US009940163B2

a2y United States Patent (10) Patent No.: US 9.940.163 B2

Hosie et al. 45) Date of Patent: Apr. 10, 2018
(54) ORDERING REPEATING ELEMENTS 8,805,938 B2 82014 Yu
WITHIN A MESSAGE 2002/0161814 Al1* 10/2002 Wical GO6F 11/2025
718/101
(71) Applicant: INTERNATIONAL BUSINESS 2005/0165802 Al1* 7/2005 Setht ..coooveenne, GO6F 17/3056
MACHINES CORORATION,, 2007/0171919 Al1* 7/2007 Godman HO041. 67/40
Armonk, NY (US) . 3707596
’ 2008/0126385 Al 5/2008 Gaurav et al.
_ _ 2009/0193095 Al 7/2009 Coleman

(72) Inventors: John Hosie, Hursley (GB); Martin A. 2012/0159498 Al* 6/2012 Wilmarth GOGF 9/526
Ross, Hursley (GB); Craig H. Stirling, 718/103

Hursley (GB); Dominic J. Storey, (Continued)

Hursley (GB)
FOREIGN PATENT DOCUMENTS

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) CN 104360843 A 2/2015

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 171 days.

OTHER PUBLICATTIONS

Jackson, Callum, “Aggregation Functionality in IBM Web Sphere
Enterprise Service Bus V6.1, Part 3: Best practices and patterns for
ageregation,” downloaded from internet Apr. 14, 2015, http://www.
ibm.com/cleveloperworks/library/ws-websphereeb3/, pp. 1-17.

(21) Appl. No.: 14/847,603

(22) Filed: Sep. 8, 2015

(65) Prior Publication Data Primary Examiner — Hyung S. Sough
US 2017/0068566 Al Mar. 9, 2017 Assistant Examiner — Kimberly L Jordan
(74) Attorney, Agent, or Firm — Heslin Rothenberg
(51) Int. CL Farley & Mesit1 P.C.
GO6F 9/44 (2006.01)
GO6F 9/146 (2006.01)
GOG6F 9/48 (2006.01) (57) ABSTRACT
(52) US. Cl. A queue of transactions 1s managed. A sort order for the
CPC e GO6F 9/4881 (2013.01) queue of transaction is determined. A first batch of transac-
(58) Field of Classification Search tions 1s sorted according to the determined sort order and a
CPC ... GOOE 9/466; GOOF 9/546; GO6F 9/4881 further batch of transactions 1s also sorted according to the
USPC .. e, 719/314 determined sort order. A notifying is performed that the first

See application file for complete search history. batch of transactions is ready for processing and that the

_ further batch of transactions 1s ready for processing. The
(56) References Cited sorting and notifying for further batches of the transactions
U.S PATENT DOCUMENTS continues until all the transactions in the queue have been

sorted and notified as ready for processing.

7,155,483 B1 12/2006 Friend et al.
7,463,939 B1* 12/2008 Matacoovvvnnn, G06Q 10/10
700/100 15 Claims, 8 Drawing Sheets

ESB Sorting Method 300A (" 30248tart)

304A Determining sort order, set starting element
(SE), set ending element (EE) to batch size (BS)
{

308A Defining sort batch (n=5SE to EE) —
310A Sorting nth element as part of sort batch -
312A Incrementing n

I

Qam Branching if n is less than N

Nﬂl

316A Notifying batch ready for processing

318A Modifying batch size (BS) (optional)

l

320A Setting new ending element EE= EE+BS

l

322A Branching if elements remain

Nr:nl
< 324A End D

Yes

US 9,940,163 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2013/0317975 Al* 11/2013 Gage G06Q 30/0601
705/39
2014/0244832 Al1* 8/2014 Beckooooeeiiiinil GO6F 9/546
709/224

* cited by examiner

U.S. Patent Apr. 10, 2018 Sheet 1 of 8 US 9,940,163 B2

ESB Repeat Node 10

——— il R ——— —

Computer Server 12

Memory 30

Central Processing i Volatile Memory 32
Unit 22 - N
il RAM36 || CACHE38 |||

!" T S
- ! Persistent Memory 34

Device . Network _____ -
Adapter || Adapter ESB Processing Module 100 i l

' 26 24

| %

ESB Message Butter 110

w

ESB Sorting Module 200

k

Enterprise
Service Bus

20

I Sort
l ' Analysis
L ESB | | Server23
Input / Transaction
Output Processor

Devices 21 f

FIGURE 1A

U.S. Patent Apr. 10, 2018 Sheet 2 of 8 US 9,940,163 B2

l Incoming ESB message 52

Aggregation
Unit
50

ESB Repeat Node 10

f i

Service 56A | | Service 56B || Service 56C'

Correlation node 58

Outgoing ESB message 54

FIGURE 1B

U.S. Patent Apr. 10, 2018 Sheet 3 of 8 US 9,940,163 B2

ESB Sorting Module 200

l Sort Order Butter 202

Sort Engine 204 l '

Flag Engine 206

l ESB Sorting Method 300 l
| -

FIGURE 2

U.S. Patent Apr. 10, 2018 Sheet 4 of 8 US 9,940,163 B2

ESB Sorting Method 300A < 302A Start >
—————————

304 A Determining sort order, set starting elément
(SE), set ending element (EE) to batch size (BS)

I _
308A Detining sort batch (n=SE to EE)

310A Sorting nth element as part of sort batch
l

QZIA Branching 1t n 1s less than EE =

l______—_ No! I l

l(?» 12A Incrc;menting n

a 316A Notifying batch ready for processing
318A Modifying batch size (BS) (optional)

l

i 320A Setting new ending ele&ﬂt EE= EE+BS

@A Branching 1f elements remain

No

< 324A End >

FIGURE 3A

U.S. Patent Apr. 10, 2018 Sheet 5 of 8 US 9,940,163 B2

ESB Sorting Method 300B ; 200R Start) I

3048 Deterr;li;ing sort order, set starting element
(SE), set ending element (EE) to batch size (BS)

. 308B i)eﬁning sort batch (n=SE to EE)

310B Sorting nth element as part of sort batch

312B Incrementing n

Yes
<__314B Branching 1f n 1s less than EE
No

16B Incrementing EE and branching
if previous batch 1s still being
processed (optional)

NOI

318B Notifying batch ready for processing

.
| 320B Setting new starting element SE= EE+1 and

| new ending element EE=SE+BS

@B Branching 1f elements remain

Nol o B

< 34BEnd >

FIGURE 3B

Yes

]

U.S. Patent Apr. 10, 2018 Sheet 6 of 8 US 9,940,163 B2

EndOfDayTransactions>

<Transaction id=0000001>
<Amount>%$123.45</Amount>
<CardNumber>1111222233334444</CardNumber>
<ltem>Product A</l{tem>
<ltem>Product B</ltem>
<ltem>Product C</ltem>
<|tem>Product D</ltem>

</Transaction>

<Transaction id=0000002>
<Amount>$23.45</Amount>
<CardNumber>2222333344445555</CardNumber>
<ltem>Product E</ltem>
<ltem>Product F</ltem>

</Transaction>

<Transaction id=0000003>
<Amount>%$12.34</Amount>
<CardNumber>3333444455556666</CardNumber>
<ltem>Product G</ltem>
<ltem>Product H</ltem>
<|ltem>Product |</ltem>
<[tem>Product J</ltem>
<ltem>Product K</ltem>

</Transaction>

<Transaction 1d=9999999>
<Amount>$1234.56</Amount>
<CardNumber>666677/77/88889999</CardNumber>
<|[tem>Product X</ltem>
<|ltem>Product Y</ltem>
<ltem>Product Z</ltem>

</Transaction>

</EndOfDayTransactions>

FIGURE 4

U.S. Patent

Remainder
of Batch
Not Sorted |

Element

Apr. 10, 2018

Transaction

Sheet 7 of 8

Transaction id=0000001
Transaction id=0000002
Transaction 1d=0000003
Transaction id=0000004
Transaction id=0000005

0999999 Transaction id=9999999

e e e e e e e vy ey W= = o= @Y e Er B EY DN EE IS EE I TIr T I DG INN TEN W BGr INN DNy BN BNN G BN BNN SN DN NN BEN BNy TEE SNr ENN TEN TEr INr TN DgE By INN DN HE pET TN G Ay II IE QNN DEy W R WE By By mm me

FIGURE 5A

Element

Transaction

Transaction id=0000002
Transaction id=0000001
Transaction id=0000003
Transaction id=0000004
Transaction id=0000005

Transaction id=9999999

Batch
Not Sorted

9999999

Transaction id=0000004
Transaction id=0000003
Transaction id=0000002
Transaction id=0000001
Transaction id=0000005

Transaction 1d=9999999

2"d Batch
Sorted

L o e o e o T o T T T W= T o T EE R e = W W R = v ey = e e = = . = e m — — — — i —— —————— — — —————

Remainder
of Batch
Not Sorted

FIGURE 5C

US 9,940,163 B2

15t Sync Point

18t Sync Point

2" Sync Point

U.S. Patent Apr. 10, 2018 Sheet 8 of 8

Element Transaction

——“q--_--_-‘-'--'F"FI'-'--————-----------_-—--—--—-——-—------------—-*-------

1 Transaction id=0000001 Batch !
2 Transaction id=0000002 Not Sorted |
3 Transaction id=0000003 :
4 Transaction id=0000004
5 Transaction id=0000005

9999999 Transaction id=9999999

ﬂm-—---d-—*h—————————--------—-—_—_—m—

FIGURE 6A
__.Element Transaction .
1 Transaction id=0000002 1st Batch
2 Transaction id=0000001 __ Sorted. .
3 Transaction id=0000003 Remainder E
4 Transaction id=0000004 of Batch
5

Transaction id=0000005 Not Sorted

9999999 Transaction id=9999999

FIGURE 6B

__Element Transacton

1 Transaction id=0000002 1st Batch |
2 Transaction id=0000001 ~~ Sorted ! _

3 Transaction id=0000006 ond Batch |

4 Transaction id=0000005 Sorted |

5 Transaction id=0000004 ‘

6 Transaction id=0000003 |

Remainder

9999999 Transaction id=9999999 of Batch

Not Sorted

FIGURE 6C

US 9,940,163 B2

1st Sync Point

15t Sync Point

2" Sync Point

US 9,940,163 B2

1

ORDERING REPEATING ELEMENTS
WITHIN A MESSAGE

BACKGROUND

One or more aspects of the present mvention relate to
ordering repeating elements within a message.

An enterprise service bus (ESB) system typically com-
prises one or more repeat nodes for processing a message of
repeating elements. For a message with repeating elements,
for example a batch of transactions collected over a business
day, a repeating node will process each element 1n the order
that 1t appears within the message. However, there may be
high priority elements within the batch that would better be
processed before low priority elements. For example, end of
day transaction processing may take many hours so 1t would
be better to process any transactions having a high fraud
probability sooner rather than later.

SUMMARY

In accordance with one aspect of the invention, a com-
puter system for managing a queue of transactions for
processing 1s provided. The computer system includes a
memory; and a processing device in communication with the
memory, wherein the computer system i1s configured to
perform a method. The method includes determining a sort
order for the queue of transactions; sorting a first batch of
transactions in the queue according to the determined sort
order; notifying that the transactions in the first batch of
transactions are ready for processing; sorting a further batch
of transactions 1n the queue according to the determined sort
order; notifying that the transactions in the further batch are
ready for processing; and continuing to sort and notify for
turther batches of the transactions in the queue until the
transactions in the queue have been sorted and the notifying,
1s performed.

In accordance with another aspect of the invention, a
method of managing a queue of transactions for processing,
1s provided. The method includes determining a sort order
for the queue of transactions; sorting a first batch of trans-
actions 1n the queue according to the determined sort order;
notifying that the transactions in the first batch of transac-
tions are ready for processing; sorting a further batch of
transactions 1n the queue according to the determined sort
order; notifying that the transactions in the further batch are
ready for processing; and continuing to sort and notily for
turther batches of the transactions in the queue until the
transactions 1n the queue have been sorted and the notifying,
1s performed.

In accordance with yet another aspect of the mnvention, a
computer program product for managing a queue of trans-
actions for processing is provided. The computer program
product includes a computer readable storage medium read-
able by a processing circuit and storing instructions for
execution by the processing circuit for performing a method.
The method includes determining a sort order for the queue
of transactions; sorting a first batch of transactions in the
queue according to the determined sort order; notifying that
the transactions 1n the first batch of transactions are ready for
processing; sorting a further batch of transactions in the
queue according to the determined sort order; notifying that
the transactions in the further batch are ready for processing;
and continuing to sort and notify for further batches of the

10

15

20

25

30

35

40

45

50

55

60

65

2

transactions in the queue until the transactions i1n the queue
have been sorted and the notifying 1s performed.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be
described, by way of example only, with reference to the
following drawings in which:

FIG. 1A 1s one example of a deployment diagram of one
embodiment 1n a repeat node of an enterprise service bus
(ESB), 1n accordance with one or more aspects of the present
invention;

FIG. 1B 1s one example of a deployment diagram of one
embodiment of a repeat node as part of a signal aggregation
unit 1n an enterprise service bus (ESB), in accordance with
an aspect of the present mnvention;

FIG. 2 1s one example of a component diagram of one
embodiment, 1n accordance with one or more aspects of the
present invention;

FIGS. 3A and 3B are flow diagrams of a process of one
embodiment and an alternative embodiment, respectively, 1n
accordance with one or more aspects of the present inven-
tion;

FIG. 4 1s an example queue of transactions, in accordance
with one or more aspects of the present invention;

FIGS. 5A, 5B and 35C are example states of a transaction
queue after performance of one embodiment, in accordance
with one or more aspects of the present invention; and

FIGS. 6A, 6B and 6C are example states of a transaction
queue alter performance of the alternative embodiment, 1n
accordance with one or more aspects ol an present invention.

DETAILED DESCRIPTION

Referring to FIG. 1A, the deployment of one embodiment
in an enterprise service bus (ESB) repeat node 10 1s
described. ESB repeat node 10 1s operational with numerous
other general purpose or special purpose computing system
environments or configurations. For a typical ESB 1imple-
mentation, the ESB has a runtime to which a message flow
1s deployed. The tlow 1s composed on a number of logical
processing nodes including: mput nodes that receive input
from a plurality of transport protocols; and output nodes that
transmit data over the transport protocols. Between the input
nodes and the output nodes the message tlow 1s comprised
of further nodes each executing particular logic when
invoked during processing through the flow. One such
further node 1s a repeat node that can mvoke subsequent
logic paths multiple times over based on configuration or
content of the mmbound message. Examples of well-known
computing processing systems, environments, and/or con-
figurations that may be suitable for use with ESB repeat
node 10 include, but are not limited to, personal computer
systems, server computer systems, multiprocessor systems,
microprocessor-based systems, network PCs, minicomputer
systems, mainframe computer systems, and distributed com-
puting environments that include any of the above systems
or devices. A distributed computer environment includes a
cloud computing environment for example where a com-
puter processing system 1s a third party service performed by
one or more of a plurality of computer processing systems.
A distributed computer environment also includes an Inter-
net of Things computing environment for example where
computer processing systems are distributed as a network of
objects that can 1nteract with a computing service.

ESB repeat node 10 may be described in the general
context of computer system-executable instructions, such as

US 9,940,163 B2

3

program modules, being executed by a computer processor.
Generally, program modules may include routines, pro-
grams, objects, components, logic, and data structures that
perform particular tasks or implement particular abstract
data types. ESB repeat node 10 may be embodied 1n
distributed cloud computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed cloud
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

ESB repeat node 10 comprises, for instance: general-
purpose computer server 12 and one or more nput devices
14 and output devices 16 directly attached to the computer
server 12. ESB repeat node 10 communicates with a user 18
using input devices 14 and output devices 16. Input devices
14 1nclude one or more of: a keyboard, a scanner, a mouse,
trackball or another pointing device. Output devices 16
include one or more of a display or a printer. ESB repeat
node 10 1s connected to an enterprise service bus (ESB) 20.
ESB repeat node 10 commumnicates with network devices
(not shown) over ESB 20.

ESB transaction processor 21 i1s connected to the ESB
repeat node 10 through ESB 20 and 1s for processing
transactions or other elements.

Sort analysis server 23 1s connected to the ESB repeat
node 10 through ESB 20 and 1s for providing priority
analysis for elements.

Computer server 12 comprises: central processing unit
(CPU) 22; network adapter 24; device adapter 26; bus 28
and memory 30.

CPU 22 loads machine instructions from memory 30 and
performs machine operations 1n response to the instructions.
Such machine operations include: incrementing or decre-
menting a value in a register; transierring a value from
memory 30 to a register or vice versa; branching to a
different location in memory 1f a condition 1s true or false
(also known as a conditional branch instruction); and adding
or subtracting the values 1 two different registers and
loading the result 1n another register. A typical CPU can

perform many different machine operations. A set of

machine instructions 1s called a machine code program, the
machine 1nstructions are written 1n a machine code language
which 1s referred to a low level language. A computer
program written 1n a high level language needs to be
compiled to a machine code program before it can be run.
Alternatively, a machine code program, such as a virtual
machine or an 1interpreter, can interpret a high level language
in terms of machine operations.

Network adapter 24 1s connected to bus 28 and ESB 20 for
enabling communication between the computer server 12
and network devices.

Device adapter 26 1s connected to bus 28 and input
devices 14 and output devices 16 for enabling communica-
tion between computer server 12 and mput devices 14 and
output devices 16.

Bus 28 couples the main system components together
including memory 30 to CPU 22. Bus 28 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any ol a variety of bus architectures. By way of example,
and not limitation, such architectures include Industry Stan-

dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral

Component Interconnects (PCI) bus.

10

15

20

25

30

35

40

45

50

55

60

65

4

Memory 30 includes computer system readable media 1n
the form of volatile memory 32 and non-volatile or persis-
tent memory 34. Examples of volatile memory 32 are
random access memory (RAM) 36 and cache memory 38.
Examples of persistent memory 34 are read only memory
(ROM) and erasable programmable read only memory
(EPROM). Generally, volatile memory 1s used because 1t 1s
faster, and generally, non-volatile memory 1s used because 1t
will hold the data for longer. ESB repeat node 10 may further
include other removable and/or non-removable, volatile
and/or non-volatile computer system storage media. By way
of example only, persistent memory 34 can be provided for
reading from and writing to a non-removable, non-volatile
magnetic media (not shown and typically a magnetic hard
disk or solid-state drive). Although not shown, further
storage media may be provided including: an external port
for removable, non-volatile solid-state memory; and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk, such as a compact disk (CD),
digital video disk (DVD) or Blu-ray. In such instances, each
can be connected to bus 28 by one or more data media
interfaces. As will be further depicted and described below,
memory 30 may include at least one program product having
a set (for example, at least one) of program modules that are
configured to carry out the functions of embodiments of the
ivention.

The program modules configured to carry out the func-
tions of one embodiment comprises: ESB processing mod-
ule 100; ESB message bufler 110; and ESB sorting module
200. In one embodiment, ROM in memory 30 stores module
200 that enables the computer server 12 to function as a
special purpose computer specific to module 200. Further
program modules that support one or more embodiments but
are not shown include firmware, a boot strap program, an
operating system, and support applications. Each of the
operating system, support applications, other program mod-
ules, and program data or some combination thereof, may
include an implementation of a networking environment.

ESB processing module 100 1s, when loaded into volatile
memory, for controlling the processor 22 to process an ESB
message as stored 1n the ESB message builer 110.

ESB message builer 110 1s for storing an ESB message
received over ESB 20.

ESB sorting module 200 1s, when loaded into volatile
memory, for controlling processor 22 to perform a sort
operation on the ESB message 1n ESB message builer 110
according to one or more embodiments.

Referring to FIG. 1B, an ESB deployment of repeat node
10 as part of an aggregation unit 50 1n an enterprise service
bus (ESB) system 1s described. Aggregation umt 50 can be
a real or virtual collection of components comprising: ESB
repeat node 10; service nodes 36A, 56B, and 356C; and
correlation node 58. Messages including incoming ESB
message 52 1s mput to ESB repeat node 10 where they are
directed to one of the service nodes 56 A, 56B and 56C {for
processing according to the content of the message. In this
example, the repeat node 10 1s part of an aggregation unit,
in that the results of processing each of the service nodes are
collected back by correlation node 58 1nto a single outgoing
message 34. This 1s a simple example for illustrative pur-
poses only and in other examples, the results would not be
collected together.

Referring to FIG. 2, ESB sorting module 200 comprises
the following components, 1n one example: sort order builer
202; sort engine 204; flag engine 206; and ESB sorting
method 300.

US 9,940,163 B2

S

Sort order bufler 202 1s for storing a defined sort order for
the queue of transactions. Sort order bufler 202 1s a function
name and represents any component that 1s for storing a
defined sort order for the queue of transactions and such a
component may be any type ol component or sub-compo-
nents, such as a register or memory location.

Sort engine 204 1s for sorting a first batch of transactions
according to the defined sort order and for sorting a further
batch of transactions according to the defined sort order. Sort
engine 204 1s a function name for any component or
sub-component that 1s for sorting a first batch of transactions
according to the defined sort order and for sorting a further
batch of transactions according to the defined sort order.

Flag engine 206 1s for notifying that the transactions
within the first batch are ready for processing (because they
are sorted) and for notifying that the further batch of
transactions are ready for processing (because they are
sorted). Flag engine 206 1s a function name and represents
any component or sub-component that i1s for notifying that
the transactions within the first batch are sorted and for
notifying that the further batch of transactions i1s sorted.
Flagging a transaction i1s one type of notification where the
flagged transaction 1s pulled by a transaction processor.
Sending a transaction message (containing a transaction or
an 1dentification of a transaction) 1s another type of notifi-
cation, such that the transaction 1s or can be pushed to a
transaction processor.

ESB sorting method 300 i1s for continuing to sort and
notify for further batches of the transactions until all the
transactions 1n the queue have been sorted and notified as
ready for processing (because they are sorted). ESB sorting
method 300 1s a function name and represents any compo-
nent or sub-component that 1s for continuing to sort and flag
for further batches of the transactions until all the transac-
tions in the queue have been sorted and tlagged as sorted.
ESB sorting method 300 comprises ESM sorting method
300A 1n one embodiment. In an alternative embodiment,
ESB sort controller 300 comprises ESM sorting method
300B.

The described embodiments describe functionality within
a repeat node to enable appropriate sorting of the elements
and potential interoperability with external analytics sys-
tems for scoring. The described embodiments allow better
control over aggregation and repeat node processing. The
described embodiments allow higher prionty elements
within a batch to be processed first based on business need.
The described embodiments allow additional control and
available functions. However, some embodiments may not
have these potential advantages and these potential advan-
tages are not necessarily required of all embodiments.

Referring to FIG. 3A, one embodiment of an ESM sorting,
method 300A comprises logical process steps 302A to 324A.
Although there 1s an order to steps as described, the steps
may not necessarily need to be in this order and in other
embodiments steps can be 1n a diflerent order.

Step 302A 1s the start of the method when mitiated by the
ESB repeat node 10.

Step 304 A 1s for determining a sort order, and setting the
starting element (SE) and setting the ending element (EE) to
a batch size (BS). An element 1s a position 1n the queue of
transactions.

Step 308 A 1s for defining a sort batch (n=SE to EE).

Step 310A 1s for sorting the transaction at the nth element
as part ol a sort batch. In one embodiment, a bubble sort
algorithm 1s performed, but many other sorting algorithms
would work.

Step 312A 1s for incrementing n.

10

15

20

25

30

35

40

45

50

55

60

65

6

Step 314 A 1s for branching to step 310A, 1f n 1s less than
the ending element (EE).

Step 316A 1s for notifying that a batch 1s ready for
processing (because 1t 1s sorted). Generally, the notification
1s for the attention of the ESB transaction processor 21. In
one embodiment, notifying 1s by a push notification to the
ESB transaction processor, but the ESB transaction proces-
sor 21 could pull a flag notification from or check a flag 1n

ESB sorting module 200.

Step 318A 1s for optionally modifying the batch size (BS).

When the system determines the appropnate values during
processing, 1t 1s achueved by sorting the first transactions to
determine an average “‘scoring time”, processing a first
transaction to get an approximate “processing time”, scan-
ning the message to 1dentity the number of transactions to
process and referring to the application policy for service
level agreement (SLA) requirements. The *“scoring time”
and “processing time” could be compared to identily an
appropriate number of transactions to score and rank per
synchronization point that would still meet the SLA for the
number of transactions 1n the batch. For example, given the
following; Number of transactions=1,000,000; SLA=9
hours; Scoring Time=0.02 seconds per transaction; Process-
ing Time=0.03 seconds per transaction. If scoring and pro-
cessing was performed sequentially the total time to com-
plete would be (0.02+0.03)*1,000,000=50,000 seconds
(13.89 hours). However, calculating an appropriate batch
s1ize to fit within the SLA and provide some headroom—
allowing for 3% (8.55 hours)—then: ((SLA*(1-head-
room))—totalProcessing Time)/
IndividualScoring Time=Batch Size. (50,000%(1-0.05))-30,
000/0.02=39,000. With a batch size of 39,000, one may {irst
score/rank the first batch (taking 39000%*0.02=780 seconds)
and can then start processing and scoring/ranking in parallel.
This would reduce the total time to complete from 13.89
hours to 8.55 hours (780 seconds+(1,000,000*0.03 sec-
onds)) which should then fit within the SL A allowing for the
stated 5% headroom. The step should continue during the
scoring and processing to ensure the SLA 1s met. In one
embodiment, ESB sorting module 200 can determine how
many transactions of the previous batch have been processed
at the time that a new batch 1s created. If the whole of the
previous batch has been processed, then the new batch size
1s incremented. IT some of the previous batch have not been
processed, then the new batch size 1s decremented.

Step 320A 1s for setting a new ending element by 1ncre-
menting by the batch size (EE=EE+BS).

Step 322A 1s for branching to step 308A, 1if there are
clements remaining.

Step 324A 1s the end of the method.

Referring to FIG. 3B, an alternative embodiment of ESM
sorting method 300B comprises logical process steps 3028
to 324B. Although there 1s an order to the steps as described,
the steps may not necessarily need to be 1n this order and 1n
other embodiments steps can be 1n a diflerent order.

Step 302B 1s the start of method 300B when mitiated by
the repeating node.

Step 304B 1s for determining a sort order, and setting a
starting element (SE) and setting an ending element (EE) to
a batch size (BS).

Step 308B 1s for defining a sort batch (n=SE to EE).

Step 310B 1s for sorting the nth element 1n the queue as
part of the sort batch.

Step 312B 1s for incrementing n.

Step 314B 1s for branching to step 310B, i1 n 1s less than
EE.

US 9,940,163 B2

7

Step 316B 1s for incrementing EE and branching to step
310B, 11 the previous batch 1s still being processed (optional

step).
Step 318B 15 for notifying of a sorted batch.

Step 320B 1s for setting a new starting element SE=
and a new ending element EE=SE+BS.

Step 322B 1s for branching to step 308B, if clements
remain.

Step 324B 1s the end of method 300B.

Referring to FIG. 4, an example set of transactions in a
queue 1s described. The queue comprises 9999999 elements
containing transactions logged at the end of a day. Each
transaction 1s defined between a pair of repeating transaction
tags <Transaction . . . > . . . </Transaction> and 1dentified

with a number 1 a series from element 1 (transaction
1d=0000001) to element 9999999 (transaction 1d=9999999).
Between the transaction tags each transaction comprises
repeating fields: amount (in $) (<Amount>$123.45</
Amount>); card number <CardNum-
ber>1111222233334444</CardNumber>; and item number
or numbers (for example <Item>Product A</Item>). These
repeating fields are used by the processing module to
perform logical operations.

Only a few of the 9999999 transactions are shown 1n FIG.
4. Transaction 1d=0000001 comprises a transaction for
$123.45 for Product items A, B, C and D using card number
1s 1111222233334444. Transaction 1d=0000002 comprises a
transaction for $23.45 for Product items E and F using card
2222333344445555. Transaction 1d=0000003 for $12.34 for
product items G, H, I, J and K uses card 33334444355556666.
Transaction 1d=0000004 to transaction 1d=9999998 are not
shown in FIG. 4. Transaction 1d=9999999 for $1234.56 for
product items X, Y and Z uses card 66667777883889999.

In a simple sort definition example, an administrator
wants to process the transactions with a highest value first.
In this instance, the definition would comprise an “Amount™
or “Iransaction/Amount” and specily highest to lowest
(potentially through a check box). The repeat node would
then order the transactions accordingly prior to processing;
s0, 1n the above case, 1t would process the transactions 1n the
tollowing order:

L]

E+1

Transaction id = 9999999 $1234.56
Transaction i1d = 0000001 $123.45
Transaction id = 0000002 $23.45
Transaction id = 0000003 $12.34

Alternatively, an admimstrator may want to process trans-
actions based on their size in some way, 1n which case they
may order by the number of “Items” 1n the ““Iransaction”
(count(/Transaction/Item)). In this way, the integration 1s
likely to process a larger proportion of messages {first as 1t
will be able to process the smaller transactions faster. In this
case, the repeat node would process the elements 1n the
following order:

Transaction i1d = 0000002 2 1tems
Transaction 1d = 9999999 3 1tems
Transaction i1d = 0000001 4 1tems
Transaction 1d = 0000003 5 1tems

Another alternative 1s that an administrator or the user
may want to process the transactions by likelihood of fraud;
in this case, the repeat node can request an analytics engine
to provide a score for each element based on a defined

10

15

20

25

30

35

40

45

50

55

60

65

8

model. In this example, the products brought, amount spent
etc. may indicate that the transactions are processed 1n the
following order due to a likelihood of fraud:

Transaction 1d = 9999999 80%
Transaction 1d = 0000002 60%
Transaction 1d = 0000003 40%
Transaction 1d = 0000001 30%

The use of synchronization points within the sorting and
processing means that, i1t there are for example 1,000,000
transactions and the sorting algorithm was timely, the pro-
cessing records could be started whilst waiting for the
additional scoring to complete. An example of this would be
processing a batch job of daily transactions overnight (a
single message with 1,000,000 elements say). The priority
for the transaction processing (each transaction) may be
based on transaction amount and probability of fraud (in one
embodiment, process these first). Sorting based on transac-
tion amount alone would be relatively quick with a simple
message parse; however, for fraud detection, an external
service may need to be mvoked. In this case, assessing the
likelihood of fraud may take considerably longer per trans-
action. In this case, 1t would be more eflicient to start the
message processing before the ranking for every transaction
1s available—for instance, once the first 1,000 transactions
have been scored, then processing could begin whilst scor-
ing remaining elements continues. Once the next 1,000 have
been ordered, there 1s another synchronization point and the
list of ordered elements available for processing i1s aug-
mented. This enables processing to start on vaguely ordered
data, with the ordering improving on each synchronization
point. Synchronization points could be defined by an admin-
1strator.

Referring to FIGS. SA, 5B and 5C, example states of a
transaction batch sort of one embodiment 1s described.

FIG. 5A shows the queue of transactions 1n the batch
sorted 1n ascending order (that 1s not sorted 1n the defined
descending order) corresponding to queue elements (1 to
09999999) that are fixed 1n ascending order. Step 304A
determines that the defined sort order 1s descending order for
the transaction 1d by checking a predefined sort order system
variable or a pre-defined administrator or user defined
variable. Step 304A also sets the starting element (SE) at
clement 1, and sets the ending element (EE) to element 2 due
to a defined batch size (BS) of 2. Steps 308A to 314A will
sort the first two elements and effectively allow the trans-
action at the second element (transaction 1d=0000002) to
rise to the top of the batch as shown in FIG. 3B.

FIG. 5B shows the queue from FIG. 5A with a first batch
(transaction 1d=00000002 and transaction 1d=0000001) of
the queue sorted 1 descending order and up for processing.
The remainder transactions (transaction 1d=0000003 to
transaction 1d=9999999) are not shown sorted 1n descending
order. Step 316A flags the first batch as sorted while the
remainder of the batch 1s not sorted (as indicated in the text
of FIG. 5B). The first synchronization point 1s aiter the
second queue element and before the third queue element
(transaction 1d=0000001 and transaction 1d=0000003
respectively in FIG. 5B). A synchronization point 1s a point
in the sort batch that defines that part of the sort batch that
1s sorted and that part which 1s not sorted. This allows the
processing module to start processing transactions before all
of the transactions have been sorted. Step 320A sets a new
ending element (EE=4) from the old ending element trans-

action (EE=2) plus the batch size (BS=2). Step 322A

US 9,940,163 B2

9

branches to step 308 A because there are more elements to be
processed. Steps 308A to 314A will sort the next two
transactions and effectively allow transaction 1d=0000003
and then transaction 1d=0000004 to rise to the top of the
batch as shown in FIG. 5C.

FIG. 5C shows the queue from FIG. 3B with a second
batch (Flements 1 to 4, and transaction 1d=0000004, trans-
action 1d=0000003, transaction 1d=0000002 and transaction
1d=0000001, respectively, sorted 1n descending order) of the
queue sorted and ready for processing. The remainder of the
clements (elements 5 to 9999999, and ftransaction
1d=0000005 to transaction 1d=9999999, respectively) are not
sorted in the determined order. The starting transaction 1s the
first element 1n the queue. A new second synchronization
point 1s after the fourth element and before the fifth element.
Step 316A flags the second batch as sorted, while the
remainder of the batch 1s not sorted (as indicated 1n the text
of FIG. 5C). The second synchronization point 1s after the
fourth transaction and before the fifth transaction. Step 318A
increases the batch size to four elements (BS=4) and step
320A sets a new ending eclement (EE=6). Step 322A
branches to step 308A because there are more transactions to
be processed. Steps 308A to 314A will sort the next two
transactions eflectively allowing transaction 1d=00000035
and then transaction 1d=00000006 to rise to the top of the
batch (not shown).

The processing module will start processing the first batch
once 1t 1s notified as ready for processing by the sorting
module. When a second batch i1s flagged, the processing
module will finish processing transactions in the first batch
that 1t has started in one embodiment and the processing
module will ignore any transactions in the new batch that 1t
has already processed. However, the processing module
could finish processing all of the transactions in the old batch
before starting a new flagged and sorted batch.

Referring to FIGS. 6A, 6B and 6C, example states of a

transaction batch sort for an alternative embodiment are
described.

FIG. 6 A shows the complete queue of transactions 1n the
batch and not sorted 1n a defined descending order (the
example 1s sorted 1n an ascending order). Step 304B deter-
mines that the defined sort order 1s descending order for the
transaction 1d (FIG. 6 A 1s sorted in an ascending order), sets
the starting element (SE) at 1, and sets the ending element
(EE) to a batch size (BS) of 2. Steps 308B to 314B will sort
the first two eclements eflectively allowing transaction
1d=0000002 to rise to the top of the batch as shown in FIG.
6B.

FIG. 6B show the queue from FIG. 6A with a first batch
(transaction 1d=0000002 and transaction 1d=0000001 sorted
in descending order) of the queue sorted and ready for
processing. The remainder {transactions (transaction
1d=0000003 to transaction 1d=9999999) are not yet sorted 1n
the defined order. The starting transaction 1s the third queue
clement and the batch size 1s two elements. Step 316B
notifies that the first batch 1s sorted, while the remainder of
the batch 1s not sorted (as indicated 1n the text of FIG. 6B).
The first synchronization point 1s after the second element
and before the third element. A synchronization point i1s a
pomt in the sort batch that defines that part of the sort batch
that 1s sorted and that part which 1s not sorted. This allows
the processing module to start processing elements before all
of the transactions have been sorted. Step 318B notifies the
transaction processor 21 that the batch 1s ready for process-
ing (not shown 1n example). Step 320B sets a new starting
clement SE=EE+1=3 and a new ending element EE=SE+
BS=5 where batch size (BS=2). Step 322B branches to step

5

10

15

20

25

30

35

40

45

50

55

60

65

10

308B because there are more elements to be processed.
Steps 308B to 314B will sort the next two transactions
cllectively allowing transaction 1d=0000004 to rise to the
top of the batch. However, 1n this example, step 316B kicks
in because the processing module 1s still processing and EE
1s incremented by 2 to EE=7 (eflectively increasing the
batch size; although in thus case, the defined batch size
variable itself 1s not changed). The first synchronization
pomnt 1s after the second element and before the third
clement. Steps 3088 to 3148 will continue to sort the next
two transactions eflectively allowing transaction

1d=0000005 and transaction 1d=0000006 to rise to the top of
the second batch, as seen 1n FIG. 6C.
FIG. 6C shows the queue from FIG. 6B with a second

batch flagged as sorted and ready for processing. The
remainder of the transactions (transactions 7-1000000) are
not sorted 1n the defined order. The starting transaction 1s the
third element 1n the queue and the batch size 1s now 4
transactions. A new second synchronization point 1s after the
sixth element and before the seventh element (not shown).

In an alternative embodiment sort batches are exclusive
and non-overlapping. At this stage, the processing module
will have already started processing the first batch and wall
probably finish processing the first batch before starting on
the second batch.

As described herein, 1n one aspect of the invention, there
1s provided a system for managing a queue of transactions
for processing. The system comprises: a sort order bufler for
storing a defined sort order for the queue of transactions; a
sort engine for sorting a first batch of transactions in the
queue according to the defined sort order and for sorting a
further batch of transactions according to the defined sort
order; a batch flag engine for notifying that the transactions
within the first batch are ready for processing and for
notifying that the further batch of transactions are ready for
processing; and a sort controller for continuing to sort and
notily for further batches of the transactions until all the
transactions in the queue have been sorted and notified as
ready for processing.

In another aspect of the invention, there 1s provided a
method for managing a queue of transactions for processing.
The method comprises: determining a sort order for the
queue of transactions; sorting a first batch of transactions 1n
the processing queue according to the determined sort order;
notilying that the transactions within the first batch are ready
for processing; sorting a further batch of transactions in the
queue according to the determined sort order; notitying that
the transaction 1n the further batch are ready for processing;
and continuing to sort and notify for further batches of the
transactions in the queue until all the transactions in the
queue have been sorted and notifying as ready for process-
ng.

One embodiment 1s described 1n terms of a method that 1s
transparent to whatever transaction processing 1s used and 1s
described 1n terms of sorting a batch of transactions. How-
ever, other embodiments might not operate transparently
from the transaction processing operations and would attri-
bute each transaction with a score and process a batch of
transactions 1n order of the score without sorting. Another
embodiment could attribute a score to each transaction 1n the
batch that allows the transactions to be sorted according to
the score after the scoring method and before processing.

A queue can be any type of set of transactions and a batch
can be any type of subset of the set. Transactions within each
transaction batch are considered and processed indepen-
dently 1n order according to the sort.

US 9,940,163 B2

11

In one embodiment, a synchronization point 1s defined to
mark the sorted batch of transactions and the remaining
unsorted transactions in the queue.

One example further comprises processing transactions in
the transaction queue that are notified as ready for process-
ng.

In one embodiment, the sorting of transactions comprises
scoring each transaction and further comprising processing
transactions in the transaction queue that are notified as
ready for processing 1n order of transaction score. Further,
the scoring of each transaction uses a scoring definition
based on one of more values from each transaction. Scoring,
cach transaction may also comprise requesting a score for
cach transaction from an external score analysis service.

Yet further a batch size 1s modified to optimize batch
sorting and processing.

In one example, the first batch 1s a part of the further batch
and the further batch is part of a subsequent further batch.

As a further example, the first and further batches are
adjacent and do not overlap.

In yet another embodiment, each batch 1s a single message
and each transaction 1s an element within that message.

In a further aspect of the ivention, there 1s provided a
computer program product for managing a processing queue
of transactions. The computer program product comprises a
computer readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by a processor to cause the processor to determine a sort
order for the queue of transactions; sort a first batch of
transactions in the queue according to the determined sort
order; notify that the transactions within the first batch are
sorted; sort a further batch of transactions in the queue
according to the determined sort order; notify that the further
batch of transactions 1s sorted; and continue to sort and
notily for further batches of the transactions until all the
transactions in the queue have been sorted and notily as
sorted.

Further embodiments of the mnvention are now described.
It will be clear to one of ordinary skill 1n the art that all or
part of the logical process steps of one embodiment may be
alternatively embodied 1n a logic apparatus, or a plurality of
logic apparatus, comprising logic elements arranged to per-
form the logical process steps of the method and that such
logic elements may comprise hardware components, firm-
ware components or a combination thereof.

It will be equally clear to one of skill in the art that all or
part of the logic components of one or more embodiments
may be alternatively embodied in logic apparatus compris-
ing logic elements to perform the steps of the method, and
that such logic elements may comprise components, such as
logic gates 1n, for example, a programmable logic array or
application-specific integrated circuit. Such a logic arrange-
ment may further be embodied 1n enabling elements for
temporarily or permanently establishing logic structures in
such an array or circuit using, for example, a virtual hard-
ware descriptor language, which may be stored and trans-
mitted using fixed or transmittable carrier media.

In a further alternative embodiment, one or more aspects
of the present invention may be realized in the form of a
computer implemented method of deploying a service com-
prising steps of deploying computer program code operable
to, when deployed imto a computer infrastructure and
executed thereon, cause the computer system to perform the
steps of the method.

It will be appreciated that the method and components of
one or more embodiments may alternatively be embodied

10

15

20

25

30

35

40

45

50

55

60

65

12

tully or partially 1n a parallel computing system comprising
two or more processors for executing parallel software.

A further embodiment of the invention 1s a computer
program product defined 1n terms of a system and a method.
The computer program product may include a computer-
readable storage medium (or media) having computer-read-
able program 1instructions thereon for causing a processor to
carry out aspects of the present invention.

The computer-readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device.

One or more aspects of the present invention may be a
system, a method, and/or a computer program product. The
computer program product may include a computer readable
storage medium (or media) having computer readable pro-
gram 1nstructions thereon for causing a processor to carry
out aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of aspects of the present mmvention may be
assembler 1nstructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, or either source code or object code written 1n any
combination of one or more programming languages,
including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The computer

US 9,940,163 B2

13

readable program instructions may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type ol network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
clectronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLLA) may execute the computer
readable program 1instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1in order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-

10

15

20

25

30

35

40

45

50

55

60

65

14

grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

It will be clear to one skilled in the art that many
improvements and modifications can be made to the fore-
going exemplary embodiments without departing from the
scope of aspects of the present invention.

What 1s claimed 1s:

1. A computer system for managing a queue of transac-
tions for processing, the computer system comprising:

a memory; and

a processing device 1n communication with the memory,

wherein the computer system 1s configured to perform

a method, said method comprising:

determining a sort order for the queue of transactions,
wherein the queue comprises a plurality of transac-
tions;

sorting a first batch of transactions, wherein the first
batch of transactions comprises a first group of
transactions of the plurality of transactions 1n the
queue, wherein the sorting 1s according to the deter-
mined sort order, and wherein the sorting comprising
defining a first synchronization point 1n the queue to
differentiate the sorted first batch of transactions
from transactions of the plurality of transaction not
in the first batch;

notitying that the transactions in the first batch of
transactions are ready for processing;

commencing processing, in the determined sort order,
the first group of transactions in the first batch;

concurrent to the commencing processing, sorting a
turther batch of transactions 1n the queue according
to the determined sort order, wherein the further
batch of transactions comprises a second group of
transactions of the plurality of transactions, and
wherein the second group of transactions comprises
unprocessed transactions 1n the first group of trans-
actions, and wherein the sorting comprising defining
a further synchronization point 1n the queue to dii-
ferentiate the sorted further batch of transactions
from transactions of the plurality of transaction not
in the 1n the first batch or in the further batch:;

notifying that the transactions in the further batch are
ready for processing;

commencing processing, in the determined sort order,
the second group of transactions in the further batch;
and

concurrent to the commencing processing of the further
batch, continuing to sort, notily, and commence
processing for further batches of the transactions 1n
the queue until the plurality of transactions in the
queue have been sorted and the notifying 1s per-
formed.

2. The computer system according to claim 1, wherein the
method further comprises processing transactions in the
transaction queue that are ready for processing.

3. The computer system according to claim 1, wherein the
sorting of at least one of the first batch of transactions or the
turther batch of transactions comprises scoring e€ach trans-
action 1n a batch of transactions, and the processing trans-
actions 1n the queue comprises processing transactions in
order of score.

4. The computer system according to claim 3, wherein the
scoring each transaction comprises uses a scoring definition
based on one of more values from each transaction.

US 9,940,163 B2

15

5. The computer system according to claim 3, wherein the
scoring each transaction comprises requesting a score for
cach transaction from an external score analysis service.
6. The computer system according to claim 1, wherein the
method further comprises modifying a batch size to optimize
batch sorting and processing.
7. The computer system according to claim 1, wherein
cach batch 1s a single message and each transaction 1s an
clement within that single message.
8. A method of managing a queue of transactions for
processing, the method comprising:
determining a sort order for the queue of transactions,
wherein the queue comprises a plurality of transactions;

sorting a first batch of transactions, wherein the first batch
ol transactions comprises a first group of transactions
of the plurality of transactions 1n the queue, wherein the
sorting 1s according to the determined sort order, and
wherein the sorting comprising defining a first synchro-
nization point 1 the queue to differentiate the sorted
first batch of transactions from transactions of the
plurality of transaction not in the first batch;

notifying that the transactions in the first batch of trans-
actions are ready for processing;
commencing processing, in the determined sort order, the
first group of transactions in the first batch;

concurrent to the commencing processing, sorting a fur-
ther batch of transactions in the queue according to the
determined sort order, wherein the further batch of
transactions comprises a second group of transactions
of the plurality of transactions, and wherein the second
group of transactions comprises unprocessed transac-
tions 1n the first group of transactions, and wherein the
sorting comprising defimng a further synchronization
point 1n the queue to differentiate the sorted further
batch of transactions from transactions of the plurality
of transaction not i1n the in the first batch or in the
further batch;

notifying that the transactions in the further batch are

ready for processing;

commencing processing, in the determined sort order, the

second group of transactions in the further batch; and
concurrent to the commencing processing of the further
batch, continuing to sort, notily, and commence pro-
cessing for further batches of the transactions in the
queue until the plurality of transactions 1n the queue
have been sorted and the notifying 1s performed.

9. The method according to claim 8, further comprising
processing transactions in the transaction queue that are
ready for processing.

10. The method according to claim 8, wherein the sorting
of at least one of the first batch of transactions or the further
batch of transactions comprises scoring each transaction in
a batch of transactions, and the processing transactions in the
queue comprises processing transactions in order of score.

11. The method according to claim 10, wherein the
scoring each transaction comprises uses a scoring definition
based on one or more values from each transaction.

12. A computer program product for managing a queue of
transactions for processing, the computer program product
comprising;

10

15

20

25

30

35

40

45

50

55

16

a computer readable storage medium readable by a pro-
cessing circuit and storing mstructions for execution by
the processing circuit for performing a method com-
prising;:
determining a sort order for the queue of transactions,
wherein the queue comprises a plurality of transac-
tions;

sorting a {irst batch of transactions, wherein the first
batch of transactions comprises a first group of
transactions of the plurality of transactions 1n the
queue, wherein the sorting 1s according to the deter-
mined sort order, and wherein the sorting comprising,
defining a first synchronization point 1n the queue to
differentiate the sorted first batch of transactions
from transactions of the plurality of transaction not
in the first batch;

notifying that the transactions in the first batch of
transactions are ready for processing;

commencing processing, in the determined sort order,
the first group of transactions in the first batch;

concurrent to the commencing processing, sorting a
turther batch of transactions 1n the queue according
to the determined sort order, wherein the further
batch of transactions comprises a second group of
transactions of the plurality of transactions, and
wherein the second group of transactions comprises
unprocessed transactions in the first group of trans-
actions, and wherein the sorting comprising defining,
a further synchronization point in the queue to dif-
ferentiate the sorted further batch of transactions
from transactions of the plurality of transaction not
in the 1n the first batch or in the further batch:;

notifying that the transactions in the further batch are
ready for processing;

commencing processing, in the determined sort order,
the second group of transactions in the further batch;
and

concurrent to the commencing processing of the turther
batch, continuing to sort, notily, and commence
processing for further batches of the transactions 1n
the queue until the plurality of transactions in the
queue have been sorted and the notifying is per-
formed.

13. The computer program product according to claim 12,
wherein the method further comprises processing transac-
tions in the transaction queue that are ready for processing.

14. The computer program product according to claim 12,
wherein the sorting of at least one of the first batch of
transactions or the further batch of transactions comprises
scoring each transaction in a batch of transactions, and the
processing transactions in the queue comprises processing
transactions in order of score.

15. The computer program product according to claim 14,
wherein the scoring each transaction comprises using a
scoring definition based on one or more values from each
transaction.

	Front Page
	Drawings
	Specification
	Claims

