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snapshot 1solation, a property that guarantees that read
operations read a consistent snapshot of the data store. The
centralized scheme of ReTSO enables a lock-free commiut
algorithm that prevents unreleased locks of a failed trans-
action from blocking other transactions. Each transaction
submits the 1dentifiers of modified rows to the ReTSO, the
transaction 1s committed only 1f none of the modified rows
1s committed by a concurrent transaction, and a log of the
committed transaction 1s cached. To recover from failures,
betfore a client 1s notified of a change, the change cached 1s
first persisted into a write-ahead log, such that the memory
state can be fully reconstructed by reading from the write-
ahead log. Furthermore, ReTSO mmplements a lazy, auto-
garbage collector hash map that reduces the number of
memory accesses per request.
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LOCK-FREE TRANSACTIONAL SUPPORT
FOR LARGE-SCALE STORAGE SYSTEMS

PRIORITY CLAIM

This application claims the benefit under 35 U.S.C. § 120
as a Continuation of application Ser. No. 13/283,543, filed
Oct. 27, 2011, titled “Lock-Free Transactional Support for
Large-Scale Storage Systems”, the entire contents of which
are hereby incorporated by reference for all purposes as 1f
tully set forth heremn. The applicants hereby rescind any
disclaimer of claim scope in the parent application or the
prosecution history thereof and advise the USPTO that the
claims 1n this application may be broader than any claim 1n
the parent application.

FIELD OF DISCLOSURE

The present mvention relates to a reliable and eflicient

design for transactional support in large-scale storage sys-
tems. SUGGESTED GROUP ART UNIT: 2157; SUG-
GESTED CLASSIFICATION: 707/803.

BACKGROUND

A transactional commit for large-scale storage systems,
such as Biglable, use lock-based, distributed algorithms
such as two-phase commit. Lock-based algorithms are inet-
fictent when an unreleased lock of a failed transaction
prevents other transactions from making progress. Commer-
cial data storage systems often implement Snapshot Isola-
tion (SI) since 1t allows for high concurrency between
transactions. SI guarantees that all reads of a transaction are
performed on a snapshot of the database that corresponds to
a valid database state with no concurrent transaction. To
implement SI, the database maintains multiple row versions
ol the data and the transactions observe diflerent row ver-
sions of the data depending on the start time of the trans-
action.

In an SI-based system, two general approaches are used
for detecting a conflict between two concurrent transactions
that write into the same data element (e.g., row): 1) a
lock-based approach, which locks modified rows to prevent
concurrent transactions from moditying the locked rows, or
2) a lock-free approach with centralized Transaction Status
Oracle (TSO) that monitors the commits of all transactions.
In lock-based approaches, the locks of an incomplete trans-
action, executed on a failed client, may prevent other
transactions from making progress during the recovery
period.

It 1s, however, challenging to efliciently design a TSO that
1s not a bottleneck for system scalability and which guar-
antees the reliability of 1ts data 1n presence of the failure of
the node that hosts TSO. Large distributed storage systems,
therefore, implement lock-based transactional commit algo-
rithms, missing the benefits of lock-free approaches.

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therelore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example,
and not by way of limitation, in the figures of the accom-
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2

panying drawings and 1n which like reference numerals refer
to similar elements and 1n which:

FIG. 1 1s a block diagram that illustrates the network
topology of a lock-1ree transactional storage system, accord-
ing to one embodiment;

FIG. 2 1s a flowchart demonstrating snapshot 1solation
illustrated by two competing transactions, according to one
embodiment;

FIG. 3 1s a sequence diagram ol a successiul commit,
according to one embodiment;

FIG. 4 1s a block diagram that 1illustrates a transaction
status oracle, according to one embodiment;

FIG. 5 1s a flowchart of a relhiable eflicient transaction
status oracle procedure to process commit requests, accord-
ing to one embodiment;

FIG. 6 15 a flowchart illustrating a procedure to verity that
a transaction has been committed, according to one embodi-
ment; and

FIG. 7 1illustrates a computer system upon which an
embodiment may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1n order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present ivention.

General Overview

The data 1n large-scale storage systems are distributed
over numerous servers and are updated by numerous clients.
Client crashes are frequent in such environments. In such
environments, supporting transactions 1s critical to enable
the system to cope with faulty clients. Commercial data
storage systems often implement Snapshot Isolation (*SI”),
since SI allows for high concurrency between transactions.
SI guarantees that all reads of a transaction (“txn”) are
performed on a snapshot of the database that corresponds to
a valid database state with no concurrent transaction. To
implement SI, the system maintains multiple row versions of
the data. The transactions observe different row versions of
the data depending on the start time of the transaction.
Advantageously, 1n an SI implementation, the writes of a
transaction do not block the reads.

Two concurrent transactions still contlict 11 both write to
the same data element, e¢.g., a database row. The contlict 1s
detected by the SI implementation, and at least one of the
transactions 1s aborted. Two general approaches for detect-
ing the contlict are 1) using a centralized transaction status
oracle (*TSO”) that monitors the commits of all transac-
tions, or 2) locking the modified rows 1n a distributed way
to prevent the concurrent transactions from overwriting the
data. In a lock-based approach, the locks involved 1n a
transaction of a failed client may prevent other transactions
from making progress during the recovery period.

In a centralized approach, each transaction submits the
identifiers of modified rows to the TSO, the transaction 1s
committed only 1f none of the modified rows 1s commutted
by a concurrent transaction, and a log of the commuitted
transaction 1s cached. The centralized approach has the
advantage of being lock-Iree, thus not blocking active trans-
actions due to incomplete transactions. It 1s, however, chal-
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lenging to etfhiciently design a TSO that 1s not a bottleneck
and guarantees the reliability of the data 1n the presence of

node failures.

A reliable and efhcient implementation of TSSO
(“ReTS0O”) 1s presented. Generally, to recover from failures,
cach transactional change written into volatile memory
should be first persisted into a non-volatile write-ahead log
(“WAL”), from which the volatile memory state can be fully
reconstructed. Since commit requests should be serviced
atomically, the long service time has an inverse impact on
the throughput of ReTSO. Therelore, all the high-latency
operations, mcluding writing into the WAL, could create
TSO a bottleneck for system scalability. ReTSO addresses
the bottleneck challenge by performing asynchronous writes
into the WAL and delaying the response to the client t1ll the
acknowledgment of the write 1s received. Furthermore,
ReTSO implements a lazy, auto-garbage collector hash map
that reduces the number of memory accesses per request. It
should be noted that, in one embodiment of the invention, a
request to persist each transactional change to the WAL 1s
sent, but the change 1s made potentially before the WAL 1s
updated. In such an embodiment, no reply 1s sent to the
client until acknowledgement of the persistence to the WAL
1s received. In this way, memory state observed by the client
may be reconstructed. For example, after a sudden crash,
less than all of the memory state might be recovered because
some changes were being written nto the WAL, but all of
the changes that were observed by the client (due to the reply
having been sent to the client) will be recovered.

[l

e

Network Topology

FIG. 1 1illustrates a network topology of a lock-free
transactional storage system 100, according to one embodi-
ment. According to this embodiment, the network topology
includes, but 1s 1 no way limited to, a database 102, a
ReTSO 110, a Timestamp Oracle (*“10”) 112, one or more
transaction clients (“‘clients”) 120-1 through 120-M (collec-
tively referred to as “clients 120), and one or more servers
130-1 through 130-N (collectively referred to as “servers
1307). In this illustrated embodiment ReTSO 110, clients
120 and servers 130 execute on separate devices. However,
in other embodiments, one or more components may
execute on the same device.

Database 102 includes, but 1s 1n no way limited to, ReTSO
110, TO 112, and servers 130. Database 102 may run on one
or more devices. In the embodiment illustrated in FIG. 1,
database 102 1s distributed across many devices, €.g., one for
cach component respectively.

In the embodiment illustrated in FIG. 1, ReTSO 110 1s
communicatively coupled with TO 112, clients 120, and
servers 130. ReTSO 110, upon request, serves start time-
stamp requests, commit requests, and queries about commit
timestamps.

TO 112, in this illustrated embodiment, 1s contained
within ReTSO 110. However, 1n other embodiments, TO 112
may be external to ReTSO 110, and merely communica-
tively coupled with ReTSO 110, transaction clients 120, and
servers 130. TO 112 generates timestamps and guarantees
that each timestamp 1s unique and assigned 1n increasing
order.

Clients 120, 1in thus embodiment, are commumnicatively
coupled to ReTSO 110 and servers 130. In the illustrated
embodiment, clients 120 are distributed across several com-
puting devices. However, in another embodiment, clients
120 may be one single computing device and/or may be
executed on the same device as one or more other compo-
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nents (ReTSO 110, TO 112, and servers 130). Client 120-1
reads/writes data elements from/to multiple regions on dit-

terent servers 130. To read and write row versions of data
clements, clients 120 submit get/put requests to servers 130.
Clients 120 drive transactions and may also be responsible
for cleaning up the temporary database updates performed
by their transactions. To clean up each row after a commut,
server 130-1 updates the row version, which contains the
starting timestamp, with the commit timestamp and deletes
the corresponding value in the Pending Write column.
However, 1n the embodiment illustrated in FIG. 4, discussed
later 1n detail, ReTSO 110 includes a row commit time
column which 1s empty until the transaction 1s committed, at
which time the row commit time 1s set to the commit time
of the transaction. Thus, 1n the embodiment illustrated in
FIG. 4, the row version 1s the starting timestamp of the
transaction. To clean up each row after an abort, server
130-1 deletes the row version of each row and deletes the
respective value in the Pending Write column. Therefore, an
unclean row 1s a row on which a committed or aborted
transaction has operated, but either the row version has not
been updated or the Pending Write column value has not
been deleted. The failure of client 120-1, hence, may leave
the future transactions that will read from the unclean rows
uncertain about the commit status of data being written by
transactions of failed client 120-1.

Servers 130 are communicatively coupled with ReTSO
110 and clients 120. In the illustrated embodiment, servers
130 are distributed across several computing devices. How-
ever, 1n other embodiments, servers 130 may be one single
computing device and/or may be executed on the same
device with one or more other components (ReTSO 110, TO
112, clients 120). Servers 130 store/persist the data that
comprises the data elements (cells, rows, tables, lists, sets,
subsets, etc.). In one embodiment, groups ol consecutive
rows in one or more tables are split mnto multiple regions,
and each region 1s maintained by a separate server. Servers
130 also may be augmented to maintain an in-memory
“Pending Write” column, which contains the value that will
be commutted to the row or cell 1 there 1s not a write-write
coniflict between the updating transaction and some other
co-pending transaction.

Snapshot Isolation

FIG. 2 1s a flowchart demonstrating snapshot i1solation
illustrated by two competing transactions, according to one
embodiment. A transaction 1s an atomic unit of execution
and may contain multiple read and write operations to
database 102. To implement snapshot 1solation, each trans-
action receives two timestamps: one before the transaction
reads the rows aflected by the transaction and one before the
transaction commits the modified data. Timestamps are
assigned by TO 112, and hence provide a commit order
between transactions. In other words, a particular transaction
observes all the modifications of other transactions that have
committed before the particular transaction starts. While
FIG. 2 illustrates steps according to one embodiment, other
embodiments may omit, add to, reorder, and/or modily any
of the steps shown.

In steps 202 and 204, client 120-1 and client 120-M
request a transaction by server 130-1, TO 112 generates two
timestamps marking the beginning of each transaction, and
the timestamps are stored 1n each transaction respectively. In
steps 206 and 208, server 130-1 performs the transactions on
rows R1 and R2, respectively, where R1 may intersect with

R2.
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In step 210, client 120-1 finishes performing the first
transaction betfore client 120-M finishing the second trans-

action, and client 120-1 attempts to commit the updated
rows, R1. In step 220, ReTSO 110 determines whether rows
R1 and R2 intersect. If rows R1 and R2 intersect, then
control passes to step 222; otherwise, control passes to step
230. In step 222, ReTSO 110 determines whether the start
time of the first transaction 1s less than the commit time of
the second transaction. If the start time of the first transac-
tion 1S less than the commit time of the second transaction,
then control passes to step 224; otherwise, control passes to
step 230. In step 224, ReTSO 110 determines whether the
start time of the second transaction 1s less than the commat
time of the first transaction. It the start time of the second
transaction 1s less than the commit time of the first transac-
tion, then control passes to step 240; otherwise, control
passes to step 230. If no write-write conftlict exists, then
ReTSO 110 successiully commits the first transaction and,
upon request by client 120-1, server 130-1 cleans up rows
R1.

In step 208, server 130-1 performs the second transaction
and updates rows R2. In step 212, client 120-M requests
ReTSO 110 commit updated rows R2. If server 130-1
determines 1n step 202 that rows R1 and rows R2 intersect;
determines 1n step 222 that the starting timestamp of the first
transaction 1s less than the commit time of the second
transaction; and determines in step 224 that the starting
timestamp of the second transaction 1s less than the commuit
time of the first transaction; then ReTSO 110 aborts the
second transaction in step 240. Otherwise, 11 the inquiries of
any of steps 220-224 produce a negative result, then ReTSO
110 commits the second transaction in step 230.

L1

Reliable and Ethcient Transaction Status Oracle

In one embodiment of the centralized implementation of
SI, ReTSO 110 receives commit requests accompanied by
the set of the i1dentifiers of modified rows, R, from clients
120. Since ReTSO 110 has observed the modified rows of
previously committed transactions, ReTSO 110 has enough
information to determine whether there are any write-write
contlicts on the modified row(s) R of the transaction whose
commitment 1s currently being requested (the “current trans-
action”). For each row 1n R, ReTSO 110 determines whether
the last commit time previously stored 1n association with
that row 1s greater than the start time of the current trans-
action. If the result of ReTSO’s determination 1s positive,
then ReTSO 110 aborts the current transaction. Otherwise,
ReTSO 110 commits the current transaction. In other
embodiments ReTSO 110 instructs clients 120 to cleanup
the temporary changes of the committed or the aborted
transactions. In still another embodiment, if ReTSO’s deter-
mination 1s to commit the current transaction, ReTSO 110
stores information about the current transaction’s committed
rows, imncluding the commit timestamp of the rows modified
by the current transaction, within volatile memory allocated
to ReTSO 110.

In another embodiment, after commit or abort, client
120-1 1s responsible for cleaning up the temporary database
updates performed by the transaction. Failure of client
120-1, 1n such an embodiment, leaves the future transactions
that will read from the uncleaned rows, uncertain about the
commit status of the written data. For each transaction
reading a row r, the reading transaction seeks to determine
whether the last commait time of that row (as previously
stored by ReTSO 110) 1s less than the start time of the
reading transaction. In other words, for each row r, the
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reading transaction, txn-r, seeks to determine whether
Te(txn-D)<Ts (txn-r), where txn-1 1s a transaction that has
written to row r, Tc(txn-1) 1s the commit timestamp of
transaction txn-f, and Ts(txn-r) 1s the start timestamp of
txn-r. The results for this determination are provided by
ReTSO 110, which stores the status of all commuitted trans-
actions. (ReTSO 110 can also benefit from the row 1dentifier
for eflicient implementation.) In one embodiment, ReTSO
110 may determine that a row 1s not committed 1f a writing,
transaction does not have a commit timestamp on a given
row. I there 1s a commuit timestamp for a writing transaction,
then, 1n one embodiment, ReTSO 110 determines whether
the commit timestamp of the writing transaction 1s less than
the starting time of the reading transaction.

In one embodiment of SI using ReTSO 110 on top of
multiple servers, groups of consecutive rows 1in one or more
tables are split into multiple regions, and each region 1s
maintained by a separate server. Client 120-1 may read/write
cell data from/to multiple regions on different servers 130
when executing a transaction. To read and write row ver-
s1ons, clients 120 submit get/put requests to servers 130. The
row versions in a table row are determined by timestamps.
To generate timestamps, ReTSO 110 uses TO 112, which
guarantees that each timestamp 1s unique and assigned 1n
increasing order. Finally, servers 130 may be augmented to
also maintain an in-memory (e.g., in volatile random access
memory) “PendingWrite” column.

FIG. 3 1s a sequence diagram of a successiul commuit,
according to one embodiment. While FIG. 3 illustrates
exemplary steps according to one embodiment, other
embodiments may omit, add to, reorder, and/or modily any
of the steps shown. In step 310, client 120-1, seeking to
begin a transaction, requests a timestamp from ReTSO 110.
ReTSO 110 then responsively returns T_S, which represents
the transaction’s starting timestamp. In step 320, a portion of
the transaction 1s performed by writing new data with a row
version 1dentifier equal to the transaction starting timestamp,
(T_S). In the embodiment illustrated in FIG. 3, write
requests for rows Y and Z are 1ssued to server 130-1 and
130-N, respectively. Each write request may also write 1nto
the in-memory Pending Write column.

In step 330, after client 120-1 has written values to rows
Y and Z, client 120-1 requests the commitment of rows Y
and Z by submitting, to ReTSO 110, a commit request that
includes a starting timestamp T_S as well as the list of all the
modified rows, Y and Z. If ReTSO 110 commuits the trans-
action 1n response to the commit request, then ReTSO 110
returns the commit timestamp, T_C, to client 120-1. The
whole transaction 1s then committed and client 120-1 pro-
ceeds to step 340 by performing single-row cleanups on
rows Y and Z, using the recerved timestamp T_C. Otherwise,
if ReTSO 110 aborts the transaction, client 120-1 still
proceeds to step 340, cleaning up the modified rows.

In step 340, after the write transaction commits or aborts,
client 120-1 cleans up all the modified rows. To clean up
cach row after a commit, client 120-1 1ssues a request to
server 130-1 and server 130-N to update the row versions of
rows Y and Z from T S to T C and delete the values 1n the
in-memory Pending Write column associated with rows Y
and 7. Alternatively, to clean up each row after an abort,
client 120-1 1ssues a request to server 130-1 and server
130-N to delete both (a) the row versions of rows Y and Z
created by client 120-1, and (b) the values 1n the in-memory
Pending Write column of rows Y and Z.

In step 350, each read transaction txn-r observes the last
committed data for each row before starting timestamp, T_S,
of txn-r. Thus, the commit timestamp, o, of any row will be
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less than T_S for any row read by txn-r. However, it the
value of the Pending Write column for any of the rows was
set by a write transaction, txn-w, and 11 Ts(txn-w)<Ts(txn-r),
where Ts(txn-w) and Ts(txn-r) are the starting timestamps of
transactions txn-w and txn-r respectively, then the row 1s
unclean and has not necessarily been committed before
Ts(txn-r). As discussed above, a row may have been com-
mitted, but due to a faulty or slow client the row was not
cleaned up. Server 130-1 or client 120-1 may then verily
whether the transaction was successiully committed with
ReTSO 110, which i1s discussed in detail under “TRANS-
ACTION QUERIES.”

Illustration of a Transaction Status Oracle

FIG. 4 1s a block diagram that illustrates an example of
ReTSO 110, according to one embodiment. ReTSO 110
serves three types of requests: start timestamp requests 402,
commit requests 406, and queries about commit timestamps
410. In response to the first type of request, ReTSO 110
returns a starting timestamp (1T_S) 404. In response to the
second type of request, ReTSO 110 returns a commit time-
stamp (1_C) 408. In response to the third type of request,
ReTSO 110 returns a true/false/retry response 412. To fulfill
requests 402, 406, and 410, ReTSO 110 includes, but 1s 1n
no way limited to, TO 112, recent commuts list 420, T_MAX
430, start timestamp list 440, and half-aborted list 450. Each
of the modules 112, 420, 430, 440 and 450, as 1llustrated 1n
FIG. 4, may be integrated mnto ReTSO 110. However, 1n
other embodiments, modules 112, 420, 430, 440, and 450
may be external to ReTSO 110 and remain merely commu-
nicatively coupled with ReTSO 110 and with each other.

ReTSO 110 fulfills start timestamp requests 402 by que-
rying TO 112 and returning a start timestamp (T_S) 404
returned by TO 112. In one embodiment, ReTSO 110 stores
all start timestamps 1n a start timestamp list 440. As men-
tioned earlier, TO 112 is responsible for generating unique
timestamps 1n ascending temporal order. Therefore, a start-
ing timestamp 1s a unique identifier of each transaction; TO
112 ensures that no two transactions will have the same
starting timestamp as each other’s.

Recent commits list 420, which includes rows 422-1

through 422-P (collectively rows 422) and which include of
row 1dentifiers (row 1ds) 424-1 through 424-P (collectively
row 1ds 424), row versions 426-1 through 426-P (collec-
tively row versions 426), and row commit times (RCTs)
428-1 through 428-P (collectively RCTs 428). Recent com-
mits list 420 may be limited to the last P committed rows that
fit into cache/memory. Row versions 426 are the start
timestamps of committed transactions that most recently
wrote to the corresponding rows. RCTs 428 are the commit
timestamps of committed transactions that most recently
wrote to the corresponding rows.

Recent commits list 420 may be too large to remain
cached 1n 1ts entirety; theretfore, ReTSO 110 reduces the size
of recent commits list 420 by retaining, in list 420, only a
specified quantity of rows that have the latest timestamps,
and performing garbage collection on the rest of the rows 1n
recent commuts list 420. The specified amount of time may
be constant or variable. However, to ensure that ReTSO 110
may still satisly commit requests 406 or transaction queries
410, ReTSO 110 maintains T MAX 430. T MAX 430 1s the
maximum timestamp of all the entries removed from volatile
memory 1n this manner. For example, if rows 422-1, 422-2,

and 422-3 were about to be removed from recent commits
list 420 based on mactivity, and 1f RCT 428-3 was greater
than either RCT 428-1 or RCT 428-2, then T MAX 430
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would be updated to equal RCT 428-3. Upon a subsequent
request to read from or commit to rows previously repre-
sented as rows 422-1 through 422-3 in recent commits list
420, ReTSO may use T_MAX 430 (since the RC'Ts of rows
422-1 through 422-3 are no longer ascertainable from list
420) to determine whether a commuit request 1s successiul or
not. Under some circumstances, this approach may result in
aborting a transaction that would have otherwise been
committed 1f the rows relevant to the transaction requesting
commitment had not yet been evicted from recent commits
list 420. Thus, the approach may be viewed as being
abundantly cautious 1n nature, preferring the relatively lesser
inconvenience ol unnecessary abortion over the relatively
greater harm of inappropriate commitment.

The start timestamp list 440 stores previously generated
start timestamps for previous start timestamp requests 402
that are still not committed nor aborted, 1.e., m-progress
transactions. Upon advancing T_MAX 430, the start time-
stamp list 440 1s used to determine which starting time-
stamps, 1.¢., transactions, should be moved to the hali-

aborted list 450.

The half-aborted list 450 stores the start timestamps of
transactions that have taken too long to commit due to a
tailing client, or has failed 1n some other way. Half-aborted
list 450 1s used by ReTSO 110 to resolve transaction queries
410, discussed later. Half-aborted list 450 contains the
starting timestamps of aborted transactions that have not
been cleaned up. It 1s assumed that clients 120 and servers

130 will suffer periodic failures; thus, ReTSO 110 maintains
half-aborted list 450 1n order to determine or track which
transactions may have been prematurely aborted. Specifi-
cally, when T_MAX 430 advances due to garbage collection
of the recent commits list 420, ReTSO 110 checks for any
uncommitted transactions 1n the start timestamp list 440 for
which T_MAX 430 1s greater than the respective timestamp,

and adds the transaction, or its starting timestamp, to the
half-aborted list 450.

Example Start Timestamp Request Process

Any of clients 120 may query ReTSO 110 with a start
timestamp request 402. Re'TSO 110, 1n turn, queries TO 112,
which returns T S 404. As 1s discussed above, TO 112
guarantees that each starting timestamp 1s unique and 1s
assigned 1n increasing order. Thus, each transaction will
have a unique identifier, which 1s the starting timestamp
(T_S) 404 resulting from the start timestamp request 402.
Furthermore, when timestamps between two competing
transactions are compared (e.g., two timestamps stored in
ReTSO 110, a timestamp and T_MAX 430, or two time-
stamps 1n other scenarios), the two timestamps compared
will never be equal. A first timestamp will always be less
than, or greater than, a second timestamp. According to an
embodiment, 1f the first timestamp 1s assigned prior to the
second timestamp, then the first timestamp will be less than
the second timestamp.

Example Commit Request Process

FIG. 5 1s a flowchart of a ReTSO 110 procedure to process
commit requests 406, according to one embodiment. While
FIG. 5 1llustrates steps according to one embodiment, other
embodiments may omit, add to, reorder, and/or modily any
of the steps shown. In step 510, ReTSO 110 receives a
transaction, and retrieves one of rows 422, which corre-
sponds with a row 1n the transaction that 1s to be commuitted.
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In step 520, ReTSO 110 determines whether the commiut
timestamp (RCT) 428-1, of the latest row version 426-1, of
row 422-1, with row 1d 424-1, 1s null. RCT 428-1 of Row
422-1 could be null if row 422-1 has not yet been created,
has not yet been cached, has not be written to for a specified
period of time, has been forced out of the cache due to the
limited amount of available volatile memory, or due to some
other reason.

If the result of the determination performed 1n step 520 1s
false (meaning row 1d 424-1 was found among rows 424),
then ReTSO 110 compares RCT 428-1 of row 422-1 with the
starting timestamp (1_S) of the transaction, in step 530. It

RCT 428-1 of row 422-1 1s greater than T_S, then ReTSO
110 will abort the transaction, 1n step 350. Otherwise, if RCT
428-1 of row 422-1 1s greater than T_S, then ReTSO 110
proceeds to step 560. In step 560, ReTSO 110 determines
whether there are still more rows 1n the transaction that have
not yet been determined to be contlicted or not. If there are
more rows, then the process starts over again with step 510.
Otherwise, the transaction 1s committed, 1n step 570. Step
570 concludes when ReTSO 110 returns T C 408.

If the result of the determination performed 1n step 520 1s
true, then ReTSO 110 determines whether T_MAX 430 1s
greater than T_S, 1n step 540. In step 340, ReTSO 110
pessimistically aborts the transaction, which means that
some transactions could unnecessarily abort. Pessimistic
abortion may not be a point of concern where T_MAX 430
minus T_S 1s much greater than the maximum commit time.
Assuming eight bytes for unique 1ds, the estimated required
space to keep a row 422-1 data, including row 1d 424-1, start
timestamp or row version 426-1, and RCT 428-1, 1s 32
bytes. Assuming 1 GB of volatile memory, 32 million rows
will fit mto volatile memory. If each transaction modifies
eight rows on average, then the rows for the last 4 million
transactions are in volatile memory. Assuming a maximum
workload of 80K transactions per second (““TPS”), the row
data for the last 50 seconds are in volatile memory, which 1s
far more than the average commit time, 1.e., around a
second. Therefore, 1n many embodiments, a case where
T_MAX 430 1s greater than T_S rarely, if ever, occurs. If,
however, T_MAX 430 1s greater than T_S, 1n step 540, then
the transaction 1s aborted, 1n step 550. Otherwise, ReTSO
110 determines whether there are still more rows 1n the
transaction that have not yet been determined to be con-
flicted or not, in step 360, discussed above.

Transaction Queries

The third role of ReTSO 110 1s to service queries regard-
ing the status of transactions. Specifically, when a given
transaction, txn-r, reads a row version associated with a row
R that was written to by transaction txn-w, ReTSO 110 may
be asked to determine whether txn-w was successiully
committed. IT txn-w 1s recently committed, the commit times
of 1ts rows (including R) are in ReTSO 110 volatile memory,
1.¢, 1 Ts(txn-w) 1s 1n volatile memory, ReTSO 110 verifies
whether the commit time, Tc(txn-w), 1s less than the Ts(txn-
r), otherwise txn-w 1s incomplete, aborted, or committed
long time ago. To distinguish between these three cases,
ReTSO 110 maintains a list of aborted transactions, half-
aborted list 450. Half-aborted list 450 1s garbage collected
periodically so as to not fill up the volatile memory space.
To do so, each aborted transaction sends a cleaned-up
request to ReTSO 110 after 1t has cleaned up 1ts aborted
rows. ReTSO 110 then removes the transaction 1d from the

halt-aborted list.
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A transaction query 410 returns true, false, or retry,
(collectively 412) based on the state of recent commit list
420, T_MAX 430, start timestamp list 440, and half-aborted
list 450. If neither the recent commits list 420 nor the
half-aborted list 450 contains information about a transac-
tion, at least one of three cases holds true about the trans-
action: 1) The transaction was committed a long time ago
and the transaction data has been garbage collected (and that
1s why 1t 1s not present in the recent commiut list 420); 2) the
transaction was aborted and the rows were cleaned up, but
a transaction, txn-r, read the row before the cleanup (and that
1s why 1t 1s not present in the half-aborted list 450); or 3) the
transaction was neither committed nor aborted. To distin-
guish between the first and the last cases, ReTSO 110 uses
half-aborted list 450 to also (in addition to maintaining the
list of transactions that are aborted normally) keep track of
the transactions that are forced to abort because the trans-
action did not commit 1 a timely manner, 1.€., before
T_MAX 430 advanced to the respective transaction’s start
timestamp. Each time a new start timestamp 1s assigned by
ReTSO 110, via the TO 112, the start timestamp 1s recorded
in start timestamp list 440. After commuit (step 370 of FIG.
5) or abort (step 560 of FIG. §5), the start timestamp of the
transaction 1s removed from start timestamp list 440. Fur-
thermore, once T_MAX 430 advances due to garbage col-
lection of recent commuits list 420, ReTSO 110 also checks
for any uncommitted transactions in the start timestamp list
for which T_MAX 430 1s greater than, and adds the time-
stamps to half-aborted list 450. In this manner, the third case
1s eliminated since the start timestamp of the in-progress
transaction 1s either larger than T_MAX 430 or moved to
half-aborted list 450. Because ReTSO 110 still cannot dis-
tinguish between the first and the second case, 1t returns
retry. In both cases, retrying the read transaction from
servers 130 resolves the problem: 1f the particular row
version 1s still present at servers 130, then the writing
transaction has been committed, otherwise the writing trans-
action has been aborted.

FIG. 6 1s a flowchart illustrating a procedure to verity it
a transaction has been committed, according to one embodi-
ment, which verifies that a transaction has been commuitted
and returns true, false, or retry 412. While FIG. 6 1llustrates
steps according to one embodiment, other embodiments may
omit, add to, reorder, and/or modity any of the steps shown.

In step 610, ReTSO receives a transaction (1 XN-R) that
has read a row version of a row R 1n database 102 written
by a write transaction (ITXN-W), and must determine
whether TXN-W has been committed before TXN-R starts.
In step 620, ReTSO 110 determines whether TXN-W 1s
stored 1n recent commuits list 420. I so, then ReTSO 110 may
proceed to step 630, to determine whether the TWN-W was
committed before TXN-R starts. Otherwise ReTSO 110
must determine whether TXN-W failed to commit, or
whether TXN-R must retry, or re-read, row R.

In step 630, the ReTSO 110 found row 422-1 where row
1d 424-1 was equal to the identifier of row R and row version
426-1 1s equal to the starting timestamp of TXN-W. ReTSO
110 then determines whether the starting time stamp (T_S)
of TXN-R 1s less than RCT 428-1. If so, then false 1s
returned, 1n step 662; otherwise TXN-W was successiully
committed before TXN-R read row R, and ReTSO 110
returns true, 1n step 660.

If, however, 1n step 620, row 422-1, with row 1d 424-1
equal to the 1dentifier of R, was not found, then ReTSO 110
must determine whether T MAX 430 1s less than the start
timestamp (1_S) of TXN-W, 1n step 640. If not, then control
passes to step 650.
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In step 650, if TXN-W 1s 1n half-aborted list 450, then
ReTSO 110 returns false 1n step 662. If, however, 1n step
650, TXN-W 1s not 1n half-aborted list 450, then either the
transaction TXN-W was successiully committed so long ago
that 1t 1s no longer in ReTSO 110 volatile memory, or
TXN-W was already aborted and cleaned up, thus ReTSO
110 returns retry, istructing the client 120-1 to re-read the
row from server 130-1, in step 664.

Processing Overhead

In some of the embodiments, the number of random
memory accesses, 1.., reading and writing 1ito committed
state, can be burdensome to system 100. Since the data
accessed by different transactions do not exhibit spatial
locality, the data 1s not likely to be 1n the processor caches
(such as L2 cache) and consequently has to be read from
volatile memory. To keep the number of volatile memory
accesses to a minimum, in one embodiment, sorting and
garbage collection 1s only performed on the recently
accessed data. Furthermore, 1t may be preferable to avoid
using pointers since following a pointer implies jumping to
a new random position 1 volatile memory, which will
probably not be loaded mto the processor cache.

Hash maps are eflicient data structures to increase per-
formance. Hash maps reduce the average volatile memory
access for each lookup to one, or big-O(1). A hash map
associates each hash value with a bucket, where each bucket
contains all items that map to the same key. The key 1s used
to generate a unique hash value, which 1s obtained by
applying a hash function on the key. According to one
embodiment, linked lists are used to maintain the elements
in a bucket.

In one embodiment, a hash map 1s used, such that a hash
map of row 1ds 424 1s used to maintain the commutted state,
and each hash map 1tem contains the start timestamp 426-1
and RCT 428-1. Although a key 1s the combination of row
1d 424-1 and start timestamp 426-1, in one embodiment, the
hash value 1s computed only on the row 1d 424-1 In another
embodiment a put operation may be implemented to ensure
the first hash map 1tem, 1n a bucket, with row 1d 424-1 has
the most recent commit timestamp of row R. This feature
can be efliciently implemented because, after a put opera-
tion, the items of the linked list are already loaded into the
processor cache and switching the items i1s cheaply per-
formed 1n the processor cache. Step 530, in FIG. 5, benefits
from this method since the first hash map 1tem 1n the bucket,
for row 422-1, that matches the row 1d 424-1 may be used
to compare whether RCT 428-1 of row 422-1 15 greater than
the starting timestamp (I_S) of the transaction that has yet
to be commuitted.

In one embodiment, the size of the hash map 1s fixed,
proportional to the size of volatile memory, periodically
garbage-collecting old 1tems of the hash map 1s necessary.
Current garbage collection policies require further random
accesses to volatile memory, which exacerbates the average
processing time of requests. In yet another embodiment, to
turther reduce average volatile memory access for each
transaction, a lazy, auto-garbage collector hash map 1s
implemented. The disposal of an old row 422-1 1n the map
1s postponed to a time that the 1tem 1s already loaded into the
processor cache, 1.e., once there 1s a hit for a put operation.
After such a hit, the other 1tems with the same key, and thus
the same hash value, are already loaded into the processor

cache and can be garbage-collected cheaply.

Data Reliability

If ReTSO 110 server fails, a new instance of ReTSO 110
may recreate the volatile memory state from a write-ahead
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log (“WAL”). In one embodiment, ReTSO 110 persists
changes into a WAL before updating the volatile memory

state. In other embodiments, the WAL 1s also replicated
across multiple remote storage devices to prevent loss of
data after a storage failure. Writing into multiple remote
machines may be expensive and it 1s important to prevent
replication of the WAL from becoming a bottleneck. In one
embodiment, Apache Bookkeeper™ (found at the world
wide web domain zookeeper.apache.org, in directory, book-
keeper), 1s used, which can efliciently perform up to 20,000
writes of size 1028 bytes per second into a WAL. Since
ReTSO 110 requires frequent writes into the WAL, multiple
writes could be batched with no perceptible increase in
processing time. With a batching factor of 10, Book-
Keeper™ 1s able to persist data of 200K transactions per
second (“TPS”).

Processing a commit request 406 involves two parts,
checking the current volatile memory state for contlicts, and
changing the state based on a new commit. These two steps
must be performed atomically. The write mto the WAL
before updating the volatile memory state, i step 570 of
FIG. S, induces a non-trivial latency 1n service time. Thus,
in one embodiment, ReTSO 110 postpones writes mto the
WAL until after updating the volatile memory state, 1n step
570. The response T_C 408, to the user, however, 1s sent
only after the asynchronous write into the WAL terminates.
In the case ReTSO 110 crashes and loses 1ts volatile memory
state, the recovered volatile memory state from the WAL
encompasses all the changes that clients 120 have observed.

When processing queries associated with read transac-
tions, the state of ReTSO 110 volatile memory might have
values that must still be written to the WAL. In one embodi-
ment, to guarantee that the state 1s persisted, for each read
query, ReTSO 110 also performs a null write into the WAL
to flush the channel between ReTSO 110 and the WAL.
ReTSO 110 sends the rows to clients 120 or servers 130 only
alter receiving an acknowledgement from BookKeeper™,
which implies that all the previous pending writes into the
WAL have also been persisted. This step ensures that the
state observed by the read query is persisted into the WAL
and 1s amenable to recovery.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may nclude one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 7 1s a block diagram that illustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
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coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose
MICroprocessor.

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing immformation
and 1instructions to be executed by processor 704. Main
memory 706 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 704. Such nstruc-
tions, when stored in non-transitory storage media acces-
sible to processor 704, render computer system 700 into a
special-purpose machine that 1s customized to perform the
operations specified 1n the instructions.

Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 702 for
storing 1nformation and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 714, includ-
ing alphanumeric and other keys, 1s coupled to bus 702 for
communicating information and command selections to
processor 704. Another type of user mput device 1s cursor
control 716, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 704 and for controlling cursor
movement on display 712. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 1n response to
processor 704 executing one or more sequences of one or
more 1instructions contained i main memory 706. Such
instructions may be read into main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained 1 main
memory 706 causes processor 704 to perform the process
steps described heremn. In alternative embodiments, hard-
wired circuitry may be used in place of or 1n combination
with software 1nstructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation 1n a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 710.
Volatile media includes dynamic memory, such as main
memory 706. Common forms of storage media include, for
example, a tloppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
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For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 702. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

Various forms of media may be mnvolved in carrying one
or more sequences of one or more instructions to processor
704 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the nstruc-
tions 1nto 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and
use an 1nfra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 702. Bus 702 carries the data to main memory
706, from which processor 704 retrieves and executes the
instructions. The instructions recerved by main memory 706
may optionally be stored on storage device 710 erther before
or after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that 1s connected to a local network 722.
For example, communication interface 718 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receirves
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

Computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link 720 and communication interface 718. In the
Internet example, a server 730 might transmit a requested
code for an application program through Internet 728, ISP
726, local network 722 and communication interface 718.

The received code may be executed by processor 704 as
it 1s recerved, and/or stored in storage device 710, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the mven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to 1mple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
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the set of claims that i1ssue from this application, 1n the
specific form 1n which such claims 1ssue, including any
subsequent correction.

What 1s claimed 1s:

1. A system comprising:

ONne Or mMore processors;

a memory coupled to the one or more processors;

wherein the one or more processors, 1 conjunction with

the memory, implement:

a recent commits data store configured to maintain a set
of recent commit entries, each of which indicates a
commit timestamp of a committed transaction and a
row 1dentifier that identifies a row 1n a database
table;

a timestamp logic configured to generate a timestamp
that 1s not equal to any timestamp previously gen-
erated:

a transaction status logic, coupled to the recent com-
mits data store and the timestamp logic, and 1is
configured to:
recerve a first request for a starting timestamp to read

a set of one or more rows, and 1n response, return

a started timestamp generated by the timestamp

logic;

recetve a second request to commit an updated

version of the set of one or more rows, and 1n

response:

for each row 1n the set of one or more rows:
determine a particular row identifier for the
row;
query the recent commits data store for an entry
with the particular row 1dentifier and a commut
timestamp; and
determine whether the started timestamp 1s after
the commuit timestamp of the entry 11 the recent
commits data store returns the entry with a
commit timestamp;

receive a committed timestamp from the time-
stamp logic; and

return the committed timestamp.

2. The system of claim 1, wherein the transaction status
logic 1s further configured to receive the committed time-
stamp from the timestamp logic 1n response to determining
that no row 1n the set of one or more rows that has a row
identifier that 1s included 1n an entry of the set of recent
commit entries has a started timestamp that 1s before the
commit timestamp of any entry in the set of recent commut
entries that includes the row identifier of the row.

3. The system of claim 1, wherein:
the started timestamp 1s a first started timestamp;
the set of one or more rows 1s a first set of rows;
the first set of rows includes a particular row;
the transaction status logic 1s further configured to:

in response to receiving the second request, store a
particular entry in the set of recent commit entries for
the particular row, wherein the row 1dentifier 1s the
particular row 1dentifier for the particular row and
the commit timestamp 1s the committed timestamp;

receive a third request for a second starting timestamp
to read a second set of one or more rows, wherein the
second set of one or more rows ncludes the particu-
lar row;

in response to receiving the third request, receive a
second started timestamp generated by the time-
stamp logic;

receive a fourth request to commit an updated version
of the second set of one or more rows;
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in response to receiving the fourth request:
determine the row 1dentifier for the particular entry 1s

equal to the particular row 1dentifier for the par-
ticular row;
determine the second started timestamp 1s less than
the commit timestamp of the particular entry;
abort committing the second set of one or more rows.
4. The system of claim 3, wherein the transaction status
logic 1s configured to return a retry response as at least part
of aborting committing the second set of one or more rows.
5. The system of claim 3, wherein:
the first request and second request are received from a

first client computer; and
the third request and the fourth request are recerved from

a second client computer.

6. The system of claim 1, wherein:
the set of one or more rows comprises a first subset of
rows and a second subset of rows, wherein the first
subset of rows are stored on a first server and the
second subset of rows are stored on a second server;
and
the transaction status logic 1s further configured to, 1n
response to recerving the committed timestamp:
update the first subset of rows on the first server; and
update the second subset of rows on the second server.
7. The system of claim 1, wherein the transaction status
logic 1s further configured to:
alter receiving the committed timestamp, persist the par-
ticular row 1dentifier for each row in the set of one or
more rows and the committed timestamp to a write-
ahead log; and
alter persisting the particular row 1dentifier for each row
in the set of one or more rows and the committed
timestamp to the write-ahead log, return the committed
timestamp.
8. The system of claim 1, wherein:
the started timestamp 1s a first started timestamp;
the set of one or more rows 1s a first set of rows:
the first set of rows includes a particular row;
the transaction status logic 1s further configured to:
in response to receiving the second request, store a
particular entry in the set of recent commit entries for
the particular row, wherein the row identifier 1s the
particular row 1dentifier for the particular row and
the commit timestamp 1s the committed timestamp;
remove a subset of entries from the set of recent
commit entries, wherein the subset of entries
includes the particular entry;
determine a latest committed timestamp from among
the entries 1n the subset of entries, wherein the latest
committed timestamp 1s greater than or equal to the
commit timestamp of the particular entry;
update a maximum timestamp to indicate the latest
committed timestamp;
receive a third request for a second starting timestamp
to read a second set of one or more rows, wherein the
second set of one or more rows 1ncludes the particu-
lar row:
in response to receiving the third request, receive a
second started timestamp generated by the time-
stamp logic;
receive a fourth request to commit an updated version
of the second set of one or more rows;
determine the second started timestamp 1s less than the
maximum timestamp, and 1n response, abort com-
mitting the second set of one or more rows.
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9. The system of claim 8, wherein the transaction status
logic 1s further configured to store a set of start timestamp
entries 1n the recent commits data store, each of which
indicates a start timestamp of a transaction that has neither
committed nor aborted.

10. The system of claim 9, wherein the transaction status
logic 1s further configured to:

store a set of half-aborted entries, each of which indicates

a start timestamp of a transaction that has aborted;

for each entry 1n the set of start timestamp entries:

compare the start timestamp of said each entry with the
maximum timestamp,

add, to the set of half-aborted entries, an entry that
corresponds to said each entry 1f the maximum
timestamp 1s greater than the start timestamp of said
cach entry.

11. A method comprising:

maintaiming a set of recent commuit entries, each of which

indicates a commit timestamp of a committed transac-
tion and a row identifier that identifies a row 1 a
database table;

receiving a first request for a starting timestamp to read a

set of one or more rows;

in response to receiving the first request, generating a

started timestamp;

receiving a second request to commit an updated version

of the set of one or more rows;

in response to receiving the second request:

for each row 1n the set of one or more rows:
determiming a particular row 1dentifier for the row;
i the particular row identifier 1s equal to a row
identifier of an entry in the set of recent commuit
entries, then determining whether the started time-
stamp 1s aiter the commit timestamp of the entry;
generating a committed timestamp; and
returning the committed timestamp;

wherein the method 1s performed by one or more com-

puting devices.
12. The method of claim 11 further comprising generating
the commuitted timestamp in response to determining that no
row 1n the set of one or more rows that has a row 1dentifier
that 1s included 1n an entry of the set of recent commit entries
has a started timestamp that is before the commit timestamp
of any entry 1n the set of recent commit entries that includes
the row 1dentifier of the row.
13. The method of claim 11, wherein:
the started timestamp 1s a first started timestamp;
the set of one or more rows 1s a first set of rows;
the first set of rows 1ncludes a particular row;
further in response to recerving the second request:
storing a particular entry in the set of recent commat
entries for the particular row, wherein the row 1den-
tifier 1s the particular row 1dentifier for the particular
row and the commit timestamp 1s the committed
timestamp;
the method further comprising;:

receiving a third request for a second starting time-
stamp to read a second set of one or more rows,
wherein the second set of one or more rows includes
the particular row;

in response to recerving the third request, generating a
second started timestamp;

receiving a fourth request to commait an updated version
of the second set of one or more rows;
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in response to receiving the fourth request:
determining the row identifier for the particular entry

1s equal to the particular row 1dentifier for the
particular row;
determining the second started timestamp 1s less than
the commit timestamp of the particular entry;
causing to abort commaitting the second set of one or
more rows.

14. The method of claim 13, wherein causing to abort
committing the second set of one or more rows comprises
returning a retry response.

15. The method of claim 13 further comprising:

recerving the first request and second request from a first

client computer; and

receiving the third request and the fourth request from a

second client computer.
16. The method of claim 11 further comprising:
the set of one or more rows comprising a {irst subset of
rows and a second subset of rows, wherein the first
subset of rows are stored on a first server and the
second subset of rows are stored on a second server;
and
in response to receiving the committed timestamp:
updating the first subset of rows on the first server; and
updating the second subset of rows on the second
Server.
17. The method of claim 11, wherein:
alter generating the committed timestamp, persisting the
particular row 1dentifier for each row 1n the set of one
or more rows and the committed timestamp to a write-
ahead log; and
alter persisting the particular row 1dentifier for each row
in the set of one or more rows and the committed
timestamp to the write-ahead log, returning the com-
mitted timestamp.
18. The method of claim 11, wherein:
the started timestamp 1s a first started timestamp;
the set of one or more rows 1s a first set of rows:
the first set of rows includes a particular row;
the method further comprising:
storing, further in response to receiving the second
request, a particular entry 1n the set of recent commit
entries for the particular row, wherein the row 1den-
tifier 1s the particular row 1dentifier for the particular
row and the commit timestamp 1s the committed
timestamp;
removing a subset of entries from the set of recent
commit entries, wherein the subset of entries
includes the particular entry;
determining a latest committed timestamp from among
the entries 1n the subset of entries, wherein the latest
committed timestamp 1s greater than or equal to the
commit timestamp of the particular entry;
updating a maximum timestamp to indicate the latest
committed timestamp;
receiving a third request for a second starting time-
stamp to read a second set of one or more rows,
wherein the second set of one or more rows includes
the particular row;
in response to recerving the third request, generating a
second started timestamp;
receiving a fourth request to commit an updated version
of the second set of one or more rows;
determining the second started timestamp 1s less than
the maximum timestamp, and in response, aborting
committing the second set of one or more rows.
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19. The method of claim 18 further comprising:
storing a set of start timestamp entries, each of which
indicates a start timestamp of a transaction that has
neither committed nor aborted.
20. The method of claim 19 further comprising:
storing a set of half-aborted entries, each of which indi-
cates a start timestamp of a transaction that has aborted;
for each entry 1n the set of start timestamp entries:
comparing the start timestamp of said each entry with
the maximum timestamp,
adding, to the set of half-aborted entries, an entry that
corresponds to said each entry 1f the maximum
timestamp 1s greater than the start timestamp of said
cach entry.
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