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SYSTEM AND METHODS FOR
GENERATING PREDICTIVE
COMBINATIONS OF HOSPITAL MONITOR
ALARMS
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its entirety, which claims priority to, and the benefit of, U.S.
provisional patent application Ser. No. 61/547,022 filed on
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The above-referenced PCT international application was
published as PCT International Publication No. WO 2013/
056180 on Apr. 18, 2013, incorporated herein by reference
in 1ts enfirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF

MATERIAL SUBMITTED IN A COMPUTER
PROGRAM APPENDIX

Not Applicable

NOTICE OF MATERIAL SUBIJECT TO
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A portion of the material 1n this patent document 1s subject
to copyright protection under the copyright laws of the
United States and of other countries. The owner of the
copyright rights has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the United States Patent and Trademark
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reserves all copyright rights whatsoever. The copyright
owner does not hereby waive any of 1ts rights to have this

patent document maintained in secrecy, mcluding without
limitation its rights pursuant to 37 C.F.R. § 1.14.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention pertains generally to monitor alarms, and
more particularly to a bedside momitor for hospitals.

2. Description of Related Art

Bedside monitors are ubiquitous in acute care units of
modern hospitals. However, they are often criticized for
generating an excessive number of false positive and false
alarms. Frequent false positive alarms not only create
annoying distractions but also can cause alarm fatigue for
bedside care givers so that attentions to critical alarms are
missed raising serious patient safety concerns. Indeed,
recent mainstream reports have published cases of avoidable
patient deaths that were unfortunately related to the alarm
fatigue/desensitization among bedside care givers. There-
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2

fore, 1t 1s 1mperative to investigate diflerent strategies to
improve patient monitor alarm generation and management.

The 1ssue of false alarms and false positive alarms has
been well studied. In a recent report, only 15% of alarms
have been found to be clinically relevant in a medical
intensive care unit (ICU). In an emergency room setting, 1t
has been reported that only 0.7% of alarms are true positives
meaning that they have detected adverse events and led to
clinical interventions. Similar findings regarding a high
percentage of climically irrelevant alarms have been reported
in diverse ICU environments. False positive alarms can be
caused etther by false alarms due to noise and artifacts 1n
signals or by inappropriate alarming criteria that are too
generic and sensitive. Indeed, most of the threshold-based
alarms despite being true alarms are false positives. Exten-
s1ve research eflorts have been put 1nto developing solutions
to reduce the false positive rate of monitor alarms. Under-
standably, the majority of these eflorts have been targeted at
improving signal processing aspects of alarm generation
with the hope that robust signal processing can lead to fewer
false alarms. Reducing the false positive rate beyond reduc-
ing the number of false alarms 1s more challenging because
of the need for highly sensitive monitoring in an acute care
setting.

A direct analysis of alarms has been undertaken 1n exist-
ing studies but the focus has been on annotating 1ndividual
alarms by trained observers to categorize them into false and
true positive alarms. This eflort indeed matches the prevail-
ing patient monitoring practice where care givers process
alarms one by one as they go ofl. Little time 1s available for
them to recall historical alarms and then manually associate
them with the current alarm to create a more holistic
assessment of patients.

Accordingly, an object of the present invention 1s the
ability to account for potential predictive patterns arising
from a combination of different single alarms.

BRIEF SUMMARY OF THE INVENTION

An aspect of the present imnvention 1s a method that 1s
capable of mining a collection of monitor alarms to search
for frequent but also specific combinations of encoded
monitor alarms to predict certain adverse event, such as
in-hospital code blue arrests or other target events.

Another aspect 1s an alarm data mining method to extract
patterns formed as alarm combinations that are predictive of
code blue events. The method of the present invention
leverages 1temset mining and information metric based
discretization methods.

Further aspects of the invention will be brought out 1n the
following portions of the specification, wherein the detailed
description 1s for the purpose of tully disclosing preferred
embodiments of the invention without placing limitations
thereon.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

The mvention will be more fully understood by reference
to the following drawings which are for illustrative purposes
only:

FIGS. 1A and 1B show a flowchart of the alarm data
mining method to generate a set of super-alarm patterns in
accordance with the present invention.

FIG. 2 1s a flow diagram of the alarm encoding schema

building step of the method of FIG. 1.
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FIG. 3 1s a flow diagram of the frequent alarm combina-
tion finding step of the method of FIG. 1.

FIG. 4 15 a flow diagram of the online operation method
of the present invention.

FIG. 5 1s schematic diagram of a monitoring system
incorporating the methods of FIGS. 1A through 5 in accor-
dance with the present invention.

FIGS. 6 A and 6B show a schematic diagram of a test setup
for evaluation the methods of FIGS. 1A through 5.

FIG. 7 1s a graph showing distribution of the major
diagnostic category for 223 code blue events across 26
categories (0~25).

FIG. 8 1s a graph showing distribution of the major
diagnostic category for 1768 control patients across 26
categories (0~25).

FIG. 9 1s a graph showing average hourly number of
alarms of code blue patients and controls grouped by the
four levels of alarms as built in bedside momitors. Each of
the nine bars represents the average number of alarms of
code blue patients within nine consecutive 1-hour periods
preceding the code blue events.

FIG. 10 1s a graph showing sensitivity curves of four
super-alarm sets obtained using the optimal algorithm
parameters under four different false positive ratio thresh-

olds.

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

FIGS. 1A and 1B show a flow diagram of an alarm data
mimng method 10 to generate a set of super-alarm patterns
60 1in accordance with the present invention. For purposes of
the following description, a combination of individual
encoded raw alarms that co-occur within a temporal window
1s termed a super-alarm pattern. The goal of method 10 1s to
construct a set of predictive super-alarm patterns 60 from
two collections 14, 16 of raw alarm data, which may be
stored 1n a database or like memory allocation.

As shown 1 FIG. 1A, the first collection (cases 14)
includes alarms that precede code blue events in multiple
patients. While code blue events were chosen as the end-
point for purposes of this description, 1t 1s appreciated that
any event may be used. Table 1 shows the typical compo-
sition of monitor alarms by using four examples. A raw
monitor alarm will often include a umque alarm code
assigned by the monitor manufacturer, a textual label of the
alarm which 1s often uniquely mapped to the alarm code, an
optional polarity indicator that denotes whether a parametric
alarm exceeds an upper bound (HI) or a lower bound (LO)
threshold, an optional value at which the preset alarm
thresholds have been crossed to trigger this alarm, and the
timestamp when this alarm occurs. There are four built-in
levels of alarms as determined by bedside monitors, which
are usually set up by a unit-based policy. These four levels
are: crisis alarm, patient advisory alarm, patient warning
alarm, and system warning alarm.

As shown 1n FIG. 1B, the second collection (controls 16)
includes alarms from a set of control patients that are not
coded.

Referring to both FIGS. 1A and 1B, the two collections 14
and 16 go through two different simultaneous branches of
processing at starting point 12. The case data 14 are used to
find super-alarm patterns occurring frequently within a
window T  having a length of time that immediately pre-
cedes code blue events. The control data 16 are used to filter
out those super-alarm patterns i1dentified for code blue
patients that have also occurred frequently for control
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4

patients. This 1s achieved by sampling alarms for control
patients 16 1n consecutive windows ol n-hour long starting
from the beginning of the monitoring to the end (see step 26
in FIG. 1B). Thus, alarm samples are assumed to be repre-
sentative of the whole course of patient monitoring. Within
cach window, alarms are sampled from a randomly placed
segment of length T . In this way, a false positive rate can
be readily computed for each super-alarm pattern during the
training phase. The method 10 also discretizes the value field
for parametric alarms via the supply of both case 14 and
control data 16. Hence, alarms within the first two hours of
monitoring are used to generate the discretization schema.

Both the case data 14 and control data 16 first undergo a
pre-processing step 18. Due to the fact that a bedside
monitor can have multiple mput ports to accommodate
multiple momitoring modalities, the same device can be
plugged into any of those ports and results 1n different
labeling of the same alarm. In the example shown 1n Table
1, the arterial line (A-line) was plugged into port #1 and
hence ART1 1s part of the label. Thus pre-processing 1s
performed to make each alarm agnostic to the specified port
number. Also, alarms from noninvasive devices are treated
as equivalent to those from its nvasive counterpart, and
hence alarms from invasive and noninvasive readings (e.g.
blood pressure) are merged. Since the value of a measure-
ment that triggers an alarm can be good indicator of the
severity of the alarm, a discretization algorithm 1s employed
to further divide a given alarm with a value field mto
sub-codes. This 1s referred to as “regular alarm encoding.”
A data-driven approach such as class-attribute contingency
coellicient (CACC) may be used for discretization. This
approach uses both case data and control data to create a
two-class discrimination problem to find the optimal dis-
cretization that will result 1n the best correlation between
individual attribute and classes. Thus, the collection of raw
alarms 14, 16 that co-occur within a specified time window
are pre-processed to generate an output of an array of alarm
codes, each of which i1dentifies an individual raw alarm.

Referring to FIG. 1A, after preprocessing, alarms within
a ttime window [T _-T  T_] are collected tfrom the pre-
processed case data 14 at step 20, where T 1s the time of the
event occurrence. These collected alarms are then used to
build alarm encoding schema at step 22. Furthermore,
control alarms collected within the first two hours of moni-
toring 1n step 24 are used to generate discretization schema
in step 22.

FIG. 2 1llustrates the alarm encoding schema building step
22 1n further detail. At step 60, the method counts the
number of instances for each alarm code as encoded by the
regular encoding process per patient within the selected time
interval. The CACC algorithm 1s again applied at step 62 (in
addition to preprocessing at step 18) to discretize this
number to generate an expanded set of codes per each alarm
code for encoding schema 34. A potentially important kind
of information missing from the above regular encoding is
the number of repetitions of a particular alarm within the
given time window. An additional alarm encoding process
may optionally be employed after regular encoding to
account for the occurrence frequency for each alarm code.
The number of a given alarm code within the collection 1s
counted at step 64. Next, the method at step 66 looks up the
encoding schema based on the obtained count to replace the
original alarm code with the corresponding occurrence-
encoded codes for this alarm code. Finally, all occurrence-
encoded codes that represent the occurrence Irequency
lower than that of the current alarm are inserted at step 68.
For example, 1f an alarm has occurred five times within a
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specified time period, and there are three levels of discreti-
zation for this alarm (e.g. first range of (0,2], second range
of (2,4], and third range of (4,¢]), then an i1nstance of this
alarm having occurred five times would automatically imply
that 1t 1s greater than O as well as greater than 2. Therelore,
step 66 would 1nsert the codes that correspond to first range
(0,2] and second range (2,4].

The generated encoding schema 34 are then used to
encode case alarms at step 30 to generate coded cases 40
(see FIG. 1A), and also encode control alarms at step 32 to
generate coded controls 42 (see FIG. 1B).

Referring back to FIG. 1A, the coded cases 40 are used to
find frequent 1itemsets of alarm combinations at step 50. Step
50 1s further detailed in FIG. 3. The method of step 50
generally follows classic association rule mining algorithm
by using the Aprion algorithm. However, 1t 1s appreciated
that other rule mining algorithms known 1n the art may also
be implemented. At step 80, a code matrix 1s defined
according to Eq. 1:

C=cilnpxaves Eq. 1

where c,; 1s zero 1f the i”* alarm code (or its occurrence-
encoded codes) for patient 1 1s not present, and 1s one 1t
this alarm code 1s present, N, and N_ are number of
patients and number of unique encoded alarm codes,
respectively. At step 82, super-alarm pattern candidates

that have only one alarm code to form a probe vector of
Eq. 2:

Probe=[c;]nex Eq. 2

where ¢, is zero if the i”” alarm code is not present in this
super-alarm pattern candidate. Testing whether a given
super-alarm pattern candidate 1s frequent among code blue
patients, the cardinality n (the number of elements in a set)
for a given code matrix can be first calculated as CxProbe.
For patients whose alarms contain all the codes 1n Probe, this
multiplication will result in a number equal to the number of
alarm code 1n the Probe. Frequent alarm combinations are
then defined as those which are present in at least certain
percentage of the patients in the training dataset, which 1s
denoted as the minimum support threshold. After finding the
super-alarm patterns with n=1 (e.g. one individual alarm) at
step 84, the algorithm determines if the minimum support
threshold 1s met at step 86. If yes, 1t then proceeds to form
potential candidates with n=2 (combination of two alarms)
at step 88. These candidates have to be formed from the
alarm codes that have passed the support test when n=1
(greater than minimum support threshold). Then each can-
didate will form a Probe vector and be evaluated by a
straight forward matrix multiplication CxProbe. This pro-
cess 1s repeated by increasing the cardinality n of super-
alarm pattern until no more patterns meet the minimum
support criterion at step 90.

One heuristic to control the size of the super-alarm set,
and hence potentially avoid false positive super-alarm pat-
terns, 1s to remove those patterns that are included as part of
longer patterns at step 52 with a hope to gain specificity
without compromising sensitivity. In particular, let:

A"={a,a, ..., a,, Eq. 3
and
B ={b,b,, ....b ) Eq. 4

where n<m, and A™ 1s a super-alarm pattern that has been
retained, and B” as a candidate pattern to be filtered out 11 the
following conditions are both met:
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1) Given any b,, 1=1,L.,n, an a,, 1=1,L,m can be found to
be equal to b,.

2) There are no patients 1n the traiming data who have
triggered but not.

Note, the above definition for filtering super-alarms
within step 52 1s may be referred to closed 1temset mining,
a special form of association rule mining.

Finally, data from the coded controls 42 (see FIG. 1B) 1s
used to remove alarm patterns by false positive rate at step
54 to generate the set of super alarm patterns 60. A super-
alarm pattern 1s excluded from the final super-alarm set 60
if this pattern’s false positive rate (FPR), as evaluated using
the training data, 1s greater than a predetermined threshold.
FPR 1s calculated as the percentage of length windows from
control patients 16 1n the training data set that trigger this

pattern.

Referring now to FIG. 4, an online operation method 100
using super-alarm patterns of the present invention 1s shown.
To operate a super-alarm set in an online fashion, 1t 1s
assumed that any new regular monitor alarm will trigger the
evaluation of super-alarm set by the following steps.

Based on the time (T,) of a new monitor alarm, the alarms
that tall within the period [T, T T, ] are found at step 102,
where T 1s the length of the time window as used 1n finding
the frequent combinations of regular alarms.

At step 104, these alarms are encoded using the coding
schema 60 generated 1n the training phase 10.

At step 106, a super-alarm trigger 1s then fired 11 either the
following conditions are both met:

1) any combination of encoded alarms 1s part of the
patterns in the super-alarm set, or

2) The new alarms added at T, are part of at least one
matched super-alarm pattern. This condition 1s used to avoid
repeatedly triggering of a super-alarm solely based on the
previous alarms.

Given a sequence of alarms from a patient, the above
steps are executed sequentially for all the qualified regular
monitor alarms (system warning alarms are not used) and
thus simulate how a super-alarm set would be used in
real-time.

FIG. 5 illustrates an exemplary monitoring system 130
incorporating the super-alarm patterns 60 and operation
method 100 described above as an application software 126.
Software 126 may be stored 1n memory 130 for execution on
processor 122 to generate super-alarm triggers 128 that are
output to patient care proiessionals. The system 120 may
take mput from a plurality ports 124 connected to one or
more patient monitoring devices. The mnputted data from
ports 124 may comprise sensor data of one or more physi-
ological characteristics or traits, such as systolic arterial
blood pressure, heart rate, blood oxygen saturation (SpQO.),
asystole, ventricular tachycardia (v-tach), ventricular fibril-
lation (v-1ib), temperature, etc.

Experimental Results

The ultimate evaluation of super-alarm 1s based on 1its
online performance. There are four parameters that will
determine the content of a super-alarm set. They include the
length of the window (Win), value of the support (Sup),
whether or not closed itemset filtering 1s enabled (Cls), and
whether or not occurrence frequency encoding 1s used (Occ).
Theretfore, offline analysis 1s used to 1nvestigate: 1) what
parameters/interactions the super-alarm algorithm 1s sensi-
tive to; and 2) the optimal combination of algorithm param-
eters.
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Referring now to the test setup 200 of the adopted alarm
evaluation protocol illustrated 1n FIGS. 6 A and 6B, two
independent data sets are created from the full set 202.
Alarms 204 from a randomly selected 20% of code blue
patients and 20% of control patients are first reserved for
online testing. Then multiple random copies of a 10-fold
cross-validation (CV) data set 208 are generated using the
alarms 206 from remaining 80% of patients for ofiline
analysis. Each copy 1s generated by first randomly permut-
ing the array of study subject i1dentifiers of the remaining
80% of both code blue and control patients and then dis-
tributing the patients into 10 folds sequentially according to
the permuted study subject identifiers. As shown in FIGS.
6 A and 6B, more than one copy of 10-fold CV sets 1s needed
because a N-way analysis of vanance (ANOVA) will be
used to assess the sensitivity of super-alarm to those algo-
rithm parameters.

To obtain false positive rate at various steps in the oflfline
analysis, alarms are sampled from control patients instead of
using all alarms from them. This 1s done by randomly
drawing one sample of alarms in each consecutive 4-hour
window from the beginning of monitoring to the end. The
number of alarms drawn for each sample obviously depends
on the window length parameter (parameter T in FIG. 1).

At step 210, a receiver operator characteristic (ROC)
curve 1s generated for each 10-fold CV data set following the
conventional cross-validation analysis. Given a selected set
of algorithm parameters, the super-alarm mining algorithm
1s executed on the first nine folds of a 10-fold CV set to build
a raw super-alarm set. By varying FPR threshold, the
super-alarm patterns that have a FPR greater than the
threshold can be trimmed, with the resulting super-alarm set
on the remaining fold tested to count the number of true
positive (TP) and the number of false positive (FP) hits. The
process 1s repeated for each of the 10 folds and we accu-
mulate the number of TP and FP hits at each threshold value.
The true positive rate (TPR) 1s then simply calculated as the
total TP hats across the 10 folds of data divided by the total
number of code blue events and the false positive rate (FPR)
1s calculated as the total FP hits divided by the total number
of control cases. A ROC curve can then be plotted by linking
the FPR and TPR pairs obtained at each threshold. It should
be noted that filtering the raw super-alarm set 1s part of the
training process and hence the FPR of each super-alarm
pattern 1s calculated based on the nine folds of training data.
This process 1s executed for each copy of the 10-fold CV sets
created at the beginning of the ofiline experiment.

Based on a ROC curve, an operating point 212 1s picked
by first speciiying the maximally tolerated FPR (FPRmax)
and then the operating point 1s determined at the location
where the TPR 1s the maximized while the corresponding,
FPR 1s below the specified FPRmax. The TPR values 214 at
this operating point can be collected from the ROC curves
generated using different combinations of algorithm param-
cters for all copies of 10-fold CV sets. These TPR values are
then used 1n a conventional full N-way ANOVA to assess the
influence of the algorithm parameters on TPR.

In addition to the N-way ANOVA 218 and ANOVA table
230, the optimal combination of algorithm parameters are
calculated at 216 for a given choice of FPRmax to be the one
with maximal TPR for a given FPRmax averaged over all
copies of 10-fold data sets.

The optimal algorithm combination 216 as found in
oflline analysis 1s used to conduct super-alarm mining 226
again by coalescing a 10-fold CV data set 228 into a full
training data set 202. The raw super-alarm set thus 1dentified
1s further filtered out using the average FPR threshold that

5

10

15

20

25

30

35

40

45

50

55

60

65

8

determine the operating point for each of the copies of
10-fold CV data sets. This final super-alarm set 1s then
applied to the reserved test data set for an online simulation
study and obtain online performance metrics.

Two online metrics are designed. First, the super-alarm set
22 will be first applied following the method 100 detailed 1n

FIG. 4 to all the alarms of code blue patients to calculate the
online sensitivity (first halt of block 220) that 1s a function
of predictive horizon. This metric 1s defined as the percent-
age of code blue patients who have triggered super-alarm
within a T —length prediction horizon that immediately
precedes the event. It 1s expected that the sensitivity will
increase as the prediction horizon 1s extended by increasing
1. The second metric is calculated as the ratio ot hourly
number of false super-alarm triggers (second half of block
220) to that of the regular monitor alarms. Hence, the second
metric quantifies the false positive aspect of a super-alarm
set within the context of alarm load from current monitors.

Alarm data were extracted from a central repository of
comprehensive data elements of bedside monitors in the
UCLA Ronald Regan Medical Center. These bedside moni-
tors were distributed across a neurosurgical ICU, cardiac
observation unit, cardiothoracic ICU, coronary ICU, hema-
tology and stem cell transplant unit, medical ICU, medical-
surgical specialty unit, neuroscience and stoke unit, liver
transplant umt, and transplant surgical ICU. Continuous
wavetorm, vital signs at a 15-minute interval, and alarms are
continuously archived into the repository using a commer-
cial data acquisition system equipped with 200 data acqui-
sition licenses. Hence, data from only up to 200 beds can be
archived simultaneously. The data acquisition system deter-
mines data from which bed to be archived when a license
becomes available. A list of code blue events from Aprl
2010 to October 2011 was provided. Using this list, alarms
for 223 code blue adult patients (age>18 years) were col-
lected.

In addition, control patients were determined by applying
the following inclusion and exclusion criteria to patients
admitted between April 2010 and October 2011 who were
not coded nor experienced an unplanned ICU transfer. The
inclusion criteria are: 1) have the same APR DRG (All
Patient Refined Diagnosis Related Group) or Medicare
DRG; 2) the age 1s within 5 years; 3) have the same gender;
4) resided 1n the same unit during their stay. These criteria
were applied to find as many as possible control patients per
cach code blue patient. The total number of control patients
thus identified was 1768.

The results reported 1n this section are based on the
tollowing setup of the experiment conditions. Four levels of
window length were assessed: 10 minutes, 30 minutes, 1
hour, and 2 hours. Four levels of minimum support value for
mining the frequent itemset were used: 0.05, 0.10, 0.15, and
0.25. Closed itemset filtering and occurrence frequency
encoding are two binary choices. Hence, there are 64
combinations of algorithm parameters in the N-way
ANOVA. To obtain reliable results, five copies of 10-fold
cross-validation data sets 208 were generated, which 1s
equivalent to testing algorithm combination using five ran-
dom cross-validation experiments. This 1s enough to provide
samples needed for a 4-way ANOVA 218, while keeping the
computational cost minimal. The performance of the super-
alarm set 222 1s determined by its maximal true positive rate
while satistying a user-specified maximal false positive rate,
which 1s specified as 0.02, 0.05, 0.10, and 0.15. Therefore,
a four 4-way ANOVA analy31s was conducted to obtain the
following results.
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The total number of alarms was 882,414 for 223 code blue
patients and 3,921,323 for 1768 control patients. The aver-
age monitoring time was 398.5£524.0 hours for the code
blue patients and 249.5+£345.4 hours for control patients.
There were 33 patients who had more than one code blue
call. Only alarms from the first code blue call were selected

for analysis.
The distributions of alarms for code blue and controls

patients across the four alarms levels are: [2.18%, 11.40%,
70.16%, and 16.23%] and [1.50%, 10.75%, 69.56%,

18.19%], respectively. This shows that crisis alarms account
for less than 2.5% of all levels of alarms for code blue and
less than 2.0% for control patients. On the other hand,
patient advisory alarm 1s a dominant level. Average age 1s
61.1£16.9 years for code blue patients and 63.6x14.8 years
for controls. 58% of code blue patients and 66% of controls
were male. Cardiac and respiratory arrests accounted for
74% and 22% of cases, respectively. The majority of code
blue events occurred in ICUs (68%) with 23% code blue
events occurring in non-ICU units, and 9% 1n other facilities
including OR and interventional suits. On the other hand,
6'7% controls were ICU patients and 33% of them were from
non-ICU unaits.

The distribution of code blue events and control patients
across 26 different major diagnostic codes 1s shown 1n FIG.
7 and FIG. 8, respectively. MDC 0 1s a code used to
designate a number of different diagnosis and procedure
situations that are transplant-related. This code accounts for
the biggest number of code blue patients. The second, the
third, the fourth largest MDC code for code blue are MDC
5, MDC 18, and MDC 4, which are related to circulatory
system, infectious situationsj and respiratory system respec-
tively. For control patients, the largest cluster 1s also MDC
0 followed by MDC 5, 18, and 4.

The four solid lines 1n FIG. 9 display the average hourly
number of alarms per each of the four alarm levels for
control patients (using 10 randomly selected 1-hour win-
dows). The nine bars display the average hourly number of
alarms for code blue patients at 9 diflerent time windows
prior to the event. These 9 windows are all one-hour long,
non-overlapped and placed consecutively prior to the event
starting at the time of the code blue events. FIG. 9 shows that
the code blue patients have a larger number of alarms and
that the number of alarms 1s the largest within the last hour
leading to the code blue event except for the patient advisory
alarms.

Table 2 lists the p values of 15 parameters and their
interactions from the 4-way ANOVA, showing the of the
influence of four algorithm parameters and their interactions
on super-alarm performance, which was calculated as the
maximal true positive rate obtained for a given maximal
false positive rate (FPR). These parameters are window
length (Win), minimum support value (Sup), closed 1temset
filtering (Cls), and occurrence frequency encoding (Occ). It
can be clearly seen that window length (Win), support values
(Sup), and their interaction are the three most significant
tactors. On the other hand, occurrence frequency encoding
and closed itemset filtering have less influence on the
performance of super-alarm as they only aflect performance
under certain choice of FPR thresholds and have larger p
values.

Based on the oflline evaluation results, we determine the
optimal algorithm parameters for a given FPR threshold and
then use the full training data to obtain the super-alarm set.
Table 3 lists the optimal parameters for each choice of FPR
threshold, the total number of super-alarm patterns, the total
number of super-alarms per each pattern length, and the
average sensitivity obtained at the specified FPR threshold.
For example, a FPR threshold of 0.15 resulted in the largest
super-alarm set which also contains the longest super-alarm
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pattern (n=6) and highest sensitivity (0.65x£0.02). Interest-

ingly, a FPR threshold of 0.1, mstead of 0.02, resulted in the

smallest super-alarm set, which can be attributed to a large
support value used 1n the super-alarm mining. However, a
higher average sensitivity 1s always obtained at a higher FPR
threshold, irrespective of the size of the super-alarm set.
Furthermore, neither large window length nor large support
value has been preferred as optimal parameters to be used
for mining the super-alarms.

As an example of a super-alarm set, Table 4 lists the full
super-alarm set as found using a FPR threshold of 0.1 under
the algorithm parameters listed in the 3rd row of Table 3.
There were 29 super-alarm patterns including 7 patterns
consisting of one code, 19 patterns consisting of two codes,
and 3 patterns consisting of 3 codes. There were no patterns
found that consist of more than three codes.

FIG. 10 displays the sensitivity functions using the four
super-alarm sets determined using the whole training data
set under the optimal parameters as determined 1n the offline
analysis. In addition, Table 5 lists the ratio of the number of
false positive super-alarms to that of regular monitor alarms
and the sensitivity obtained at prediction horizons of 30
minutes, 1 hour, and 2 hours. It can be seen from these

results that a higher FPR threshold leads to a larger sensi-
tivity, especially at a shorter prediction horizon but also a
larger false positive ratio for the super-alarm set. However,
the largest super-alarm set obtained under a FPR threshold
of 0.15 achieves a sensitivity o1 90.9% at detecting code blue
one hour ahead. Even with this largest super-alarm set, the
number of false alarms i1t would raise for control patients
only accounts for 11.2% of regular monitor alarms.

In summary, the systems and methods of the present
invention can predict clinical end-points such as code blue,
and that by doing so may provide innovative strategies of
alarm management to alleviate the alarm fatigue from exces-
sive number of false positive alarms. In particular alarm
mining approach is detailed based on finding frequent com-
binations of individual alarms specific to predict code blue
events.

It will be appreciated that the classic Aprior1 algorithm
was used to find the frequent itemsets. A general requirement
of this algorithm 1s that a constant minimum support thresh-
old 1s used. It 1s also appreciated that a smaller minimum
support threshold as the length of a potential super-alarm
pattern increases so that more specific and hence longer
super-alarm patterns will not be missed. Alternative asso-
ciation rule mining algorithms that are more computation-
ally eflicient may also be employed 1n the method of the
present invention to handle a larger data set.

Furthermore, the order of the appearance of individual
alarms when composing a super-alarm pattern may also be
factored 1n the method of the present invention to increase
turther the specificity of super-alarm. Several alternative
potential approaches to incorporate the order of alarms
include: hidden Markov models, which have been demon-
strated with better performance than itemset-based approach
in predicting faults, and sequential alarm pattern mining
approaches.

The alarm mining methods of the present invention are
also complementary to existing approaches that are based on
robust signal analysis and pattern recognition techniques to
improve patient monitoring. One potential way of integrat-
ing these approaches i1s to utilize the alarm mining as a
framework to include outputs from signal analysis and
pattern recognitions of physiological signals as alarms. This
1s because the methods of the present invention are not
limited to alarms from monitors. Indeed, there are known
predictors of cardiac arrest that can be derived from
advanced ECG and rhythm analysis beyond what 1s done by
conventional monitors.
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It 1s known that less critical alarms account for majority
of all recerved alarms (97.82% and 98.50% for code blue

and control patients, respectively in our data set) and they
are prone to being aflected by noise and artifacts. As such,

they are more likely to be 1ignored by care givers. Hence, the
super-alarm methods of the present invention have signifi-
cant potential to provide evidence-based indication that
combinations of even less critical alarms may be predictive
of impending or ongoing patient deteriorations and therefore
demand attention that are currently mandated for critical
alarms. Such a system may mitigate the problem of alarm
fatigue while minimizing the risk of missing important
precursory patterns in the sequence of alarms for deterio-
rating patients.

Embodiments of the present invention may be described
with reference to flowchart illustrations of methods and
systems according to embodiments of the mvention, and/or
algorithms, formulae, or other computational depictions,
which may also be implemented as computer program
products. In this regard, each block or step of a tlowchart,
and combinations of blocks (and/or steps) in a tlowchart,
algorithm, formula, or computational depiction can be
implemented by various means, such as hardware, firmware,
and/or software including one or more computer program
istructions embodied 1n computer-readable program code
logic. As will be appreciated, any such computer program
istructions may be loaded onto a computer, including
without limitation a general purpose computer or special
purpose computer, or other programmable processing appa-
ratus to produce a machine, such that the computer program
instructions which execute on the computer or other pro-
grammable processing apparatus create means for imple-
menting the functions specified 1n the block(s) of the tlow-
chart(s).

Accordingly, blocks of the flowcharts, algorithms, formu-
lae, or computational depictions support combinations of
means for performing the specified functions, combinations
of steps for performing the specified functions, and com-
puter program instructions, such as embodied 1n computer-
readable program code logic means, for performing the
specified functions. It will also be understood that each
block of the flowchart illustrations, algorithms, formulae, or
computational depictions and combinations thereof
described herein, can be implemented by special purpose
hardware-based computer systems which perform the speci-
fied functions or steps, or combinations of special purpose
hardware and computer-readable program code logic means.

Furthermore, these computer program instructions, such
as embodied 1n computer-readable program code logic, may
also be stored 1n a computer-readable memory that can direct
a computer or other programmable processing apparatus to
function 1n a particular manner, such that the instructions
stored in the computer-readable memory produce an article
of manufacture including instruction means which i1mple-
ment the function specified i1n the block(s) of the
flowchart(s). The computer program instructions may also
be loaded onto a computer or other programmable process-
ing apparatus to cause a series ol operational steps to be
performed on the computer or other programmable process-
ing apparatus to produce a computer-implemented process
such that the instructions which execute on the computer or
other programmable processing apparatus provide steps for
implementing the functions specified in the block(s) of the
flowchart(s), algorithm(s), formula(e), or computational
depiction(s).

From the discussion above 1t will be appreciated that the
invention can be embodied 1n various ways, including the
tollowing;:

1. A system for monitoring data associated with a plurality
of physiological characteristics of a patient, comprising: a
processor configured for receiving input from a plurality of
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independent physiological data streams from one or more
monitoring devices; wherein each of the physiological data
streams comprises an individual raw alarm associated with
the physiological data within the stream; and programming

executable on the processor for: reading the mput physi-
ological data streams; comparing the mput data stream
against a set of super-alarm patterns associated with the
plurality of physiological conditions; the super-alarm pat-
terns comprising data relating to a combination of at least
two individual raw alarms from independent physiological
data streams that co-occur within a temporal window; and
triggering an alarm 1f a combination of the input physiologi-
cal data matches at least a portion of a generated super-alarm
pattern.

2. A system as 1 any of the preceding embodiments,
wherein the triggered alarm 1s predictive of an adverse event
associated with the physiological characteristics of a patient.

3. A system as 1 any of the preceding embodiments,
wherein the triggered alarm 1s predictive of a code-blue
event.

4. A system as 1 any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
acquiring physiological monitoring case data from a com-
prising raw alarm data plurality of patient cases; detecting
super-alarm patterns occurring above a specified frequency
within a window of time directly preceding an adverse event
within each of the cases.

5. A system as 1n any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
acquiring physiological monitoring control data comprising
raw alarm data from a plurality of control patients that are
not coded; and discretizing a value field for raw alarms
based on the case data and the control data.

6. A system as 1n any of the preceding embodiments,
wherein raw control alarms and case alarms that co-occur
within a specified time window are pre-processed to gener-
ate an output of an array of alarm codes, each of which
identifies an 1individual raw alarm.

7. A system as 1 any of the preceding embodiments,
wherein discretizing a value field comprises dividing an
alarm with a value code i1nto sub-codes.

8. A system as in any of the preceding embodiments,
wherein the control data 1s used to filter out super-alarm
patterns 1dentified for adverse event patients that have also
occurred above a specified frequently for control patients.

9. A system as 1 any of the preceding embodiments:
wherein a super-alarm pattern 1s excluded from inclusion
within the super-alarm pattern set 1f the super-alarm pattern
has false positive rate (FPR) 1s greater than a predetermined
threshold; wherein the false positive rate (FPR) of the
super-alarm pattern 1s a function of the acquired control
data.

10. A system as in any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
generating encoding schema; wherein encoding schema
used to encode alarm codes for case alarms and control
alarms.

11. A system as 1n any of the preceding embodiments,
turther comprising: generating encoding schema as a func-
tion of an occurrence frequency for each alarm code.

12. A system as 1n any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
applying closed-set filtering to remove super-alarm patterns
that are included as a subset of a larger super-alarm pattern.

13. A system for generating a set of alarm patterns
associated with a plurality of physiological characteristics of
a patient, the alarm patterns being predictive of an adverse
event associated with the physiological characteristics of a
patient, comprising: a database comprising physiological
monitoring case data comprising raw alarm data from a
plurality of patient cases and a plurality of control patients
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that are not coded; a processor; programming executable on
the processor for: evaluating raw alarm data from a plurality
of patient cases and a plurality of control patients; and
generating a set of super-alarm patterns associated with the
plurality of physiological conditions; the super-alarm pat-
terns comprising data relating to a combination of at least
two individual raw alarms from independent physiological
data readings of the patient.

14. A system as 1n any of the preceding embodiments,
wherein generating a set of super-alarm patterns comprises:
detecting super-alarm patterns occurring above a specified
frequency within a window of time directly preceding an
adverse event within each of the cases.

15. A system as 1n any of the preceding embodiments,
wherein generating a set of super-alarm patterns comprises:
discretizing a value field for raw alarms based on the case
data and the control data.

16. A system as 1n any of the preceding embodiments,
wherein raw control alarms and case alarms that co-occur
within a specified time window are pre-processed to gener-
ate an output of an array of alarm codes, each of which
identifies an individual raw alarm.

17. A system as 1n any of the preceding embodiments,
wherein discretizing a value field comprises dividing an
alarm with a value code 1nto sub-codes.

18. A system as i1n any of the preceding embodiments,
wherein the control data 1s used to filter out super-alarm
patterns identified for adverse event patients that have also
occurred above a specified frequently for control patients.

19. A system as 1n any of the preceding embodiments:
wherein a super-alarm pattern 1s excluded from inclusion
within the super-alarm pattern set 1f the super-alarm pattern
has a false positive rate (FPR) greater than a predetermined
threshold; wherein the false positive rate (FPR) of the
super-alarm pattern 1s a function of the acquired control
data.

20. A system as 1n any of the preceding embodiments,
wherein generating a set of super-alarm patterns further
comprises: generating encoding schema; wherein encoding
schema 1s used to encode alarm codes for case alarms and
control alarms.

21. A system as in any of the preceding embodiments,
turther comprising: generating encoding schema as a func-
tion of an occurrence frequency for each alarm code.

22. A system as 1n any of the preceding embodiments,
wherein generating a set of super-alarm patterns further
comprises: applying closed-set filtering to remove super-
alarm patterns that are included as a subset of a larger
super-alarm pattern.

23. A monitor for predicting an adverse event associated
with the physiological characteristics of a patient, compris-
ing: one or more monitor iputs configured for receiving
input from a plurality of independent physiological data
streams generated from one or more monitoring devices;
wherein each of the physiological data streams comprises an
individual raw alarm associated with the physiological data
within the stream; a processor coupled to the one or more
monitor 1nputs; and programming executable on the proces-
sor for: reading the mput physiological data streams; com-
paring the mmput data stream against a set of super-alarm
patterns associated with the plurality of physiological con-
ditions; the super-alarm patterns comprising data relating to
a combination of at least two individual raw alarms from
independent physiological data streams that co-occur within
a temporal window; and triggering an alarm 1f a combination
of the input physiological data matches at least a portion of
a generated super-alarm pattern

24. A monitor as 1n any of the preceding embodiments,
wherein the triggered alarm i1s predictive of a code-blue
event.

10

15

20

25

30

35

40

45

50

55

60

65

14

25. A monitor as in any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
acquiring physiological monitoring case data from a com-
prising raw alarm data plurality of patient cases; detecting
super-alarm patterns occurring within a window of time
directly preceding an adverse event within each of the cases.

26. A monitor as in any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
acquiring physiological monitoring control data comprising
raw alarm data from a plurality of control patients that are
not coded; and discretizing a value field for raw alarms
based on the case data and the control data.

2’7. A monitor as 1n any of the preceding embodiments,
wherein raw control alarms and case alarms that co-occur
within a specified time window are pre-processed to gener-
ate an output ol an array of alarm codes, each of which
identifies an individual raw alarm.

28. A monitor as 1n any of the preceding embodiments,
wherein discretizing a value field comprises dividing an
alarm with a value code into sub-codes.

29. A monitor as in any of the preceding embodiments,
wherein the control data 1s used to filter out super-alarm
patterns 1dentified for adverse event patients that have also
occurred above a specified frequently for control patients.

30. A monitor as 1 any of the preceding embodiments:
wherein a super-alarm pattern 1s excluded from inclusion
within the super-alarm pattern set 1f the super-alarm pattern
has a false positive rate (FPR) greater than a predetermined
threshold; wherein the false positive rate (FPR) of the
super-alarm pattern 1s a function of the acquired control
data.

31. A monitor as 1n any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:
generating encoding schema; wherein encoding schema
used to encode alarm codes for case alarms and control
alarms.

32. A monitor as 1n any of the preceding embodiments,
further comprising: generating encoding schema as a func-
tion of an occurrence frequency for each alarm code.

33. A monitor as 1n any of the preceding embodiments,
wherein the set of super-alarm patterns are generated by:

applying closed-set filtering to remove super-alarm patterns
that are included as a subset of a larger super-alarm pattern.

Although the description above contains many details,
these should not be construed as limiting the scope of the
invention but as merely providing illustrations of some of
the presently preferred embodiments of this invention.
Therefore, 1t will be appreciated that the scope of the present
invention fully encompasses other embodiments which may
become obvious to those skilled 1n the art, and that the scope
of the present mnvention 1s accordingly to be limited by
nothing other than the appended claims, 1n which reference
to an element 1n the singular 1s not mtended to mean “one
and only one” unless explicitly so stated, but rather “one or
more.” All structural, chemical, and functional equivalents
to the elements of the above-described preferred embodi-
ment that are known to those of ordinary skill 1n the art are
expressly incorporated herein by reference and are intended
to be encompassed by the present claims. Moreover, 1t 1s not
necessary for a device or method to address each and every
problem sought to be solved by the present invention, for 1t
to be encompassed by the present claims. Furthermore, no
clement, component, or method step 1n the present disclo-
sure 1s intended to be dedicated to the public regardless of
whether the element, component, or method step 1s explic-
itly recited 1n the claims. No claim element herein 1s to be
construed under the provisions of 35 U.S.C. 112, sixth
paragraph, unless the element 1s expressly recited using the
phrase “means for.”
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TABLE 1

Composition Of Monitor Alarms Using Four Example Alarms

16
TABLE 4-continued

List Of The Smallest Super-Alarms Set Found

Alamm
Code  Label Level Polarity  Value Timestamp
90 ART1 S  Patient LO 80  6/23/2011 14:50:11
warning

Systolic arterial blood pressure at port #1 crosses the preset alarm
lower bound at a value of 80 mmHg at the specified time point.

Length
5 of Patterns

Super-alarm Patterns

ACC VENT
ART1 M LO28.5< <37.5
ART1 M LO37.5< <525

2 ASYSTOLE & VFIB/VTAC

List Of The Smallest Super-Alarms Set Found

Length
of Patterns Super-alarm Patterns
1 ASYSTOLE
VFIB/VTAC
V BRADY
PAUSE

10 ASYSTOLE & BRADY
89 ART1 S  Patient HI 180  6/2/2011 4:30:11 ASYSTOLE & V TACH
warning ASYSTOLE & HR LO33.5< <75.0
Systolic arterial blood pressure at port #1 crosses the preset alarm ASYSTOLE & SPO2 LOR3.5< <935
upper bound at a value of 180 mmHg at the specified time point. VFIB/VTAC & V TACH
VFIB/VTAC & SPO2 LOB3.5< <935
1 Asystole  Crisis  N/A N/A  6/23/2011 5:20:10 5 BRADY & V TACH
An asystole alarm 1s trigged at the specified time point BRADY & SPO2 LO66.5< <83.5
BRADY & SPO2 LO83.5< <93.5
190 NBP S Patient HI 160 6/23/2011 11:50:11 VTACH & VT >2
warning V TACH & PV(C<43.5
Noninvasive systolic arterial blood pressure crosses the preset alarm V TACH & SPO2 LO66.5< <83.5
upper bound at a value of 160 mmHg at the specified time point V TACH & SPO2 LO83.5< <93.5
20 HR 1033.5< <75.0 & SPO2 LO66.5< <83.5
HR LO33.5< <75.0 & SPO2 LO83.5< <0935
SPO2 LO<66.5 & SPO2 LO66.5< <83.5
TABIE 2 SPO2 LO<66.5 & SPO2 LOR3.5< <93.5
ART1 D LO30.5< <78.0 & ART1 S LO40.0< <70.5
P Values From Conducting A 4-Wav Analysis Of Variance (ANOVA) 3 ASYSTOLE & VFIB/VIAC & V1ACH
25 V TACH & SPO2 LO66.5< <83.5 & SPO2 LOR83.5< <03.5
P value SPO2 LO<66.5 & SPO2 LO66.5< <83.5 & SPO2 LORK3.5<
<93.5
Parameters & FPR = FPR =
Interactions 0.02 FPR = 0.05 FPR = 0.10 0.15
Win 0.006 0.000 0.000 0.000 30 TABLE 5
Sup 0.000 0.000 0.000 0.001
Occe 0.633 0.310 0.017 0.487 List Of Online Performance Metrics For Four Super-Alarm Sets
Cls 0.895 0.049 0.016 0.535
Win&Sup 0.000 0.000 0.000 0.000 False Sensitivity
Win&Occ 0.822 0.369 0.740 0.539
Win&Cls 0.698 0.195 0.005 0.100 35  positive rate L= 1- 2- False positive
Sup&Occ 0.297 0.901 0.118 0.614 threshold hour hour hour ratio
Sup&Cls 0.013 0.000 0.013 0.141
Cls&Occ 0.925 0.286 0.239 0.350 0.02 60.6% 66.7% 69.7% 2.2% = 4.3%
Win&Sup&Occ 0.851 0.858 0.900 0.024 0.05 72.7% 78.8% 81.8% 4.7% + 7.0%
Win&Sup&Cls 0.596 0.063 0.048 0.001 0.10 75.8% 78.8% 78.8% 7.4% = 9.0%
Win&Occ&Cls 0.589 0.262 0.883 0.652 4 0.15 87.9% 90.9% 90.9% 11.2% = 12.5%
Sup&Cls&Occ 0.956 0.799 0.540 0.015
Win&Sup&Occ&Cls 0.987 0.710 0.934 0.398
What 15 claimed 1s:
TABLE 3
List Of The Optimal Algorithm Parameters
False #
positive  Window Closed Occurrence of Super-
rate Length  Support set frequency alarm # of Super-alarm Sensitivity
threshold (minutes) wvalue filtering encoding  patterns  patterns per length (mean + sd)
0.02 30 0.05 True True 143 [1,77,40,25] 0.44 + 0.02
0.05 10 0.05 False False 97 [6,59,28.4] 0.53 = 0.01
0.10 30 0.10 False False 29 [7,19,3] 0.63 + 0.04
0.15 60 0.05 False True 658 [0,150,335,148,24,1] 0.65 = 0.02
TARBI E 4 1. A system for monitoring data associated with a plurality

ol physiological characteristics of a patient, comprising:
«o  aprocessor configured for recerving iput from a plurality

ol independent physiological data streams from one or
more monitoring devices;

wherein each of the physiological data streams comprises

65

an 1ndividual raw alarm associated with the physiologi-
cal data within the stream; and

programming executable on the processor for:

reading the mput physiological data streams;
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comparing the mput data stream against a set ol pre-
dictive super-alarm patterns associated with the plu-
rality of physiological conditions;
the predictive super-alarm patterns comprising a tems-
poral window data acquired from a combination of at
least two individual independent physiological data
streams that co-occur within the temporal window;
and
triggering an alarm 1f a combination of the input
physiological data matches at least a portion of a
generated super-alarm pattern;
wherein the triggered alarm 1s predictive of an adverse
event associated with the physiological characteris-
tics of a patient.
2. A system as recited 1n claim 1, wherein the at least two
individual independent physiological data streams comprise
raw alarm data.
3. A system as recited 1n claim 1, wherein the triggered
alarm 1s predictive of a code-blue event.
4. A system as recited in claim 1, wherein the set of
predictive super-alarm patterns are generated by:
acquiring physiological monitoring case data from data
acquired from a plurality of patient cases; and

detecting super-alarm patterns occurring within a tempo-
ral window preceding an adverse event within each of
the patient cases;

wherein the detected adverse event within the case data 1s

correlative to the adverse event associated with the
physiological characteristics of the patient.

5. A system as recited in claim 4, wherein the set of
predictive super-alarm patterns are generated by:

acquiring physiological monitoring control data compris-

ing raw alarm data from a plurality of control patients,
the control patient alarm data comprising super-alarm
patterns not occurring within the temporal window of
an adverse event; and

discretizing a value field for raw alarms based on the case

data and the control data.

6. A system as recited 1n claim 5, wherein raw control
alarms and case alarms that co-occur within a specified time
window are pre-processed to generate an output of an array
of alarm codes, each of which i1dentifies an individual raw
alarm.

7. A system as recited 1n claim S, wherein discretizing a
value field comprises dividing an alarm with a value code
into sub-codes.

8. A system as recited 1n claim 5, wherein the control data
1s used to filter out non-predictive super-alarm patterns
identified for adverse event patients that have also occurred
above a specified frequently for control patients.

9. A system as recited 1n claim 3:

wherein a super-alarm pattern 1s excluded from inclusion

within the predictive super-alarm pattern set 1t the
super-alarm pattern has {false positive rate (FPR)
greater than a predetermined threshold; and

wherein the false positive rate (FPR) of the super-alarm

pattern 1s a function of the acquired control data.

10. A system as recited in claim 5, wherein the set of
predictive super-alarm patterns are generated by:

generating encoding schema;

wherein encoding schema used to encode alarm codes for

case alarms and control alarms.

11. A system as recited 1n claim 10, further comprising:

generating encoding schema as a function of an occur-

rence frequency for each alarm code.

12. A system as recited in claam 1, wherein the set of
predictive super-alarm patterns are generated by:
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applying closed-set filtering to remove predictive super-
alarm patterns that are included as a subset of a larger
predictive super-alarm pattern.
13. A system for generating a set ol predictive alarm
patterns associated with a plurality of physiological charac-
teristics of a patient, the predictive alarm patterns being
predictive ol an adverse event associated with the physi-
ological characteristics of a patient, comprising:
a database comprising physiological monmitoring case data
acquired from raw physiological data from a plurality
of patient cases and a plurality of control patients that
are not coded with respect to the adverse event;
a Processor;
programming executable on the processor for:
evaluating raw physiological data from a plurality of
patient cases and a plurality of control patients; and

generating a set of predictive super-alarm patterns
associated with the plurality of physiological condi-
tions;

the predictive super-alarm patterns comprising a tems-
poral window of data acquired from a combination
of at least two individual encoded independent
physiological data streams that co-occur within the
temporal window.

14. A system as recited 1n claim 13, wherein generating a
set of predictive super-alarm patterns comprises:

detecting super-alarm patterns occurring within a tempo-
ral window preceding an adverse event within each of
the patient cases;

wherein the detected adverse event within the case data 1s
correlative to the adverse event associated with the
physiological characteristics of the patient.

15. A system as recited 1n claim 13, wherein the physi-
ological data from the plurality of control patients comprises
super-alarm patterns not occurring within the temporal win-
dow of an adverse event, and wherein generating a set of
super-alarm patterns comprises:

discretizing a value field for the physiological data based

on the case data and the control data.

16. A system as recited in claim 15, wherein discretizing
a value field comprises dividing an alarm with a value code
into sub-codes.

17. A system as recited 1n claim 13, wherein raw control
alarms and case alarms that co-occur within a specified time
window are pre-processed to generate an output of an array
of alarm codes, each of which i1dentifies an individual raw
alarm.

18. A system as recited in claim 13, wherein the control
data 1s used to filter out non-predictive super-alarm patterns
identified for adverse event patients that have also occurred
above a specified frequently for control patients.

19. A system as recited 1n claim 13:

wherein a super-alarm pattern 1s excluded from inclusion

within the predictive super-alarm pattern set if the
super-alarm pattern has a false positive rate (FPR)
greater than a predetermined threshold;

wherein the false positive rate (FPR) of the super-alarm

pattern 1s a function of the acquired control data.

20. A system as recited 1n claim 13, wherein generating a
set of predictive super-alarm patterns further comprises:

generating encoding schema;

wherein encoding schema 1s used to encode alarm codes

for case alarms and control alarms.

21. A system as recited in claim 20, further comprising:

generating encoding schema as a function of an occur-

rence frequency for each alarm code.
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22. A system as recited 1n claim 13, wherein generating a
set of predictive super-alarm patterns further comprises:

applying closed-set filtering to remove predictive super-

alarm patterns that are included as a subset of a larger
predictive super-alarm pattern.

23. A monitor for predicting an adverse event associated
with the physiological characteristics of a patient, compris-
ng:

one or more monitor iputs configured for recerving input

from a plurality of independent physiological data
streams generated from one or more monitoring
devices:

wherein each of the physiological data streams comprises

an individual raw alarm associated with the physiologi-
cal data within the stream;

a processor coupled to the one or more monitor 1nputs;

and
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20

programming executable on the processor for:

reading the mnput physiological data streams;

comparing the mput data stream against a set of pre-
dictive super-alarm patterns associated with the plu-
rality of physiological conditions;

the predictive super-alarm patterns comprising a tem-
poral window of data acquired from a combination
ol at least two 1ndividual encoded raw alarms from
independent physiological data streams that co-occur
within the temporal window; and

triggering an alarm 1f a combination of the input
physiological data matches at least a portion of a
generated predictive super-alarm pattern;

wherein the triggered alarm 1s predictive of an adverse

event associated with the physiological characteris-
tics of a patient.

¥ K H oK ¥



	Front Page
	Drawings
	Specification
	Claims

