault
Load Fault Handling

Handling Description
Description

Fault
Handler

200 220

US 9,959,160 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/532,913, filed on
Jun. 26, 2012, now Pat. No. 9,201,723.

Int. CIL.
G06Q 10/06
G06Q 10/10

U.S. CL
CPC

(51)

(52)

(2012.01)
(2012.01)

GoolF 11/079 (2013.01);, HO4L 41/0893

(2013.01); HO4L 41/5045 (2013.01); GO6Q
10/06 (2013.01); GO6Q 10/103 (2013.01)

(56)

References Cited

U.S. PATENT DOCUMENTS

7,293,191 B1*

7,308,610 B2 *

7,328,376 B2 *
B2 *
B2 *
Al*

9,201,723
9,208,014
2006/0160529
2008/0046877 Al*

2010/0161632 Al*

* cited by examiner

11/2007 Arumugham GOO6F 11/2007
714/5.11

12/2007 Kuramkote GOO6F 11/0793
714/38.13

2/2008 McGuire GOOF 11/2257
714/25

12/2015 Burkler GOO6F 11/0703
12/2015 Burkler GOO6F 11/0703
7/2006 Glassooovvviiininnnnn, GO6F 8/61
455/418

2/2008 Fordccooooeviiinninnn, GOO6F 8/63
717/168

6/2010 Rosen GO6F 9/4428
707/758

U.S. Patent May 1, 2018 Sheet 1 of 6 US 9,959.160 B2

3 _
N, N

Entérprise
Systems
Registry

100

integrated Development

5 Environment
| (IDE)

Service _
- Definition)

Handiing
Folicy §i

Plugin.
-ault Handiing
Policy Looxup
Camponent

Plugin: .
IDE-Specific > Fas:ﬁ_t
Fault Handling 4 Handiing
| Logic Generator | Descrptions

Catalogue

Fauit

N Handling i
Lescription {Hi
3

210

‘. _
NI Workflow Application

- including Fault Handler

E {0 be installed and

- executed in Workflow

E Runtime Environment

F1G. 1

U.S. Patent May 1, 2018 Sheet 2 of 6 US 9,959.160 B2

Entef*p-rise
Systems
Registry

Handiing
Policy

L ookup Fault
Hangiing Poiicy

Application

& . _
[Workfow Runtime Faul Hending
Ervironment Gatamgue
Workflow
Appiication e ault
| Load Faut Handling [
Faut H&ﬂdiiﬁg {}eg_gﬂpﬂ{m
Handler Lescnphon "
“_,-"" _. """"""""""""""""""""""""""""""""
500 220

FIG. 2

0578 007 DU 0URISU} MOJDIOA S

= W o7 0228

US 9,959,160 B2

- 7qH uonduosag Bulpuey yned peo

L dH A%104 Bufipuey §ne-f Gryoc “
.. .

2 fidoy Ine

(zGH uonduosaq Buypued 0628 ST
o e o) Sunuiod) L dH uoieaddy 0} 188rbay
S I Aoi0g BulipueH jne4 meN I
er ;. m
= sBusyn Ao 07es -
s T ——a— w\
L (M uoiduosaq Buljpuey Ine4 pec’ V\ 077
........................ | \ - . QNNM
on 1
m LdH Adtjod Bugpuey yne dnyoo & _
— : .
>. €28
>
(L(H uorduoss(”
- SuypueH jine4 0} Suiuiod) 0025 peig 9ouBisy| MOuMIOAL |
L dH Adtjod Dulipuey ine \ m
" IR | o
| - Aoysoday | 1071 JUBLUUCHAUS SUILINM MOIRICAA

U.S. Patent

LIORROKAY

Timeiine

U.S. Patent May 1, 2018 Sheet 4 of 6 US 9,959.160 B2

60

“\)
R 52
o

| Fault Handling
Procedure
66
_____________________________ a n
FaultHandling | Fault Handiing
(ondition N 1 Action

S
A
M - :

66 4 | Compensate
Action |

66.5

U.S. Patent May 1, 2018 Sheet 5 of 6 US 9,959.160 B2

S14.
5 Store at least one Fault Handling Description in an
| implementation-independent Meta Language associated with |
: at least one Application
520

530,
. Create and Store at least one Fault Handling Policy based

on the at least one Service Definition

S40.__

Associate interface information about the at legst one
Apphication with the at least gne Fauit Handling Description
pased on at least one defined rauit Hangiing Policy

Lookup and load a Fault Handling Policy into the IDE based
on the foaded Service Defintion

Generate and Implement a Fault Handler in a Workflow
Application for a dynamic Fauit Handling Execution &t
runtime for a particular Meta Language of the corresponding
Faull Handling Description based on Information of the
i0aded Fault nandiing Policy

U.S. Patent May 1, 2018 Sheet 6 of 6 US 9,959.160 B2

Faiit Haﬂcﬁe h
~ tnggered?

5230

Retrieve at least one associated
~ault Handling Descriphion based

on the Fault Handiing Policy
"""""""""""""""""""""""" T 5250

interpret and kExecute the Mela
Language Code of the al least one

associated Fault Handling
Description

Froceed with Workflow instance

' Workflow Instance End

FIG. 6

US 9,959,160 B2

1

FAULT HANDLING IN A DISTRIBUTED IT
ENVIRONMENT

US PRIORITY CLAIM

The present application 1s a continuation of U.S. patent
application Ser. No. 13/781,599, ftitled “Method and
Arrangement for Fault Handling in a Distributed IT Envi-
ronment, filed on Feb. 28, 2013 which 1s a continuation of
U.S. patent application Ser. No. 13/532,915, titled “Method
and Arrangement for Fault Handling in a Distributed IT
Environment,” filed on Jun. 26, 2012, the contents of which
1s incorporated herein by reference in its entirety.

FOREIGN PRIORITY CLAIM

The present application claims benefit of priority under 35

USC § 120 and § 365 to the previously filed Germany Patent
Application No. 11171572.8 titled, “Method and Arrange-

ment for Fault Handling 1n a Distributed IT Environment™,
with a priority date of Jun. 27, 2011. The content of that
application 1s incorporated by reference herein.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates in general to the field of
distributed and heterogeneous enterprise application envi-
ronment, and 1n particular to a method and an arrangement
for fault handling 1 a distributed information technology
(IT) environment. Still more particularly, the present inven-
tion relates to a data processing program and a computer
program product for fault handling i a distributed IT
environment.

Description of the Related Art

In a typical distributed and heterogeneous enterprise
application environment, as 1t 1s common 1n many large
companies, application itegration of different software sys-
tems 1s a necessity to automate common workilows and
processes of the business, and the integration thus enables
the companies to become more eflicient and competitive in
the market.

Companies can distinguish themselves from their com-
petitors by being more agile and adapting faster to changing
market trends and legal or industrial regulations (e.g. audit-
ability). In order to achieve such agility on a techmical level
it 1s 1important to be able to rapidly deploy new automated
workilows and processes or to change existing workflows
and processes.

Enterprise process modeling and development environ-
ments, such as WebSphere Integration Developer by Inter-
national Business Machines, allow integration developers to
use graphical tools to model, develop, and deploy business
process applications 1n standardized ways and formats (such
as business process execution language (BPEL) or business
process model and notation (BPMN)) and to leverage stan-
dardized protocols (like SOAP, IMS, HTTP, JCA, etc.) and

proprietary connectors to integrate with third party systems
of different kinds.

While these mentioned standards as well as proprietary
connectors usually detail the syntactical interfaces to third
party systems, they often lack semantic context, like mean-
ings of error conditions and how to deal with the error
conditions under the given circumstances. However, this
semantic information 1s needed by the integration developer
to properly develop interactions with a system and to
appropriately handle fault conditions. Another problem 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

that syntactical interfaces of systems do not tell the integra-
tion developer how to deal with system responses, 1n par-
ticular, 1n case of Tault responses. Without additional specific
documentation, two or more developers might take difierent
implementation approaches to perform the same fault han-
dling. The results are non-streamlined and hard-to-read
code, redundancy, differences in the procedure of fault
handling 1n various parts of the integration solution, and
difficulties 1 keeping track of changes 1n the fault handling
procedure. Further, 1n an integration application, fault han-
dling requirements are oiten derived from the particular
backend application, rather than only the interface or the
class and/or type of system. The dertvation 1s based on (a)
system-uptimes and/or system-downtimes which require
buflering of service requests and retrying, (b) availability of
compensation services on backend, internal or external
system, and (¢) transactional capabilities or limitations of a
system, for example. Also 1 an integration application, a
fault 1n one system may have implications for the interaction
with other systems. This 1s true for compensation logic or
transaction management over multiple systems, and logical
association of systems to each other, for example. A fault 1in
system “A” can be remedied by an operation of system “B”,
whereas a fault 1n system “A"™ must be corrected by an
administrator, for example. Further, developers need to
clarify semantics of fault handling for many systems with
the respective subject matter experts or have detailed con-
ventional documentation. This 1s very time-consuming in
large appointment-driven compamnies as well as being error
prone. Since fault handling logic 1s part of the modeling
and/or development process and not a configuration task, a
change or modification 1n the fault handling logic requires a
change to the process model, too. Additionally, dynamic
binding of new versions of the fault handling logic 1s
currently not supported without bringing down the media-
tion modules running mm an ESB, due to a lack of an
abstraction language describing the fault handler interfaces.

Generation of fault handlers based on interface definition
like Web Service Description Language Definitions (WS-
DLs) has long been available in development tools. Result-
ing fault handlers usually consist of a fault handling skeleton
that needs further implementing or a relatively generic fault

handling procedure based on the fault type.
In the Patent Publication U.S. Pat. No. 6,421,740 Bl

“DYNAMIC ERROR LOOKUP HANDLER HIERACHY”
by LeCroy, a method for processing a first error message to
produce a second error message 1n a component-based
architecture 1s disclosed. The component-based architecture
includes a framework which 1s associated with a first lookup
handler and 1s capable of embedding a first component
associated with a first executable unmit for handling data of
the first component. The method includes the step of gen-
erating a hierarchy of lookup handlers, the hierarchy includ-
ing the first lookup handler and a second lookup handler
associated with the first executable umit when the first
component comes into focus. Further, the method includes
the step of processing the first error message through the
hierarchy of lookup handlers to generate the second error
message. Through the hierarchy, the first error message 1s
first processed through the second lookup handler. If the
second lookup handler 1s unable to process the first error
message, the first error message 1s then processed through
the first lookup handler. In this manner, the second error
message 1s more speciiic to the first component than the first
error message. Basically a method of transformation or
resolution of error information based on less specific error

US 9,959,160 B2

3

information 1s disclosed. The method does this by dynami-
cally installing and/or embedding and/or uninstalling han-

dlers 1n an application.

Basically this patent publication describes a transforma-
tion or resolution of error information based on less specific
error information. The publication does this by dynamically
installing/embedding/uninstalling handlers 1n an applica-
tion. However, the publication does not describe a method to
apply error handling based on the error information. Fur-
thermore, the publication does not use rules or policies to
determine a course of action for a given error situation. It
also lacks an abstraction layer in support for dynamic
binding of either new error handlers or new versions of
existing error handlers.

SUMMARY OF THE INVENTION

The technical problem underlying the present invention 1s
to provide a method for fault handling in a distributed
information technology (IT) environment, which are able to
solve the above mentioned shortcomings and pain points of
prior art fault handling in distributed I'T environments.

According to the present invention this problem i1s solved
by providing a method for fault handling in a IT environ-
ment having the features of claim 1, an arrangement for fault
handling 1n a system having the features of claim 8, and a
computer program product having the features of claim 15.
Advantageous embodiments of the present invention are
mentioned 1n the sub claims.

Accordingly, 1n an embodiment of the present invention,
there 1s a method for fault handling 1 a IT environment
having a workflow runtime environment that executes at
least one workilow application interacting with at least one
application by using interface information about the at least
one application. The method comprises 1n response to
receiving a first instance of a fault response from the at least
one application, a fault handler performing a first lookup of
a Tault handling policy corresponding to the fault response
within a fault handling descriptions catalogue of an exter-
nalized storage repository. The corresponding fault handling
policy points to a first one or more fault handling descrip-
tions. The fault handler loads the first one or more fault
handling descriptions and using the first one or more fault
handling descriptions to continue execution of the at least
one workflow application. In response to receiving a second
instance of the fault response from the at least one applica-
tion, the fault handler performs a second lookup of the fault
handling policy within the fault handling descriptions cata-
logue, wherein the fault handling policy has been updated
within the fault handling descriptions catalogue, after the
first lookup, to point to a second one or more fault handling
descriptions. The fault handler then loads the second one or
more fault handling descriptions and uses the second one or
more fault handling descriptions to continue execution of the
at least one workflow application.

In further embodiments of the present invention the
method further comprises storing, within an enterprise sys-
tems registry ol the externalized storage repository, the
plurality of fault handling descriptions in an 1mplementa-
tion-independent meta language, wherein the implementa-
tion-independent meta language describes the externalized
storage repository, wherein the implementation-independent
meta language 1s associated with the at least one application,
and wherein the externalized storage repository 1s located
external to the worktlow application.

In further embodiments of the present invention the
method turther comprises associating the iterface informa-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion about the at least one application with one or more of
the plurality of fault handling descriptions based on the fault
handling policy which 1s created based on at least one
service definition, wherein the fault handling policy corre-
sponds to a particular fault response, and wherein the fault
handler may be changed at any time during a lifetime of the
at least one workflow application and the at least one
application without interrupting, modifying, redeploying,
and restarting the at least one application and at least one
workilow application.

In further embodiments of the present invention the
method further comprises in response to loading the second
one or more fault handling descriptions, dynamically load-
ing one or more additional fault handlers from among: one
or more updated versions of the fault handler and one or
more entirely new fault handlers; and dynamically perform-
ing a self-adaptive selection of an externally defined fault
handling logic described in one or more fault handling
descriptions that are pointed to by the fault handling policy,
wherein the fault handling logic comprises at least one fault
handling procedure, wherein any changes to the at least one
fault handling procedure are dynamically applied to all
running process stances of the IT environment.

In further embodiments of the present invention the
method further comprises adapting meta information of one
or more fault handling descriptions that are pointed to by the
fault handling policy to the workiflow runtime environment
in order to generate the fault handler, wherein the fault
handler 1s executable and interpretable in a specific target
platform language associated with the workflow runtime
environment, and wherein the implementation-independent
meta language 1s diflerent from the specific target platform
language.

In further embodiments of the present invention the
interface information i1s associated with the at least one
application without interrupting the at least one worktlow
application or the at least one application, wherein the fault
handling policy 1s centrally defined and maintained in the
fault handling descriptions catalogue for at least one of:
single service operations and entire services, a class or type
of same or similar enterprise mformation systems, and a
particular enterprise information service.

In further embodiments of the present mvention the
method further comprises 1n response to recerving at least
one policy change to the fault handling policy during
runtime of the at least one workilow application, creating at
least one modified fault handling policy that incorporates the
at least one policy change 1nto the fault handling policy and
pointing the fault handling policy to the at least one modified
fault handling policy withun the fault handling descriptions
catalogue, wherein the at least one modified fault handling
policy points to the second one or more fault handling
descriptions. In response to the fault handler performing the
second lookup of the fault handling policy, the second one
or more fault handling descriptions that are associated with
the at least one modified fault handling policy are dynami-
cally loaded.

In further embodiments of the present invention each fault
handling policy 1s a property attached to a particular service
interface and 1s created and maintained via a graphical user
interface and associated application program interfaces
(APIs) associated with the fault handling descriptions cata-
logue.

In the present disclosure a workilow application 1s a
workilow capability which can reside within an application
or external to the application in a dedicated worktlow

US 9,959,160 B2

S

application, where known examples for the latter are enter-
prise business process platforms such as WebSphere Process
Server, etc.

All 1n all, embodiments of the present invention address
the generation of fault handling logic in the context of the
service of a particular system. The embodiments describe a
method to generate a fault handler and a fault handling logic
based on a central error processing definitions repository.

The core 1dea of the present mvention 1s to use fault
handling rules or policies to determine a course of action for
a given error situation. Embodiments of the present inven-
tion are focused on fault handling in the business application
integration field. Therefor embodiments of the present
invention use (1) a generic fault handling description Meta
language, (2) an externalized storage 1n a repository of a
fault handling Meta model, described 1n the fault handling
Meta language, and (3) fault handling policies, which are
attached to service interfaces in a service registry, i order to
associate service operations with application-specific and/or
system-specific fault handling descriptions. Therefore, syn-
tactical service interfaces are associated with particular fault
handling Meta models 1n the repository, based on a combi-
nation of attributes. Further embodiments of the present
invention use policy-based resolution and retrieval of pre-
modeled, business application-specific fault handling
description logic, and polymorphism of fault handling logic
at runtime through dynamic (on demand) loading and inter-
pretation of the fault handling descriptions, described in the
meta language.

Embodiments of the present invention dynamically load
fault handling descriptions into the worktlow instance and
allow polymorphism of fault handling logic through on-
demand loading and interpreting of a fault handling Meta
language at workflow runtime. Further the usage of the fault
handling policies which are stored along with the interface
information in the service registry allow fine-graiming of the
configurative association of service operations with particu-
lar fault handling procedures on a per-system or per-group of
systems and/or applications basis, for example. Also
embodiments of the present invention allow interpretation of
dynamically retrieved fault handling description by inter-
preter code 1nside the workflow 1nstance and do not interfere
with the native, scoped fault handling architecture of a
workilow platform, as they focus only on the fault handling
logic for the particular fault and do not manage fault scopes.

One of the benefits of the present mmvention are fault
handling policies which can be centrally defined and main-
tained for diflerent scopes like single service operations or
entire services, a class and/or type of same and/or similar
enterprise 1nformation systems or a particular enterprise
information system. A developer of integration application
does not need the subject matter know-how for the imple-
mentation of the fault handling procedure; and all develop-
ers use the same fault handling strategy as defined by the
applicable policy in their integration applications avoiding
redundancy and hard-to-read code. Further, a change or
correction that 1s applied to a fault handling procedure and
stored 1n the fault handling descriptions catalog can be
dynamically picked up by all process instances. Due to the
externalization of fault handling logic there 1s no need to
recompile and redeploy applications to implement a fault
handling change, and dynamic fault handling description
resolution at runtime allows for polymorphism of fault
handling logic. Further the fault handling logic 1s change-
able even for runming process instances due to dynamic
interpretation at runtime.

10

15

20

25

30

35

40

45

50

55

60

65

6

The above, as well as additional purposes, features, and
advantages of the present invention will become apparent 1n
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention, as described 1n
detail below, are shown 1n the drawings, 1n which:

FIG. 1 1s a schematic block diagram of interactions in an
arrangement for fault handling 1n a distributed I'T environ-
ment at development time, 1n accordance with an embodi-
ment of the present invention;

FIG. 2 1s a schematic block diagram of interactions 1n an
arrangement for fault handling 1n a distributed IT environ-
ment at runtime, 1n accordance with an embodiment of the
present 1nvention;

FIG. 3 1s a schematic timing diagram of a dynamic fault
handling resolution at runtime, i accordance with an
embodiment of the present invention;

FIG. 4 1s a schematic block diagram of a definition of a
fault handling description Meta language, in accordance
with an embodiment of the present invention;

FIG. 5 1s a schematic tlow diagram of a first part of a
method for fault handling 1n a distributed I'T environment
executed at development time, 1n accordance with an
embodiment of the present invention; and

FIG. 6 1s a schematic flow diagram of a second part of a
method for fault handling 1n a distributed IT environment
executed at runtime, i1n accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

FIG. 1 shows interactions in an arrangement/system for
fault handling 1n a distributed I'T environment at develop-
ment time, 1 accordance with an embodiment of the present
invention; FIG. 2 shows interactions in an arrangement for
fault handling 1n a distributed I'T environment at runtime, 1n
accordance with an embodiment of the present invention;
and FIG. 3 shows a dynamic fault handling resolution at
runtime, 1n accordance with an embodiment of the present
invention.

Retferring to FIGS. 1-3, the shown embodiment of the
present invention employs an arrangement for fault handling
in a distributed I'T environment 1. The distributed IT envi-
ronment 1 comprises an integrated development environ-
ment (IDE) 100 for developing at least one workflow
application 210; a repository 30 comprising an enterprise
systems registry 32 and a fault handling descriptions cata-
logue 34; a worktlow runtime environment 200 for execut-
ing at least one worktlow application 210 interacting with
the at least one application 40 by using interface information
about the at least one application 40 stored 1n the enterprise
systems registry 32.

Retferring to FIG. 1, a developer 3 1s loading at least one
service definition 5 1n the enterprise systems registry 32.
Based on the at least one loaded service definition 5 at least
one fault handling policy 7 i1s defined and loaded 1n the
enterprise systems registry 32. Additional at least one fault
handling description 9 which 1s written 1n an 1mplementa-
tion-independent meta language by the developer 3 using a
fault handling description editor, for example, 1s stored 1n
the fault handling descriptions catalogue 34. The at least one
fault handling policy 7 1s logically linked to at least one fault
handling description 9. So one fault handling policy 7
references O to n fault handling descriptions 9, and one fault

US 9,959,160 B2

7

handling description 9 may be referenced by 0 to m fault
handling policies 7. Due to the n:m linking between the at
least one defined fault handling policy 7 and the at least one
fault handling description 9 the iterface information about
the at least one application 40 1s associated with the at least
one fault handling description 9 based on at least one defined
fault handling policy 7, which is created based on at least
one service definition 5 and stored 1n said enterprise systems
registry 32. Embodiments of the present invention allow the
developer 3 to query fault handling policy 7 based on service
interface mformation and to apply an associated fault han-
dling description 9 for a given service nvocation.

Still referring to FIG. 1, the developer 3 imports the
service definition 5 from the enterprise systems registry 32
into the integrated development environment 100. The 1nte-
grated development environment 100 uses a fault handling
policy lookup component 52 to look up a fault handling
policy 7, based on the service defimition including particular
system 1nformation (e.g. endpoint, type of system, etc.).
Further the integrated development environment 100 uses a
tault handling logic generator 34 to generate a fault handler
220 for a dynamic fault handling execution at runtime for a
particular execution language of the corresponding fault
handling description 9 based on at least one imported service
definition 5, and at least one fault handling policy 7 which
1s based on the imported service definition 5. The integrated
development environment 100 implements the generated
fault handler 220 1n the workflow application 210 {for
interpreting and executing a particular execution language of
the corresponding fault handling description 9. When the
workilow application 210 1s deployed to the workflow
runtime environment 200 and the fault handler 220 1s
triggered, 1t dynamically looks up the fault handling descrip-
tion 9, which 1s based on the fault handling policy 7 and
interprets the fault handling description 9.

Embodiments of the present invention allow self-adaptive
determination of a fault handling strategy for a service
invocation based on the fault handling policy 7, and seli-
adaptive selection of an externally defined fault handling
logic described 1n the fault handling description Meta lan-
guage based on previously determined fault handling logic.

Referring to FIG. 2, the workflow runtime environment
200 retrieves at least one associated fault handling descrip-
tion 9 from the fault handling descriptions catalogue 34
based on at least one fault handling policy 7, and interprets
and executes a particular meta language code of the at least
one associated fault handling description 9 1n order to
continue the defined workilow application 210 1f a fault
response from the at least one application 40 1s recerved.
Thus, the workflow runtime environment 200 performs a
dynamic loading and interpretation of a fault handling
description metadata information during process execution
by the generated fault handling implementation. It 1s impor-
tant to understand that this allows the use of new, published
versions of existing error and/or fault handlers or entirely
new error and/or fault handlers without requiring an adjust-
ment and re-deployment of the application 40 or the work-
flow application 210.

Referring to FIG. 3, the workflow runtime environment
200 starts a workilow instance of the workilow application
210 1n step S200. In step S210 a request 1s sent to the
application 40. In step S220 a first fault reply FR1 1s
received from the application 40 which triggers the fault
handler 220. In step S230 the fault handler 220 performs a
lookup of a corresponding first fault handling policy HP1
which 1s stored as fault handling policy 7 in the repository
30 and points to a first fault handling description HD1.

10

15

20

25

30

35

40

45

50

55

60

65

8

Based on the first fault handling policy, HP1, the first fault
handling description HD1 1s loaded to the fault handler 220
in step S240. The fault handler 220 interprets and executes
the particular Meta language code of the first fault handling
description HD1 1n order to continue the defined worktlow
application 210. In continuation of the workilow application
210 a further request i1s sent to the application 40 1n step
S210'. In step S220' a second fault reply FR2 1s received
from the application 40 which again triggers the fault
handler 220. In step S230' the fault handler 220 performs a
lookup of a corresponding first fault handling policy HP1
which 1s stored as fault handling policy 7 in the repository
30. Since a policy change was performed between the steps
5240 and S230' of the workilow application 210, a new first
fault handling policy HP1', which 1s stored as fault handling
policy 7' in the repository 30, 1s now pointing to a second
fault handling description HD2. Based on the new {first fault
handling policy HP1' the second fault handling description
HD2 1s loaded to the fault handler 220 1n step S240'. The
fault handler 220 interprets and executes the particular Meta
language code of the second fault handling description HD1'
in order to continue the defined workflow application 210. In
step S260 the present worktlow 1nstance 1s ended. Over the
lifetime of the workiflow application 210 or the application
40 the fault handlers 220 might change since a new version
of an existing fault handling description 9 or an entirely new
set of fault handling descriptions 9 might be available and
dynamically bound without interrupting the running appli-
cation 40 or the running workflow instance of the worktlow
application 210.

Embodiments of the present imvention may use Web-
Sphere Integration Developer as an example for the inte-
grated process development environment 100; and Web-
Sphere Services Registry and Repository (WSRR) as an
Enterprise Systems Registry 32 and as a fault handling
description catalog 34.

The integrated development environment WebSphere
Integration Developer (WID) 1s a development tool that
allows the modeling, implementation, and deployment of
BPEL processes for the WebSphere Process Server BPEL
runtime environment. The WebSphere Integration Devel-
oper 1tsell 1s built on top of an Eclipse framework, which 1s
an open framework with a strong plugin concept. The plugin
concept enables developing of on-top functionality for any
soltware that uses Eclipse framework as a basis. By this
mechanism an integration of the WebSphere Integration
Developer with an enterprise systems registry can be devel-
oped.

The WebSphere Services Registry and Repository can
store artifacts such like WSDL files, XSDs, WS-Policy
documents or any other XML file. It also supports storing
service component development language (SCDL) and
BPEL documents. The WebSphere Services Registry and
Repository also allows storing of additional metadata for
above artifacts, using the classification system or properties
like user-defined key-value pairs. The WebSphere Services
Registry and Repository can be interacted with all stages of
a SOA lifecycle. It can be used during design and develop-
ment as well as by runtime applications. The WebSphere
Services Registry and Repository provides both Java and
Web services interface for searching, updating, creating and
deleting service description and associated metadata. Based
on these capabilities 1t 1s shown by the following example
how an enterprise systems registry 32 and a fault handling
descriptions catalog 34 might be realized.

Embodiments of the present invention assume that fault
handling policies 7 are maintained 1n a policy registry (e.g.

US 9,959,160 B2

9

together with the service definitions). Fault handling policies
7 could be realized 1n the form of properties that are attached
to a service mterface. For example, the WebSphere Services
Registry & Repository (WSRR) allows attaching of arbitrary
properties to WSDL service interfaces and offers a graphical
user interface and APIs to create and maintain these prop-
erties.

Furthermore, embodiments of the present invention
assume that fault handling logic 1s described in an adequate
format and made available 1n a fault handling description
store/repository. Whilst the fault handling description itself
1s not part of this disclosure, the following explanations of
a possible solution outline an exemplary approach to define
a fault handling description Meta language, shown in FIG.
4.

A possible solution implementation could leverage the
Eclipse plug-1n concept to add additional functionality to the
integrated development environment WebSphere Integration
Developer (WID). Furthermore, 1n this solution, the Web-
Sphere Service Registry & Repository (WSRR) serves as a
service registry (for service definitions), fault handling
policy store, and fault handling description repository. The
WebSphere Services Registry and Repository disposes of a
query API that leverages XPath to retrieve stored properties,
etc.

When the process developer models a service mvocation
and creates a fault handler, the plugin could send an API
query to the WebSphere Services Registry and Repository,
requesting the fault handling policies for the given service.
The policy information would serve to parameterize any
platform-specific fault handling processing code, which
would then load and execute the actual fault handling
description accordingly.

Referring to FIG. 4, a fault handling description language
60 1s defined, which 1s capable of describing common fault
handling requirements of business process execution
engines 1 a platform-independent format. For a sample
implementation, an entity-based fault handling description
language 60 1s defined, which allows the description of fault
handling procedures 62, fault handling actions 66 and asso-
ciated fault handling conditions 64. The fault handling
procedure 62 1s the root element of the exemplary fault
handling description language 60. The fault handling pro-
cedure 62 forms a flow construct that can contain an ordered
list of fault handling actions 66 as well as other nested
procedures. By embedding procedures into procedures, par-
allel fault handling activities can be specified. The fault
handling action 66 1s nested 1nto a fault handling procedure
62 and forms a single step 1n the fault handling logic, such
as termination 66.1, compensation 66.2, logging 66.3, rep-
etition of an action 66.4, human intervention 66.5, etc. Each
tault handling action 66 has 1ts fixed position nside a fault
handling procedures 62, meaning that the action (66)
executes before or after other actions (for sequential execu-
tion). One or more fault handling conditions 64 can be
attached to both fault handling procedures 62 and fault
handling actions 66. Depending on the capabilities of the
underlying rule language, fault handling procedures 62 and
fault handling actions 66 can be executed conditionally
based on process variables, calendars, priority, etc.

The fault handling description Meta language 60 could
casily be extended by other enftities and semantics, as long
as the according extended fault handling interpretation logic
1s provided along with the extended language.

The generation of the fault handling logic for the target
plattorm (here BPEL for the execution on WebSphere Pro-
cess Server) 1s the process of adapting the fault handling

10

15

20

25

30

35

40

45

50

55

60

65

10

description meta information, which 1s stored in the fault
handling descriptions catalog 34, to the particular target
runtime platform (here WebSphere Process Server). In prac-
tice, this will mostly be the 1njection of static code that forms
a complete parsing engine for all available entities 1n the
fault handling description language 60.

In order to allow polymorphism of fault handling logic at
runtime, the outcome of the generator 34 1s executable
and/or interpretable code in the target platform language
(e.g. BPEL), that in turn dynamically loads the fault han-
dling description meta information based on the previously
looked-up fault handling policies 7, interprets this fault
handling description 9, and executes the fault handling
accordingly. This allows for the fault handling logic to
change without the need of modifying, redeploying or even
restarting the deployed application. The fault handling
description language 60 forms the foundation for both the
description and the interpretation logic.

FIG. 5 shows a first part of a method for fault handling 1n
a distributed IT environment executed at development time,
in accordance with an embodiment of the present invention;
and FIG. 6 shows a second part of a method for fault
handling 1n a distributed IT environment executed at run-
time, 1 accordance with an embodiment of the present
invention.

Referring to FIG. 5, 1n step S10 at least one fault handling,
description 9 1n an implementation-independent Meta lan-
guage associated with the at least one application 40 1is
stored 1n enterprise systems registry 32. In step S20 at least
one service definition 3 1s stored 1n the enterprise systems
registry 32. In step S30 at least one fault handling policy 7
1s created based on the at least one service definition 5 and
stored 1n the enterprise systems registry 32. In step S40 the
interface information about the at least one application 40 1s
associated with the at least one fault handling description 9
based on at least one defined fault handling policy 7. In step
S50 the service definition 5 1s loaded to the integrated
development environment (IDE) 100. Based on the loaded
service definition 3, a corresponding fault handling policy 7
1s looked up and loaded to the integrated development
environment 100 1n step S60. In step S70 a fault handler 220
1s generated for a dynamic fault handling execution at
runtime for a particular execution language of the corre-
sponding fault handling description 9. The fault handler 220
1s generated based on information of the loaded fault han-
dling policy 7, and the generated fault handler 220 1is
implemented 1n the workilow application 210.

Referring to FIG. 6, in step S200 a worktlow instance of
the workilow application 210 1s started. In Query S225 a
check 1s made whether the fault handler 220 1s triggered or
not. If the fault handler 220 1s not triggered, the worktlow
instance of the worktlow application 210 1s continued 1n step
S255. If the fault handler 220 1s triggered, a fault handling
policy 7 1s looked up 1n step S230. Based on the looked up
fault handling policy 7 at least one associated fault handling
description 9 1s retrieved 1n step S240. In step S250 the Meta
language code of the at least one fault handling description
9 1s interpreted and executed. In step S255 the worktlow
instance of the workflow application 210 1s continued.
During the executing the worktlow instance the query S225
may be repeated. The worktlow instance of the workflow
application 210 may be finished 1n step S260.

The mventive method for fault handling 1 a distributed
IT environment can be implemented as an embodiment
containing both hardware and software elements. In a pre-
terred embodiment, the present invention 1s implemented
using software executing on a hardware processing device,

US 9,959,160 B2

11

and the software includes but i1s not limited to firmware,
resident software, microcode, efc.

Furthermore, the present invention can take the form of a
computer program product accessible from a computer-
usable or computer-readable medium/device providing pro-
gram code for use by or 1n connection with a computer or
any 1nstruction execution system. For the purposes of this
description, a computer-usable or computer-readable
medium/device can be any apparatus that can contain, store,
or communicate the program for use by or in connection
with the instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical,
clectromagnetic, infrared, or semiconductor storage medium
(system or apparatus or device) or a propagation medium.
Examples of a computer-readable storage medium 1nclude a
semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk,
and an optical disk. Current examples ol optical disks
include compact disk—read only memory (CD-ROM), com-
pact disk—read/write (CD-R/W), and DVD. A data process-
ing system suitable for storing and/or executing program
code will include at least one processor coupled directly or
indirectly to memory elements through a system bus. The
memory elements can include local memory employed
during actual execution of the program code, bulk storage,
and cache memories which provide temporary storage of at
least some program code 1n order to reduce the number of
times code must be retrieved from bulk storage during
execution. Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.

Network adapters may also be coupled to the system to
cnable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modems, and Ethernet cards are just a few
of the currently available types of network adapters.

What 1s claimed 1s:

1. A computer implemented method for fault handling 1n
a I'T environment having a workiflow runtime environment
that executes at least one workilow application interacting
with at least one application by using interface information
about the at least one application, the computer implemented
method comprising:

storing, within an enterprise systems registry of the exter-

nalized storage repository, a plurality of fault handling
descriptions 1n an 1mplementation-independent meta
language, wherein the implementation-independent
meta language describes the externalized storage
repository, wheremn the implementation-independent
meta language 1s associated with the at least one
application, and wheremn the externalized storage
repository 1s located external to the workilow applica-
tion;

associating the interface information about the at least one

application with one or more fault handling descrip-
tions of the plurality of fault handling descriptions
based on a fault handling policy which is created based
on at least one service definition, wherein the fault
handling policy corresponds to a fault response;
adapting meta information of the one or more fault
handling descriptions that are pointed to by the fault
handling policy to the worktlow runtime environment
in order to generate a fault handler, wherein the fault
handler may be changed at any time during a lifetime

10

15

20

25

30

35

40

45

50

55

60

65

12

of the at least one workilow application and the at least
one application without interrupting, modifying, rede-
ploying, and restarting the at least one application and
at least one worktlow application, wherein the fault
handler 1s executable and interpretable 1 a specific
target platform language associated with the workflow
runtime environment, and wherein the implementation-
independent meta language 1s diflerent from the spe-
cific target platform language;
in response to receiving a first mnstance of the fault
response Irom the at least one application, the fault
handler performing a first lookup, within the external-
1zed storage repository, of the fault handling policy
corresponding to the fault response, wherein the cor-
responding fault handling policy points to a first one or
more fault handling descriptions within a fault handling
descriptions catalogue of the externalized storage
repository;
the fault handler loading the first one or more fault
handling descriptions and using the first one or more
fault handling descriptions to continue execution of the
at least one workilow application;
in response to receiving a second instance of the fault
response Irom the at least one application, the fault
handler performing a second lookup of the fault han-
dling policy within the externalized storage repository,
wherein the fault handling policy has been updated
within the externalized storage repository, after the first
lookup, to point to a second one or more fault handling
descriptions;
the fault handler loading the second one or more fault
handling descriptions; and
applying the second one or more fault handling descrip-
tions to continue execution of the at least one workflow
application.
2. The computer implemented method according to claim
1, turther comprising;:
in response to loading the second one or more fault
handling descriptions, dynamically loading one or
more additional fault handlers from among: one or
more updated versions of the fault handler and one or
more entirely new fault handlers; and
dynamically performing a self-adaptive selection of an
externally defined fault handling logic described in one
or more fault handling descriptions that are pointed to
by the fault handling policy, wherein the fault handling
logic comprises at least one fault handling procedure,
wherein any changes to the at least one fault handling
procedure are dynamically applied to all runming pro-
cess 1nstances of the IT environment.
3. The computer implemented method according to claim
1, wherein the interface information 1s associated with the at
least one application without interrupting the at least one
worktlow application or the at least one application, wherein
the fault handling policy 1s centrally defined and maintained
in the externalized storage repository for at least one of:
single service operations and entire services, a class or type
of same or similar enterprise mformation systems, and a
particular enterprise information service.
4. The computer implemented method according to claim
1, turther comprising;:
in response to recerving at least one policy change to the
fault handling policy during runtime of the at least one
workilow application:
creating at least one modified fault handling policy that
incorporates the at least one policy change into the
tault handling policy; and

US 9,959,160 B2

13

pomnting the fault handling policy to the at least one
modified fault handling policy within the external-
1zed storage repository, wherein the at least one
modified fault handling policy points to the second
one or more fault handling descriptions; and

in response to the fault handler performing the second

lookup of the fault handling policy, dynamically load-
ing the second one or more fault handling descriptions
that are associated with the at least one modified fault
handling policy.

5. The computer implemented method of claim 1, wherein
cach fault handling policy i1s a property attached to a
particular service interface and is created and maintained via
a graphical user interface and associated application pro-
gram interfaces (APIs) associated with the fault handling
descriptions catalogue.

6. A system for fault handling in an IT environment
comprising;

an externalized storage repository having a fault handling

descriptions catalogue comprising a plurality of fault
handling descriptions; and

a processor executing a workflow runtime environment

for developing and executing at least one worktlow

application and interacting with at least one application

using 1nterface information about the at least one

application, wherein the workflow runtime environ-

ment:

stores, within an enterprise systems registry of the
externalized storage repository, the plurality of fault
handling descriptions 1n an implementation-indepen-
dent meta language, wherein the implementation-
independent meta language describes the external-
1zed storage repository, wherein the implementation-
independent meta language 1s associated with the at
least one application, and wherein the externalized
storage repository 1s located external to the at least
one workilow application;

associates the interface information about the at least
one application with one or more fault handling
descriptions of the plurality of fault handling
descriptions based on a fault handling policy which
1s created based on at least one service definition,
wherein the fault handling policy corresponds to a
fault response;

adapts meta mnformation of one or more fault handling
descriptions that are pointed to by the fault handling
policy to the workiflow runtime environment 1n order
to generate a fault handler, wherein the fault handler
may be changed at any time during a lifetime of the
at least one worktlow application and the at least one
application without interrupting, modifying, rede-
ploying, and restarting the at least one application
and at least one worktlow application, wherein the
fault handler 1s executable and interpretable 1 a
specific target platform language associated with the
workflow runtime environment, and wherein the
implementation-independent meta language 1s dif-
ferent from the specific target platform language;

in response to receiving a lirst istance of the fault
response from the at least one application, performs,
using the fault handler, a first lookup within the
externalized storage repository of the fault handling
policy corresponding to the fault response, wherein
the corresponding fault handling policy points to a
first one or more fault handling descriptions within
the fault handling descriptions catalogue of the exter-
nalized storage repository;

10

15

20

25

30

35

40

45

50

55

60

65

14

loads the first one or more fault handling descriptions
and using the first one or more fault handling
descriptions to continue execution of the at least one
worktlow application;

in response to receiving a second instance of the fault
response from the at least one application, performs,
using the fault handler, a second lookup of the fault
handling policy within the externalized storage
repository, wheremn the fault handling policy has
been updated within the externalized storage reposi-
tory, after the first lookup, to point to a second one
or more fault handling descriptions;

loads the second one or more fault handling descrip-
tions; and

apply the second one or more fault handling descrip-
tions to continue execution of the at least one work-
flow application.

7. The system according to claim 6, wherein the workilow
runtime environment:

in response to loading the second one or more fault

handling descriptions, dynamically loads one or more
additional fault handlers from among: one or more
updated versions of the fault handler and one or more
entirely new fault handlers; and

dynamically performs a self-adaptive selection of an

externally defined fault handling logic described in one
or more fault handling descriptions that are pointed to
by the fault handling policy, wherein the fault handling
logic comprises at least one fault handling procedure,
wherein any changes to the at least one fault handling
procedure are dynamically applied to all runming pro-
cess mstances of the IT environment.

8. The system according to claim 6, wherein the interface
information 1s associated with the at least one application
without interrupting the at least one worktflow application or
the at least one application, wherein the fault handling policy
1s centrally defined and maintained 1n the externalized
storage repository for at least one of: single service opera-
tions and entire services, a class or type of same or similar
enterprise mformation systems, and a particular enterprise
information service.

9. The system according to claim 6, wherein the workflow
runtime environment:

in response to receiving at least one policy change to the

fault handling policy during runtime of the at least one

workilow application:

creates at least one modified fault handling policy that
incorporates the at least one policy change into the
tault handling policy; and

points the fault handling policy to the at least one
modified fault handling policy within externalized
storage repository, wherein the at least one modified
fault handling policy points to the second one or
more fault handling descriptions; and

in response to the fault handler performing the second

lookup of the fault handling policy, dynamically loads
the second one or more fault handling descriptions that
are associated with the at least one modified fault
handling policy.

10. The system according to claim 6, wherein each fault
handling policy 1s a property attached to a particular service
interface and 1s created and maintained via a graphical user
interface and associated application program interfaces
(APIs) associated with the fault handling descriptions cata-
logue.

11. A computer program product stored on a non-transi-
tory computer readable storage device and comprising com-

US 9,959,160 B2

15

puter-readable program code that when run on a computer

causes the computer to perform a method for fault hanc
in an IT environment, the I'T environment having a work:

ling
low

runtime environment that executes at least one work:

How

application that 1s interacting with at least one application by
using interface miformation about the at least one applica-

tion, the method comprising;

storing, within an enterprise systems registry of an exter-

nalized storage repository, a plurality of handling
descriptions 1n an 1mplementation-independent meta
language, wherein the implementation-independent
meta language describes the externalized storage
repository, wheremn the implementation-independent
meta language 1s associated with the at least one
application, and wheremn the externalized storage
repository 1s located external to the at least one work-
tlow application;

associating the interface information about the at least one

application with one or more fault handling descrip-
tions of the plurality of fault handling descriptions
based on a fault handling policy which is created based
on at least one service definition, wherein the fault
handling policy corresponds to a fault response;

adapting meta nformation of the one or more fault

handling descriptions that are pointed to by the fault
handling policy to the worktlow runtime environment
in order to generate a fault handler, wherein the fault
handler may be changed at any time during a lifetime
of the at least one worktlow application and the at least
one application without interrupting, modilying, rede-
ploying, and restarting the at least one application and
at least one worktlow application, wherein the fault
handler 1s executable and interpretable in a specific
target platform language associated with the worktlow
runtime environment, and wherein the implementation-
independent meta language 1s diflerent from the spe-
cific target platform language;

in response to receiving a lirst instance of the fault

response from the at least one application, performing,
via the fault handler of the worktlow runtime environ-
ment, a first lookup, within the externalized storage
repository, of the fault handling policy corresponding
to the fault response, wherein the corresponding fault
handling policy points to a first one or more fault
handling descriptions within a fault handling descrip-
tions catalogue of the externalized storage repository;

loading, via the fault handler, the first one or more fault

handling descriptions and using the first one or more
fault handling descriptions to continue execution of the
at least one workilow application;

in response to receiving a second instance of the fault

response from the at least one application, performing,
via the fault handler, a second lookup of the fault
handling policy within externalized storage repository,
wherein the fault handling policy has been updated

10

15

20

25

30

35

40

45

50

55

16

within the externalized storage repository after the first
lookup to point to a second one or more fault handling
descriptions; and

loading, via the fault handler, the second one or more fault

handling descriptions and applying the second one or
more fault handling descriptions to continue execution
of the at least one workiflow application.

12. The computer program product of claim 11, the
program code further comprising code for:

in response to loading the second one or more fault

handling descriptions, dynamically loading one or
more additional fault handlers from among: one or
more updated versions of the fault handler and one or
more entirely new fault handlers; and

dynamically performing a self-adaptive selection of an

externally defined fault handling logic described 1n one
or more fault handling descriptions that are pointed to
by the fault handling policy, wherein the fault handling
logic comprises at least one fault handling procedure,
wherein any changes to the at least one fault handling
procedure are dynamically applied to all runming pro-
cess 1stances of the IT environment.

13. The computer program product of claim 11,

wherein the interface information is associated with the at

least one application without interrupting the at least
one worktlow application or the at least one applica-
tion, wherein the fault handling policy 1s centrally
defined and maintained in the externalized storage
repository for at least one of: single service operations
and entire services, a class or type of same or similar
enterprise information systems, and a particular enter-
prise information service.

14. The computer program product of claim 11, the
program code further comprising code for:

in response to receiving at least one policy change to the

fault handling policy during runtime of the at least one

worktlow application:

creating at least one modified fault handling policy that
incorporates the at least one policy change into the
fault handling policy; and

pointing the fault handling policy to the at least one
modified fault handling policy within the external-
1zed storage repository, wherein the at least one
modified fault handling policy points to the second
one or more fault handling descriptions; and

in response to the fault handler performing the second

lookup of the fault handling policy, dynamaically load-
ing the second one or more fault handling descriptions
that are associated with the at least one modified fault
handling policy.

15. The computer program product of claim 11, wherein
cach fault handling policy 1s a property attached to a
particular service interface and 1s created and maintained via
a graphical user interface and associated application pro-
gram 1nterfaces (APIs) associated with the fault handling
descriptions catalogue.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

