12 United States Patent

Sundararaman et al.

US009946607B2

US 9.946,607 B2
Apr. 17,2018

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR STORAGE (56) References Cited
ERROR MANAGEMENT |
U.S. PATENT DOCUMENTS
(71) Applicant: SanDisk Technologies LL.C, Plano, TX
US) 4,571,674 A 2/1986 Hartung
(5,193,184 A 3/1993 Belsan et al.
(72) Inventors: Swaminathan Sundararaman, San (Continued)
Jose, CA (US); Nisha Talagala, - -
Livermore, CA (US); Eivind Sarto, FORBIGN PATENT DOCUMENTS
Oakland, CA (US); Shaohua Li, CN 1771495 5/2006
Shanghai (CN) EP 1418502 5/2004
_ (Continued)
(73) Assignee: SANDISK TECHNOLOGIES LLC,
Plano, TX (US) OTHER PUBLICATIONS
(*) Notice: Subject. to any disclaimer,. the term of this Tal, “NAND vs. NOR Flash Technology.” M-Systems, www?2.
%&‘[Selg ITSZXLenlfedOC;. adjusted under 33 electronicproducts.com/PrintArticle.aspx? ArticleURL=FEBMSY 1.
.. 154(b) by 0 days. feb2002.html, visited Nov. 22, 2010.
(21) Appl. No.: 14/878,635 (Continued)
(22) Filed: Oct. 8, 2015 o
Primary Examiner — Philip Guyton
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Kunzler, PC
US 2016/0259693 Al Sep. 8, 2016
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 62/128,456, filed on Mar. A storage layer stores integrity data corresponding to data
4, 2015. groups being written to a storage array. The storage layer
validates stored data groups by use of the integrity data,
(51) Int. Cl. independent of recovery information managed by the stor-
GO6F 11/00 (2006.01) age array. The storage layer preempts crash recovery opera-
Goor 11/14 _(2006'01) tions of the storage array by validating a subset of the data
(Continued) groups. The storage layer 1dentifies data groups to validate
(52) U.S. CL based on a location of a log append point within a storage
CPC ... GOoF 1171458 (2013.01); GO6F 11/1088 address space of the storage array. The storage layer may be
(2013.01); GO6F 17/30371 (2013.01); GOGK turther configured to mitigate write hole conditions by, inter
_ _ _ 22017505 (2013.01) alia, reconstructing invalid data of a data group and/or
(58) Field of Classification Search retaining valid portions of the data group.

CPC GO6F 11/1458; GO6F 11/1088; GO6F
11/1076; GO6F 17/30371

See application file for complete search history.

21 Claims, 17 Drawing Sheets

Append Data Groups to Storage Log
Maintained on a Storage Array

410

Store Integrity Data Corresponding to

Data Groups
420

Preempt Crash Recovery Operation of
Storage Array Controller
430

US 9,946,607 B2

Page 2
(51) Imt. CL 6,742,081 B2 5/2004 Talagala et al.
GOGF 17/30 (2006.01) 6,751,155 B2 6/2004 Gorobets
6,754,774 B2 6/2004 Gruner et al.
GO6l 11/10 (2006'01) 6,775,185 B2 8/2004 Fujisawa et al.
6,779,088 Bl 8/2004 Benveniste et al.
(56) References Cited 6,785,776 B2 8/2004 Arimilli et al.
6,785,785 B2 8/2004 Piccirillo et al.
U.S. PATENT DOCUMENTS 6,877,076 B1 4/2005 Cho et al.
' 6,880,049 B2 4/2005 GQGruner et al.
5261.068 A 11/1993 Gaskins et al. gﬂggggg g% %882 g‘?sbh‘di
5,307,497 A 4/1994 Feigenbaum et al. 6038 133 R 22005 Jrimors yt |
5,325,509 A 6/1994 Lautzenheiser SO _ onnson <1 al.
5307 477 A 7/1995 Rarrett et al 6,957,158 Bl 10/2005 Hancock et al.
5404 485 A 4/1995 Ran 6,959,369 B1 10/2005 Ashton et al.
S 43R 671 A /1005 Miles 6,981,070 Bl ~ 12/2005 Luk et al.
5,469,555 A 11/1995 Ghosh et al. 0,996,676 B2 2/2006 Megiddo
5400 354 A 3/1996 Aschoff et al. 7,010,652 B2 3/2006 Piccirillo et al.
555043882 A 4/1996 Chaj 7,010,662 B2 3/2006 Aasheim et al.
P - 7013376 B2 3/2006 Hooper, III
0,233,190 A 7/1996 Binford GOOE 1;/120/% 7.013379 Bl 3/2006 Testardi
5535399 A 7/1996 Blitz et al. ;ﬂgi’gﬂ?gﬁ g% ’;‘gggg %hi‘ﬂmg o
5553261 A 0/1996 Hasbun et al S alagala et al.
5526901 A 12/1996 ILasker ‘ 7.043.509 B1 5/2006 Ware et al.
5.504.883 A /1997 Pricer ;ﬂgg‘gggg Eé ggggg FZT& y
5,596,736 A 1/1997 Kerns 2058760 Bl <2006 [‘)W:‘falit *
5,598,370 A 1/1997 Nijima et al. 206> 704 R 62006 Taim ot al
5,651,133 A 7/1997 Burkes Dot aagea e e
5368Oﬁ579 A 10/1997 Youne et al 7,076,599 B2 7/2006 Aasheim et al.
S 622407 A 10/1997 Robifson | 7.082,495 B2 7/2006 DeWhitt et al.
5682499 A 10/1997 Bakke et al [osole Be yapoo fan etal
5701434 A 12/1997 Nakagawa 7,085,879 B2 8/2006 Aafs. eim et al.
5’745’792 A 4/1998 Tost 7,089,391 B2 8/2006 Geiger et al.
55754j563 A 5/1998 White 7,093,101 B2 8/2006 Aasheim et al.
5,757,567 A 5/1998 Hetzler et al. [ON0 e B a0 Modha
5.787.486 A 7/1998 Chin et al. 1307057 By 105006 Ros
5794253 A /1998 Norin et al. 17055 By 19007 Mawidda ef 4l
5,.802.602 A 0/1998 Rahman et al. 2171536 Ro 15007 leg‘ O ela*
5,809,527 A 9/1998 Cooper et al. 7j173ﬁ852 Ro 25007 G antg) et al.
5.809,543 A 9/1998 Byers 2181975 Ro 5 /2007 Wﬁo @i’[S
‘@10 - 181, msley
2,819,109 A L0/1998 Davisooooovn. GOOE l;/llo()/(fﬁ 7,194,577 B2 3/2007 Johnson et al.
o 7.194,740 B1 3/2007 Frank et al.
5,845,329 A 12/1998 Onishi et al. 7903 815 B 4/7007 Hrzilslwelel
5.930.815 A 7/1999 FEstakhri et al. POt
2057 158 A 51990 Volr of al 7.215,580 B2 5/2007 Gorobets
5060462 A 9/1999 Solomon et al. 7,219,238 B2 5/2007 Saito et al
/ 1stal et al 7,243,203 B2 7/2007 Scheuerlein
2*8?2’%3 i I%éggg iinjﬁ et al. 7246.179 B2 7/2007 Camara et al.
6073232 A 6/2000 Kroeker et al. 7,254,686 B2 82007 Islam
| / *h 7,275,135 B2 9/2007 Coulson
gr%ﬂg% g %880 D*K/Iﬂ; oW 7.280.536 B2 10/2007 Testardi
170047 R {2001 D“‘ 1dd 7.293.183 B2 11/2007 Lee et al.
173381 R 55001 DYZ 7,305,520 B2 12/2007 Voight et al.
185654 R 55001 V;’n Boren 7,328,307 B2 2/2008 Hoogterp
6"'2‘09’088 n B/ZOOT R . 7,340,558 B2 3/2008 Lee et al.
6936 503 R <5001 Hil;fg“:t . 7.340.566 B2 3/2008 Voth et al.
<995 1 * 7.356,651 B2 4/2008 Liu
g%gg*ggg g ;gggr E;%?f:;net al. 7360015 B2 4/2008 Matthews et al.
6289413 Bl 9/2001 Rogers et al. 7,366,808 B2 4/2008 Kano et al.
6370 647 B 172001 B 7,395,384 B2 7/2008 Sinclair
£330 688 R 1575001 BI’OW“ 7.398.348 B2 7/2008 Moore et al.
336174 R {12007 Lfoe‘fgl 7.437.510 B2 10/2008 Rosenbluth et al.
=I5 * 7.447.847 B2 11/2008 Louie et al.
6,356,986 B 3/2002 Solomon et al. SISt OUIC ©
6370631 B 4/7000 D 7,450,420 B2 11/2008 Sinclair et al.
325710 B 519003 Gyfdmﬂn | 7464221 B2 12/2008 Nakamura et al.
e Bl o000 M?nne et al. 7.487.235 B2 2/2009 Andrews et al.
T, ! . 7487320 B2 2/2009 Bansal et al.
6,412,080 Bl 6/2002 Fleming et al. allsdl ©
6418478 B- 7/2002 Ignatius et al 7,516,267 B2 4/2009 Coulson et al.
6.507.911 Bl 1/2003 Langford 7,526,614 B2 4/2009 Van Riel
6573 087 B2 29003 B 7,529,905 B2 5/2009 Sinclair
3100 R, 579003 D“ZSZ . 7.536.491 B2 5/2009 Kano et al.
6564785 Bl 5/2003 M}i/lls of 2l 7.552.271 B2 6/2009 Sinclair et al.
6587015 R 25003 Kim | 7.580,287 B2 872009 Aritome
6,601,211 Bl 7/2003 Norman 7,603,532 B2 10/2009 Rajan et al.
6.625.684 B 9/2003 Cho et al 7,610,348 B2 10/2009 Kisley et al.
6,625,685 B 9/2003 Cho et al. 7,620,773 B2 11/2009 Nicholson et al.
6,629,112 B 9/2003 Shank 7.640,390 B2 12/2009 Iwamura
6,658,438 B1 12/2003 Moore et al. 7.644,239 B2 12010 FErgan et al.
6,671,757 B1 12/2003 Multer et al. 7,664,239 B2 1/2010 Groff et al.
6,715,027 B2 3/2004 Kim et al. 7.660.911 B2 2/2010 McDaniel

US 9,946,607 B2

Page 3
(56) References Cited 2007/0016699 Al 1/2007 Minami
2007/0033325 Al 2/2007 Sinclair
U.S. PATENT DOCUMENTS 2007/0033326 Al 2/2007 Sinclair
2007/0033327 Al 2/2007 Sinclair
7660941 B2 2/2010 Lee et al. 2007/0033362 Al 2/2007 Sinclair
7,669,019 B2 2/2010 Fujibayashi et al. 2007/0043900 A1 2/2007 Yun
7,676,628 B1 3/2010 Compton et al. 2007/0050571 Al 3/2007 Nakamura
7,702,873 B2 4/2010 Griess et al. 2007/0061508 Al 3/2007 Zweighaft
7.721,059 B2 5/2010 Mylly et al. 2007/0069318 Al 3/2007 Chow et al.
7725.628 Bl 5/2010 Phan et al. 2007/0088666 Al 4/2007 Saito
7,831,783 B2 11/2010 Pandit et al. 2007/0106925 Al 52007 Moore
7,853,772 B2 12/2010 Chang et al. 2007/0118676 Al 5/2007 Kano et al.
7873782 B2 1/2011 Terry 2007/0118713 Al 5/2007 Guterman
7,873,803 B2 1/2011 Cheng 2007/0124540 Al 5/2007 van Riel
7882305 B2 2/2011 Moritoki 2007/0136555 Al 6/2007 Sinclair
7,904,647 B2 3/2011 Fl-Batal et al. 2007/0143532 Al 6/2007 Gorobets et al.
7913.051 Bl 3/2011 Todd et al. 2007/0143560 Al 6/2007 Gorobets
79017.803 B2 3/2011 Stefanus et al. 2007/0143561 Al 6/2007 Gorobets
7041,591 B2 5/2011 Aviles 2007/0143566 Al 6/2007 Gorobets
7,984,230 B2 7/2011 Nasu et al. 2007/0143567 Al 6/2007 Gorobets et al.
8.046.526 B2 10/2011 Yeh 2007/0150689 Al 6/2007 Pandit et al.
8.055.820 B2 11/2011 Sebire 2007/0156998 Al 7/2007 Gorobets
8.127.103 B2 2/2012 Kano et al. 2007/0198770 Al 8/2007 Horii et al.
8.135.000 B2 3/2012 Kunimatsu et al. 2007/0204128 Al 82007 Lee et al.
8.135.907 B2 3/2012 Moore 2007/0208790 Al 9/2007 Reuter et al.
8,151,082 B2 4/2012 Flynn et al 2007/0233937 Al 10/2007 Coulson et al.
8.171,204 B2 5/2012 Chow et al. 2007/0260608 Al 11/2007 Hertzberg et al.
8.214.583 B2 7/2012 Sinclair 2007/0261030 Al 11/2007 Wadhwa
8392428 Bl 3/2013 Bonwick et al. 2007/0263514 Al 11/2007 Iwata et al.
8.539.362 B2 11/2013 Braam et al. 2007/0266037 Al 11/2007 Terry et al.
8.627.005 Bl 1/2014 Bradford et al. 2007/0274150 Al 11/2007 Gorobets
2002/0069318 Al 6/2002 Chow et al. 2007/0300008 Al 12/2007 Rogers et al.
2002/0103819 Al 82002 Duvillier 2008/0010395 Al 12008 Mylly et al.
2002/0161855 Al 10/2002 Manczak et al. 2008/0052377 Al 2/2008 Light
2002/0181134 Al 12/2002 Bunker et al. 2008/0052477 Al 2/2008 Lee |
2003/0061296 Al 3/2003 Craddock et al. 2008/0091876 Al 4/2008 Fujibayashi et al.
2003/0120863 Al 6/2003 Lee 2008/0109090 Al 5/2008 Esmaili et al.
2003/0140051 A1~ 7/2003 Fujiwara et al. 2008/0109543 Al 5/2008 Abanami et al.
2003/0145230 Al 7/2003 Chiu et al. 2008/0120469 Al 5/2008 Kornegay
2003/0149753 Al 8/2003 Lamb 2008/0126507 Al 5/2008 Wilkinson
2003/0198084 Al 10/2003 Fujisawa et al. 2008/0126700 AL~ 5/2008 El-Batal et al.
2004/0003002 Al 1/2004 Adelmann 2008/0140737 Al 6/2008 Garst et al.
2004/0093463 Al 5/2004 Shang 2008/0155169 Al 6/2008 Hiltgen et al.
2004/0117586 Al 6/2004 Estakhri et al. 2008/0209090 Al 82008 Kano et al.
2004/0148360 Al 7/2004 Mehra et al. 2008/0229045 Al 9/2008 Qi
2004/0186946 Al 9/2004 Lee 2008/0235443 Al 9/2008 Chow et al.
2004/0268350 Al 12/2004 Hanes 2008/0243966 Al 10/2008 Croisettier et al.
7005/0002263 Al 1/2005 Twase et al. 2008/0263259 Al 10/2008 Sadovsky et al.
2005/0015539 A1 1/2005 Horii et al. 2008/0263305 Al 10/2008 Shu et al.
2005/0027951 Al 2/2005 Piccirillo et al. 2008/0263569 Al 10/2008 Shu et al.
2005/0066124 Al 3/2005 HOM wovvovevvveiinnn., GO6F 11/1076 2008/0276040 Al 11/2008 Moritoki
U 500007036 Al 32000 Temrick
- 1 etric
oonatr AL 0y Black 2009/0083478 Al 3/2009 Kunimatsu et al
5005/0177687 Al %7005 Rao 2009/0083485 Al 3/2009 Cheng
2005/0193166 Al 9/2005 Johnson et al. 2009/0089483 Al 4/2009 Tanaka et al.
2005/0216653 Al 9/2005 Aasheim et al. 2009/0089485 Al 4/2009 Yeh
2005/0240713 Al 10/2005 Wu et al. 2009/0125650 Al 5/2009 Sebire
2005/0246510 Al 11/2005 Retnamma et al. 2009/0125669 Al 52009 Gupta
2005/0257017 Al 11/2005 Yagi 2009/0125700 Al 5/2009 Kisel
2005/0268359 Al 12/2005 Mach et al. 2009/0150599 Al 6/2009 Bennett
2005/0273476 Al 12/2005 Wertheimer et al. 2009/0150605 Al 6/2009 Flynn et al.
2006/0004955 Al 1/2006 Ware et al. 2009/0150641 Al 6/2009 Flynn et al.
2006/0020744 A1 1/2006 Sinclair et al. 2009/0172257 Al 7/2009 Prins et al.
2006/0026339 Al 2/2006 Rostampour 2009/0228637 AL 9/2009 Moon
2006/0059326 Al 3/2006 Aasheim et al. 2009/0248763 Al 10/2009 Rajan
2006/0075057 Al 4/2006 Gildea et al. 2009/0249001 Al 10/2009 Narayanan et al.
2006/0085626 Al 4/2006 Roberson et al. 2009/0276588 Al 11/2009 Murase
2006/0129778 Al 6/2006 Clark et al. 2009/0276654 Al 112009 Butterworth
2006/0136657 Al 6/2006 Rudelic et al. 2009/0287887 Al 11/2009 Matsuki
2006/0143396 Al 6/2006 Cabot 2009/0292861 Al 11/2009 Kanevsky et al.
2006/0149893 Al 7/2006 Barfuss et al. 2009/0294847 Al 12/2009 Mori
2006/0179263 Al 8/2006 Song et al. 2009/0300277 Al 12/2009 Jeddeloh
2006/0184722 Al 8/2006 Sinclair 2009/0307424 Al 12/2009 Galloway et al.
2006/0190552 Al 8/2006 Henze et al. 2009/0313453 Al 12/2009 Stefanus et al.
2006/0224849 Al 10/2006 Islam et al. 2009/0327602 Al 12/2009 Moore et al.
2006/0236061 Al 10/2006 Koclanes 2009/0327804 Al 12/2009 Moshayedi
2006/0248387 Al 11/2006 Nicholson et al. 2010/0005228 Al 1/2010 Fukutomi
2006/0265636 Al 11/2006 Hummler 2010/0017556 Al 1/2010 Chin

US 9,946,607 B2
Page 4

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0023674 Al 1/2010 Awviles
2010/0023676 Al 1/2010 Moon
2010/0023682 Al 1/2010 Lee
2010/0030946 Al 2/2010 Kano et al.
2010/0076936 Al 3/2010 Rajan
2010/0095059 Al 4/2010 Kisley et al.
2010/0153617 Al 6/2010 Miroschnichenko et al.
2010/0169542 Al 7/2010 Sinclair
2010/0205231 Al 8/2010 Cousins
2010/0211737 Al 8/2010 Flynn et al.
2010/0235597 Al 9/2010 Arakawa
2010/0262738 Al 10/2010 Swing et al.
2010/0262740 A1 10/2010 Borchers et al.
2010/0262757 Al 10/2010 Sprinkle et al.
2010/0262758 Al 10/2010 Swing et al.
2010/0262759 A1 10/2010 Borchers et al.
2010/0262760 Al 10/2010 Swing et al.
2010/0262761 A1 10/2010 Borchers et al.
2010/0262762 A1 10/2010 Borchers et al.
2010/0262766 A1 10/2010 Sprinkle et al.
2010/0262767 Al 10/2010 Borchers et al.
2010/0262773 A1 10/2010 Borchers et al.
2010/0262894 Al 10/2010 Swing et al.
2010/0262979 A1 10/2010 Borchers et al.
2010/0263894 Al 10/2010 Swing et al.
2011/0022819 Al 1/2011 Post et al.
2011/0314218 Al1* 12/2011 Bert ...c.coovvvvevnnnn.. GO6F 11/108

711/114
2013/0067179 Al* 3/2013 Paleologu GOO6F 11/1076
711/159
2013/0166855 Al 6/2013 Batwara
2013/0246707 Al* 9/2013 Bourbonnais GO6F 11/1076
711/114
2013/0311990 A1 11/2013 Chuanbin et al.
2014/0108855 Al* 4/2014 Gopakumar GOO6F 11/1076
714/6.2
2014/0380130 Al 12/2014 Thatcher
2016/0170850 Al* 6/2016 Willhlams GOO6F 11/2069
714/6.23

FOREIGN PATENT DOCUMENTS

EP 1814039 3/2009
GB 0123416 9/2001
JP 4242848 8/1992
JP 8153014 6/1996
JP 2000259525 9/2000
JP 2009122850 6/2009
WO W01994019746 9/1994
WO WO 1995018407 7/1995
WO WO199612225 4/1996
WO W0O200201365 1/2002
WO W02004099989 11/2004
WO WO2005103878 11,2005
WO W02006062511 6/2006
WO W0O2006065626 6/2006
WO WO2008130799 3/2008
WO W0O2008070173 6/2008
WO W0O2008073421 6/2008
WO W0O201110639%94 9/2011

OTHER PUBLICATIONS

Terry et al., U.S. Appl. No. 60/797,127, “Filesystem-aware Block
Storage System, Apparatus, and Method,” filed May 3, 2006.

Van Hensbergen, “Dynamic Policy Disk Caching for Storage Net-
working,” IBM Research Division, RC24123 (W0611-189), Nov.
2006.

Volos, “Mnemosyne: Lightweight Persistent Memory”, ACM 978-
1-4503-0266-1/11/03, published Mar. 5, 2011.

Wacha, “Improving RAID-Based Storage Systems with Flash
Memory,” First Annual ISSDM/SRL Research Symposium, Oct.
20-21, 2009.

Walp, “System Integrated Flash Storage,” Microsoft Corporation,
2008, http://download.microsoft.com/download/5/E/6/5E66B27B-
988B-4F50-AF3A-C2FF1E62180F/COR-T559_ WHOS pptx,
Printed Apr. 6, 2010, 8 pgs.

Wikipedia, “Object Storage Device,” http://en.wikipedia.org/wiki/
Object-storage-device, last visited Apr. 29, 2010, 42 pgs.

Wright, “Extending Acid Semantics to the File System”, ACM
Transactions on Storage, vol. 3, No. 2, published May 1, 2011, pp.
1-40.

Wu, “eNVy: A Non-Volatile, Main Memory Storage System,” ACM
0-89791-660-3/94/0010, ASPLOS-VI Proceedings of the sixth
international conference on Architectural support for programming
languages and operating systems, pp. 86-97, 1994,

Yerrick, “Block Device,” http:// www.pineight.com/ds/block, last
visited Mar. 1, 2010.

Zhang et al., “De-indirection for Flash-based SSDs with Nameless
Wirites,” Usenix InFast 2012 (Feb. 14, 2012).

“Couchbase Server Manual 1.8,” Couchbase, pp. 157, Feb. 13,
2012.

Actel, “Actel Fusion FPGAs Supporting Intelligent Peripheral Man-
agement Interface (IPMI) Applications,” http://www.actel.com/
documents/Fusion_IPMI_AN.pdf, Oct. 1, 2006, visited Mar. 11,
2010.

Agigatech, “Bulletproof Memory for RAID Servers, Part 1,” http://
agigatech.com/blog/bulletproof-memory-for-raid-servers-part-1/,
last visited Feb. 16, 2010.

Anonymous, “Method for Fault Tolerance in Nonvolatile Storage”,
http://1p.com, IP.com number: IPCOMO000042269D, 2005.

Arl, “Performance Boosting and Workload Isolation in Storage Area
Networks with SanCache,” Hewlett Packard Laboratories, Proceed-
ings of the 23rd IEEE / 14th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST 2006), May 2006, pp.
263-27.

Arpaci-Dusseau, “Nameless Writes,” HotStorage *10, Boston, MA,
Jun. 2010.

Asine, “ASPMC-660 Rugged IDE Flash Drive PMC Module”,
http://www.asinegroup.com/products/aspmc660.html, copyright
2002, visited Nov. 8, 2009.

Barrall et al., U.S. Appl. No. 60/625,495, “Dynamically Expandable
and Contractible Fault-Tolerant Storage System Permitting Vari-
ously Sized Storage Devices and Method,” filed Nov. 5, 2004.
Barrall et al., U.S. Appl. No. 60/718,768, “Dynamically Adaptable
Fault-Tolerant Storage System,” filed Sep. 20, 2005.

BITMICRO, “BiTMICRO Introduces E-Disk PMC Flash Disk
Module at Military & Aerospace Electronics East 2004,” http://
www.bitmicro.com/press.sub, published May 18, 2004, visited Mar.
8, 2011.

Bonnet et al., “Flash Device Support for Database Management,”
published at the 5th Biennial Conference on Innovative Data
Systems Research (CIDR ’11), held in Asilomar, California, on Jan.
9-12, 2011.

Brandon, Jr., “Sparse Matrices in CS Education,” Journal of Com-
puting Sciences 1n Colleges, vol. 24 Issue 5, May 2009, pp. 93-98.
Clustered Storage Solutions: “Products,” http://www.clusteredstor-
age.com/clustered_storage solutions. HIML, last visited Feb. 16,
2010.

Coburn, “NV-Heaps: Making Persistent Objects Fast and Safe with
Next-Generation, Non-Volatile Memories”, ACM 978-1-4503-
0266-1/11/0, published Mar. 5, 2011.

Dan et al., “Implementing MLC NAND Flash for Cost-Effective,
High-Capacity Memory,” M-Systems, White Paper, 91-SR-014-02-
8L, Rev 1.1, Sep. 2003.

EEL-6892, Lecture 18, “Virtual Computers,” Mar. 2010.

ELNEC, “NAND Flash Memories and Programming NAND Flash
Memories Using ELNEC Device Programmers, Application Note,”
published Mar. 1, 2007.

Gal, “A Transactional Flash File System for Microcontrollers,”
2005 USENIX Annual Technical Conference, published Apr. 10,
20009.

Garfinkel, “One Big File Is Not Enough: A Critical Evaluation of the
Dominant Free-Space Sanitization Technique,” 6th Workshop on
Privacy Enhancing Technologies. Cambridge, United Kingdom,
published Jun. 1, 2006.

US 9,946,607 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Gutmann, “Secure Deletion of Data from Magnetic and Solid-State

Memory”, USENIX, 14 pages, San Jose, CA, published Jul. 1, 1996.
Van Hensbergen, IBM Research Report, “Dynamic Policy Disk
Caching for Storage Networking,” IBM Research Division, Com-
puter Science, RC24123 (W0611-189), Nov. 28, 2006.

Huflman, “Non-Volatile Memory Host Controller Interface,
(NVMHCI1) 1.0,” Intel, Apr. 14, 2008, 65 pgs.

Hynix Semiconductor, Intel Corporation, Micron Technology, Inc.
Phison FElectronics Corp., Sony Corporation, Spansion,
STMicroelectronics, “Open NAND Flash Interface Specification,”
Revision 2.0, Feb. 27, 2008.

Hystor: “Making SSDs the Survival of the Fittest in High-Perfor-
mance Storage Systems,” 1cs10-Paper 102, Feb. 2010.

IBM, “Method to Improve Reliability of SSD Arrays,” Nov. 2009.
Information Technology, “SCSI Object-Based Storage Device

Commands,” 2 (OSD-2), Project T10/1729-D, Revision 4, pub-
lished Jul. 30, 2004, printed Jul. 24, 2008.

Johnson, “An Introduction to Block Device Drivers,” Jan. 1, 1995.
Kawaguchi, “A Flash-Memory Based File System,” TCON’95

Proceedings of the USENIX 1995 Technical Conference Proceed-
ings, p. 13.

Mesnier, “Object-Based Storage,” IEEE Communications Maga-
zine, Aug. 2003, pp. 84-90.

Micron Technology, Inc., “NAND Flash 101: An Introduction to
NAND Flash and How to Design It in to Your Next Product
(TN-29-19),” http://www.micron.com/~/media/Documents/Prod-
ucts/Technical%20Note/NAND%20Flash/145tn2919 nand 101.
pdf, 2006, visited May 10, 2010.

Micron, TN-29-08: Technical Note, “Hamming Codes for NAND
Flash Memory Devices,” Mar. 10, 2010.

Micron, “TN-29-17: NAND Flash Design and Use Considerations,”
Mar. 10, 2010.

Micron, “TN-29-42: Wear-Leveling Techniques in NAND Flash
Devices,” Mar. 10, 2010.

Microsoft, “How NTFS Works,” Apr. 9, 2010.

Morgenstern, David, “Is There a Flash Memory RAID 1n your
Future?”, http://www.eweek.com—eWeek, Ziff Davis Enterprise
Holdings Inc., Nov. 8, 2006, visited Mar. 18, 2010.

Novell, “File System Primer”, http://wiki.novell.com/index.php/
File System_Primer, 2006, visited Oct. 18, 2006.

Plank, “A Tutorial on Reed-Solomon Coding for Fault Tolerance in
RAID-like System,” Department of Computer Science, University
of Tennessee, pp. 995-1012, Sep. 1997.

Porter, “Operating System Transactions,” ACM 978-1-60558-752-
3/09/10, published Oct. 1, 2009.

Probert, “Windows Kernel Internals Cache Manager,” Microsoft
Corporation, http://www.L.u-tokyo.ac jp/edwtraining/ss/lecture/
new-documents/Lectures/15-CacheManager/CacheManager.pdf,

printed May 15, 2010.

Ranaweera, 05-270R0O, SAT: Write Same (10) command (41h),
T10/05, Jul. 7, 2005, www.t10.org/ftp/t10/document.05/05-27010.
pdf, last visited Apr. 11, 2013.

Rosenblum, “The Design and Implementation of a Log-Structured
File System,” ACM Transactions on Computer Systems, vol. 10
Issue 1, Feb. 1992.

Samsung Electronics, “Introduction to Samsung’s Linux Flash File
System—RFS Application Note”, Version 1.0, Nov. 2006.

Sears, “Stasis: Flexible Transactional Storage,” OSDI ’06: 7th

USENIX Symposium on Operating Systems Design and Implemen-
tation, published Nov. 6, 2006.

Seltzer, “File System Performance and Transaction Support”, Uni-
versity of California at Berkeley, published Jan. 1, 1992.

Seltzer, “ITransaction Support 1n a Log-Structured File System”,
Harvard University Division of Applied Sciences, published Jan. 1,
1993 (Chapter 5, pp. 52-69).

Seltzer, “Transaction Support in Read Optimized and Write Opti-
mized File Systems,” Proceedings of the 16th VLDB Conference,
Brisbane, Australia, published Jan. 1, 1990.

Shimpi, Anand, The SSD Anthology: Understanding SSDs and New
Drives from OCZ, Mar. 18, 2009, 69 pgs.

Shu, “Data Set Management Commands Proposals for ATAS-
ACS2,” Dec. 12, 2007, http://www.tl13.org.Documents/Uploaded-
Documents/docs2008/e07154r6-

Data_Set_Management Proposal_for ATA-ACS2.pdf, printed Apr.
5, 2010.

Spansion, “Data Management Software (DMS) for AMD Simulta-
neous Read/Write Flash Memory Devices™, published Jul. 7, 2003.
Spillane “Enabling Transactional File Access via Lightweight Ker-
nel EXtensions™, Stony Brook Umiversity, IBM T. J. Watson
Research Center, published Feb. 25, 2009,

Non-Final Office Action for U.S. Appl. No. 14/253,645, filed Apr.
15, 2014, and dated Oct. 6, 2015, 18 pgs.

International Search Report and Written Opinion dated Mar. 14,
2016 for international application PCT/US2015/062473.

* cited by examiner

U.S. Patent Apr. 17,2018 Sheet 1 of 17 US 9,946,607 B2

100A
Storage Service Layer 102 To1
Storage Array 110 116 (TS
Array

Controller 132
120 .}
130{ 132A 132B

Storage Array 110 111 116 [TIIIE

Array
Controller

|__I

113A
-
115A {132A]

U.S. Patent Apr. 17,2018 Sheet 2 of 17 US 9,946,607 B2

100C

Storage Array 110

Array
Controller

FIG. 1C
1000 @ o) [

Storage Array 110 ' 111 116 D]III[E]
Array [138 /
Controller

N I e I
aon A qzsefl Wgsc v NI

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

U.S. Patent Apr. 17,2018 Sheet 3 of 17 US 9,946,607 B2

100E

Storage Array 110 ' 11 116 [T

oy
Controller

113A

115A {132A}

FIG. 1E
100F 102 100][100 | [100

Storage Array 110
Array

Controller Request Data g

120
1 30{ 132A 1328 132C - 132N

U.S. Patent Apr. 17,2018 Sheet 4 of 17 US 9,946,607 B2

Storage Service Layer 102 104 | [105

Validation Manager 106

Request Data 140

FIG. 1G

=y [

Storage Array 110

FIG. 1H

U.S. Patent Apr. 17,2018 Sheet 5 of 17 US 9,946,607 B2

Storage Service Layer 102

Validation Manager 106

Request Data 140

145 - 147 Reconstruction Request
Storage Array 110 — 116 [TITUL

FIG. 11

Storage Service Layer 102
6

Validation Manager 1

Request Data 140

Storage Array 110

Log Append Point
109

118
— N

116

FIG. 1J

U.S. Patent

Apr. 17,2018 Sheet 6 of 17

Generate Integrity Data
210

Recover from Invalid Shutdown of
Storage Engine

220

Replace Recovery Operation of
Storage Engine

230

FIG. 2

Store Checksum Values for Data Stripes
310

Validate Data Stripes Using Checksum
Values
320

Configure Storage Engine to Delegate
Crash Recovery
330

FIG. 3

US 9,946,607 B2

U.S. Patent Apr. 17,2018 Sheet 7 of 17 US 9,946,607 B2

4004 Append Data Groups to Storage Log
Maintained on a Storage Array
410

Store Integrity Data Corresponding to
Data Groups
420

Preempt Crash Recovery Operation of

Storage AIE Controller F I G . 4

500A 501~

Volatile Non-Volatile

Communication
Interface

Processing /O Stack

Memory Storage

Clients 502

Translation
105

Storage Service Layer Storage Resource
102 Manager 521
515

132~ 111
132A[1328132C] .. [132N},) 120 |

A

130 11122 || 128 || 112c| [112n]
FIG. 5A Storage Array 110

510

U.S. Patent Apr. 17,2018 Sheet 8 of 17 US 9,946,607 B2

--

]

92680, N-1)
088, N-1 } ¢

LID,...} LID,...) LID,...)

FI1G. 5D

530E —
132A 1328 132C 132N-1

539 {132A: LID,.. ;

132B: LID,...;
132C: LID ...
132N-1: LID....-

144)

U.S. Patent Apr. 17,2018 Sheet 9 of 17 US 9,946,607 B2

530F —¢

132A 1328 132C

{132A: LID,.. ;
132B: LID,.. ;
132C: LID,...;

132N-2: LID.. .-
144)

530G ¢
132A 132B 132C 132N-1

{132A: LID, SA,...;
132B: LID, SA,...;
132C: LID, SA,...;

132N-1: LID, SA..... FIG 5G

144)

U.S. Patent Apr. 17,2018 Sheet 10 of 17 US 9,946,607 B2

Invalidate portions of
stored data group,
retain valid portions

525 l

92681, N-2

i Rewrite Valid

Data

530J[1]—= N
™ ™\ 4

[538A [132B 132C] [132N-1]
530J[2]

132A 5388 [132C] 132N-1
530J[3] —4

132A 132B 538C 132N-1
e o '«.. r o J
530J[N-1]—a

ey y
132A 132B 132C 538N-1
L Y J

U.S. Patent Apr. 17,2018 Sheet 11 of 17 US 9,946,607 B2

600A
670
116 673
\ 671[1]]A;
130[1][A:
670[1]
673[3]
Ny (990
Uil
21[A
670[2] | I <lA
673[1] T
671[2]IN]
. Lisome
'ﬂ;g’#;*,ﬁ-ﬁ*#.
671(3](A
130[3][A
670[3]
673[2] '
—
130[3][P]
o7 1INIA]
130[N][A]
670[N]
673[Y]

1302][Al 130[3][A] 130[1][A] 130[N][A]
130[2][P] 130[3][P] é 130[1][P] 130INJP] |

655 B B EE " 3 BB s
S /I g -
\—',_/ E

670[2] 670 o . 60m ;

673[1] 673[2] 673[3] 673[Y]

U.S. Patent

b5 S S
ST
o e
VL
DAY,

s
oS

2
a

670{3]

670[N]

| ;

S

[EErres; v

Apr. 17, 2018

681

-

v

683

Sheet 12 of 17

Append Point 109,
Head 654 of Storage Log 650

L e 3 2 3 X E B B J N

L 3 3 3 L E B B 1L |

Lk A 2 8 8 B 3 F 8 3 B 2 R L K B N L. |

US 9,946,607 B2

U.S. Patent Apr. 17,2018 Sheet 13 of 17 US 9,946,607 B2

~
-
-

Clients 502

: Operating System ; | Virtualization: | File System | {Database: { Remote |

I [

Storage
Service Layer
102

132~

30 1

1

799

FIG. 7 R

132C: LID, SA,...;

132N-1: LID, SA....:
144A. ... 144N-1,
773)

U.S. Patent Apr. 17,2018 Sheet 14 of 17 US 9,946,607 B2

800A 501

: Volatile Non-Volatile Communication
Processing /O Stack
Memory Storage Interface
Clients 502
S U I T T B R S
i Operating System | | Virtualization: | File System | iDatabase | Remote {

132A-N-1 >

Storage Service Layer
102 EEEEn

Storage Resource Manager 521

515 815

” 830A |
FIG. 8A 4358: LD SA.
18434315;, 1448:

U.S. Patent Apr. 17,2018 Sheet 15 of 17 US 9,946,607 B2

—— 501
\

Processing Nﬁgt;\izgaetlle /O Stack CoanTeurP&:céitlon

Clients 502

Operatlng System Vlrtual|zat|0n Flle System Database= i Remote

Translation
(_%

Storage Service Layer
102

Ko J

-
—
]

330B
{132A: LID, SA,...;
132B: LID, SA,...;
132C: LID, SA

FIG : BB 132N-1: LI’D, SA

144A-N-1,
833)

U.S. Patent

Apr. 17,2018 Sheet 16 of 17

Store Integrity Data Corresponding to
Data Groups

210

Configure Storage Array to Delegate
Crash Recovery

920

FIG. 9

Identify Write Hole in Stored Data
Group in Response to Invalid
Shutdown
1010

Implement Write Hole Recovery
Operation(s)
1020

FIG. 10

Identify Write Hole in Stored Data
Group in Response to Invalid
Shutdown
1110

Reconstruct Stored Data Group
1120

FIG. 11

US 9,946,607 B2

U.S. Patent

Apr. 17,2018 Sheet 17 of 17

Maintain Ordered Log
1210

Select Stored Data Groups for
Validation
1220

Validate Selected Stored Data Groups
1230

FIG. 12

Journal Data Units for Storage
1310

ldentify Storage Error in Response to
Invalid Shutdown

1320

Recover Using Contents of Journal
Storage
1330

FIG. 13

US 9,946,607 B2

US 9,946,607 B2

1

SYSTEMS AND METHODS FOR STORAGE
ERROR MANAGEMENT

TECHNICAL FIELD

This disclosure relates to systems and methods for man-
aging storage and, 1n particular, to systems, methods, appa-
ratus, and interfaces for managing storage error conditions.

BACKGROUND

A storage array may comprise a set of two or more storage
devices, and may be used to increase the capacity, perfor-
mance, and reliability of storage services. A controller of the
storage array may be configured to write data on two or more
storage devices of the array with redundant, reconstruction
metadata, such as parity information. If one or more of the
write operations fails, the data stored on the array may be
incomplete and/or not correspond to the reconstruction
metadata (e.g., may result 1n a “write hole”). The storage
array controller may not be capable of detecting and/or
correcting such errors by use of the reconstruction metadata.
Moreover, use of the reconstruction metadata on the array to
correct such errors may result in further data corruption.
Theretfore, what are needed are systems, methods, apparatus,
and/or interfaces for storage error management.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a schematic block diagram of one embodiment
ol a system configured to manage storage errors;

FIG. 1B 1s a schematic block diagram of one embodiment
ol an operation to write a data group to a storage array;

FIG. 1C 1s a schematic block diagram of one embodiment
ol an operation to validate a data group stored on a storage
array;

FIG. 1D 1s a schematic block diagram of one embodiment
of an operation to resynchronize a data group stored on a
storage array.

FIG. 1E 1s a schematic block diagram of one embodiment
ol an operation to recover a portion of a data group stored
on a storage array;

FIG. 1F 1s a schematic block diagram of one embodiment
of a write hole 1n a storage array;

FIG. 1G 1s a schematic block diagram of one embodiment
ol a storage layer configured to write integrity data pertain-
ing to data groups;

FIG. 1H 1s a schematic block diagram of one embodiment
ol a storage layer configured to validate stored data groups
by use of mtegrity data;

FIG. 11 1s a schematic block diagram of another embodi-
ment of a storage layer configured to validate stored data
groups by use ol integrity data;

FIG. 1] 1s a schematic block diagram of one embodiment
ol a storage layer configured to validate data groups 1n a
storage log maintained on a storage array;

FIG. 2 15 a flow diagram of one embodiment of a method
for storage error management;

FIG. 3 1s a flow diagram of another embodiment of a
method for storage error management;

FIG. 4 15 a flow diagram of another embodiment of a
method for storage error management;

FIG. 5A 1s a schematic block diagram of another embodi-
ment of a system for managing storage errors;

FIG. 5B depicts embodiments of virtualization metadata
managed by a storage service layer;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5C depicts embodiments of a contextual data storage
format;

FIG. 3D depicts embodiments of a data set comprising
persistent metadata configured for storage as a data group on
a storage array;

FIG. SE depicts embodiments of a data set comprising
persistent metadata configured for storage as a data group on
a storage array,

FIG. SF depicts embodiments of a data set comprising,
persistent metadata configured for storage as a data group on
a storage array;

FIG. 3G depicts embodiments of a data set configured for
storage on a storage array and associated with a persistent
metadata entry 1n a metadata log;

FIG. SH depicts embodiments for invalidating a data
group that comprises a write hole;

FIG. 51 depicts embodiments for managing a write hole 1n
a stored data group;

FIG. 5] depicts embodiments of 1terative parity substitu-
tion operations;

FIG. 6 A depicts embodiments of a storage log of a storage
service layer;

FIG. 6B depicts further embodiments of a storage log of
a storage service layer;

FIG. 7 1s a schematic block diagram of another embodi-
ment of a system for managing storage errors;

FIG. 8A 1s a schematic block diagram of another embodi-
ment of a system for managing storage errors comprising
journal storage;

FIG. 8B is a schematic block diagram of another embodi-
ment of a system for managing storage errors by use of
journal storage;

FIG. 9 1s a flow diagram of another embodiment of a
method for managing storage errors;

FIG. 10 1s a flow diagram of another embodiment of a
method for managing storage errors;

FIG. 11 1s a flow diagram of one embodiment of a method
for recovering from a storage error;

FIG. 12 15 a flow diagram of one embodiment of a method
for managing storage errors by use of an order log; and

FIG. 13 15 a flow diagram of one embodiment of a method
for managing storage errors by use of journal storage.

DETAILED DESCRIPTION

A data services layer and/or module may be configured to
provide storage services to one or more clients by use of one
or more lower-level storage resources. The data services
layer may be configured to, inter alia, manage the storage
and retrieval of data units on the lower-level storage
resources. As used herein, storage resource refers to any
device, service, module, and/or layer capable of servicing
I/O and/or storage requests. Accordingly, a storage resource
may include, but 1s not limited to: a hard dnve (e.g.,
magnetic storage medium), battery-backed Random Access
Memory (RAM), solid-state storage medium, disk array
(e.g., a redundant array ol inexpensive disks (RAID)),
Storage Area Network (SAN), logical unit (e.g., a Small
Computer System Interface (SCSI) compliant storage
resource), virtual logical umit, software-defined storage
resources, and/or the like. A storage resource may comprise
physical storage media. A data unit refers to any quantum of
data. Accordingly, a data unit may include, but is not limited
to: a block, a sector, a segment, a page, a packet, a division,
and/or the like.

In some embodiments, the data services layer manages
storage and retrieval of data units on a storage array com-

US 9,946,607 B2

3

prising a plurality of storage elements. As used herein, a
storage array refers to a storage resource that comprises two
or more storage elements. A storage array may include, but
1s not limited to: a RAID, a hybrid RAID, a nested RAID,
a Just a Bunch of Disks (JBOD) storage system, a SPAN
storage system, a BIG storage system, a Massive Array of
Idle Drives (MAID), and/or the like. As used herein, a
storage element of a storage array may comprise any suit-
able storage resource including, but not limited to: a storage
medium, a plane, a die, a channel, a bank, a storage device,
a disk, and/or the like. The storage elements of a storage
array may be managed by an array controller, which may
include, but 1s not limited to: a controller, a storage control-
ler, a storage array controller, a software array controller, a
hardware array controller, a storage engine, a RAID con-
troller, a RAID storage engine, a RAID storage system, a
software RAID controller, a hardware RAID controller,
and/or the like. The array controller may be configured to
store “data groups” on storage elements of the storage array.
As used herein, a “data group” refers to a collection of two
or more data units configured for storage on diflerent respec-
tive storage elements of a storage array. In some embodi-
ments, the data units of a storage array may differ from data
units of an upper-level storage client (e.g., the data units of
the storage array may correspond to a storage granularity of
the underlying storage elements of the storage array). The
data units of a storage array data group may, thereiore,
correspond to storage element blocks, pages, sectors, pack-
ets, segments, and/or other storage locations of the storage
clements of the storage array.

In some embodiments, the array controller 1s configured
to store data groups on two or more different storage
clements of the storage array. The controller may be further
configured to store data groups redundantly by, inter alia,
mirroring data groups on two or more different storage
clements. Alternatively or in addition, the array controller
may be further configured to manage array metadata per-
taining to data groups being written to the storage array. As
used herein, “array metadata” refers to any metadata per-
taining to a data group being written to the storage array and
may 1include, but 1s not limited to: data configured for
validating the mtegrity of data stored on the storage array
(and/or read from the storage elements), such as a hash
value, parity data, a digest, a signature, a checksum, and/or
the like; error detection metadata for identifying error(s) in
stored data groups; error correction metadata for correcting
error(s) in stored data groups (e.g., error-correcting code
(ECC) metadata, such as an ECC encoding, ECC symbol
data, and/or the like); reconstruction data for reconstructing
portions of stored data groups (e.g., parity reconstruction
data); and/or the like. Accordingly, writing a data group to
the storage array may comprise a) generating array metadata
for the data group and b) performing a plurality of write
operations on different storage elements of the storage array.
An error 1n one or more of the write operations may result
in storage of an “incomplete™ or “corrupt” data group on the
storage array. As used herein, an “incomplete data group”
refers to a data group that 1s partially, but not completely,
written to the storage array. An incomplete data group may
refer to writing only a portion of a data group to the storage
array, such that other portions of the data group are not
written to the storage array. Writing an incomplete data
group may comprise writing a subset of the data umits of a
data group to the storage array (e.g., writing one or more
data units of the data group without writing one or more
other data umts of the data group to the storage array).
Alternatively, or in addition, an mcomplete data group may

5

10

15

20

25

30

35

40

45

50

55

60

65

4

refer to writing the data units of a data group without writing,
the corresponding array metadata. Accordingly, an “incom-
plete” data group may be referred to as a data group that
comprises a “‘write hole.” As disclosed above, a write hole
may result from an “invalid shutdown” condition. As used
herein, an “invalid shutdown” condition refers to any failure
and/or 1nterruption to a storage operation of the storage array
and can include, but 1s not limited to: power loss, power
interruption, power aberration, a crash condition an error
condition, an mterrupt, a crash, a fault, a hardware fault, a
soltware Tault, and/or any other condition other than a clean
shutdown of the storage array and/or a component thereof.
An invalid shutdown condition may correspond to an invalid
shutdown condition of the storage array (e.g., the storage
array controller), an invalid shutdown of a storage element,
an invalid shutdown of communication infrastructure of the
storage array, an invalid shutdown of an upper-level storage
client, an invalid shutdown of a computing system compris-
ing the storage array, a storage element and/or upper-level
storage client, and/or the like.

A storage service layer may be configured to identily
write holes by, inter alia, storing itegrity data pertaining to
storage operations performed on the storage array. The
integrity data may be separate from and/or independent of
array metadata managed by the storage array. As used
herein, “integrity data” may refer to any information, data,
and/or datum configured for verifying the integrity of data
written to a storage array (and/or read from the storage
array) and may include, but 1s not limited to: a hash value,
a digest value, a signature, a checksum, and/or the like. The
integrity data may be configured to validate the integrity of
a set of data units and/or data segments being written to the
storage array as a data group. In some embodiments, the
integrity data 1s configured to provide for validating respec-
tive data units and/or data segments of the data group. As
disclosed in further detail herein, a storage service layer may
use integrity data corresponding to stored data groups to
identify write holes within the data groups. The storage
service layer may be configured to replace, override, and/or
preempt existing recovery operations of the storage array.

Disclosed herein are embodiments of an apparatus for
managing storage errors, such as write holes 1n data groups
stored on a storage array. The apparatus may comprise a
storage service layer configured to generate integrity meta-
data corresponding to data being stored within respective
data groups by a storage engine. The storage engine may be
configured to store the data groups with reconstruction
metadata on a storage array. The apparatus may further
include a validation manager of the storage service layer that
1s configured to recover from an invalid shutdown of the
storage array by use of the integrity metadata, wherein the
storage service layer 1s configured to replace a recovery
operation of the storage engine by use of the validation
manager. In some embodiments, the storage engine 1s con-
figured to write data groups to a plurality of different storage
devices of the storage array, and the recovery operation of
the storage engine 1s configured to determine whether the
invalid shutdown resulted 1n partial storage of a data group
on the storage array, and wherein the validation manager 1s
configured to replace the recovery operation of the storage
engine by determining whether the invalid shutdown
resulted 1n incomplete storage of a data group on the storage
array by use of the integrity metadata. The wvalidation
manager may be configured to i1dentity an incomplete data
group stored on the storage array in response to a mismatch

US 9,946,607 B2

S

between integrity metadata generated for the data group and
integrity metadata derived from data read from the storage
array.

The apparatus may further comprise a recovery module
configured to 1nvalidate at least a portion of an incomplete
data group i1dentified by the validation manager. The recov-
ery operation of the storage engine may comprise validating
a set of stored data groups by use of the reconstruction
metadata stored with the respective data groups on the
storage array. The validation manager may be configured to
replace the recovery operation ol the storage engine by
validating a subset of the data groups stored on the storage
array. In some embodiments, the apparatus comprises a log
storage module configured to write data to an append point
ol a storage log on the storage array by use of the storage
engine. The verification module may be configured to vali-
date a data group corresponding to the append point of the
storage log 1n response to the ivalid shutdown.

In some embodiments, the apparatus comprises a coordi-
nation module configured to direct the storage engine to
delegate recovery from the invalid shutdown of the storage
array to the storage layer. The coordination module may be
configured to prevent the storage engine from implementing
a resynchronization operation in response to the mnvalid
shutdown, wherein the resynchronization operation com-
prises the storage engine validating data groups stored on the
storage array by use of the reconstruction metadata stored
with the data groups by the storage engine.

Disclosed herein are embodiments of a system for man-
aging storage errors. The disclosed system may comprise a
storage layer that stores integrity data corresponding to data
being stored within respective data stripes of a RAID storage
system, wherein the stored data stripes comprise parity
reconstruction data generated by the RAID storage system,
a crash recovery module of the storage layer that validates
data stripes of the RAID storage system by use of the stored
integrity data 1n response to an invalid shutdown of the
RAID storage system, and a storage coordination module of
the storage layer configured to perform crash recovery
pertaining to the mvalid shutdown in place of the RAID
storage system.

The storage coordination module may be configured to
block performance of a crash recovery operation by the
RAID storage system in response to the invalid shutdown. In
some embodiments, the storage coordination module 1s
configured to notily the RAID storage system that the
storage layer 1s configured to identify data stripe write
errors, wherein the crash recovery module 1s configured to
identify a data stripe write error by comparing stored integ-
rity data of the data stripe to integrity data generated from
the stored data stripe read from the RAID storage system.
The RAID storage system may be configured to implement
a resynchronization operation in response to the invalid
shutdown and the storage coordination module may be
configured to transmit a message to the RAID storage
system 1n response to the invalid shutdown to prevent the
RAID storage system from implementing the resynchroni-
zation operation.

The integrity data of a stored data stripe may comprise an
integrity datum corresponding to each of a plurality of data
units within the stored data stripe. The crash recovery
module may be configured to invalidate a particular one of
the data units in response to a mismatch between the stored
integrity datum of the particular data unit and an integrity
datum derived from the particular data unit within the stored
data stripe, and to rewrite one or more other data units within

10

15

20

25

30

35

40

45

50

55

60

65

6

the stored data stripe in response to validating the stored
integrity data of the one or more other data units.

Disclosed herein are embodiments of a method for man-
aging storage errors. The disclosed method may comprise
appending data groups to a storage log maintained on a
storage array by use of a storage array controller, wherein
the storage array controller 1s configured to store the data
groups within respective data stripes on the storage array, the
data stripes comprising reconstruction metadata generated
by the storage array controller, storing checksum values
corresponding to the data groups stored within the respective
data stripes on the storage array, and preempting a crash
recovery operation of the storage array controller in
response to an invalid shutdown of the storage array,
wherein preempting the crash recovery operation comprises
validating a data stripe at the head of the storage log on the
storage array by use of the stored checksum values corre-
sponding to the data groups stored within the respective data
stripes on the storage array.

Embodiments of the disclosed method may further com-
prise 1dentiiying the data stripe at the head of the storage log
in response to the invalid shutdown, and comparing a
checksum value derived from the 1dentified data stripe to the
stored checksum value corresponding to the i1dentified data
stripe. In some embodiments, the method further includes

invalidating the stored data stripe 1n response to a mismatch
between the checksum value derived from the 1dentified data
stripe and the stored checksum value. The data stripe at the
head of the storage log may comprise a plurality of data
blocks mapped to respective addresses of a logical address
space. The method may further comprise invalidating asso-
ciations between the data stripe and the respective addresses

in response to a mismatch between the checksum value
derived from the identified data stripe and the stored check-
sum value.

Storing the checksum values may comprise appending
mapping entries comprising the checksum values to a meta-
data log maintained on a storage device that 1s independent
of the storage array, wherein the mapping entries associate
data blocks within the respective data stripes with respective
logical addresses of a logical address space. Alternatively,
storing the checksum value of a data stripe may comprise
including the checksum value 1n the data group stored within
the data stripe on the storage array. The stored checksum
values of the data stripes may comprise respective checksum
values for each of a plurality of data segments within the
respective data stripes. Validating the i1dentified data stripe
may comprise validating the respective checksum values of
the data segments within the identified data stripe. The
method may further include imnvalidating a first data segment
within the identified data stripe 1n response to a checksum
mismatch pertaining to the first data segment, and rewriting
a second data segment within the identified data stripe to a
different data stripe on the storage array in response to
validating the second data segment by use of the stored
checksum value of the second data segment.

FIG. 1A 1s a schematic block diagram of one embodiment
of a system 100A comprising a storage array 110. The
storage array 110 comprises a plurality of storage elements
112A-N. The array controller 120 may be configured to
manage storage operations pertaining to the storage array
110, which may comprise managing data storage and/or
retrieval operations on the respective storage elements
112A-N. In one embodiment, the storage array 110 com-
prises a RAID storage system. The array controller 120 may,
therefore, comprise a software RAID controller, a hardware

US 9,946,607 B2

7

RAID controller, a RAID storage engine, a RAID storage
driver, a RAID storage service, and/or the like.

As disclosed above, the storage elements 112A-N may
include respective storage devices, disks, storage channels,
storage media, respective storage planes and/or die of a
storage medium, storage channels, storage banks, and/or the
like. The storage elements 112A-N may comprise respective
storage media 114, comprising storage locations 115 capable
of storing respective data units, as disclosed herein. In some
embodiments, the storage elements 112A-N comprise
respective storage element controllers 113A-N configured
to, inter alia, manage data storage and/or retrieval operations
on the storage locations 115.

In some embodiments, the storage array 110 1s configured
to provide storage services through, inter alia, an interface
111. The interface 111 of the storage array 110 may include,
but 1s not limited to: a storage interface, a block storage
interface, a block storage device interface, a storage system
interface, a RAID storage interface, a RAID storage engine,
an object storage interface, a direct file interface, a database
storage interface, a key-value storage interface, a storage
engine, a network storage protocol interface, a custom
interface, a driver, a library, an Application Programming
Interface (API), and/or the like. The storage array 110 may
comprise a storage address space 116 configured to, inter
alia, provide for referencing storage resources of the storage
array 110. The storage address space 116 may comprise
storage addresses corresponding to respective storage loca-
tions 115 of the respective storage elements 112A-N. Alter-
natively, or in addition, the storage address space 116 may
comprise storage addresses configured to reference data
groups 130 (and/or oflsets within data groups 130) stored on
storage array 110, as disclosed in further detail herein.

The system 100A may further comprise a storage service
layer 102 configured to perform data storage and/or retrieval
operations on the storage array 110 (by use of a coordination
module 101). The storage service layer 102 (and/or the
components thereol) may be embodied as hardware com-
ponents of a computing device, such as a circuit, an inte-
grated circuit, an Application-Specific Integrated Circuit
(ASIC), programmable hardware, a Programmable Logic
Array (PLA), a Field Programmable Gate Array (FPGA),
controller hardware, storage controller hardware, and/or the
like. Accordingly, 1n some embodiments, the storage array
102 may be referred to as a storage circuit, a storage service
circuit, storage hardware, and/or the like. Alternatively, or 1n
addition, portions of the storage service layer 102 (and/or the
components thereol) may be embodied as instructions stored
on a machine-readable storage medium, such as a magnetic
hard disk, solid-state storage device, non-volatile storage
medium, volatile storage medium, optical storage device,
and/or the like. In some embodiments, portions of the
storage service layer 102 are embodied as instructions
configured for execution by specific types of hardware, such
as firmware, an FPGA, an FPGA bitstream, PLA configu-
ration data, and/or the like. Accordingly, 1n some embodi-
ments, portions of the storage service layer 102 (and/or
components thereol) comprise read only data stored on a
particular hardware device (e.g., stored on a Read Only
Memory (ROM), an Frasable Programmable Read Only
Memory (EPROM) and/or the like). The instructions of the
storage service layer 102 may be executed and/or interpreted
by a machine to implement functionality disclosed herein.
Portions of the storage service layer 102 (and/or the com-
ponents thereol) may comprise: a kernel-level module, a
user-space module, a drniver-level module, a driver, an 1/O
controller, an I/O manager, an I/O layer, an I/O service, a

10

15

20

25

30

35

40

45

50

55

60

65

8

storage driver, a storage manager, a storage layer, a soft-
ware-defined storage layer, a SCSI module, a library, a
shared library, a loadable library, a dynamic-link library
(DLL) library, a device driver, a device driver interface
(DDI) module, a logical device driver (LDD) module, a
physical device driver (PDD) module, a windows driver
foundation (WFD) module, a user-mode driver framework
(UMDF) module, a kernel-mode driver framework (KMDF)
module, an I/O Kit module, a uniform driver intertace (UDI)
module, storage device interface (SDI) module, a software
development kat (SDK) and/or the like.

The storage service layer 102 may comprise a logical
address space 104 comprising a plurality of logical
addresses. As disclosed 1n further detail herein, the storage
service layer 102 may perform storage operations pertaining
to the logical address space 104 by use of one or more
storage resources, such as the storage array 110. The storage
service layer 102 may 1ssue requests pertaining to data of the
logical address space through, inter alia, the interface 111 of
the storage array 110. The storage service layer 102 may be
configured to service storage requests pertaining to logical
addresses of the logical address space 104 by use of the
storage array 110. The storage service layer 102 may be
further comprise a translation layer 105 configured to asso-
ciate logical addresses of the logical address space 104 with
storage locations, such as storage addresses of the storage
address space 116. The translation layer 105 may be con-
figured to map data of a particular logical address to a
storage address on the storage array 110. Accordingly, the
translation layer 105 of the storage service layer 102 may
maintain contextual metadata pertaining to data stored on
the storage array 110.

The array controller 120 may be configured to service
write requests directed to the storage array 110 by, inter alia,
writing data ol the requests (data 140) on the storage
clements 112A-N. The array controller 120 may be config-
ured to store data in respective data groups 130, on the
storage array 110. As used herein, a “data group™ 130 refers
to a collection of two or more data units 132, configured for
storage on different respective storage elements 112A-N.
The data units 132 may be configured for storage within
respective storage locations 115 of the storage elements
112A-N (e.g., the data units 132 may be sized in accordance
with the underlying storage blocks, pages, and/or segments
of the storage elements 112A-N). Accordingly, writing
data group 130 to the storage array 110 may comprise a
plurality of separate write operations on diflerent respective
storage elements 112A-N. As illustrated mn FIG. 1A, the
array controller 120 may be configured to write data groups
130 comprising N data units 132 (e g, data units 132A-N),
such that each data unmit 132A-N 1s written to a different
respective storage element 112A-N. The array controller 120
may write data unit 132A to storage element 112A, write
data unit 132B to storage element 112B, and so on (e.g.,
write data umit 132N to storage element 112N). The array
controller 120 may be further configured to store data groups
130 redundantly by, inter alia, writing multiple copies of the
data group 130 (and/or particular data unit 132 thereot) to
different storage elements 112A-N and/or different storage
resources (not shown). Although particular embodiments of
data groups 130 are described herein, the disclosure 1s not
limited in this regard, and could be adapted for use with data
groups 130 comprising any number of data unit(s) 132
configured for storage in any suitable arrangement on the
storage elements 112A-N of the storage array 110.

In some embodiments, the array controller 120 1s config-
ured to manage array metadata 134 pertaining to the data

US 9,946,607 B2

9

groups 130 stored on the storage array 110. As disclosed
above, array metadata 134 refers to any metadata pertaining
to a data group 130 being written to the storage array 110 and
may 1include, but 1s not limited to: data configured for
validating the integrity of data stored on the storage array
(and/or read from the storage elements), such as a hash
value, a digest, a signature, a checksum, and/or the like;
error detection metadata for 1identifying error(s) 1n a stored
data group 130; error correction metadata for correcting
error(s) 1n a stored data group 130; reconstruction data for
reconstructing portions of a stored data group 130 (e.g.,
parity reconstruction data); and/or the like. The array con-
troller 120 may be configured to store array metadata 134 of
a data group 130 within the data group 130 1itself (e.g., as a
data unit 132 of the data group 130). Alternatively, the array
controller 120 may write array metadata 134 of a data group
130 to a separate storage location within the storage array
110 and/or to another storage resource.

In the FIG. 1A embodiment, the array controller 120 1s
configured to write array metadata 134 as a data unit 132N
within the data group 130. Accordingly, a data group 130
may comprise data units 132A-N-1 used to store data of a
write request (data 140), and other data units to store array
metadata 134 (e.g., data unit 132N) In some embodiments,
the array metadata 134 comprises parity reconstruction data
derived from the contents of the other N-1 data units 132 of
the data group 130 (e.g., the array metadata 134 may
comprise parity reconstruction data dertved from the con-
tents of data units 132A-132N-1). The array metadata 134
of data unit 132N may be calculated by an XOR operation
on the contents of data units 132A-N-1 (e.g., the array
metadata 134 may be generated as the product of: data unit
132AXOR data unit 132BXOR data unit 132C . . . XOR data
unit 132N-1). The disclosure 1s not limited 1n this regard,
however, and may be adapted for use with a storage array
110 configured to store data groups 130 and/or array meta-
data 134 1n any suitable storage location and/or arrange-
ment. In some embodiments, the array controller 120 may be
configured to generate array metadata 134 for storage in a
plurality of the data units 132 of a data group 130 (e.g., two
or more data units 132 of the data group 130 may be used
to store SAI data 134 of the data group). Alternatively, or in
addition, the array controller 120 may be configured to store
SAI data 134 1n different data units 132A-N of a data group
130 (e.g., rotate the location of the SAI data 134 1n respec-
tive data groups 130), store SAI data 134 1n a separate
storage location and/or storage resource, and/or the like.
Accordingly, the storage array 110 may be configured to
implement any suitable RAID level comprising any suitable
type of redundancy and/or mirrored storage configuration.
Accordingly, 1n some embodiments, the data groups 130
may comprise RAID data stripes and the array metadata 134
of the data groups 130 may comprise RAID reconstruction
data.

The array controller 120 may write data groups 130 to the
storage array 110 by, inter alia, 1ssuing a plurality of write
requests to respective storage elements 112A-N. As 1llus-
trated 1in the schematic block diagram 100B of FIG. 1B, the
storage controller 120 writes a data group 130 comprising
data units 132A-N by 1ssuing a write request 133 A to storage
clement 112A (to write data umt 132A on storage location
115A); a write request 133B to storage element 112B (to
write data unit 132B on storage location 115B); a write
request 133C to storage element 112C (to write data umit
132C on storage location 1135C), and so on (write request
133N to storage element 112N to write the array metadata
134 of data unit 132N on storage location 115N).

10

15

20

25

30

35

40

45

50

55

60

65

10

The array controller 120 may be configured to manage the
integrity of data groups 130 stored on the storage array 110
by use of a recovery module 122. The recovery module 122
may be configured to implement one or more crash recovery
and/or data validation operations, which may include, but
are not limited to: resynchronization operations to resyn-
chronize array metadata 134 of one or more stored data
groups 130, rebuild operations to reconstruct the contents of
one or more data unmts 132 of a stored data group 130 by use
of other data unit 132 of the stored data group 130 and/or the
array metadata 134 of the stored data group 130, and the
like.

The recovery module 122 may be configured to validate
a stored data group 130 by a) accessing data of the stored
data group 130 (e.g., data unit 132A-N) and/or stored array
metadata 134, and comparing the accessed data to the array
metadata 134 of the data group 130. In the FIG. 1C embodi-
ment, the data unit 132N of the data group 130 may
comprise array metadata 134 dernived from the contents of
other data units 132A-N-1 (e.g., by use of a XOR operation
on data units 132A-N-1, as disclosed herein). The recovery
module 122 may validate the stored data group 130 by a)
accessing the data unit 132A-N of the data group 130
(including the array metadata 134 of data group 130), b)

calculating validation data 136 by use of the data units
132A-N-1 (e.g., by an XOR calculation on the accessed data

units 132A-N-1, such that validation data 136=data unit
132AXOR data unit 132BXOR data unit 132C . . . XOR data
umt 132N-1), and ¢) comparing the validation data 136 to
the accessed array metadata 134. The validation failure may
not indicate the nature of the error, such as which data unit(s)
132 comprise mvalid data 131. Moreover, since the storage
array 110 does not have access to contextual information
pertaining to the data group 130, such as the logical
addresses associated with data umts 132 of the data group
130, the storage array 110 may be unable to adequately
handle the write hole.

Referring to the schematic block diagram 100D of FIG.
1D, the array controller 120 may be configured to resyn-
chronize a stored data group 130 (using the recovery module
122) by a) accessing data unit 132A-N-1 of the stored data
group 130, b) deriving replacement array metadata 138 from
the contents of the accessed data, and ¢) writing the replace-
ment array metadata 138 to the storage array 110, which may
comprise 1ssuing a write request 137 to write the replace-
ment array metadata 138 to one or more storage elements
112 A-N. The write request 137 may be configured to replace
and/or overwrite the array metadata 134 originally stored
with the data group 130. Accordingly, in the FIG. 1D
embodiment, the replacement array metadata 138 may be
configured to overwrite the contents of storage location
115N. Alternatively, the replacement array metadata 138
may be written to a diflerent storage location, and the array
controller 120 may remap the array metadata 134 of the
stored data group 130 to the different storage location.
Referring to the schematic block diagram 100E of FIG. 1FE,
the array controller 120 may be configured to reconstruct the
contents of one of the data unit 132 of a stored data group
130 by use of other data unit 132 of the stored data group
130 and/or the array metadata 134. In the FIG. 1E embodi-
ment, the recovery module 122 reconstructs the contents of
a data unit 132B by a) accessing other data units 132A and
132C-N of the stored data group 130 (including array
metadata 134 of data unit 132N) by use of respective read
requests 135A, 135C-N, b) generating the replacement data
138 for the data unit 132B by use of the accessed data (by
an XOR calculation, wherein replacement data 138 of data

US 9,946,607 B2

11

unit 132B=data unit 132AXOR data unit 132C . . . XOR data
unit 132N). The recovery module 122 may be further
configured to write the replacement data 138 to the storage
array 110 (by issuing a write request 137, as disclosed
herein). The write request 137 may be configured to over-
write the original contents of data unit 132B (at storage
location 115B). Alternatively, the write request 137 may be
configured to write the replacement data 138 to a different
storage location, as disclosed herein). Although FIGS.
1C-1D depict particular embodiments of recovery opera-
tions of the storage array 110, the disclosure i1s not limited
in this regard and could be adapted for use with a storage
array 110 configured to implement any suitable type of crash
recovery operation pertaining to data groups 130 stored in
any suitable configuration (and/or with any type and/or
configuration of array metadata 134).

Referring back to FIG. 1B, writing a data group 130 to the
storage array 110 may comprise 1ssuing a plurality of write
requests 133A-N to different respective storage elements
112A-N (through respective storage element controllers
113 A-N). An error 1n completing one or more of the write
requests 133A-N may result in storage of an mcomplete
and/or corrupt data group 130. As used herein, an incom-
plete data group 130 refers to a data group 130 1n which one
or more of the data units 132 A-N were not correctly written
to a storage element 112A-N (and/or 1n which separate array
metadata 134 was not correctly stored). Accordingly, an
incomplete data group 130 may refer to a data group 130 that
comprises a “write hole.” A write hole may result from an
error 1n a lower level of the storage array 110, such as a
“silent” error that occurs 1 one or more of the storage
clements 112A-N (and/or i1s not reported to the array con-
troller 120). Alternatively, or 1n addition, a write hole may
result from an invalid shutdown condition. As used herein,
an invalid shutdown may include, but 1s not limited to: an
invalid shutdown of the storage array 110, a crash of the
storage array 110, an invalid shutdown of one or more of the
storage elements 112A-N, a crash of one or more of the
storage elements 112A-N, an invalid shutdown of the array
controller 120, a crash of the array controller 120, and/or the
like.

In the FIG. 1B embodiment, an invalid shutdown during
execution of the write operation 133B (and after completion
of other write operations 133A and 133C-N) may result in a
write hole 1n the stored data group 130. The array controller
120 may not be capable of detecting and/or correcting write
hole conditions. Read operations pertaining to a stored data
group 130 comprising a write hole may result 1n returning
invalid and/or corrupt data. Moreover, array recovery opera-
tions 124 implemented by the array controller 120 may not
only fail to identify write holes, but could propagate corrupt
data within the storage array 110. Resynchronizing a stored
data group 130 comprising a write hole may result in writing
invalid replacement array metadata 138 to the data group
130. Similarly, reconstructing data of a stored data group
130 comprising a write hole may result 1n additional data
corruption within the stored data group 130.

FIG. 1F 1s a schematic block diagram of one embodiment
of a system 100F comprising a storage service layer con-
figured to manage storage operations of a storage array 110.
In the FIG. 1F embodiment, an mvalid shutdown (or other
error condition) occurs while writing data unit 132B to
storage element 112B. Accordingly, the storage location
115B comprises invalid data 131 rather than the contents of
data unit 132B. Other write requests 133 A and 133C-N may
complete successiully with the storage of data unit 132A and
132C-N to respective storage elements 112A and 112C-N.

10

15

20

25

30

35

40

45

50

55

60

65

12

The storage array 110 may detect the invalid shutdown
condition that resulted in the write hole and, 1n response,
may execute one or more array recovery operations 124,
which may include, but are not limited to: resynchronizing
one or more stored data groups 130, recovering data of one
or more data groups 130, and/or the like. The array recovery
operations 124 may consume substantial 1/0O resources, and
may result 1 propagating data corruption within the storage
array 110. In some embodiments, the array recovery opera-
tions 124 comprise resynchromzing all of the stored data
groups 130 on the storage array 110. Storage services of the
storage array 110 may be unavailable while the array recov-
ery operations 124 are implemented. In embodiments com-
prising large capacity storage elements 112A-N, resynchro-
nizing the storage array 110 may take a considerable amount
of time and/or consume a large amount of I/O resources. As
disclosed above, resynchromizing a stored data group 130
may comprise a) accessing stored data of the data group 130,
including the mvalid data 131 on storage location 113B, b)
calculating replacement array metadata 138, and c¢) writing
the replacement array metadata 138 to the storage array 110.
Accordingly, the replacement array metadata 138 may incor-
porate the invalid data 131 of data unit 132B (replacing the
valid array metadata 134). Similarly, an operation to read
and/or reconstruct one of the other data umt 132A and/or
132C-N-1 may result i reconstructing invalid data due to,
inter alia, use of the corrupt data 131 of data unit 132B.

Referring back to FIG. 1A, the system 100A may further
comprise a storage service layer 102 configured to access the
storage array 110 through an interface 111 of the storage
array 110, and by use of a coordination module 101. The
interface 111 of the storage array 110 may include, but 1s not
limited to: a storage interface, a block storage interface, a
block storage device interface, a storage system interface, a
RAID storage interface, a RAID storage engine, an object
storage interface, a direct file interface, a database storage
interface, a key-value storage interface, a storage engine, a
network storage protocol interface, a custom interface, a
driver, a library, an Application Programming Interface
(API), and/or the like. The storage service layer 102 may be
configured to perform data storage and/or retrieval opera-
tions on the storage array 110 through the interface 111 by,
inter alia, 1ssuing requests to write data to the storage array
110, such as the data 140, 1ssuing requests to read data from
the storage array 110, and so on.

The storage layer 102 may further comprise a validation
manager 106 configured to validate data 140 written to the
storage array 110 (e.g., validate data units 132A-N-1 stored
within a data group 130). The validation manager 106 may
be configured to validate stored data groups 130 independent
of the array metadata 134 (and/or other reconstruction
information) managed by the storage array 110. In some
embodiments, the validation manager 106 1s configured to
generate itegrity data 144 corresponding to data 140 being
written to the storage array 110. The storage service layer
102 may include the integrity data 144 in the data 140 being
written to the storage array 110, such that the integrnity data
144 1s stored with the data 140 in a data group 130.
Alternatively, the storage layer 102 may be configured to
write the integrity data 144 to a separate storage resource
(not shown). In some embodiments, the integrity data 144
comprises validation information derived from the data 140,
such as a hash value, a signature, a checksum, and/or the
like. As disclosed i1n further detail herein, the validation
manager 106 may use the integrity data 144 to identity write
holes due to, inter alia, invalid shutdown conditions, which
may include, but are not limited to: invalid shutdown of the

US 9,946,607 B2

13

storage service layer 102, crash of the storage service layer
102, imnvalid shutdown of the storage array 110, crash of the
storage array 110, invalid shutdown of one or more of the
storage elements 112A-N, crash of one or more of the
storage elements 112A-N, invalid shutdown of the array
controller 120, crash of the array controller 120, and/or the
like, as disclosed herein.

In response to detecting an nvalid shutdown, the valida-
tion manager 106 may be configured to implement one or
more recovery operations pertaining to the storage array 110.
The validation manager 106 may be configured to 1dentily
write holes 1n data groups 130 stored on the storage array
110 more efliciently than the array controller 120 and/or may
prevent corrupt data from being propagated within the
storage array 110. The recovery operations implemented by
the validation manager 106 may be configured to replace
and/or preempt one or more crash recovery operations of the
storage array 110 (e.g., replace and/or preempt one or more
of the array recovery operations 124, disclosed herein,
and/or other crash recovery operations of the storage array
110). In some embodiments, the storage service layer 102 1s
configured to prevent the storage array 110 from implement-
ing the array recovery operations 124 and/or configuring the
storage array 110 to delegate crash recovery to the storage
service layer 102 (by use of a coordination module 101). The
coordination module 101 may be configured to prevent the
storage array 110 from implementing selected array recov-
ery operations 124 after detection of an invalid shutdown
condition. The coordination module 101 may configure the
storage array 110 to delegate crash recovery to the storage
service layer 102 through and/or by use of the interface 111
of the storage array 110, which may include, but 1s not
limited to: configuring the storage array 110 to delegate
crash recovery to the storage service layer 102 through the
interface 111, 1ssuing one or more configuration commands
to the storage array 110 through the interface 111, setting
configuration parameters of the storage array 110 through
the interface 111 (and/or another configuration interface of
the storage array 110), transmitting a message to the storage
array 110 through the interface 111 and/or another commu-
nication channel, sending a directive and/or command to the
storage array 110 through the interface 111 and/or another
communication channel, and/or the like.

As disclosed above, the validation manager 106 may be
configured to 1dentily and manage write hole conditions on
the storage array 110 by use of itegrity data 144 corre-
sponding to the data groups 130. As 1illustrated in FIG. 1G,
the validation manager 106 may be configured to generate
integrity data 144 corresponding to data 140 that 1s being
written to the storage array 110. The integrity data 144 may
comprise a hash code, signature, checksum, digest, and/or
other data corresponding to the contents of the data 140
(e.g., contents of data units 132A-N-1). In some embodi-
ments, the integrity data 144 1s included in one or more of
the data blocks 132 A-N-1. In the FIG. 1G embodiment, the
validation manager 106 stores the integrity data 144 1n data
unit 132A. The integrity data 144 may be stored as a separate
data unit 132 and/or may be included with other contents of
the data unit 132 (e.g., may be embedded 1n another data
unit). Alternatively, the integrity data 144 may be stored in
a separate storage location, such as a metadata log, as
disclosed 1n further detail herein. In the FIG. 1G embodi-
ment, the mtegrity data 144 may be included 1n data umit
132A. The data 140, including the integrity data 144, may be
written as a data group 130 on the storage array 110, as
disclosed herein (e.g., 1 response to a write request 141
from the storage service layer 102).

10

15

20

25

30

35

40

45

50

55

60

65

14

In some embodiments, the integrity data 144 corresponds
to contents of the data units 132A-N-1. Accordingly, the
integrity data 144 may indicate if any one of the data units
132A-N-1 comprises invalid data (e.g., invalid data 131).
Alternatively, the integrity data 144 may comprise a plural-
ity of itegrity datum corresponding to respective data units
132A-N-1. The mtegrity data 144 may include an integrity
datum corresponding to data unit 132A (e.g., a checksum of
data unit 132A), an integrity datum corresponding to data
unmit 1328, and so on. As disclosed 1n further 1n conjunction
with FIG. 11, the validation manager 106 may use the
respective integrity datum to determine whether particular
data units 132A-N-1 comprise valid data, identily the
specific location of a write hole within a data group 130,
and/or reconstruct one or more of the data units 132A-N.

The validation manager 106 may be configured to validate
the data 140 written to the storage array 110 in response to
detecting an 1nvalid shutdown condition pertaining to the
storage array 110. As illustrated in FIG. 1H, validating a
stored data group 130 may comprise a) accessing the data of
the stored data group 130 by, inter alia, 1ssuing a read request
143 to the storage array 110 (through the interface 111 and
by use of the coordination module 101), and b) comparing
the integrity data 144 corresponding to the stored data group
130 to the accessed data (e.g., contents of data units 132A-
132N-1). The 1nvalid shutdown condition may have
resulted 1n a write hole 1n the stored data group 130, such
that the contents of data unit 132B were not written to the
storage array 110 (and/or were corrupted during the write
operation). Accordingly, the stored data group 130 accessed
from the storage array 110 may comprise invalid data 131 1n
place of the original contents of data unit 132B. Therelore,
the integrity data 144 extracted from data unit 132A will not
correspond to the accessed data, and the validation manager
106 may determine that the stored data group 130 comprises
a write hole.

The validation manager 106 may be further configured to
implement one or more mitigation operations (write hole
recovery operations) in response to detecting a write hole,
which may include, but are not limited to operations to:
notity the storage array 110 of the detected write hole,
invalidate the stored data group 130, invalidate portions of
the stored data group 130, recover and/or reconstruct the
stored data group 130, request replacement data pertaining
to the stored data group 130, and so on. The validation
manager 106 may be configured to notily the storage array
110 of identified write hole conditions through the interface
111 (and/or by use of the coordination module 101). In some
embodiments, the validation manager 106 1s configured to
invalidate the stored data group 130 by, inter alia, i1ssuing a
TRIM message pertaining to the logical addresses mapped
to the data units 132A-N-1 of the stored data group 130. The
TRIM message may be 1ssued within the storage service
layer 102 (e.g., 1ssued to the translation layer 105), may be
1ssued to one or more clients, may be 1ssued to the storage
array 110, and so on. The validation manager 106 may be
configured to notily the storage array 110 of write hole
conditions (through the interface 111) and, in response, the
storage array 110 may be configured to remove and/or
invalidate the stored data group 130. In some embodiments,
the validation manager 106 invalidates the stored data group
130 by, inter alia, removing mappings pertaining to the
stored data group 130 from the translation layer 105 (e.g., by
invalidating associations between logical addresses and stor-
age addresses of the data unmits 132A-N-1 within the stored
data group 130). In some embodiments, the validation
manager 106 1dentifies the particular data units 132A-N-1

US 9,946,607 B2

15

corresponding to the write hole and invalidates the identified
data units 132A-N-1, while retaining other data units 132 A-
N-1 of the stored data group 130. Alternatively, or in
addition, the validation manager 106 may implement one or
more recovery operations to reconstruct the data group 130
(e.g., rewrite portions of the stored data group 130), recon-
struct invalid data by use of the storage array 110, and/or the
like. In some embodiments, the storage service layer 102 1s
configured to request replacement data of the stored data
group 130 from one or more clients, alternative storage
locations (e.g., journal storage, as disclosed 1n further detail
herein), and/or the like.

In some embodiments, the validation manager 106 may
be configured to 1dentily particular data units 132 compris-
ing invalid data 131 by use of the integrity data 144. As
disclosed above, and illustrated 1n FIG. 11, the integrity data
144 may comprise respective mtegrity datum corresponding
to the data units 132A-N-1 within the stored data group 130
(integrity datum 144A-144N-1). The validation manager
106 may validate the stored data group 130 by a) accessing
the data units 132A-N of the data group 130, and b)
comparing the data units 132A-N to the respective integrity
datum 144A-N-1. In the FIG. 11 embodiment, the integrity
datum 144 A and 144C-N-1 may correspond to the respec-
tive data units 132A and 132C-N-1. The integrity datum
144B may not correspond to the invalid data 131 of data unit
132B. Therefore, the validation manager 106 may determine
that the stored data group 130 comprises a write hole. The
validation manager 106 may also determine that the write
hole pertains to data unit 132B and that the other data units
132A and 132C-N-1 comprise valid data. In response, the
validation manager 106 may implement write hole recovery
operations, which may include, but are not limited to opera-
tions to: a) notily the storage array 110 and/or client(s) of the
write hole, b) invalidate the data unit 132B (e.g., invalidate
mapping(s) between the logical address space 104 and the
storage address of data unit 132B) and/or ¢) retain the other,
valid data umts 132A and 132C-N-1 (e.g., retain mappings
to the valid data unmits 132A and 132C-N-1 and/or rewrite
the contents of the data units 132A and 132C-N-1 on the
storage array 110 and/or to another storage resource); d)
recovering the contents of the data unit 132B; ¢) accessing
replacement data for the data unit 132B; and/or the like.

As disclosed above, in the FIG. 11 embodiment, the
validation manager 106 may be further configured to mati-
gate the write hole at data unit 132B by, inter alia, retaining
other valid data umits 132A and 132C-N-1 of the stored data

group 130, reconstructing data unit 132B by use of the other
data units 132A and 132C-N-1 (and the array metadata 134
managed by the storage array 110), and/or the like. The
validation manager 106 may be configured to retain the valid
data units 132A and 132C-N-1 by a) retaining mappings
pertaining to the stored data units 132A and 132C-N-1 1n the
translation layer 105 (while removing mappings pertaining,
to data unit 132B), b) rewriting valid data of the data units
132A and 132C-N-1 to other storage resources and/or
within another data group 130, and/or the like. Alternatively,
or in addition, the validation manager 106 may be config-
ured to reconstruct the data umt 132B by use of the storage
array 110. As disclosed herein, the storage array 110 may be
configured to store data groups 130 with array metadata 134,
which may include, inter alia, parity reconstruction data. The
storage array 110 may, therefore, be capable of reconstruct-
ing the contents of data unit 132B by use of the array
metadata 134 of the stored data group 130 and the contents
of the other data units 132A and 132C-N-1. In one embodi-

ment, 1n response to determining that the data unit 132B

5

10

15

20

25

30

35

40

45

50

55

60

65

16

comprises invalid data 131, the validation manager 106
1ssues a reconstruction request 147 to the storage array 110
that 1dentifies the mnvalid data unit 132 in the stored data
group 130 (e.g., i1dentifies data umit 132), and requests
reconstruction of the identified data umt 132 by the storage
array 110. The reconstruction request 147 may comprise an
explicit request to reconstruct the contents of data unit 1328
within the stored data group 130. Alternatively, the recon-
struction request 147 may comprise an error message 1ndi-
cating that the data umt 132B comprises mnvalid data 131
(e.g., a read error signal), and/or other notification, signal,
and/or directive. In response, storage array 110 may recon-
struct the data unit 132B using reconstruction data corre-
sponding to the stored data group 130 (e.g., array metadata
134, such as parity reconstruction data). In one embodiment,
the storage array 110 reconstructs the data unit 132B in an
XOR operation (using parity reconstruction data), in which
data umt 132B 1s reconstructed such that: data umnit
132B=data unit 132AXOR data unit 132C . . . XOR data unit
132N-1 XOR data unit 132N (parity reconstruction data).
The storage array 110 may be further configured to rewrite
the reconstructed data unit 132B to the storage array 110
(e.g., overwrite the invalid data 131 on storage location
115B with the reconstructed data unit 132B). The validation
manager 106 may validate the reconstructed data unit 132B
by use of the integrity data 144 (e.g., integrity datum 144B),
as disclosed herein. The reconstructed data unit 132B may
be revalidated to ensure that the parity reconstruction data
(e.g., array metadata 134) of the stored data group 130 1s
valid (e.g., does not correspond to another write hole 1n the
stored data group 130). If the array metadata 134 1s invalid
(was not correctly written due to, inter alia, the invalid
shutdown condition), the reconstructed data unit 132B will
not correspond to the mtegrity datum 144B.

The validation manager 106 may be configured to recon-
struct any number of 1nvalid data units 132 within a stored
data group 130, 1n accordance with the capabilities of the
storage array 110 (e.g., the “strength’™ of the array metadata
134). As used herein, the “strength” of reconstruction infor-
mation of the storage array 110 refers to the number of data
umt errors the reconstruction information 1s capable of
detecting and/or correcting. In embodiments 1n which a
single data unit 132 1s used to store array metadata 134 of a
data group 130, the storage array 110 may be capable of
reconstructing only a single, invalid data unit 132. Accord-
ingly, a stored data group 130 comprising two or more
invalid data units 132 may not be capable of being recon-
structed by use of the array metadata 134. In another
embodiment, the storage array 110 may be configured to
dedicate multiple data umts 132 to the storage of recon-
struction information and, as such, may be capable of
reconstructing multiple data units 132 of a stored data group
130. The storage array 110 may, for example, be configured
to encode the data units 1n an error-correcting code (ECC)
and/or other techmque. In the FIG. 11 embodiment, the
validation manager 106 may determine the number of data
umts 132 that the storage array 110 1s capable of correcting
(by querying the interface 111 and/or the like), and may
request correction of stored data groups 130 that are capable
of being corrected by use of the reconstruction data main-
tained by the storage array 110.

In some 1nstances, a write hole may occur within the data
unmt 132 that comprises the integrity data 144 of the stored
data group 130. In such instances, the validation manager
106 may determine that integrity data 144 for the stored data
group 130 1s invalid and, as such, the stored data group 130
comprises a write hole. The validation manager 106 may

US 9,946,607 B2

17

not, however, be capable of determining 1f other data units
132B-N-1 of the stored data group 130 are invalid. In such
embodiments, the validation manager 106 may be config-
ured to attempt to recover from the write hole condition by
use of the reconstruction data maintained by the storage
array 110. The validation manager 106 may request recon-
struction of data unit 132A, as disclosed above. The vali-
dation manager 106 may then determine 11 the reconstructed
data unit 132A comprises integrity data 144 (e.g., integrity
datum 144A-N-1) and/or whether the integrity data 144
corresponds to the data units 132A-N-1. If so, the validation
manager 106 may clear the write hole condition, and retain
the contents of the stored data group 130 (with the recon-
structed data unmit 132A).

Referring back to FIG. 1H, the validation manager 106 of
FIG. 1H may be configured to determine whether one or
more of the data units 132 comprises a write hole, but may
be incapable of 1dentitying the particular data unit(s) 132A-
N-1 that comprise invalid data 131. The validation manager
106 may be configured to attempt to reconstruct invalid data
units 132 of the stored data group 130 through, inter alia,
iterative reconstruction operation. In an iterative reconstruc-
tion operation, the validation manager 106 1s configured to
request reconstruction of a respective one of the data units
132A-N-1. The validation manager 106 may then attempt to
validate the stored data group 130 (with the reconstructed
data unit 132A-N-1) using the integrity data 144. If a valid
data unit 132 1s reconstructed (e.g., data unit 132A), the
reconstructed data unit 132 will be corrupted by the invalid
data of the other data unit(s) (e.g., mnvalid data 131 of data
unit 132B) and, as such, the resulting data group 130 waill fail
to validate against the integrity data 144. Reconstructing
data unit 132B may result in reconstructing valid contents of
data unit 132B (e.g., through parity reconstruction, as dis-
closed herein) and, as such, the resulting data group, includ-
ing the reconstructed data unit 132B, will validate against
the integrity data 144. In response, the verification module
106 may clear the write hole condition and continue vali-
dating other stored data groups 130, as disclosed herein. If
a stored data group 130 comprises more invalid data units
132 than can be corrected by the storage array 110 (and/or
in a combination not iterated by the validation manager
106), the validation manager 106 may determine that the
stored data group 130 comprises a write hole that cannot be
corrected, and may implement one or more write hole
recovery operations, as disclosed herein.

In some embodiments, the validation manager 106 1s
configured to identify the particular data umts 132 aflected
by the write hole 1 the data group 130. Referring to FIG.
1G, the validation manager 106 may be configured to
generate integrity data 144 comprising an integrity datum
pertaining to the respective data units 132A-N-1. The
validation manager 106 may be further configured to include
the integrity data 144 1in one or more of the data units
132A-N-1 being written within a data group 130 on the
storage array 110. The validation manager 106 may be
configured to embed the integrity data 144 in one or more of
the data units 132A-N-1 (as a header of a data unit 132A-
N-1 and/or the like). Alternatively, or in addition, the
integrity data 144 may be stored as a log entry and/or
metadata within one or more of the data units 132A-N-1. In
some embodiments, the data 140 includes persistent map-
ping metadata (e.g., a mapping log entry) that associates the
data units 132 A-N-1 with respective logical addresses (and/
or other identifiers), and the integrity data 144 1s included
with the persistent mapping metadata of the data units

132A-N-1.

10

15

20

25

30

35

40

45

50

55

60

65

18

The validation manager 106 may be further configured to
inform the storage array 110 of the detected write hole. The
validation manager 106 may 1ssue a message and/or direc-
tive through the mterface 111 of the storage array 110 (by
use of the coordination module 101) that identifies the stored
data group 130 (by storage address) and indicates that the
stored data group 130 comprises a write hole. Alternatively,
or 1n addition, the validation manager 106 may inform the
storage array 110 of the write hole condition by, inter alia,
issuing TRIM and/or delete messages to the storage array
110 configured to invalidate and/or delete the stored data
group 130 from the storage array 110.

As disclosed above, the storage service layer 102 may be
configured to prevent the storage array 110 from implement-
ing array recovery operations 124 in response to invalid
shutdown conditions. In some embodiments, the storage
service layer 102 1s configured to 1ssue one or more mes-
sages and/or directives 145 to the storage array 110 that are
configured to prevent the storage array 110 from executing
particular crash recovery operations (e.g., block execution of
certain array recovery operations 124 of the array controller
120). The messages and/or directives 145 may be issued
through the interface 111 of the storage array 110. Alterna-
tively, the messages and/or directives 145 may be commu-
nicated through a configuration interface of the storage array
110, may be communicated by modilying a configuration
parameter and/or file of the storage array 110, and/or the
like. The disclosure 1s not limited 1n this regard, and could
be adapted to prevent the storage array 110 from implement-
Ing array recovery operations 124 using any suitable mecha-
nism, including, but not limited to: setting configuration
flags pertaining to the storage array 110, setting storage
parameters pertaining to the storage array 110 (e.g., 10C-
TRL parameters, fadvise parameters, and/or the like), and so
on.

The storage array 110 may comprise storage elements
112A-N capable of storing a large number of data groups
130. Accordingly, and as illustrated 1n FIG. 11, the storage
address space 116 of the storage array 110 may be capable
of storing a large number of data groups 130. For example,
the storage array 110 may comprise a storage capacity of 16
terabytes (16 TB) and, as such, may be capable of storing
400,000,000 data groups 130, wherein each data group 130
comprises five 4 KB data units 132. Validating all of the data
groups 130 stored on the storage array 110 may consume a
significant amount of computing resources and require a
substantial amount of time, during which storage services of
the storage array 110 (and/or storage service layer 102) may
be unavailable.

In some embodiments, the storage service layer 102
comprises a log module 108 configured to maintain an
ordered storage log on the storage array 110. In response to
detecting an mvalid shutdown, the validation manager 106
may be configured to validate data groups 130 at the head of
the storage log, as opposed to validating all of the stored data
groups 130 on the storage array 110. Accordingly, the
validation manager 106 may leverage the storage log main-
tained by the storage service layer 102 to reduce the number
of stored data groups 130 that must be validated in response
to an invalid shutdown pertaiming to the storage array 110.
By contrast, array recovery operations 124 of the storage
array 110 may be required to operate on substantially all of
the stored data groups 130 on the storage array 110.

As disclosed 1n further detail herein, the log module 108
may be configured to append data to the storage log at an
append point 109 within the storage address space 116 of the
storage array 110. The log module 108 may be further

US 9,946,607 B2

19

configured to maintain persistent metadata that, inter alia,
defines the log order of data (and/or corresponding data
groups 130) written to the storage log. The log module 108
may, therefore, be configured to determine the temporal
order of certain storage operations performed on the storage
array 110. The validation manager 106 may determine the
storage location(s) of the data groups 130 written to the
storage array 110 at the time an nvalid shutdown occurred
and may limit validation operations to the determined stor-
age location(s).

In some embodiments, the validation manager 106 deter-
mines the storage address of the log append point 109 by use
of, mter alia, the log module 108. The validation manager
106 may be configured to validate data groups 130 at the
head of the storage log (e.g., data groups 130 written at the
append point 109) as opposed to validating all of the data
groups 130 stored on the storage array 110. In some embodi-
ments, the validation manager 106 1s configured to validate
a data group 130 at the head of the storage log (e.g., data
group 130 at the log append point 109). Alternatively, or 1n
addition, the validation manager 106 may be configured to
validate data group(s) 130 within a particular region of the
storage address space 116 (validation region 118). The
validation region 118 may comprise data groups 130 written
to the storage array 110 at the time of the invalid shutdown
(based on the determined storage address of the log append
point 109 and/or log order of stored data groups 130 on the
storage array 110). Accordingly, the validation region 118
may comprise stored data groups 130 that could have been
allected by the invalid shutdown (e.g., stored data groups
that may comprise a write hole). Although the validation
region 118 1s depicted as a continuous region 1n the storage
address space 116, the disclosure 1s not limited 1n this regard
and could be adapted to append data groups according to any
suitable pattern within the storage address space 116).

As disclosed above, the storage array 110 may be unavail-
able while array recovery operations 124 are implemented.
In the FIG. 11 embodiment, the storage service layer 102
may be configured to instruct the storage array 110 that
designated array recovery operations 124 are not to be
performed. The storage service layer 102 may be further
configured to 1nstruct the storage array 110 to provide access
to storage services after the mvalid shutdown (and without
completing the designated array recovery operations 124).
The storage service layer 102 may prevent access to the
storage array 110 (by other clients) while the validation
manager 106 validates stored data groups 130, as disclosed
herein.

In some embodiments, the storage service layer 102 may
prevent access to particular regions of the storage array 110,
and allow access to other regions. As disclosed above, the
validation manager 106 may be configured to determine the
storage address(es) corresponding to the head of the storage
log at the time of an mvalid shutdown (e.g., validation
region 118). The validation manager 106 may prevent access
to the determined storage address(es), and may allow access
to other regions of the storage address space 116 of the
storage array 110. Accordingly, storage requests pertaining
to regions of the storage address space 116 that were not
allected by a write hole condition may be serviced after the
invalid shutdown, and while the validation manager 106
validates data groups 130 stored within other regions of the
storage address space 116 (e.g., the validation region 118).

FI1G. 2 1s a tlow diagram of one embodiment of a method
200 for storage error management. Step 210 comprises
generating integrity metadata 144 corresponding to data
being stored by a storage engine, such as the storage array

10

15

20

25

30

35

40

45

50

55

60

65

20

110. The storage engine may be configured to store the data
within respective data groups 130, and with reconstruction
data (e.g., array metadata 134), as disclosed herein.

Step 220 comprises recovering from an invalid shutdown
pertaining to the storage engine. Step 220 may comprise
detecting an invalid shutdown condition corresponding to
one or more ol power loss, power interruption, power
aberration, a crash condition, an error condition, an inter-
rupt, a crash, a fault, a hardware fault, a software fault,
and/or any other condition other than a clean shutdown of
the storage array and/or a component thereof. An invalid
shutdown condition may correspond to an mvalid shutdown
condition of the storage array (e.g., the storage array con-
troller), an mvalid shutdown of a storage element, an invalid
shutdown of communication infrastructure of the storage
array, an mvalid shutdown of an upper-level storage client,
an 1nvalid shutdown of a computing system comprising the
storage array, a storage element, and/or upper-level storage
client, and/or the like. The invalid shutdown condition may
be detected by a storage layer 102, a coordination module
101, and/or a validation manager 106, as disclosed herein.

Step 220 may further comprise recovering from the
invalid shutdown by use of the integrity metadata of step
210. Step 220 may comprise validating data groups 130
stored on the storage array 110 by use of the integrity
metadata 144 of step 210. Step 220 may, therefore, comprise
accessing data of the stored data groups 130 and comparing
the accessed data to corresponding integrity data 144. Step
220 may further comprise extracting the integrity data 144
ol a stored data group 130 from one or more data units 132
of the stored data group 130. Alternatively, or in addition,
step 220 may comprise accessing ntegrity data 144 of the
data group 130 from a separate storage clement 112A-N
and/or separate storage resource. In some embodiments, step
220 comprises determining that a stored data group com-
prises a write hole in response to determining that the
integrity data does not correspond to the accessed data of the
stored data group 130. Step 220 may further include maiti-
gating the write hole by, inter alia, invalidating the stored
data group 130, rewriting portions of the stored data group
130, notitying the storage engine of the write hole (through
the interface 111 of the storage array 110), and/or the like, as
disclosed herein.

In some embodiments, the integrity data 144 of a stored
data group 130 comprises an mtegrity datum corresponding
to each of a plurality of data units 132 within the data group
130. Step 220 may, therefore, comprise validating individual
data units 132 of the stored data group 130 by use of a
respective mtegrity datum. Step 220 may further comprise
determining whether any of the data units 132 comprise
invalid data (e.g., whether the stored data group 130 1is
incomplete and/or comprises a write hole). Step 220 may
turther comprise determining the particular data unit(s) 132
within the stored data group 130 that comprise the write
hole. Step 220 may further include mitigating detected write
holes, as disclosed herein and/or recovering data of a write
hole by use of other, valid data of the stored data group 130,
as disclosed herein.

Step 220 may further include validating a subset of the
data groups 130 stored on the storage array 110 (as opposed
to all data groups 130 stored on the storage array 110). The
subset may be 1dentified based on a temporal order of the
data groups 130 as defined by, inter alia, a storage log. Step
220 may comprise 1dentifying an append point 109 within a
storage address space 116 of the storage array 110 and/or
determining a validation region 118 within the storage
address space 116 corresponding the append point 109

US 9,946,607 B2

21

and/or head of the storage log. Step 220 may comprise
validating stored data groups 130 at the head of the storage
log and/or within a designated validation region 118. Step
220 may further comprise preventing access to stored data
groups 1n the validation region 118 until the stored data
groups 130 therein have been validated. Step 220 may
turther include allowing access to data groups 130 stored 1n
other region(s) of the storage address space 116.

Step 230 comprises replacing a recovery operation of the
storage engine. Step 230 may comprise preventing the
storage engine from implementing one or more array recov-
cery operations 124, as disclosed herein. Step 230 may
turther include configuring the storage engine to allow
access to the storage array 110 after the mvalid shutdown
and without implementing the one or more array recovery
operations 124.

FIG. 3 1s a flow diagram of another embodiment of a
method 300 for storage error management. Step 310 may
comprise storing checksum data corresponding to data being
written within respective data stripes of a RAID storage
system, such as the storage array 110, disclosed herein. The
checksum data of step 310 may comprise integrity data 144
generated by the validation manager 106 of the storage
service layer 102. The data stripes written to the RAID
storage system may comprise parity reconstruction data
(array metadata 134).

Step 320 comprises validating data stripes written to the
RAID storage system 1n response to an mvalid shutdown.
Step 320 may comprise validating the data stripes by use of
the checksum data of step 310 (e.g., integrity data 144),
independent of the parity reconstruction data (e.g., array
metadata 134) of the RAID storage system. Step 320 may
comprise validating data stripes by a) reading data units 132
of the data stripes, b) calculating a checksum of the read data
units 132, and ¢) comparing the calculated checksum to the
checksum of step 310 (stored with the data stripes and/or 1n
a separate storage location). Step 320 may further comprise
mitigating detected write hole conditions, as disclosed
heremn. In some embodiments, step 320 further includes
determining whether particular data units 132 of a data stripe
comprise invalid data (by use of checksum datum pertaining
to the respective data units 132), reconstructing the particu-
lar data units (1if possible), and so on. Step 320 may further
include validating a subset of the stored data stripes based
on, inter alia, a log order of the data stripes within a storage
address space 116 of the RAID storage system.

Step 330 may comprise validating the data stripes at a
storage layer 102 1n place of a crash recovery operation of
the RAID storage system (e.g., 1n place of one or more array
recovery operations 124). Step 330 may comprise config-
uring the RAID storage system to delegate crash recovery
operations, as disclosed herein. Step 330 may further include
configuring the RAID storage system to allow access to the
storage array 110 after the mvalid shutdown, and without
implementing the crash recovery operations of the RAID
storage system.

FIG. 4 15 a flow diagram of one embodiment of a method
400 for storage error management. Step 410 comprises
appending data groups 130 to a storage log maintained on a
storage array 110 by use of a storage array controller 120,
wherein the storage array controller 120 1s configured to
store the data groups 130 within respective data stripes on
the storage array 110 with corresponding array metadata
134, such as RAID parity reconstruction data.

Step 420 comprises storing integrity data 144 correspond-
ing to the data group 130 stored within the respective data
stripes on the storage array 110. The integrity data 144 may

10

15

20

25

30

35

40

45

50

55

60

65

22

comprise a checksum of the data units 132 of the data group
130. Alternatively, or 1n addition, the integrity data 144 may
comprise a checksum datum of each of a plurality of data
unmts 132 of the data group 130. The integrity data 144 may
be stored within the data group 130 on the storage array 110
and/or may be stored 1n a separate storage location and/or
storage resource.

Step 430 comprises preempting a crash recovery opera-
tion of the storage array controller 120 1n response to an
invalid shutdown of the storage array 110. Step 430 may
comprise preventing the array controller 120 from executing
one or more array recovery operations 124, as disclosed
herein. Step 430 may further comprise validating one or
more stored data stripes on the storage array 110. In some
embodiments, step 430 comprises validating a data stripe at
the head of the storage log on the storage array 110 by use
of integrity data 144 stored with the data stripe. Step 430
may comprise determining an append point 109 of the
storage log within a storage address space 116 of the storage
array 110, and identifying a data stripe stored at and/or
betore the determined append point 109 1n the storage log.

FIG. 5A 1s a block diagram of one embodiment of a
system 500A comprising a storage service layer 102 con-
figured to provide storage services to one or more clients
502. The system 500A may comprise a computing system
501. The computing system 501 may comprise any suitable
computing device, including, but not limited to, a server,
desktop, laptop, embedded system, mobile device, and/or
the like. In some embodiments, the computing system 501
includes multiple computing devices, such as a cluster of
server computing devices. The computing system 501 may
comprise processing resources, volatile memory resources
(e.g., random access memory (RAM)), non-volatile storage
resources, a communication interface, and so on. The pro-
cessing resources ol the computing system 501 may include,
but are not limited to, a general purpose central processing
unit, such as a central processing unit (CPU), an ASIC, a
programmable logic element, an FPGA, a PLA, virtual
computing processing resources, and/or the like. The non-
volatile storage resources of the computing system 501 may
comprise a non-transitory machine-readable storage device,
such as a magnetic hard disk, solid-state storage device,
optical storage device, and/or the like. The communication
interface of the computing system 501 may be configured to
communicatively couple the computing system 301 to a
network. The network may comprise any suitable commu-
nication network, icluding, but not limited to, a Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) network, a
Local Area Network (LAN), a Wide Area Network (WAN),
a Virtual Private Network (VPN), a Storage Area Network
(SAN), a Public Switched Telephone Network (PSTN), the
Internet, and/or the like.

The storage service layer 102 may be configured to
provide storage services to clients 502 by use of one or more
storage resources 3510, including a storage array 110, as
disclosed herein. The clients 502 may include, but are not
limited to, operating systems (including bare metal operat-
ing systems, guest operating systems, virtual machines, and
the like), virtualization systems (virtualization Kkernels,
hypervisors, virtual machines, and/or the like), file systems,
database systems, remote I/O clients (e.g., I/O clients 502
communicatively coupled to the computing system 501
and/or storage module 130 through the network 115), and/or
the like. The storage service layer 102 may comprise an
interface 311 configured to expose storage services to the
clients 502. The interface 511 may include one or more of a
storage interface, a block storage interface, a block device

US 9,946,607 B2

23

interface, an object storage interface, a file storage interface,
a key-value storage interface, a virtualized storage interface,
a virtual storage unit (VSU), a database storage interface,
and/or the like. The storage service layer 102 (and/or inter-
face 511) may be implemented and/or presented to the
clients 502 by use of various components, modules, circuits,
and/or the like, including, but not limited to: a kernel-level
module, a user-space module, a driver-level module, a
driver, an I/O controller, an I/O manager, an I/O layer, an I/O
service, a storage controller, a storage manager, a storage
layer, a storage service, a SCSI module, a library, a shared
library, a loadable library, a DLL, a device driver, a DDI
module, an LDD module, a PDD module, an WFD module,
a UMDF module, a KMDF module, an 1I/0O Kit module, a
UDI module, an SDI module, an SDK, and/or the like.

As disclosed above, the storage service layer 102 (and/or
the components thereot, such as the validation manager 106,
crash recovery module 516, and so on) may be embodied as
hardware components, which may include, but are not
limited to: circuits, integrated circuits, ASICs, program-
mable hardware components, PLAs, FPGAs, controller
hardware, storage controller hardware. Alternatively, or in
addition, portions of the storage service layer 102 (and/or the
components thereof, such as the validation manager 106,
crash recovery module 516, and so on) may be embodied as
instructions stored on a machine-readable storage medium,
such as a magnetic hard disk, solid-state storage device,
optical storage device, and/or the like. In some embodi-
ments, the instructions are configured for execution by a
specific type of hardware, and may include, but are not
limited to: firmware, an FPGA bitstream, PLLA configuration
data, and/or the like. Accordingly, 1n some embodiments,
portions of the storage service layer 102 (and/or components
thereol, such as the validation manager 106, crash recovery
module 516, and so on) comprise read only data stored on
a particular hardware device (e.g., stored on a ROM,
EPROM, and/or the like). Alternatively, or in addition, the
instructions may be configured for execution and/or inter-
pretation by the computing system 501. Portions of the
storage service layer 102 (and/or the components thereof,
such as the validation manager 106, crash recovery module
516, and so on) may comprise: a kernel-level module, a
user-space module, a driver-level module, a driver, an 1I/O
controller, an I/O manager, an I/O layer, an I/O service, a
storage driver, a storage manager, a storage layer, a soft-
ware-defined storage layer, a SCSI module, a library, a
shared library, a loadable library, a DLL library, a device
driver, a DDI module, an LDD module, a PDD module, a
WED module, aUMDF module, a KMDF module, an I/O Kit
module, a UDI module, an SDImodule, an SDK, and/or the
like.

The storage service layer 102 may comprise a storage
resource manager 521 configured to, inter alia, manage data
storage and/or retrieval operations on the storage resources
510. The storage resource manager 521 may comprise a
coordination module 101 configured to manage the storage
array 110, as disclosed herein. The storage service layer 102
may be configured to manage data storage and retrieval
operations pertaiming to a logical address space 104. The
storage operations may be implemented on storage resources
510, including a storage array 110. As disclosed herein, the
storage array 110 may comprise a plurality of storage
clements 112A-N comprising respective storage locations
115. The array controller 120 may be configured to arrange
data 1n data groups 130 for storage within the storage array
110. As disclosed herein, a data group 130 may comprise a
plurality of data units 132 configured for storage on respec-

10

15

20

25

30

35

40

45

50

55

60

65

24

tive storage elements 112A-N of the storage array 110. The
array controller 120 may be further configured to generate
and store array metadata 134 pertaining to the data groups
130. In some embodiments, the storage array 110 comprises
a RAID storage system, a RAID storage engine, a RAID
storage service, and/or the like.

The storage array 110 may be communicatively coupled
to the storage service layer 102 through an interconnect 515,
which may include, but i1s not limited to: a peripheral

component interconnect (PCI), PCI express (PCI-e), Serial
AT Attachment (serial ATA or SATA), parallel ATA (PATA),

Small Computer System Interface (SCSI), IEEE 1394
(FireWire), Fiber Channel, universal serial bus (USB), and/
or the like. In some embodiments, the storage array 110 may
comprise one or more remote storage devices that are
communicatively coupled to the storage service layer 102
through a network (and/or other communication interface,
such as a Storage Area Network (SAN), a Virtual Storage

Area Network (VSAN), and/or the like). The interconnect
115 may, therefore, comprise a remote bus, such as a PCl-¢
bus, a network connection (e.g., Infimband), RDMA con-
nection, a storage network, a Fibre Channel Protocol (FCP)
network, a HyperSCSI, and/or the like.

The interface 511 of the storage service layer 102 may
present storage services to clients 502 through, inter alia, a
logical address space 104. The logical address space 104
may comprise a group, set, collection, range, and/or extent
of logical identifiers (LIDs). As used herein, LIDs refer to
any mechanism for referencing data and may include, but
are not limited to: names (e.g., file names, distinguished
names, and/or the like), data i1dentifiers, references, links,
front-end 1dentifiers, logical addresses, logical block
addresses (LBAs), storage unit addresses, virtual storage
unmit (VSU) addresses, logical unit number (L UN) addresses,
virtual unit number (VUN) addresses, virtual logical umt
number (vLUN) addresses, virtual storage addresses, unique
identifiers, globally unique identifiers (GUIDs), and/or the
like.

The translation layer 105 may be configured to associate
LIDs with particular storage resources (e.g., data stored
within a storage address space 116 of the storage array 110).
The logical address space 104 may be independent of the
storage address space 116, such that there are set or pre-
determined mappings between the logical address space 104
and the storage addresses address space 116 of the storage
array 110 (and/or other storage resources 510). In some
embodiments, the logical address space 104 1s sparse, thinly
provisioned, and/or over-provisioned, such that the size of
the logical address space 104 differs from the storage
address space 116 of the storage array 110 and/or other
storage resources 510. In some embodiments, the logical
address space 104 spans multiple storage resources 310.

The storage service layer 102 may be configured to
maintain virtualization metadata 505 pertaining to the logi-
cal address space 104. The virtualization metadata S05 may
include, but 1s not limited to, a forward map 525 comprising
any-to-any mappings between LIDs of the logical address
space 104 and storage addresses within the storage address
space 116, a reverse map pertaining to the contents of
particular storage locations 115 on the storage array 110,
validity bitmaps, reliability testing and/or status metadata,
status information (e.g., error rate, retirement status, and so
on), cache metadata, and so on. Portions of the virtualization
metadata 505 may be maintained within the volatile memory
resources of the computing system 301. Alternatively, or in
addition, portions of the virtualization metadata 505 may be

L]

US 9,946,607 B2

25

stored on non-volatile storage resources of the computing
system 501 and/or on one or more storage resources 510.

FIG. 5B depicts embodiments of virtualization metadata
505 and, 1n particular, embodiments of a forward map 5235
comprising any-to-any mappings between the logical
address space 104 and storage addresses space 116 of the
storage array 110. As 1illustrated in FIG. 3B, the logical
address space 104 may be sized diflerently than the under-
lying storage address space 116 of the storage array 110. In
the FIG. 5B embodiment, the logical address space 104 may
be thinly provisioned, and, as such, may comprise a larger
range ol LIDs than the range of storage addresses in the
storage address space 116. Alternatively, or in addition, the
logical address space 104 may span multiple storage
resources 310.

The translation layer 105 may be configured to associate
any LID of the logical address space 104 with any storage
address within the storage address space 116 by use of
entries 526 of the forward map 525. Accordingly, the trans-
lation layer 105 may comprise an any-to-any and/or many-
to-any translation layer between the logical address space
104 and storage resources (e.g., a logical-to-storage trans-
lation layer). The forward map 5235 may comprise any
suitable data structure, including, but not limited to, a map,
a hash map, a tree data structure, a binary tree (B-Tree), an
n-ary tree data structure (B+ Tree), a range encoded tree, a
radix tree, and/or the like. The forward map 3525 may
comprise entries 526 representing LLIDs that have been
allocated for use to reference data stored on the storage array
110. The entries 526 may associate LIDs with respective
storage addresses. The forward map 325 may be sparsely
populated and, as such, may omit entries corresponding to
LIDs that are not currently allocated to clients 502 and/or are
not currently 1n use to reference valid data stored on the
storage array 110. The forward map 525 may comprise a
range-encoded data structure, wherein one or more of the
entries 526 correspond to a plurality of LIDs (e.g., a range,
extent, and/or set of LIDs). In some embodiments, the
entries 326 may correspond to a storage granularity of one
of the storage resources 510. One or more of the entries 526
may correspond to data groups 130 written by the storage
array 110 (e.g., data groups comprising N—1 data units 132).
In the FIG. 5B embodiment, the forward map 525 includes
an entry 326 that associates LIDs 34 and 35 with storage
addresses 16987 and 16988, an entry 526 that associates LID
42439 with storage address 842, and an entry 526 that
associates an extent of N-1 LIDs (starting at LID 92680)
with N-1 data units 132 of a data group 130 (starting at
storage address 988). The entries 526 may be indexed by
LID 1n a tree data structure. The disclosure 1s not limited 1n
this regard, however, and could be adapted to use any
suitable data structure and/or indexing mechanism.

Referring back to FIG. SA, the storage service layer 102
may further comprise a log module 108 configured to store
data on the storage resources 510 1n a log structured storage
configuration (e.g., 1n a storage log). As used herein, a
“storage log” or “log structure” refers to an ordered arrange-
ment of data within the storage address space of a storage
resource 510 (e.g., within storage address space 116 of the
storage array 110). Data in the storage log may comprise
and/or be associated with persistent metadata that defines
contextual information pertaining to the data, such as a log
order of the data and/or the “logical interface™ of the data
(e.g., the LIDs associated with the data). Accordingly, the
storage service layer 102 may be configured to store data in
a contextual, self-describing format. As used herein, a con-
textual or seli-describing format refers to a data format in

10

15

20

25

30

35

40

45

50

55

60

65

26

which data 1s stored 1n association with persistent metadata.
In some embodiments, the persistent metadata may be
configured to i1dentily the data and, as such, may comprise
and/or reference the logical interface of the data (e.g., may
comprise the LID(s) associated with the data). The persistent
metadata may include other mnformation, including, but not
limited to, mformation pertaining to the owner of the data,
access controls, data type, relative position or offset of the
data, information pertaining to storage operation(s) associ-
ated with the data (e.g., atomic storage operations, transac-
tions, and/or the like), log sequence mformation, data stor-
age parameters (e.g., compression algorithm, encryption,
etc.), and/or the like. The storage service layer 102 may
turther comprise a log manager 508 configured to manage
portions of the log (log segments). The log manager 508 may
be configured to reclaim and/or reinitialize log storage
resources, such as log segments, media storage units, media
storage divisions (e.g., erase blocks), virtual storage units,
virtual storage divisions (e.g., groups ol erase blocks),
and/or the like.

Referring to FIG. 5C, in some embodiments, the log
module 108 1s configured to store data in a contextual data
format (data packet 332). In some embodiments, the log
module 108 1s configured to write data packets 332 as data
units 132 on the storage resources. The data packet 532 of
FIG. 5C comprises a data segment 534 and persistent
metadata 535. The data segment 534 may be of any arbitrary
length and/or size. The persistent metadata 535 may be
embodied as one or more header fields of the data packet
532. The persistent metadata 535 may be configured to
define the logical interface of the data segment 534 and, as
such, may include and/or reference the LID(s) associated
with the data segment 534. The persistent metadata 535 may
be turther configured to associate the data segment 534 with
a particular application, user, client 502, log segment, and/or
the like. In some embodiments, the persistent metadata 5335
defines a log order of the data packet 532 within a storage
log. Alternatively, or 1n addition, the data packet 532 may be
associated with persistent sequence metadata 537 configured
to, inter alia, define a log order of the data packet 532. As
disclosed 1n further detail herein, the persistent sequence
metadata 537 may comprise a sequence 1dentifier of a log
segment comprising the data packet 532, such that the log
order of the data packet 532 corresponds to a) the sequence
identifier associated with the log segment comprising the
data packet 532, and b) the sequential order of the data
packet 532 within the log segment. Although FIG. 5C
depicts one embodiment of a data packet 532, the disclosure
1s not limited 1n this regard and could associate data (e.g.,
data segment 534) with persistent metadata 1n other ways,
including, but not limited to, separate metadata log entries
(e.g., metadata notes), separate metadata storage, a separate
metadata log, and/or the like.

Retferring to FIG. 5A, the storage service layer 102 may
be configured to arrange data for storage in accordance with
characteristics of the respective storage resources 310. As
disclosed herein, the storage array 110 may be configured to
write data 1n respective data groups 130 that comprise N-1
data unmits 132. The storage service layer 102 may be
configured to group data being written to the storage array
110 1n accordance with the data groups 130 (e.g., coalesce
data into data sets 530 comprising N—1 data units 132). The
validation manager 106 may be configured to generate
integrity data 144 pertaining to the data sets 530, as dis-
closed herein. The storage resource manager 5321 may 1ssue
requests to write the data sets 530 to the storage array 110
(via the interconnect 515 and by use of the coordination

US 9,946,607 B2

27

module 101). In response, the storage array 110 may write
the data sets 5330 within respective data groups 130, as
disclosed herein.

FIG. 5D depicts one embodiment of a data set 530D
configured to be written as a data group 130 by the storage
array 110. As illustrated i FIG. 5D, the data set 530
comprises N-1 data units 132A-N-1. The data units 132A-
N-1 may comprise respective data packets 5332, comprising,
persistent metadata 5335 and data segment 534. As disclosed
herein, the persistent metadata 535 may be configured to
define, inter alia, the LID(s) associated with the data seg-
ment 534. The persistent metadata 535 include additional
information pertaining to the data segment 534, such as a log
order of the data segment 534, and so on, as disclosed herein.
In some embodiments, the persistent metadata 535 further
includes 1ntegrity data 144 pertaining to the data set S30D.
As 1llustrated 1 FIG. 5D, the persistent metadata 535A of
data unit 132A may comprise integrity data 144 pertaining
to the data set 530D. The integrity data 144 may comprise
information to validate the contents of data units 132A-N-1
of the data set 530D. The integrity data 144 may be
generated by the validation manager 106. The validation
manager 106 may derive the integrity data 144 from the
contents of the data units 132A-N-1 of the data set 530D
(c.g., the data packets 532A-N-1). The integrity data 144
may comprise a hash value, checksum, signature, digest,
and/or the like, as disclosed herein. In some embodiments,
the integrity data 144 comprises a plurality ol integrity
datum corresponding to the respective data units 132A-N-1
(c.g., integrity datum 144A-N-1 corresponding to the
respective data packets 532A-N-1). In the FIG. 5D embodi-
ment, the integrity data 144 1s included in the persistent
metadata 535A of data packet 332A (data unit 132A). The
integrity data 144 may be omitted from the other data units
132B-N-1. Alternatively, the integrity data 144 may be
included 1n two or more of the data units 132A-N-1 and/or
in each of the data units 132A-N-1.

Referring to FIG. 5E, mn some embodiments, the log
module 108 1s configured to associate data with persistent
metadata by use of, inter alia, persistent metadata entries 539
(e.g., without writing the data 1n a packet format, such as the
data packets 532 disclosed herein). The log module 108 may
be configured to associate the data segments 534 of a data set
530E with one or more persistent metadata entries 539,
which may be written with the data set 330E to the storage
array 110 and/or another storage resource 510 (e.g.,
appended to a separate metadata log). As 1llustrated in FIG.
5E, a persistent metadata entry 538 may comprise contextual
metadata pertaining to the contents of data units 132A-N-1
(e.g., data segments 334A-N-1), which may include, but 1s
not limited to: the LID(s) associated with the respective data
segments 5334 A-N-1 of data units 132A-N-1, log sequence
information pertaining to the data set 330E, and so on. The
persistent metadata entry 539 may further comprise integrity
data 144 pertaining to the data set S30E. The integrity data
144 may be derived from the contents of the data units
132A-N-1 (e.g., data segments 534A-N-1). In some
embodiments, the integrity data 144 comprises respective
integrity datum 144 A-N-1 corresponding to the respective
data units 132A-N-1 (e.g., data segments 534A-N-1). The
integrity data 144 may be generated by the validation
manager 106 and included 1n the data set 330E, as disclosed
herein. Although FIG. SE depicts persistent metadata entry
539 within data unit 132A (with data segment 334A) the
disclosure 1s not limited 1n this regard and could be adapted
to 1include the persistent metadata entry 539 1n any of the
data units 132A-N-1 of the data set 530D, 1n a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

28

data units 132A-N-1, and/or 1n a separate data unit 132A-
N-1 (separately from a data segment 534A-N-1, as 1llus-
trated in FIG. 5F).

FIG. SF illustrates another embodiment of a data set S30F
configured to associate data with persistent metadata,
including integrity data 144. In the FIG. 5F embodiment, the
data units 132A-N and/or data segments 534 may have a
fixed si1ze, such that the data unit 132A-N-1 cannot accom-
modate both a data segment 534A-N-1 and a persistent
metadata entry 539. Accordingly, 1n the FIG. 5F embodi-
ment, the storage service layer 102 1s configured to arrange
data into data sets 530F comprising N-2 data units 132, and
to store the persistent metadata entry 539 corresponding to
the data umts 132A-N-2 1n a separate data unit 132 within
the data set 530F (e.g., data unit 132A).

FIG. 5G 1s a block diagram depicting further embodi-
ments of a data set 530G configured to associate data with
persistent metadata, including integrity metadata 144. In the
FIG. 5G embodiment, the log module 108 1s configured to
maintain persistent metadata storage pertaiming to data writ-
ten to the storage array 110 and/or other storage resources
510 (e.g., a metadata log 560). The log module 108 may
append persistent metadata entries 539 corresponding to
data sets 530G being written to the storage array 110. In the
FIG. 3G embodiment, the storage service layer 102 1is
configured to group data into data sets 330G comprising
N-1 data segments 534A-N-1, such that each data segment
534 A-N corresponds to a respective data unit 132A-N of the
storage array 110. The log module 108 may be configured to
maintain persistent, crash-sate metadata pertaining to the
data set 530G by, inter alia, appending a persistent metadata
entry 339 corresponding to the data set 530G to a metadata
log 560. The persistent metadata entry 539 may comprise
contextual metadata pertaining to the data segments 534 A-
N-1, which may include, but 1s not limited to: LID(s)
associated with the data segments 534A-N-1, storage
addresses of the data segments 534A-N-1 (on the storage
array 110), imntegrity data 144, and so on. The integrity data
144 may be derived from the contents of the data units
132A-N-1 (data segments 534 A-N-1), as disclosed herein.
The log order of the data segments 534A-N-1 may be
determined, inter alia, based on the log order of the persis-
tent metadata entry 539 within the metadata log 560.

Although embodiments of the data sets 330D-G described
herein comprise particular number of data units 132 com-
prising particular types of data (e.g., data packets 532, data
segments 534, and so on), the disclosure 1s not limited 1n this
regard, and could be adapted to manage storage of data in
data groups 130 on the storage array 110 1n any suitable
configuration (e.g., any data groups 130 and/or data sets 530,
comprising any number of and/or arrangement of data units
132). Stmilarly, although particular mechanisms for associ-
ating data with persistent metadata are described herein, the
disclosure 1s not limited 1n this regard and could be adapted
to associate data stored 1n a data group 130 on the storage
array 110 with persistent metadata using any suitable mecha-
nism. Further embodiments for managing storage of persis-
tent metadata pertaining are disclosed 1n U.S. application
Ser. No. 14/569,382 entitled “Generalized Storage Virtual-
1zation Interface,” filed on Dec. 12, 2014, for Swaminathan
Sundararaman et al., which 1s hereby incorporated by rei-
erence.

Referring back to FIG. 5A, the validation manager 106
may be configured to validate data groups 130 stored on the
storage array 110 by use of stored integrity metadata 144
associated with the data groups 130. The validation manager
106 may be configured to validate data groups 130 1n

US 9,946,607 B2

29

response to an invalid shutdown condition pertaining to the
storage array 110. In the FIG. SA embodiment, the validation
manager 106 comprises a monitor 506 configured to identify
invalid shutdown conditions. The momtor 506 may be
configured to access the storage array 110 (through the
interface 111) 1n order to, inter alia, determine the status of
the storage array 110, detect mvalid shutdown conditions
pertaining to the storage array 110, and/or the like. The
monitor 506 may be further configured to i1dentity invalid
shutdown conditions pertaining to the storage service layer
102 and/or computing system 501.

In response to detecting an invalid shutdown condition
pertaining to the storage array 110, the validation manager
106 may be configured to implement one or more recovery
operations (by use of a crash recovery module 516, as
disclosed in further detail herein). The recovery operations
of the validation manager 106 may replace array recovery
operations 124 of the storage array 110. Accordingly, 1n
some embodiments, the validation manager 106 1s config-
ured to preempt recovery operations of the storage array 110
in response to detection of an invalid shutdown condition.
The validation manager 106 may be configured to instruct
the storage array 110 to delegate recovery operations to the
storage service layer 102 by one or more of: issuing a
message, directives, commands, and/or the like to the stor-
age array 110 though the interface 111 and/or by use of the
coordination module 101. In some embodiments, the storage
array 110 1s configured to detect an invalid shutdown
condition by use of an invalid shutdown indicator (e.g., an
invalid shutdown flag set by the storage array 110 and/or
other entity). Accordingly, in some embodiments, the vali-
dation manager 106 1s configured to prevent the storage
array 110 from implementing designated array recovery
operations 124 by one or more of: clearing an valid
shutdown indicator of the storage array 110, clearing an
invalid shutdown indicator of one or more of the storage
clements 112A-N of the storage array 110, clearing an
invalid shutdown indicator of the computing system 501,
and/or the like. In some embodiments, the storage service
layer 102 configures the storage array 110 to delegate
recovery operations to the storage service layer 102 by, inter
alia, setting a configuration parameter of the storage array
110, moditying a configuration file of the storage array 110,
and/or the like. The storage service layer 102 may configure
the storage array 110 to block and/or preempt particular
array recovery operations 124 by transmitting a message 566
to the storage array 110 via the interconnect 5135 (and/or
other communication channel). The message 566 may com-
prise a command, directive, library call, API call, RPC call,
configuration parameter, interrupt, signal, and/or other noti-
fication. The message 566 may be configured to cause the
storage array 110 to delegate particular crash recovery
functionality to the storage service layer 102 and/or prevent
the storage array 110 from executing designated array recov-
ery operations 124, as disclosed herein. Although particular
mechanisms and/or techniques for overriding array recovery
operations 124 of the storage array 110 are described herein,
the disclosure 1s not limited 1n this regard, and could be
adapted to 1dentity and/or block execution of particular array
recovery operations 124 using any suitable mechamsm
and/or technique.

The validation manager 106 may be configured to validate
the contents of data groups 130 stored on the storage array
110 (e.g., validate data sets 530 comprising data packets
532, data segments 534, and/or the like). Validating a stored
data group 130 may comprise a) accessing the stored data
group 130 from the storage array 110 by, inter alia, 1ssuing

5

10

15

20

25

30

35

40

45

50

55

60

65

30

one or more read requests to the storage array 110, b)
extracting integrity data 144 of the accessed data, and c)
comparing the integrity data 144 to the accessed data.
Accessing a stored data group 130 may comprise determin-
ing storage address(es) comprising valid data by use of, inter
alia, the virtualization metadata 505 maintained by the
storage service layer 102 (e.g., forward map 5235). Accessing,
a stored data group 130 may comprise reading a data set 530
comprising a plurality of data units 132 from the storage
array 110. Extracting the integrity data 144 may comprise
extracting integrity data 144 from one or more data units
132A-N-1 of the data set 530 (based on a storage configu-
ration of the data set 530 as illustrated above 1n conjunction
with FIGS. SC-5F). Alternatively, and as illustrated 1n FIG.
5@, extracting the integrity data 144 may comprise access-
ing a persistent metadata entry 339 pertaining to the data set
530G 1n a metadata log 560.

The validation manager 106 may determine that a write
hole exists 1 a stored data group 130 in response to
determining that the data set 330 does not correspond to the
integrity data 144. The validation manager 106 may calcu-
late a hash value corresponding to the accessed data (e.g.,
contents of data units 132A-N-1) and compare the calcu-
lated hash value to the corresponding integrity data 144. In
response to 1identitying a write hole, the validation manager
106 may execute one or more recovery operations 517 by
use of the crash recovery module 516, which may include,
but are not limited to operations to: a) notily the storage
array 110 of the i1dentified write hole; b) invalidate the data
group 130; ¢) invalidate portion(s) of the data group 130; d)
recover corrupt data of the data group 130, ¢) request
replacement data for the data group 130, and/or the like.
Accordingly, the recovery operations 317 may be referred to
as “write hole recovery operations” and/or “crash recovery
operations” of the storage service layer 102.

The validation manager 106 may notify the storage array
110 of a write hole by, inter alia, transmitting a message to
the storage array 110 pertaiming to the detected write hole
condition. The message may be transmitted to the storage
array 110 through the interface 111 via the coordination
module 101 (and/or via another communication channel).
The message may 1dentily portions of the stored data group
130 that comprise invalid data. Alternatively, or 1n addition,
the message may 1dentify valid portions of the stored data
group 130 comprising a write hole. Invalidating a stored data
group 130 may comprise issuing an erase, delete, and/or
TRIM message corresponding to the stored data group 130.
The TRIM message may be 1ssued within the storage service
layer 102 e.g., to the translation layer 105), may be 1ssued to
one or more clients 502, may be 1ssued to the storage array
110, and/or the like. Invalidating a stored data group 130
may further comprise removing and/or mnvalidating logical-
to-storage associations pertaining to the stored data group
130 in the virtualization metadata 505 (e.g., forward map
525). The recovery operations 517 may comprise mvalidat-
ing portion(s) of a stored data group 130 and/or retaining
other portions of the stored data group 130. In some embodi-
ments, the recovery operations 317 further include recover-
ing and/or reconstructing data of the stored data group 130
by use of, inter alia, array metadata 134 managed by the
storage array 110 (e.g., by parity reconstruction). Alterna-
tively, or i addition, the recovery operations 517 may
comprise accessing replacement data pertaining to the stored
data group 130 from a client 502, a mirrored storage location
(e.g., another storage resource 510, and/or journal storage
disclosed 1n further detail below), and/or the like. Request-
ing replacement data may comprise 1ssuing one or more

US 9,946,607 B2

31

requests for replacement data to a client 502, storage array
110, storage resource(s) 510, and/or the like.

As 1illustrated 1n FIG. 5B, the forward map 525 may
associate an extent of N—1 LIDs (starting at LID 92680) with
a stored data group at storage address 988. In response to an
invalid shutdown condition, the validation manager 106 may
determine that the stored data group 130 at storage address
988 comprises a write hole. In response, and as 1llustrated 1n
FIG. 5H, the validation manager 106 may remove LID
associations pertaining to the mvalid data group 130, which
may comprise removing the entry 526 pertaining to the N-1

LIDs at 92680 from the forward map 525. Accordingly,
subsequent requests for data of the N-1 LIDs at 92680 may
result 1n an “empty” or “unallocated” response from the
storage layer. The validation manager 106 may be further
configured to notify the storage array 110 of the write hole
and/or instruct the storage array 110 to invalidate the stored
data group at storage address 988.

In some embodiments, the validation manager 106 1s
configured to identily which data unit(s) 132 of a stored data
group 130 comprises invalid data 131. The validation man-
ager 106 may be configured to distinguish valid data units
132 from invalid data units by use of respective integrity
datum 144A-N-1, as disclosed herein. In response to 1den-
tifying invalid data 1n stored data group 130, and determin-
ing that the stored data group 130 comprises other, valid data
units, the validation manager 106 may be configured to a)
invalidate the invalid portions of the stored data group 130,
and b) retain valid portions of the stored data group 130.
Invalidating a portion of a stored data group 130 may
comprise removing selected LIDs from the forward map
525. As illustrated 1n FIG. 51, the validation manager 106
may determine that a data unit 132 associated with LID
92680 comprises mvalid data, but that other data units 132
mapped N-2 LIDs starting at 92681 are valid. In response,
the validation manager 106 may invalidate and/or remove
logical-to-physical associations pertaining to LID 92680,
and may retain associations pertaining to the other N-2
LIDs by, mter alia, modifying the entry 526 pertaining to the
N-1 LIDs as illustrated in FIG. SH. The validation manager
106 may be further configured to rewrite valid data of the
stored data group 130 on the storage array 110, which may
comprise updating the entry 526 to associate the data with
different storage addresses of the storage array 110.

Alternatively, or 1n addition, the validation manager 106
may be configured to reconstruct the contents of one or more
data units 132 by use of, inter alia, the storage array 110. As
disclosed above, the validation manager 106 may be con-
figured to i1dentily storage umt(s) 132 comprising mvalid
data by use of the integrity data 144. The validation manager
106 may determine whether the data units 132 can be
reconstructed by the storage array 110 based on, inter alia,
the number of invalid data units 132 1dentified 1n the stored
data group 130 and/or the data recovery capabilities of the
storage array 110. As disclosed herein, the array metadata
134 maintained by the storage array 110 may be configured
to correct errors 1n one or more data units 132 of a data group
130. The validation manager 106 may determine whether the
storage array 110 1s capable of recovering the contents of a
particular number of data units 132 of a stored data group
130 based on how many data units 132 the array metadata
134 of the storage array 110 1s capable of reconstructing. The
storage array 110 may not be capable of correcting such
errors, however, without information i1dentitying the loca-
tion of the errors within the data group 130 (e.g., without
knowing which data unit(s) 132A-N comprise invalid data).

10

15

20

25

30

35

40

45

50

55

60

65

32

In response to determining that a stored data group 130
comprises a write hole that can be corrected by the storage
array 110, the validation manager 106 may 1ssue a request to
reconstruct portions of the stored data group 130 to the
storage array 110 (via the array interface 111 and/or by use
of the coordination module 101). As disclosed above, the
request may 1dentify data umts 132A-N of the stored data
group 130 that comprise mvalid data. In response, the
storage array 110 may reconstruct the identified data unaits
132A-N by use of the array metadata 134 corresponding to
the stored data group 130. The storage array 110 may be
turther configured to write the corrected data to the storage
array 110. Alternatively, the storage array 110 may rewrite
the data group 130 to other storage address(es) of the storage
array 110. In response to determining that a write hole
detected by the validation manager 106 has been corrected,
the validation manager 106 may retain logical-to-storage
associations pertaining to the stored data group 130 and/or
update the logical-to-storage associations to reference the
rewritten data group 130. If the write hole cannot be
corrected by use of the storage array 110, the validation
manager 106 may implement other recovery operations 517
as disclosed herein (e.g., mnvalidate the stored data group
130, invalidation portions of the stored data group 130,
request replacement data, and/or the like).

As disclosed above, in some embodiments, the validation
manager 106 1s configured to identily particular data units
132 comprising invalid data by use of respective integrity
datum 144A-N-1. In some embodiments, the integrity data
144 may comprise a single value corresponding to the data
units 132A-N-1. Alternatively, or in addition, the integrity
data 144 may not be available (due to a write error pertaining
to the data unit 132 comprising the integrity data 144). In
response, the validation manager 106 may be configured to
invalidate the entire stored data group 130, as disclosed
herein.

Although the particular location of the write hole 1s not
known, the write hole may be correctable by the storage
array 110. The storage array 110 may be incapable of
correcting the error without additional verification informa-
tion. For example, the contents of a stored data group 130
that includes a particular data umit 132 comprising invalid
data 131 may be reconstructed by use of array metadata 134.
The storage array 110, however, may have no way of
identifying which data unit 132 comprises invalid data 131
and/or no way of validating reconstruction of the particular
data unit 132

The validation manager 106, however, may be capable of
identifying the location of write holes within a stored data
group 130 and veritying correct reconstruction of the stored
data group 130 by use of, inter alia, integrity data 144, as
disclosed herein. In some embodiments, the validation man-
ager 106 may attempt to identify and/or correct a stored data
group 130 that comprises a write hole by use of, inter alia,
an 1terative parity substitution operation. As disclosed
above, 1terative parity substitution may comprise 1nstructing
the storage array 110 to reconstruct diflerent portions of a
stored data group 130 (using array metadata 134). The
validation manager 106 may attempt to validate the recon-
structed data, as disclosed herein.

FIG. 5] depicts one embodiment of an iterative parity
substitution operation implemented by the validation man-
ager 106. In the FIG. 5] embodiment, the validation manager
106 may detect a write hole 1n a stored data group 130, but
may not be able to identify the data units 132 comprising
invalid data 131 within the stored data group 130. In
response, the validation manager 106 may be configured to

US 9,946,607 B2

33

iteratively reconstruct different portions of the stored data
group 130. The validation manager 106 may be configured
to 1teratively designate different data units 132A-N-1 of the
stored data group 130 as invalid, and request reconstruction
of the designated data unit 132A-N-1 by the storage array
110 (e.g., using array metadata 134 of the corresponding
stored data group 130, as disclosed herein). The validation
manager 106 may attempt to validate the reconstructed data,
as disclosed herein. The validation manager 106 may deter-
mine that the stored data group 130 was correctly recon-
structed 1n response to validating reconstructed data of the
stored data group 130 by use of corresponding integrity data
144. Otherwise, the validation manager 106 may determine
that the stored data group 130 cannot be corrected, and may
invalidate the stored data group 130 as disclosed herein.

In the FIG. 5] embodiment, the validation manager 106
iteratively requests reconstructed data sets 530J[1]-530J]N-
1] from the storage array 110. The reconstructed data sets
530J[1]-530J[N-1] may be generated by the storage array
110 by, inter alia, designating a different one of the data units
132 to be reconstructed by use of other data units 132 of the
stored data group 130 (and the corresponding array metadata
134). In the FIG. 53] embodiment, the reconstructed data set
530J[1] may be generated by the storage array 110 1n
response to a request to reconstruct the contents of data unit
132A. The reconstructed data set 530J[1] may, therefore,
comprise reconstructed data 538 A for data unit 132A, and
data of the stored data group 130 in data units 132B-N-1.
The reconstructed data set 530J[2] may comprise recon-
structed data 538B corresponding to data unit 132B, the
reconstructed data set 530J[3] may comprise reconstructed
data 338C corresponding to data unit 132C, and so on
(reconstructed data set 530J[N-1] may comprise recon-
structed data 338N-1 corresponding to data unit 132N-1).
The validation manager 106 may attempt to validate the
reconstructed data sets 330J[1]-530J[N-1] by a) accessing,
integrity data 144 and b) comparing the integrity data 144 to
the reconstructed data set 530J[1]-530J[N-1]. The valida-
tion manager 106 may access the integrity data 144 as
disclosed herein (e.g., by extracting the integrity data 144
from the respective reconstructed data set S30J[1]-530J[N-
1] and/or from a separate storage location, such as a meta-
data log 560). In response to identifying a reconstructed data
set 530J[1]-530J[N-1] that 1s validated by the integrity data
144, the validation manager 106 determines that the write
hole was corrected, and may instruct the storage array 110
to retain and/or rewrite the 1dentified reconstructed data set
530J[1]-530J[N-1]. The validation manager 106 may dis-
continue the 1terative reconstruction operation in response to
validating a reconstructed data set 530J[1]-530J[N-1] (e.g.,
discontinue the iteration in response to validating the first
reconstructed data set 330J[1]). If none of the reconstructed
data sets 530J[1]-530J[N-1] are validated, the validation
manager 106 may invalidate the stored data group 130, as
disclosed herein.

As disclosed above, 1n some embodiments, the validation
manager 106 1s configured to validate a subset of the data
groups 130 stored on the storage array 110 1n response to an
invalid shutdown condition. In some embodiments, the
validation manager 106 1s configured to select stored data
groups 130 for validation in response to detection of an
invalid shutdown. The validation manager 106 may select
stored data groups 130 to validate based on any suitable
criterion. As disclosed herein, in some embodiments, the
storage service layer 102 1s configured to write data to the
storage array 110 with persistent metadata. In some embodi-
ments, the validation manager 106 selects data groups 130

10

15

20

25

30

35

40

45

50

55

60

65

34

for validation based on, inter alia, the persistent metadata
corresponding to the stored data groups 130. The persistent
metadata associated with a stored data group 130 may
comprise one or more of: persistent metadata 535 of a data
packet 532 within the stored data group 130, persistent
sequence metadata 537, a persistent metadata entry 3539
and/or the like.

In some embodiments, the validation manager 106 1s
configured to select stored data groups 130 that were being
written at the time the invalid shutdown occurred. The stored
data groups 130 that were being written at the time of the
invalid shutdown may be 1dentified by use of the persistent
metadata associated with the stored data groups 130. As
disclosed herein, the persistent metadata associated with a
stored data group 130 may comprise sequence information,
which may indicate the time at which the stored data group
130 was written to the storage array 110. Alternatively, or 1n
addition, the validation manager 106 may select stored data
groups 130 for validation based metadata pertaining to the

storage log, such as the storage address of a log append point
109 at the time the invalid shutdown occurred, as disclosed
herein.

FIG. 6A depicts one embodiment 600A of a storage log
650 comprising data stored sequentially within a storage
address space 116 of the storage array 110. In the FIG. 6A
embodiment, log module 108 may partition the storage
address space 116 into a plurality of log segments 670 (e.g.,
log segments 670[1]-670[N]). The log segments 670 may
comprise a respective range of storage addresses. The log
segments 670 may correspond to a collection of log storage
units 671 that are reused as a group. The log module 108
may comprise a log manager 508 configured to 1mnitialize the
respective log segments 670. Initializing a log segment 670
may comprise relocating valid data from the log segment
670 (if any), such that existing data on the log segment 670
may be reused (e.g., erased and/or overwritten). The disclo-
sure 1s not limited 1n this regard, however, and may be
adapted to treat the entire storage address space 116 of the
storage array 110 as a single log segment 670 and/or manage
cach log storage unit 671A-N as a respective log segment
670.

In the FIG. 6 A embodiment, the log segments 670 com-
prise a plurality of log storage units 671A-N capable of
storing data (e.g., data units 132, data groups 130, and/or the
like). The log storage units 671 A-N may correspond to
storage location(s) on a storage resource 310, such as the
storage array 110. Accordingly, 1n the FIG. 6 A embodiment,
the log storage umits 671 A-N comprise respective data
groups 130 capable of storing N-1 data units 132 on
respective storage elements 112A-N of the storage array 110,
as disclosed herein.

The log module 108 may be configured to append data
sequentially within the log segments 670. The log module
108 may be further configured to associate data appended to
the storage log 650 with persistent metadata. As disclosed
herein, the persistent metadata may comprise one or more
ol: persistent metadata 535 of a data packet 532 (within a
data unit 132 of a data group 130), persistent sequence
metadata 537 associated with one or more data packets 532,
and/or a persistent metadata entry 539 stored with the data
(and/or a separate metadata log 560), as disclosed herein.
The persistent metadata stored within the respective log
storage units 671 may be used to determine the log store
order of the log segments 670 and/or log storage units 671
therein. In the FIG. 6 A embodiment, the log segments 670
comprise respective sequence metadata 673 configured to
determine a relative log order of the log segments 670. The

US 9,946,607 B2

35

sequence metadata 673 may be written within a first log
storage unit 671 of the respective log segments 670 (e.g.,
may be written to data unit 132A of the first data group 130
within each log segment 670).

The log module 108 may be configured to append data
groups 130 sequentially within the storage address space 116
(e.g., within respective log segments 670[1]-670[N]). The
order 1n which data groups 130 are written within the
respective log segments 670[1]-670[IN] may be determined
according to the availability of log segments 670[1]-670[IN].
The log module 108 may be configured to fill the respective
log segments 670[1]-670[N] before appending data to other
log segments 670[1]-670[N]. The log segments 670[1]-670
[N] may be filled according to any suitable fill pattern.

In the FIG. 6 A embodiment, the log module 108 may have
written data groups 130[1][A]-130[1][P] sequentially within
log segment 670[1] (by 1ssuing requests to write respective
data sets 530 to the storage array 110), such that stored data
group 130[1][P] 1s later in the storage log 650 (stored more
recently) relative to stored data group 130[1][A]. FIG. 6A
turther illustrates data groups 130 stored sequentially within
the log storage units 671 of other log segments 670[2]-670
IN]: data groups 130[2][A]-130][2][P] are stored sequen-
tially within log storage umts 671[2][A]-671[2][N] of log
segment 670[2], data groups 130[3][A]-130[3][P] are stored
sequentially within log storage units 671[3][A]-671[3][N] of
log storage segment 670[3], data groups 130[N][A]-130[N]
|P] are stored sequentially within log storage units 671[N]
|A]-671[N][N] of log segment 670[N], and so on.

The storage module 130 may mark log segments 670[1]-
670[N] with respective sequence metadata 673, as disclosed
above. The sequence metadata 673 may be configured to
define the order in which the log segments 670[1]-670[N]

were lilled. Accordingly, the order in which the data groups
130[1][A]-130[N][P] were written to the storage array 110

may be defined by, inter alia, sequence information 673[1]-
673|Y] of the log segments 670[1]-670[N]. In some embodi-
ments, the sequence information 673[1]-673[Y] 1s stored at
predetermined locations within the log segments 670[1]-670
IN] (e.g., 1n a first data unit 132 of a first data group 130
within a log segment 670, and/or the like).

In the FIG. 6 A embodiment, the sequence mformation
673| Y| may correspond to the head 654 of the storage log
650 (most recently stored), and the sequence information
673[1] may correspond to the tail 655 of the storage log 650
(oldest). As 1llustrated 1n FIG. 6 A, the log order 652 of the
log segments 670[1]-670[N] may be 670[IN] at the head 654
of the storage log 650 (most recently written), followed by
670[1], 670[3], and 670[2] at the tail 655 of the storage log
650 (oldest log segment 670). The log order 6352 of the
respective stored data groups 130[1][A]-130[N][P] may be
determined based on the sequence information 673 of the
respective log segments 670 and the relative order of the
stored data groups 130[1][A]-130[N][P] within the respec-
tive log segments 670. In the FIG. 6 A embodiment, the log
order 652 from the head 654 of the storage log 650 (most
recently stored) to the tail 655 of the storage log 650
(oldest): 130[N][P]-130[N][A], 130[1][P]-130[1][A], 130
[3][P]-130[3][A], and 130[2][P]-130[2][A].

As disclosed above, the validation manager 106 may be
configured to select data groups 130 to validate based on the
log order 652 of the stored data groups 130. The validation
manager 106 may be configured to select stored data units
132 for validation at the head 654 of the storage log 650
(e.g., most recently stored), since such data groups 130 are
more likely to have been affected by the mvalid shutdown
condition. By contrast, data groups 130 at the tail 653 of the

10

15

20

25

30

35

40

45

50

55

60

65

36

storage log 650 may be determined to have been written
betfore the invalid shutdown occurred and, as such, do not
require validation. In the FIG. 6 A embodiment, the valida-
tion manager 106 may select the data units at the head 654
of the storage log 650 for validation (e.g., stored data group
130[N] [P]). The validation manager 106 may be configured
to validate stored data groups 130 at and/or near the head
654 of the storage log 630 (e.g., within the log segment
670[N], and/or log segment 670[1]). In some embodiments,
the validation manager 106 validates stored data groups 130
within a validation region 118. The validation region 118
may comprise region within the storage address space 116.
In the FIG. 6 A embodiment, the validation region 118
includes log segment 670[N] and a portion of log segment
670[1]. Accordingly, the validation region 118 may com-
prise disjointed and/or non-contiguous sets ol storage
addresses within the storage address space 116 of the storage
array 110 (e.g., and/or within other storage resources). The
validation manager 106 may select the size of the validation
region 118 to include stored data groups 130 that may have
been aflected by the invalid shutdown condition (e.g., data
groups 130 that were being written at, or near, the time of the
invalid shutdown). Accordingly, the validation region 118
may be sized 1n accordance with a rate of write operations
being executed by the storage service layer 102 at the time
of the mvalid shutdown. The validation manager 106 may be
configured to expand the validation region 118 1n response
to determining that the storage service layer 102 was 1ssuing
write operations at a relatively high rate, and may contract
the validation region 118 1n response to determiming that the
storage service layer 102 was i1ssuing write operations at a
lower rate. The validation manager 106 may determine
and/or estimate the rate of write operations being performed
on the storage array 110 by use of virtualization metadata
5035 maintained by the storage layer 102, by use of metadata
maintained by the storage array 102, and/or the like. The
validation manager 106 may be configured to validate stored
data groups 130 within the validation region 118, as dis-
closed herein. The validation manager 106 may be further
configured to prevent access to data stored within the
validation region 118 (e.g., data stored 1n data groups 130 at
storage addresses within the validation region 118) until the
validation operations are complete. The validation manager
106 may allow access to other portions of the storage
address space 116 (e.g., may allow access to data stored
within stored data groups 130 on storage addresses outside
of the validation region 118).

FIG. 6B depicts embodiments of log storage operations
performed by the log module 108 of the storage service layer
102. The log module 108 may be configured to append data
at an append point 109 within the storage address space 116
of the storage array 110 (e.g., within respective log segments
670). Accordingly, the append point 109 may correspond to
a head 654 of the storage log 650. In the FIG. 6B embodi-
ment, the current append point 109 corresponds to storage
address 682 within log segment 670[1]. In response to
writing data to the data group 130 at storage address 682, the
log module 108 may advance 681 the append point 109 to
a next storage address within the log segment 670[1] (1if
any). When the log segment 670[1] 1s filled, the log module
108 may increment the append point 109 to a next available
log segment 670. As used herein, an “available” log segment
670 refers to a log segment 670 that can be erased and/or
overwritten by the log module 108 (e.g., a log segment 670
that does not comprise valid data that needs to be retained).

Log segments 671 comprising valid data may be “unavail-
able,” “un-writeable” and/or 1n an “un-writeable” state. In

US 9,946,607 B2

37

the FIG. 6B embodiment, the log segment 670[2] may be
unavailable for use by the log module 108 (e.g., the log
segment 670[2] may comprise valid data associated with one

or more LIDs of the logical address space 104). As disclosed
above, the log module 108 may comprise a log manager 508 5
configured to reclaim log segments 670 for reuse. Reclaim-
ing a log segment 670 may comprise relocating valid data
stored within the log segment 670 (1f any) by, inter alia,
rewriting the data to another log segment 670. Reclaiming a
log segment 670 may further comprise erasing the contents 10
of the log segment 670, recording that the log segment 670

1s available for use, and/or the like.

After filling the log storage segment 670[1], the log
module 108 may advance 681 the append point 109 to a next
available storage division 670[3] (storage address 683). The 15
log module 108 may append data at the append point 109 by,
inter alia, writing data to respective storage addresses within
log segment 670[3] (e.g., writing data sets 530 as respective
data groups 130 on the storage array 110). The log module
108 may be further configured to write sequence metadata 20
673 to the log segments 670, as disclosed herein (e.g., write
sequence metadata 673 to the data group 130 at a first
storage address within the respective log segments 670).

The log module 108 may be configured to append data at
storage address 682, which may comprise a) coalescing data 25
units 132A-N-1 for storage as a data group 130 as disclosed
herein (e.g., grouping data units 132A-N-1 into a data set
530, and b) generating integrity data 144 corresponding to
the data set 530 (by use of the validation manager 106). The
validation manager 106 may be further configured to include 30
the integrity data 144 within the data set 530 (e.g., include
the integrity data 144 within one or more of the data units
132A-N). Alternatively, or in addition, the validation man-
ager 106 may be configured to write the integrity data 544
to a separate storage resource, such as a metadata log 560. 35
The data written to the data group 130 at storage address 682
may be associated with respective LIDs 104A-N-1.
Appending the data at storage address 682 may further
include recording persistent metadata to associate the data
units 132A-N-1 with respective LIDs. The persistent meta- 40
data may comprise persistent metadata 335 of a data packet
532, a persistent metadata entry 539 within one or more of
the data units 132A-N, a persistent metadata entry 539
appended to a separate metadata log 560, and/or the like. In
some embodiments, the integrity data 144 1s included with 45
other persistent metadata, such as a persistent metadata entry
539 corresponding to the data set 530. Appending data at
storage address 682 may further comprise updating the
virtualization metadata 505 by, inter alia, recording an entry
526 1n the forward map 525 to associate LIDs 104A-N-1 50
with the stored data group 130 at storage address 682.

The log module 108 may be configured to append the data
set 330 to the storage log 650 by 1ssuing a write request to
the storage array 110 (by use of the coordination module
101). In response, the storage array 110 may write the data 55
units 132A-N-1 within a data group 130 at storage address
683 (e.g., on respective storage elements 112A-N of the
storage array 110). The storage array 110 may be further
configured to generate and/or store array metadata 134
corresponding to the data group 130. 60

As disclosed above, 1n response to an mvalid shutdown,
the validation manager 106 may be configured to select
stored data groups 130 for validation based on, inter alia, the
storage address of the append point 109. In the FIG. 6B
embodiment, an invalid shutdown may occur as the data set 65
530 1s being written to a data group 130 at storage address
682 by the storage array 110. In response to the invalid

38

shutdown, the validation manager 106 may implement one
or more recovery operations. As disclosed herein, the recov-
cery operations of the validation manager 106 may be
executed 1n place of one or more array recovery operations
124 of the storage array 110.

The validation manager 106 may be configured to select
stored data groups 130 for validation based on, inter alia, the
storage address of the append point 109. The validation
manager 106 may determine the storage address of the
append point 109 by use of the log module 108 (e.g., based
on sequence metadata 673 stored on the log segments 670
and/or the like). In some embodiments, the log module 108
1s configured to maintain the storage address of the append
point 109 in persistent storage. The log module 108 may
determine the storage address of the append point 109 by,
inter alia, accessing the persistent storage. In another
embodiment, the log module 108 determines the storage
address of the append point 109 by, inter alia, accessing the
contents of the storage log 650, accessing a separate meta-
data log 560, and/or the like. Although particular techniques
for determining a storage address of a log append point 109
are described herein, the disclosure 1s not limited in this
regard, and could be adapted to store and/or determine the
storage address of the append point 109 after an invalid
shutdown using any suitable technique or mechanism.

In one embodiment, the validation manager 106 1s con-
figured to validate one or more stored data groups 130 at the
head 654 of the storage log 650 (e.g., at the determined
append point 109). Storage operations pertaining to data
groups 130 stored at the head 654 of the storage log 650 may
have been interrupted by the mvalid shutdown, resulting in
a write hole (and/or other write errors). The validation
manager 106 may select the stored data groups 130 to
validate based on the determined storage address of the
append point 109. In the FIG. 6B embodiment, the valida-
tion manager 106 may select the data group 130 stored at
storage address 682 for validation (based on the storage
address of the append point 109). The validation manager
106 may validate the stored data group 130, as disclosed
herein (e.g., by accessing the data units 132A-N-1 of the
stored data group 130 and comparing the contents of the data
umts 132A-N-1 to integrity data 144 of the stored data
group 130). The validation manager 106 may be further
configured to detect a write hole 1n the stored data group 130
in response to determining that stored data of the data group
130 does not correspond to the integrity data 144. In
response to determining that the stored data group 130 1s
incomplete, the validation manager 106 may a) invalidate
the stored data group 130 (e.g., remove the entry associating
the LIDs 104A-N-1 with the data group 130 stored at
storage address 682), b) notily the storage array 110, and/or
the like. The validation manager 106 may be further COn-
figured to a) repair the stored data group 130, b) 1dentify and
retain valid portions of the stored data group 130, and so on,
as disclosed herein.

In some embodiments, the validation manager 106 vali-
dates stored data groups within a validation region 118. The
validation region 118 may correspond to the determined
storage address of the append point 109. In the FIG. 6B
embodiment, the validation region 118 includes storage
address 682 corresponding to the append point 109 and one
or more storage addresses at the head 654 of the storage log
650. The validation region 118 may exclude data groups 130
stored at the tail 6535 of the storage log 650. The size and/or
configuration of the validation region 118 may be based on
the log order 652 of the storage log 650 (e.g., sequence
metadata 673 of the respective log segments 670), the rate

US 9,946,607 B2

39

of write operations being performed on the storage array 110
at the time of the invalid shutdown, and/or the like, as
disclosed herein.

FIG. 7 1s a schematic block diagram of another embodi-
ment of a system 700 for managing storage errors. In the
FIG. 7 embodiment, the storage service layer 102 comprises
a metadata log module 708 configured to maintain a meta-
data log 560 on a storage device 710. The metadata log 560
may comprise an ordered sequence of metadata log entries
7359 corresponding to storage operations implemented on the
storage array 110 (and/or other storage resources 510). The
storage device 710 may be separate from other storage
resources 510 of the storage service layer 102, including the
storage array 110. In some embodiments, the storage device
710 comprises a byte addressable storage device, such as a
persistent memory storage device (e.g., battery backed
RAM), auto-commit memory, a solid-state storage device,
and/or the like. The storage device 710 may be communi-
catively coupled to the storage service layer 102 through,
inter alia, an interconnect 715. The interconnect 715 may
correspond to the interconnect 515 of the storage array 110.
Alternatively, the mterconnect 715 may be separate and/or
independent of the mterconnect 515. In some embodiments,
the interconnect 715 comprises a high-performance com-
munication bus configured to implement byte-addressable
storage operations. The interconnect 715 may comprise an
internal memory bus of the computing system 501.

As disclosed herein, the storage layer 102 may comprise
hardware components, such as circuits, programmable logic,
and/or the like. In the FIG. 7 embodiment, portions of the
storage layer 102, such as the validation manager 106 and/or
log module 108 comprise hardware components 702. Por-
tions of the storage layer 102 may be embodied as machine-
readable instructions stored on a non-transitory storage
medium. In the FIG. 7 embodiment, the storage service layer
102 may comprise non-volatile storage 704 comprising
instructions configured to cause the hardware components
702 to implement functionality of the translation layer 105,
validation module 106, log module 108, and so on. The
non-volatile storage 704 may comprise firmware of the
hardware components 702, an FPGA, an FPGA bitstream,
programmable logic configuration data, and/or the like. In
some embodiments, the non-volatile storage 704 comprises
a ROM, FPROM, and/or the like.

In the FIG. 7 embodiment, the log module 108 may be
configured to append data to a storage log 650 on the storage
array 110 at an append point 109 within a storage address
space 116 of the storage array 110, as disclosed herein. The
log module 108 of FIG. 7 may be configured to write the
data to the storage array 110 without persistent metadata
(e.g., without writing data packets 532 comprising persistent
metadata 535 and/or without writing persistent metadata
entries 539 to the storage array 110). The log module 108
may be configured to store persistent, crash-sate metadata
pertaining to data being stored on the storage array 110
(and/or other storage resources 310) 1in a metadata log 560.
The metadata log 560 may be maintained by a metadata log
module 708 of the storage service layer 102. The metadata
log module 708 may be configured to append persistent,
crash-safe metadata log entries 759. The metadata log mod-
ule 708 may append the metadata log entries 759 to an
ordered metadata log 560 within the storage address space
716 of the storage device 710.

The metadata log entries 759 may comprise contextual
metadata pertaiming to data units 132A-N-1 being written to
the storage array 110 within respective storage groups 130.
As disclosed herein, writing data to the storage array 110

10

15

20

25

30

35

40

45

50

55

60

65

40

may comprise a) collecting a data set 530 comprising a
plurality of data umts 132A-N-1, b) generating integrity
data 144 pertaining to the data units 132A-N-1, and c)
1ssuing a write request to store the set of N-1 data units 132
as a data group 130 on the storage array 110. In response, the
storage array 110 may write the data units 132A-N-1 as a
data group 130 with corresponding array metadata 134 on
respective storage elements 112A-N. In the FIG. 7 embodi-
ment, writing data to the storage array 110 further comprises
appending a persistent metadata log entry 759 to the meta-
data log 560. The persistent metadata log entry 759 may
include persistent, crash-sate metadata pertaining to the data
units 132A-N-1 being written to the storage array 110. As
illustrated 1 FIG. 7, a persistent metadata log entry 759
corresponding to a stored data group 130 may comprise:
LID associations pertaining to the data units 132A-N-1,
storage addresses of the data units 132A-N-1, and so on.
The persistent metadata log entry 759 may further comprise
integrity data 144 pertaining to the data units 132A-N-1. In
the FIG. 7 embodiment, the persistent metadata log entry
759 comprises a plurality of itegrity datum 144A-N-1
corresponding to the respective data units 132A-N-1. In
some embodiments, the persistent metadata log entry 759
further comprises sequence metadata 773 to, inter alia,
define a log order of the persistent metadata log entry 759
within the metadata log 560. Alternatively, the log order of
the persistent metadata log entry 759 may be defined by a
storage location of the persistent metadata log entry 759
within the storage address space 716 of the storage device
710 (e.g., within a particular log segment), by separate
sequence metadata, and/or the like. In some embodiments,
the relative log order of stored data groups 130 are defined
by the log order of the corresponding metadata log entries
759. Since the log order of the stored data groups are defined
within the metadata log 560, the storage operations to write
the data to the storage array 110 (and/or other storage
resources 510) may be implemented out-of-order and/or
may not be strictly ordered with respect to time. Accord-
ingly, in some embodiments, the log module 108 may
append data to the storage array 110 and/or other storage
resources 510 1n a different order from the order in which the
corresponding requests were received. The log module 108
may append data out-of-order due to any number of condi-
tions including, but not limited to: performance consider-
ations, a Quality of Service (QoS) policy, availability of the
data (e.g., data source bandwidth, direct memory access
(DMA) and/or remote DMA latency, and/or the like), avail-
ability of the storage resources 310, and/or the like.

The validation manager 106 may be configured to imple-
ment recovery operations 5317 for the storage service layer
102 1n response to detection of an mnvalid shutdown (by the
monitor 506). As disclosed herein, the validation manager
106 may select stored data groups 130 for validation based
on a log order of the stored data groups 130. The validation
manager 106 may determine the log order of the stored data
groups 130 by use of the metadata log module 708, which
may 1dentily the storage address(es) of the data groups 130
that were being written to the storage array 110 at the time
the mvalid shutdown occurred. The metadata log module
708 may 1dentily the storage address(es) based on the log
order of the metadata log entries 759 within the metadata log
560 (e.g., the storage addresses corresponding to the meta-
data log entries 759 at the head of the metadata log 560).

FIG. 8A 1s a schematic block diagram of another embodi-
ment of a system 800A for managing storage errors. In the
FIG. 8A embodiment, the storage service layer 102 com-
prises a journaling module 808 configured to, inter alia,

US 9,946,607 B2

41

manage journal storage 810. The journal storage 810 may
comprise high-performance storage resources, such as per-
sistent RAM, battery-backed RAM, auto-commit memory,
solid-state storage resources, and/or the like. The journal
storage 810 may be communicatively coupled to the storage
service layer 102 through an interconnect 815, which, 1n
some embodiments, comprises an internal memory bus of
the computing system 301. The journaling module 808 may
be configured to coalesce data sets 330 for storage on the
storage array 110 as respective data groups 130, as disclosed
herein. The journaling module 808 may be configured to
butler and/or queue incoming write requests to collect N-1
data units 132 for storage as a data group 130 on the storage
array 110 (e.g., collect N-1 data units 132 1n a data set 530).
The validation manager 106 may be configured to generate
integrity data 144 for the data sets 530, as disclosed herein.

The journaling module 808 may be configured to write
data sets 530 being written to the storage array 110 to the
journal storage 810 as a journaling entry 830 (e.g., as a
journaling entry 830A). The journaling entry 830A may
comprise the contents of the data units 132A-N-1, metadata
pertaining to the data units 132A-N-1 (e.g., LID(s) associ-
ated with the data unmits 132A-N-1), and/or integrity data
144 corresponding to the data units 132A-N-1. In some
embodiments, the journaling entry 830A further includes
storage addresses to which the data set 530 1s being stored
on the storage array 110. In some embodiments, the jour-
naling entry 830A comprises status metadata 833 to indicate
whether the data units 132A and/or 132B have been written
to the storage array 110 and/or whether the journaling entry
830A 1s ready for storage on the storage array 110 (e.g.,
whether the journaling entry 830A comprises N-1 data units
132).

In some embodiments, the journaling module 808 buflers
and/or queues incoming data 1n the journal storage 810. The
journaling module 808 may be configured to collect data
units 132 into respective data sets 330 within the journal
storage 808 (and/or by writing the data umts 132 to the
journal storage 810). The journal storage 810 may comprise
a persistent, crash-safe storage resource. Accordingly, the
storage service layer 102 may acknowledge completion of
incoming write requests pertaining to particular data units
132 as the data units 132 are written to the journal storage
810, and before the data units 132 are included 1n a data set
530 and/or written to a the storage array 110 as a data group
130.

The storage service layer 102 may further comprise a
crash recovery module 516 configured to recover from
invalid shutdown conditions pertaining to the computing
system 301, storage array 110, and/or the like, as disclosed
herein. The recovery module 516 may be configured to
recover from an invalid shutdown of the storage service
layer 102 that occurs after data of one or more write requests
have been written to the journal storage 810, and before the
data 1s written to the storage array 110 as a data group 130.
In the FIG. 8 A embodiment, the journaling module 808 may
have received requests to write data units 132A and 132B to
the storage array 110. The storage service layer 102 may
acknowledge completion of the respective write requests 1n
response to storing the data units 132A and 132B 1in the

journal storage 810, before forming a full data set 530 of

N-1 data units 132 and/or before writing the data units 132A
and/or 132B to the storage array 110.

The storage layer 102 may incur an invalid shutdown,
which may affect the storage service layer 102. The invalid
shutdown may occur before the data units 132 A and/or 132B
are written to the storage array 110. Since the journal storage

10

15

20

25

30

35

40

45

50

55

60

65

42

810 comprises persistent, crash-sate storage resources, the
journaling entry 830A comprising the data units 132A and
132B may be accessible after the mnvalid shutdown of the
storage service layer 102 and/or storage resources 510
(including the journal storage 810). The recovery module
516 may detect the invalid shutdown and, 1n response, may
configure the journaling module 808 to resume bullering
and/or queuing a data set 530 comprising the data units
132A and/or 132B for storage as a data group 130 on the
storage array 110.

FIG. 8B 1s a schematic block diagram of a system 800B
for managing storage errors, including embodiments of
recovery operations 317 pertaining to the journal storage
810. In the FIG. 8B embodiment, the recovery module 516
may detect an invalid shutdown of the storage service layer
102 and, 1n response, access the journal storage 810 to
determine that the journal storage 810 comprises one or
more unwritten data units 132 (as recorded in a journaling
entry 830A). The recovery module 516 may configure the
journal module 808 to resume bullering and/or queuing
incoming data in the journaling entry 830A. The journal
module 808 may modily the journaling entry 830B (e.g.,
append data to the journal storage 810), resulting in a full
data set 530 of journaling entry 830B. As illustrated 1n FIG.
8B, the journaling entry 830B comprises N-1 data units
132A-N-1 with corresponding metadata, and/or integrity
datum 144A-N-1. In response, the journaling module 808
may update the status metadata 833 of the journaling entry
830B to indicate that the data set 330 1s ready for storage as
a data group 130 on the storage array 110. The journaling
module 808 may be further configured to 1ssue a request to
write the data set 530 by use of the coordination module 101,
as disclosed herein. In response to 1ssuing the write request
and/or receiving a response irom the storage array 110, the
journaling module 808 may update the status metadata 833
of the journaling entry 830B to indicate that the journaling
entry 830B has been written to the storage array 110.

The journaling module 808 may be further configured to
remove journaling entries 830 that have been written to the
storage array 110 and/or validated by the validation manager
106. In some embodiments, the journaling module 808
retains journaling entries 830 1n accordance with an avail-
able capacity of the journal storage 810. The journaling
module 808 may retain journaling entries 830 for use in,
inter alia, recovering from invalid shutdown conditions as
disclosed above, and/or mvalid shutdown conditions per-
taining to the storage array 110. In the FIG. 8B embodiment,
the write request pertaining to journaling entry 830B may
fail due to an nvalid shutdown of the storage array 110.

In response to the invalid shutdown, the validation man-
ager 106 may be configured to implement one or more
recovery operations 517, which may preempt array recovery
operations 124 of the storage array 110, as disclosed herein.
In the FIG. 8B embodiment, the validation manager 106
may determine that the stored data group 130 comprising the
data of journal entry 830B comprises a write hole. In
response, the validation manager 106 may be configured to
rewrite the data segments 132A-N-1 using the contents of
the journaling entry 830B rather than imnvalidating the stored
data group 130 and/or attempting to recover portions of the
stored data group 130.

FIG. 9 15 a flow diagram of one embodiment of a method
900 for managing storage errors. Step 910 may comprise
storing integrity data 144 corresponding to data groups 130
being written to a storage array 110. Step 910 may comprise
buflering and/or queuing data sets 530 configured to storage
within respective data groups by the storage array 110 and

US 9,946,607 B2

43

generating integrity data 144 corresponding to the data sets
530. Step 910 may further comprise including the integrity
data 144 1n one or more data units 132A-N-1 of the data set
530. The integrity data 144 may be included as persistent
metadata 535 of a data packet 532 of one or more of the data
units 132A-N-1, may be included as a persistent metadata
entry 539 within one or more of the data units 132A-N-1,
within a persistent metadata log entry 759 appended to a
separate metadata log 3560, and/or the like, as disclosed
herein. In some embodiments, the integrity data of step 910
comprises a plurality of integrity datum 144 A-N-1 corre-
sponding to respective data units 132A-N-1 of the data
group 130. Step 910 may further comprise detecting invalid
shutdown conditions pertaining to the storage array 110
and/or 1mplementing recovery operations 517 to idenfily
and/or mitigate write hole conditions by use of the stored
integrity data 144, as disclosed herein.

Step 920 may comprise configuring the storage array 110
to delegate crash recovery operations, as disclosed herein. In
some embodiments, 920 comprises setting a configuration
parameter of the storage array 110, modifying a configura-
tion file of the storage array 110, signaling the storage array
110, and/or the like. Step 920 may comprise transmitting a
message 566 to the storage array 110 configured to prevent
the storage array 110 from performing one or more array
recovery operations 124. The message 566 may be trans-
mitted through an interface 111 of the storage array 110 (via
an 1terconnect 515) by use of a coordination module 101.
The coordination module 101 may be configured to manage
the storage array 110. In some embodiments, the coordina-
tion module 101 1s configured to 1ssue messages and/or
directives to the storage array 110 through a custom inter-
face of the storage array 110. In some embodiments, the
message 566 may comprise a command, a library call, a
tfunction call, an API call, an RPC call, a signal, an interrupt,
and/or the like. Step 920 may comprise sending the message
566 to the storage array 110 in response to detection of an
invalid shutdown pertaining to the storage array 110. The
message 566 may be configured to block the storage array
110 from attempting to validate stored data units 130, block
the storage array 110 from resynchronizing stored data units
130, block the storage array 110 from attempting to recon-
struct one or more stored data units 130, and/or the like.
Accordingly, the message(s) of step 920 may correspond to
a particular ivalid shutdown condition. Alternatively, step
920 may comprise transmitting message(s) 366 to the stor-
age array 110 configured to prevent the storage array 110
from 1mplementing certain array reconstruction operations
124 1n response to all invalid shutdown conditions.

In some embodiments, step 920 further comprises noti-
tying the storage array 110 of incomplete stored data groups
130, invalidating stored data groups 130 1n the storage array
130, requesting reconstruction of portions of particular
stored data groups 130 (e.g., by use of array metadata 134
maintained by the storage array 110), and so on, as disclosed
herein. Step 920 may comprise configuring the storage array
110 to delegate a subset of a plurality of array recovery
operations 124 to the storage service layer 102, such a first
set of array recovery operations 124 are preempted by the
storage service layer 102, and other array recovery opera-
tions 124 of a second set are performed 1n response to an
invalid shutdown. The storage array 110 may be configured
to continue performing array recovery operations 124 to a)
validate functionality of particular storage elements 112A-N
(e.g., verily that the storage elements 112A-N are usable); b)
validate communication interconnects of the storage array
110 (e.g., mterconnect 515); ¢) verily internal firmware

10

15

20

25

30

35

40

45

50

55

60

65

44

and/or metadata maintained by the storage array 110, and so
on. The array reconstruction operations 124 blocked in step
920 may include operations to validate data groups 130
stored on the storage array 110, as disclosed herein, such as
operations to validate stored data groups 130 (using array
metadata 134), operations to resynchromize stored data
groups 130, operations to reconstruct stored data groups
130, and so on.

FIG. 10 1s a flow diagram of another embodiment for
managing storage errors. Step 1010 comprises identifying
write hole 1 a stored data group 130 by use of stored
integrity data 144 corresponding to data umits 132A-N-1 of
the stored data group 130. Step 1010 may comprise a)
generating itegrity data 144 corresponding to data sets 530
being written to the storage array 110 within respective data
groups 130, b) storing the integrity data within the respective
data groups 130 (and/or other storage location, such as a
metadata log 560), and ¢) implementing recovery operations
517 to validate stored data groups 130 1n place of one or
more array recovery operations 124 of the storage array 110,
as disclosed herein. Step 1010 may comprise 1dentiiying the
write hole in response to determining that data of a stored
data group 130 does not correspond to integrity data 144 of
the stored data group 130.

Step 1010 may further comprise 1dentifying invalid por-
tion(s) of the stored data group 130 (e.g., identifying data
umt(s) 132A-N-1 comprising invalid data 131). Step 1010
may comprise comparing respective integrity datum
144 A-N to data of corresponding data units 132A-N-1 of
the stored data group 130, as disclosed herein. Step 1010
may further comprise determining that one or more of the
data units 132A-N-1 of the stored data group 130 comprise
valid data, as disclosed herein.

Step 1020 comprises implementing one or more recovery
operations 517, which may include, but are not limited to: a)
notifying one or more of the translation layer 105, the
storage array 110, a client 502, and/or the like, of the write
hole; b) invalidating the stored data group 130; c¢) invali-
dating a portion of the stored data group 130; d) reconstruct-
ing portion(s) of the stored data group 130; e) requesting
replacement data pertaining to the stored data group 130;
and/or the like, as disclosed herein. In some embodiments,
step 1020 comprises nvalidating data units 132A-N-1
determined to comprise invalid data 131 at step 1010. Step
1020 may comprise invalidating and/or TRIMing LIDs
associated with the invalid data units 132A-N-1. Step 1020
may include removing logical-to-storage mappings pertain-
ing to LIDs associated with the invalid data umits 132A-N-1
(e.g., removing and/or modifying one or more entries 526 of
a forward map 3525). Step 1020 may further comprise
notitying the storage array 110 that the stored data group 130
comprises a write hole and/or identifying the invalid portion
(s) of the stored data group 130.

In some embodiments, step 1020 comprises retaining
valid portion(s) of the stored data group 130 by, inter alia,
retaining logical-to-storage mappings pertaining to valid
data units 132A-N-1 of the stored data group 130, rewriting
valid data of the stored data group 130, and so on, as
disclosed herein. Alternatively, or in addition, step 1020 may
comprise reconstructing the contents of data units 132A-
N-1 determined to comprise mvalid data by use of the
storage array 110 (e.g., through parity reconstruction), may
comprise accessing replacement data for one or more data
units 132A-N-1, and/or the like.

FIG. 11 1s a flow diagram of another embodiment 1100 of
a method for managing storage errors. Step 1110 may

US 9,946,607 B2

45

comprise 1dentifying a write hole 1n a stored data group 1n
response to an invalid shutdown, as disclosed herein.

Step 1120 may comprise reconstructing portions of the
stored data group 130. Step 1120 may comprise identifying

invalid portions of the stored data group 130 by use of °

respective integrity datum 144A-N-1. Step 1120 may fur-
ther comprise 1ssuing a request to the storage array 110 to
reconstruct the invalid portion(s) of the stored data group
130 by use of array metadata 134 corresponding to the stored
data group 130. Alternatively, or 1n addition, step 1120 may
comprise an iterative parity operation to iteratively recon-
struct portions of a stored data array 130, attempt to validate
the reconstructed data, and 1dentity a valid reconstruction by
use of the integrity data 144 corresponding to the stored data
group 130, as disclosed herein.

FIG. 12 1s a flow diagram of another embodiment of a
method 1200 for managing storage errors. Step 1210 may
comprise maintaining a storage log pertaining to a logical
address space 104. Alternatively, or 1n addition, step 1210
may comprise a storage log corresponding to storage opera-
tions performed on a storage array 110 (e.g., operations to
store data groups 130 comprising data associated with LIDs
of the logical address space 1040). Step 1210 may comprise
appending data to an ordered storage log 6350 on the storage
array 110. Alternatively, or in addition, step 1210 may
comprise maintaining a metadata log 560 on a separate
storage device 710, as disclosed herein. Step 1210 may
comprise appending data groups 130 sequentially within a
storage address space 116 of the storage array 110 (e.g., at
an append point 109), as disclosed herein.

Step 1220 may comprise selecting stored data groups 130
to validate 1n a crash recovery operation. Step 1220 may be
performed 1n response to an invalid shutdown. Step 1220
may further comprise configuring the storage array 110 to
delegate and/or defer crash recovery operations to the stor-
age service layer 102.

Step 1220 may comprise selecting stored data groups 130
for validation based on the ordered log of step 1210. Step
1220 may comprise selecting stored data groups 130 at the
head 654 of the storage log 650. Accordingly, in some
embodiments step 1220 comprises i1dentifying a storage
address corresponding to the head 654 of the storage log 650
and selecting stored data groups 130 for validation corre-
sponding to the identified storage address. Alternatively, or
in addition, step 1220 may comprise determining a storage
address of the append point 109 at the time of the mvalid
shutdown (by use of the log module 108 and/or metadata log
module 708). Step 1220 may comprise selecting stored data
groups 130 at the determined append point 109.

In some embodiments, step 1220 further comprises vali-
dating stored data groups 130 stored within a validation
region 118 within the storage address space 116 of the
storage array 110. The validation region 118 may comprise
storage addresses at the head 654 of the storage log 650. The
s1ze and/or configuration of the validation region 118 may be
based on the log order 652 of the storage log 650 (e.g.,
relative log order of segments 670 of the storage log 650),
the rate of write operations performed on the storage array
110 at the time of the invalid shutdown, and/or the like, as
disclosed herein. In some embodiments, step 1220 further
includes blocking access to stored data groups 130 within
the validation region 118 while the stored data groups 130
therein are validated by the validation manager 106. Step
1220 may further include providing access to other region(s)
of the storage address space 116 outside of the validation
region 118.

10

15

20

25

30

35

40

45

50

55

60

65

46

Step 1230 may comprise validating the selected stored
data groups 130 by use of integrity data 144 stored 1n
association with the stored data groups 130, as disclosed
herein. Step 1230 may comprise 1dentifying incomplete
stored data groups 130, invalidating the mncomplete stored
data groups 130, notifying the storage array 110 of the
incomplete stored data groups 130, rebuilding the incom-
plete stored data groups 130, and so on, as disclosed herein.

FIG. 13 1s a flow diagram of another embodiment of a
method 1300 for managing storage errors. Step 1310 may
comprise journaling data units 132 for storage on a storage
array 110. Step 1310 may comprise writing journaling
entries 830 to journal storage 810, as disclosed herein. Step
1310 may further comprise bullering and/or queuing data
sets 530 configured to storage within respective data groups
130 on the storage array 130, generating integrity data 144
corresponding to the contents of the data sets 530, inserting
the integrity data 144 into the data sets 530 (and/or storing
the integrity data 544 in a separate storage location), and
1ssuing requests to write the data sets 530 as respective data
groups 130 on the storage array 130. Step 1310 may
comprise journaling the data units 132 in response to write
requests from clients 502. Step 1310 may further comprise
acknowledging completion of the write requests in response
to journaling the data units 132 in the journal storage 810.
The wrote requests may be acknowledged before the data
units 132 are written to the storage array 110 (and/or before
the data units 132 are included 1n a complete data set 530
comprising N-1 data units 132).

Step 1320 comprises 1dentifying a storage error in
response to an invalid shutdown. Step 1320 may comprise
identifying data units 132 in the journal storage 810 that
have not been written to the storage array 110. Step 1320
may comprise accessing the journal storage 810 to identify
one or more journaling entries 830 comprising data units
132 that have not been written to the storage array 110.
Alternatively, or addition, step 1320 may comprise 1denti-
tying a stored data group 130 that comprises a write hole by
use of the integrity data 144 stored for the data group 130 1n
step 1310.

Step 1320 may comprise recovering from the invalid
shutdown by use of the contents of the journal storage 810.
Step 1330 may comprise writing unwritten data units 132 1n
the journal storage 810 as a stored data group 130 on the
storage array 110. Alternatively, or in addition, step 1330
may comprise rewriting a stored data group 130 that com-
prises a write hole by use of a data set 530 stored 1n the

journal storage 810 (e.g., in one or more journal entries 830),
as disclosed herein.

This disclosure has been made with reference to various
exemplary embodiments. However, those skilled 1n the art
will recognize that changes and modifications may be made
to the exemplary embodiments without departing from the
scope of the present disclosure. For example, various opera-
tional steps, as well as components for carrying out opera-
tional steps, may be implemented in alternative ways
depending upon the particular application or 1in consider-
ation ol any number of cost functions associated with the
operation of the system (e.g., one or more of the steps may
be deleted, modified, or combined with other steps). There-
fore, this disclosure 1s to be regarded 1n an illustrative rather
than a restrictive sense, and all such modifications are
intended to be included within the scope thereotf. Likewise,
benelits, other advantages, and solutions to problems have
been described above with regard to various embodiments.
However, benefits, advantages, solutions to problems, and
any element(s) that may cause any benefit, advantage, or

US 9,946,607 B2

47

solution to occur or become more pronounced are not to be
construed as a critical, a required, or an essential feature or
clement. As used herein, the terms “comprises,” “compris-
ing,” and any other varnation thereof are intended to cover a
non-exclusive inclusion, such that a process, a method, an
article, or an apparatus that comprises a list of elements does
not include only those elements but may include other
clements not expressly listed or mherent to such process,
method, system, article, or apparatus. Also, as used herein,
the terms “coupled,” *“coupling,” and any other variation
thereol are intended to cover a physical connection, an
clectrical connection, a magnetic connection, an optical
connection, a communicative connection, a functional con-
nection, and/or any other connection.

Additionally, as will be appreciated by one of ordinary
skill 1n the art, principles of the present disclosure may be
reflected 1n a computer program product on a machine-
readable storage medium having machine-readable program
code means embodied 1n the storage medium. Any tangible,
non-transitory machine-readable storage medium may be
utilized, including magnetic storage devices (hard disks,
floppy disks, and the like), optical storage devices (CD-
ROMs, DVDs, Blu-ray discs, and the like), flash memory,
and/or the like. These computer program instructions may be
loaded onto a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions that execute
on the computer or other programmable data processing
apparatus create means for implementing the functions
specified. These computer program instructions may also be
stored 1n a machine-readable memory that can direct a
computer or other programmable data processing apparatus
to function 1n a particular manner, such that the mnstructions
stored 1n the machine-readable memory produce an article of
manufacture, including implementing means that implement
the function specified. The computer program instructions
may also be loaded onto a computer or other programmable
data processing apparatus to cause a series ol operational
steps to be performed on the computer or other program-
mable apparatus to produce a computer-implemented pro-
cess, such that the mstructions that execute on the computer
or other programmable apparatus provide steps for imple-
menting the functions specified.

While the principles of this disclosure have been shown 1n
vartous embodiments, many modifications of structure,
arrangements, proportions, elements, materials, and compo-
nents that are particularly adapted for a specific environment
and operating requirements may be used without departing
from the principles and scope of this disclosure. These and
other changes or modifications are mtended to be included
within the scope of the present disclosure.

We claim:

1. An apparatus, comprising:

a storage service layer configured to:

generate integrity metadata corresponding to data being
stored within respective data groups by a storage
engine, wherein the storage engine 1s configured to
store the data groups with reconstruction metadata
on a storage array comprising a plurality of non-
volatile storage devices; and

recover from an mvalid shutdown of the storage array
by use of the integrity metadata, wherein recovering
from the mvalid shutdown comprises preventing
implementation of a recovery operation of the stor-
age engine pertaining to the mvalid shutdown.

2. The apparatus of claim 1, wherein the storage service
layer 1s further configured to determine, by use of the

5

10

15

20

25

30

35

40

45

50

55

60

65

48

integrity metadata, whether the imvalid shutdown resulted 1n
storage of an incomplete data group on the storage array.

3. The apparatus of claim 2, wherein the storage service
layer 1s further configured to i1dentily an incomplete data
group stored on the storage array in response to a mismatch
between integrity metadata generated for the data group and
integrity metadata derived from data read from the storage
array.

4. The apparatus of claim 2, wherein the storage service
layer 1s further configured to mnvalidate at least a portion of
a particular data group stored on the storage array 1n
response to determining that the particular data group 1s
incomplete.

5. The apparatus of claim 1, wherein:

the recovery operation of the storage engine comprises
validating a set of stored data groups by use of the
reconstruction metadata stored with the respective data
groups on the storage array; and

the storage service layer 1s further configured to validate
a subset of the set of stored data groups in response to
the invalid shutdown.

6. The apparatus of claim 1, wherein the storage service

layer 1s further configured to:

write data at an append point of a storage log on the
storage array by use of the storage engine; and

validate a data group corresponding to the append point of
the storage log 1n response to the mnvalid shutdown of
the storage array.

7. The apparatus of claim 1, further comprising a coor-
dination module configured to direct the storage engine to
delegate recovery from the invalid shutdown to the storage
service layer.

8. The apparatus of claim 1, further comprising a storage
array coordinator configured to prevent implementation of a
resynchronization operation by the storage engine in
response to the invalid shutdown, the resynchromization
operation to validate data groups stored on the storage array
by use of the reconstruction metadata stored with the data
groups by the storage engine.

9. A system, comprising:

a storage layer configured to store integrity data corre-
sponding to data being stored within respective data
stripes of a storage system, wherein the data stripes
stored within the storage system correspond to respec-
tive parity reconstruction data generated for the data
stripes by the storage system;

a crash recovery module configured to validate one or
more data stripes of the storage system by use of the
stored integrity data 1n response to an invalid shutdown
of the storage system; and

a storage coordination module configured to block per-
formance of a recovery operation by the storage system
in response to the mvalid shutdown.

10. The system of claim 9, wherein the crash recovery
module 1s further configured to detect the invalid shutdown
of the storage system.

11. The system of claim 9, wherein:

the storage system comprises a Redundant Array of
Inexpensive Disks (RAID) storage system; and

the storage coordination module 1s further configured to
cause the RAID storage system to delegate recovery
operations pertaining to mvalid shutdowns of the stor-
age system to the storage layer.

12. The system of claim 9, wherein:

the crash recovery module i1s configured to validate a
particular data stripe 1n response to the invalid shut-
down; and

US 9,946,607 B2

49

validating the particular data stripe comprises determin-
ing whether the particular data stripe comprises a write
error by comparing stored integrity data of the particu-
lar data stripe to integrity data generated from the

50

17. The non-transitory computer-readable storage

medium of claim 16, the operations further comprising:

invalidating the identified data stripe 1n response to a
mismatch between the checksum value derived from

particular data stripe stored within the storage system. s the identified data stripe and the stored checksum value
13. The system O_f Clt‘fllm 9, where:m: corresponding to the i1dentified data stripe.
the storage coordination module 1s further configured "[0 18. The non-transitory computer-readable storage
transmit a nlllesgagert((lj ‘ltlhedRAID hstorage syster;lﬁ 1n medium of claim 16, wherein:
response to the mvalid shutdown, the message conlig- the data stripe at the head of the storage log comprises a
ured to block performance of the recovery operation by 10 : :
. .. plurality of data blocks mapped to respective addresses
the storage system, the recovery operation comprising, of a lowical address space: and
a Redundant Array of Inexpensive Disks (RAID) resyn- & part, dil L -
chronization operation the operations further comprise invalidating associations
14. The system of claim '9 wherein: between the data stripe and the respective addresses 1n
a particular data stripe stored within the storage system 15 TESpOLSE to a mlsplatd} between th.e checksum value
comprises a plurality of data units: derived from the i1dentified data stripe and the stored
the integrity data stored for the particular data stripe checksum value corresponding to the identitied data
comprises a plurality of integrity datum, each integrity stripe. |
datum corresponding to a respective data umt of the 19. The non-transitory computer-readable storage
plurality of data units; and >0 medium of claim 15, wherein:
the crash recovery module 1s further configured to vali- storing the checksum values comprises appending map-
date respective data units of the particular data stripe ping entries comprising the checksum values to a
stored within the storage system 1in response to the metadata log maintained on a storage device that is
invalid shutdown, by comparing the integrity datum independent of the storage array, and
stored for the particular data stripe with itegrity datum 25 the mapping entries associate data blocks within the

derived from the respective data units of the particular
data stripe stored within the storage system.
15. A non-transitory computer-readable storage medium

respective data stripes with respective logical addresses
of a logical address space.
20. The non-transitory computer-readable storage

storing program code configured to cause a computing
device to perform operations, the operations comprising: 30
appending data groups to a storage log maintained on a

medium of claim 15, wherein storing a checksum value of
a data stripe comprises including the checksum value in the
data group stored within the data stripe on the storage array.

storage array by use of a storage array controller, the
storage array controller configured to store the data
groups within respective data stripes on the storage

21. The non-transitory computer-readable storage

medium of claim 15, wherein:

the stored checksum values for a data group stored within

array, wherein appending the data groups further com- 35 _ _ _ _ .
prises storing checksum values corresponding to the the 1dentified data stripe comprise a plurality of seg-
data groups; and ment checksum values, each segment checksum value
1n response toj an 1nvalid shutdown of the storage array, corresponding 1o a respective data segment of the data
the operations further comprise: I OUP: and
validating an 1dentified data stripe stored at a head of 40 Vahdatmg.the 1dent1ﬁed data stripe further comprises:
the storage log on the storage array by use of the comparing respective checksum values stored for each
stored checksum values corresponding to the data of a plurality of data segments of a data group to
groups; and checksum values derived from corresponding data
preventing execution of a crash recovery operation by . segments stored within the 1dentified data Stripe;
the storage array controller. 45 invalidating a first data segment stored within the
16. The non-transitory computer-readable storage 1d§nt1ﬁed data stripe 1n response 1o a checksum
medium of claim 15, the operations further comprising;: m{iplatch pertauémdg tto the ﬁrsttda;[a szgm egl;, ali,d
identifying the data stripe at the head of the storage log in rewriing a second data segment stored within the
response to the invalid shutdown; and 1dentified data stripe to a different data stripe on the
comparing a checksum value derived from the i1dentified 50 storage array 1in response to a checksum match

data stripe to a stored checksum value corresponding to
the 1dentified data stripe.

pertaining to the second data segment.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

