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METHODS FOR CONTROLLING STRAY
FIELDS OF MAGNETIC FEATURES USING
MAGNETO-ELASTIC ANISOTROPY

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Application No. 61/949,390, filed on Mar. 7,
2014, entitled, “METHODS FOR CONTROLLING
STRAY FIELDS OF A MAGNETIC HEAD USING MAG-
NETO-ELASTIC ANISOTROPY”, the entire content of

which 1s 1ncorporated herein by reference.

BACKGROUND

Magnetic storage systems, such as a hard disk drive
(HDD), are utilized in a wide variety of devices i both
stationary and mobile computing environments. Examples
of devices that incorporate magnetic storage systems include

desktop computers, portable notebook computers, portable
hard disk drives, digital versatile disc (DVD) players, high
definition television (HDTV) recervers, vehicle control sys-
tems, cellular or mobile telephones, television set top boxes,
digital cameras, digital video cameras, video game consoles,
and portable media players.

A typical disk drive includes magnetic storage media 1n
the form of one or more flat disks. The disks are generally
formed of two main substances, namely, a substrate material
that gives it structure and rigidity, and a magnetic media
coating that holds the magnetic impulses or moments that
represent data. Such disk drives also typically include a read
head and a write head (e.g., writer), generally 1n the form of
a magnetic transducer which can sense and/or change the
magnetic fields stored on the disks.

Main pole domain lock up, on track erasure, and side track
crasure are typical writer reliability 1ssues. All of these
1ssues are related to writer/head stray fields, which can erase
the media unintentionally. As such, a method for controlling
stray fields of a writer or other magnetic feature 1s needed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a top schematic view of a disk drive including
a write head that has been fabricated to minimize stray fields
in accordance with one embodiment of the invention.

FIG. 2 1s a conceptual schematic diagram of a cube of
magnetic materials 1llustrating some basic physics associ-
ated with magneto-elastic energy anisotropy and related
writer fabrication characteristics that can be controlled to
mimmize stray fields in accordance with one embodiment of
the 1nvention.

FIG. 3 1s a flow chart of a process for controlling stray
fields of a magnetic feature that can be used to fabricate a
write head i1n accordance with one embodiment of the
invention.

FIGS. 4a, 4b, 4¢ are schematic cross sectional views of a
writer having a writer pole formed of tensile materials
disposed within a trench formed of compressive materials 1n
accordance with one embodiment of the invention.

FIG. 5 1s a graph of stress versus film Fe concentration for
a NiFe film write head subjected to various pH levels and
temperatures during write head fabrication in accordance
with one embodiment of the invention.

FIG. 6 1s a graph of stress versus film Fe concentration for
a pulse plated FeCo film write head that was subjected to
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annealing and pulse plating during write head fabrication 1n
accordance with one embodiment of the 1nvention.

FIG. 7a 1s a graph of the probability of a domain lock up
issue for a write head that has been fabricated to minimize
stray fields 1n accordance with one embodiment of the
invention.

FIG. 7b 1s a graph of domain lock up (DLU) failure rate
for a write head that has been fabricated to minimize stray
fields 1n accordance with one embodiment of the invention.

DETAILED DESCRIPTION

In order to address the stray field problem, one can
enhance the magnetic anisotropy to the preferred direction.
Most commonly, designers might utilize the magnetic shape
anisotropy, and/or crystalline anisotropy to achieve some-
thing like thus. However, due to the complexity of three
dimensional (3-D) structures 1n current perpendicular mag-
netic writers, most of the time the shape anisotropy 1s not in
the preferred direction. The 3-D device fabrication also
limits the implementation of the crystalline anisotropy.

Referring now to the drawings, embodiments of systems
and methods for controlling these stray fields of a magnetic
teature are 1llustrated. The methods can 1nvolve selecting a
plurality of materials for a magnetic feature, selecting a
plurality of additives, combining the plurality of materials
for the magnetic feature and the plurality of additives 1 an
clectrolyte solution to form a combined solution, adding
nitrogen (IN) to the combined solution, degassing the com-
bined solution, depositing the combined solution as a thin
f1lm on a water using pulse plating, and lapping the thin film
to form an edge of the magnetic feature. In several embodi-
ments, the magnetic feature 1s a component of a magnetic
transducer such as a writer pole, a reader shield, or a writer
shield. The systems can involve a magnetic transducer
implemented with one of the methods for controlling stray
ficlds of the magnetic feature (e.g., write head).

FIG. 1 1s a top schematic view of a disk drive 100
including a write head (e.g., contained with a slider) 108 that
has been fabricated to minimize stray fields in accordance
with one embodiment of the invention. Disk drive 100 may
include one or more of the disks/media 102 to store data.
Disks/media 102 reside on a spindle assembly 104 that 1s
mounted to drive housing 106. Data may be stored along
tracks 107 in the magnetic recording layer of disk 102. The
reading and writing of data 1s accomplished with the slider/
head 108 that can have both read and write elements. The
write element (e.g., write head or writer) 1s used to alter the
properties ol the magnetic recording layer of disk 102 and
thereby write information thereto. In one embodiment, the
read element of the head 108 may have tunnel magneto-
resistance (IMR) elements.

In operation, a spindle motor (not shown) rotates the
spindle assembly 104, and thereby rotates disk 102 to
position head 108 at a particular location along a desired
disk track 107. The position of head 108 relative to disk 102
may be controlled by position control circuitry 110.

FIG. 2 1s a conceptual schematic diagram of a cube of
magnetic materials 1llustrating some basic physics associ-
ated with magneto-elastic energy anisotropy and related
writer fabrication characteristics that can be controlled to
minimize stray fields in accordance with one embodiment of
the invention. A tensile stress (o) 1s applied to the unit cube,
and a magnetization (Ms) of the magnetic matenals 1s
initially parallel to the stress. Let Ms then rotate through an
angle 0. As 1t does so, the material will contract along the
stress axis when a magneto-striction (A) 1s positive. This
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contraction, in the presence of a tensile stress, means that
work 1s done on the materials. This work 1s stored as
magneto-elastic energy (shufting the system to higher energy
state, which may not be preferable) in the maternials and 1s
given by the equation:

dEms=—0dh

for an infinitesimal rotation of Ms.

To maximize the utilization of magneto-elastic anisotropy
and thereby minimize the stray field in the magnetic head,
aspects of the mvention mvolve a design process to control
the materials and structure to meet preselected requirements,
such as those illustrated in FIG. 2. For high density type
magnetic writer heads, the structure and the materials can be
carefully selected and fabricated (e.g., designed) to ensure
that no stray field or minimal stray fields come out from the
air bearing surface (ABS). In such case, 1ssues like domain
lock up (DLU), side track erasure or on track erasure can be
reduced or prevented all together. In one embodiment, these
goals can be achieved by utilizing the magneto-elastic
anisotropy of the system.

FI1G. 3 1s a flow chart of a process 200 for controlling stray
ficlds of a magnetic feature that can be used to fabricate a
write head 1n accordance with one embodiment of the
invention. In particular embodiments, the process 200 can be
used to fabricate the write head of FIG. 1. In some embodi-
ments, the magnetic feature can be a component of a
magnetic transducer such as a writer pole, a reader shield or
a writer shield. In block 202, the process selects a plurality
of materials for a magnetic feature. In block 204, the process
selects a plurality of additives. In several embodiments, the
process selects the matenals (e.g., Fe) such that a product of
a magneto-striction of the matenals for the magnetic feature
and a tensile stress of the materials for the magnetic feature
1s a positive value. In one such case, the material selection
involves selecting a dopant and/or the plurality of additives
that such that the product of the magneto-striction and the
tensile stress 1s the positive value. The dopants can include
one or more materials such as S, O, H, N, C, and combi-
nations of those materials. For example, the process can add
one or more of S at about 5x10°20 atoms per cm3, O at about
5x10°20 atoms per cm3, H at about 5x10 20 atoms per cm3,
and/or N at about 5x10°20 atoms per cm3. In one such
embodiment, providing higher H and lower S can result 1n
higher stress for the pole materials. In one embodiment, the
process can select the materials for the writer pole and one
or more organic additives to facilitate design features such
as high moment, softness and high stress.

In one embodiment, the plurality of additives includes
hydroxylmethyl-P-tolysulifone (HPT) in a concentration
between about O to about 10 parts per million. In other
embodiments, other suitable additives can be used. In block
206, the process combines the plurality of materials for the
magnetic feature and the plurality of additives 1n an elec-
trolyte solution to form a combined solution. In block 208,
the process adds nitrogen (N) to the combined solution. In
one embodiment, adding the nitrogen can effectively remove
oxygen Ifrom the combined solution. In several embodi-
ments, the process adds the write pole materials and the
organic additives to the electrolyte solution with about 0 to
about 0.05 ppm of dissolved oxygen.

In block 210, the process degasses the combined solution.
In one embodiment, the degassing can remove oxygen and
N from the combined solution. In one embodiment, the
degassing involves applying a vacuum pressure to a mem-
brane 1n contact with the combined solution. In such case,
the membrane can be configured to allow gas to pass but not
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liquid. More specifically, the membrane can be configured to
allow gas to escape the electrolyte solution but prevent
passage ol any liquid, thereby helping to eliminate any gas,
such as oxygen, from the electrolyte solution. In one
embodiment, the electrolyte solution has about O to about
0.05 ppm of Fe3+ (e.g., minimal Fe3+ since the oxygen has
been minimized or eliminated).

In block 212, the process deposits the combined solution
as a thin film on a water using pulse plating. Pulse plating
of these types of pole materials (e.g., to minimize suriace

roughness) 1s described in co-pending U.S. patent applica-
tion Ser. No. 13/423,009, filed on Mar. 16, 2012, and

entitled, “METHOD OF ELECTROPLATING IRON-CO-
BALT ALLOY FILMS USING PULSED ELECTROPLAT-
ING METHODS?”, the entire content of which 1s 1ncorpo-
rated herein by reference.

In block 214, the process laps the thin film to form an edge
of the magnetic feature. In several embodiments, the lapping
can optimize the directional stress as described above.

In several embodiments, the magnetic feature 1s a writer
pole. In one such case, the plurality of materials for the
magnetic feature can include CoFe having an Fe content
between about 50 and about 75 percent. In another such
case, the plurality of materials for the magnetic feature
include CoFe with a preselected Fe content, where the
plurality of additives are selected to achieve the preselected
Fe content.

In several embodiments, the magnetic feature includes Fe
and the process further provides a sacrificial anode
immersed in the combined solution to reverse oxidation of
the Fe. In one such case, the magnetic feature includes Fe2+
and the process further provides the sacrificial anode
immersed in the combined solution to reverse oxidation of
the Fe3+.

In several embodiments, the majority of the writer mag-
netic materials are electroplated (by volume) alloys, and the
properties of electroplated magnetic alloys can be easily
tuned by altering the plating process. In several such
embodiments, aspects of this invention can utilize the high
tensile stress of these magnetic alloys.

In one embodiment, the process of FIG. 3 can perform the
sequence of actions 1n a different order. In another embodi-
ment, the process can skip one or more of the actions. In
other embodiments, one or more of the actions are per-
formed simultaneously. In some embodiments, additional
actions can be performed.

FIGS. 4a, 4b, 4¢ are schematic cross sectional views of a
writer having a writer pole 302 formed of tensile materials
(e.g., FeCo) disposed within a trench 304 formed of com-
pressive materials (e.g., Al1203) 1 accordance with one
embodiment of the invention.

In one embodiment, the fabrication process of FIG. 3 can
involve a diflerent combination of stages. For example, 1n a
first stage of a second exemplary process, the process can
involve biasing a sign of the product of the material char-
acteristics (product of magneto-striction and tensile stress or
AO) to configure the system magneto-elastic anisotropy to
minimize or eliminate any stray fields. For example, with a
positive product of Ao, o should be parallel to the Ms
direction to have the preferred magneto-elastic state (e.g.,
see¢ FIG. 2 where the direction of Ms 1s close to being
parallel to the direction of o). However, for a negative
product of Ao, 0 would be at about 90 degrees relative to the
Ms direction, which would not be preferred.

In one example embodiment for a perpendicular magnetic
main writer pole where FeCo matenials are used as high
moment materials, the remanent Ms direction needs to be
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contained within a plane of the ABS surface, which can be
defined as being along the x direction as depicted in FI1G. 45.
In such case, since the plated FeCo materials for this
example have a positive magneto-striction (A), the o (posi-
tive tensile stress) anisotropy can be developed to be as high
as possible.

In a second stage of the second exemplary process, the
writer structure can be formed with the stress anisotropy in
the preferred direction. To introduce the stress anisotropy in
the writer, the three dimensional structure can be formed by
first constructing the trench, then backfilling the magnetic
materials, and finally cutting (e.g., lapping or removing) one
side of trench structure to relax the stress of backfilled
materials mside the trench in that direction.

Still using the FeCo writer as an example, as described
carlier, 1t may be preferable to have higher tensile stress 1n
the writer application. By choosing high Young’s Modulus
type trench materials (compressive Al1203 for example) with
the good adhesion between the backfill matenials and trench
side wall, the backiilled FeCo tensile stress can be pre-
served. In fact, the FeCo tensile stress can be even higher
alter thermal annealing. At this stage of the second exem-
plary process, the system may have high isotropic stress,
which may not benefit the design goal until after one side of
the trench materials has been removed. After lapping
through the trench along the ABS surface (see FIG. 4c¢ for
example) the backfilled FeCo high tensile stress gets
relaxed 1n the direction normal to the ABS, which can
provide the high stress anisotropy for the FeCo maternals
remaining in the trench. More precisely, FeCo materials waill
have strong tensile stress along the x direction 1n the trench,
as shown 1n FIGS. 4a, 45, and 4c.

In some embodiments, the thin film FeCo has improved
corrosion properties (e.g., Ecorr 1s about —400 mV versus
Ag/AgCl reference electrode). In one embodiment, the FeCo
f1lm resistivity 1s less than about 27 micro ohm cm at a film
Fe concentration percentage of about 70%. In one embodi-
ment, the HPT byproduct concentration 1s about O to about
10 ppm (0.01 g/1), and includes byproducts such as p-Tolu-
enesulfinte and p-Toluenesulionate.

In using the positive A and positive o for the FeCo pole
matenals, the constructed high anisotropy tensile stress
(magneto-elastic energy anisotropy) can promote the Ms to
stay 1n the x direction (e.g., the preferred low energy state
that 1s roughly parallel to the ABS).

In a third stage of the second exemplary process, the pole
material’s 1creased tensile stress can result 1n stray fields
with a preferential orientation (e.g., cross track but parallel
to ABS or in the x direction 1n FIG. 4b). In one aspect for
pole damascene, the higher the tensile stress of the FeCo
pole matenals, the better the writer pole (e.g., writer) waill
reduce the stray fields along the v direction, thereby reduc-
ing or eliminating the potential domain lock up at the pole
tip.

In a fourth stage of the second exemplary process, the use
of compressive pole materials may be considered. For
highly compressive pole matenials, the magneto-striction (A)
may need to be negative to have the same efiect.

In a fifth stage of the second exemplary process, 1t can be
considered whether a particular application needs to have
stray fields come out of the trench lapping surface. If so, the
negative Ao materials can be picked by increasing the stress
number.

In a sixth stage of the second exemplary process, aspects
of the invention can be considered for applications other
than a writer. For example, the way to construct the three
dimensional {feature, the method to grow the property
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matched material, and the design to utilize the produced
magneto-elastic energy term can be generalized for many
applications. For magnetic recording, one or more of the
magnetic shield layers in the head can benefit from the
magnetic writer fabrication processes 1n a similar way. That
1s, they may benefit by controlling the stray fields to prevent
the unintended erasure.

FIG. § 1s a graph of stress versus film Fe concentration for
a NiFe film write head subjected to various pH levels and
temperatures during write head fabrication in accordance
with one embodiment of the invention. The first option
(“Opt-17) 1llustrates the NiFe film write head subjected to a

pH level of 2.5 and a temperature of 22.5 degrees Celsius
(C). The second option (“Opt-27) 1llustrates the NiFe film

write head subjected to a pH level of 2.5 and a temperature
of 25 degrees C. The third option (“Opt-3”") illustrates the
NiFe film write head subjected to a pH level of 2.8 and a
temperature of 25 degrees C. As can be seen 1n FIG. 5, fitted
polynomial lines have been superimposed on the data points
for each of the three options.

FIG. 6 1s a graph of stress versus film Fe concentration for
a pulse plated FeCo film write head that was subjected to
annealing and pulse plating during write head fabrication 1n
accordance with one embodiment of the invention. One set
ol data shows the stress, 1n megapascal, with annealing and
the other set of data shows the stress without annealing.

Thus, the stress versus film Fe concentration percentage
for electroplated NiFe and FeCo are plotted in FIGS. S and
6 individually. Both charts indicate that the film stress 1s
function of the film Fe concentration percentage, and that
alter the write head 1s thermally annealed, the tensile stress
ol those matenals 1s further increased.

As an experiment, DC plated FeCo film (which can
include properties such as low stress film and low magneto-
clastic anisotropy) and pulse plated FeCo film (which can
include properties such as high stress and high magneto-
clastic anisotropy) have been deposited into a device dama-
scene pole trench (e.g., made of alumina), for given positive
magneto-striction FeCo materials. The high tensile stress
pulse plated FeCo (as compared to the DC plated FeCo) 1s
expected to have better aligned magnetization along the x
direction (within the ABS surface). Backend device domain
lock up (DLU) test results have confirmed this, as shown 1n
FIGS. 7a and 7b.

FIG. 7a 1s a graph of the probability of a domain lock up
issue for a write head that has been fabricated to minimize
stray fields (e.g., high stress CoFe with varying material
concentrations) in accordance with one embodiment of the
invention. More specifically, the pulse plating 1s consistently
2.4 Tesla, while the CoFe has varying Fe percentages of 66,
69, 72, and 75. A reference write head performance 1s shown

for a standard write head with DC plating (see “DC-plating
POR” and “POR” curve).

FIG. 7b 1s a graph of domain lock up (DLU) failure rate
(FR 1n percent) for a write head that has been fabricated to
minimize stray fields (e.g., high stress CoFe with varying
material concentrations) in accordance with one embodi-
ment of the mvention. Similar to the graph of FIG. 7a, the
graph of FIG. 7b includes data from write heads involving
pulse plating consistently at 2.4 Tesla, while the CoFe has
varying Fe percentages ol 66, 69, 72, and 75. A reference
write head performance 1s shown for a standard write head
with DC plating (see “DC-plating POR” and “POR” curve).

In several embodiments, pulse plated high magneto-
clastic energy (high stress) materials has significantly
improved domain lock up (DLU) performance.
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Most recently, these high magneto-elastic anisotropy
(high stress) pulse plated FeCo pole materials have been
qualified as being suitable for certain writer pole applica-
tions. Magneto-striction 1s an intrinsic material property, and
for most high moment electroplated soit magnetic alloys, 1t
has a positive value. Alloy stress 1s function of film Fe
concentration percentage. High Fe content 1n the film 1s one
ol the signatures of a high stress film which can be utilized
to optimize the magneto-elastic energy for head overall

stability improvement.

The terms “above,” “below,” and “between” as used
herein refer to a relative position of one layer with respect
to other layers. As such, one layer deposited or disposed
above or below another layer may be directly in contact with
the other layer or may have one or more intervening layers.
Moreover, one layer deposited or disposed between layers
may be directly in contact with the layers or may have one
or more intervening layers.

In several embodiments, the deposition of materials
described herein can be performed using a variety of depo-
sition sub-processes, including, but not limited to physical
vapor deposition (PVD), sputter deposition and 1on beam
deposition, and chemical vapor deposition (CVD) including
plasma enhanced chemical vapor deposition (PECVD), low
pressure chemical vapor deposition (LPCVD) and atomic
layer chemical wvapor deposition (ALCVD). In other
embodiments, other suitable deposition techniques known 1n
the art may also be used.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the immvention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope ol the mvention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and sub-combi-
nations are mtended to fall within the scope of this disclo-
sure. In addition, certain method, event, state or process
blocks may be omitted 1n some implementations. The meth-
ods and processes described herein are also not limited to
any particular sequence, and the blocks or states relating
thereto can be performed in other sequences that are appro-
priate. For example, described tasks or events may be
performed 1n an order other than that specifically disclosed,
or multiple may be combined in a single block or state. The
example tasks or events may be performed in senal, 1n
parallel, or in some other suitable manner. Tasks or events
may be added to or removed from the disclosed example
embodiments. The example systems and components
described herein may be configured differently than
described. For example, elements may be added to, removed
from, or rearranged compared to the disclosed example
embodiments.

What 1s claimed 1s:
1. A method for controlling stray fields of a magnetic
teature, the method comprising:

determining a product of a magneto-striction and a tensile
stress for candidate materials for a magnetic feature;

selecting a plurality of maternials for the magnetic feature
from the candidate materials such that the product of
the magneto-striction and the tensile stress of the
magnetic feature 1s a positive value;

selecting a plurality of additives;
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combining the plurality of materials for the magnetic
feature and the plurality of additives in an electrolyte
solution to form a combined solution;

adding N to the combined solution;

degassing the combined solution;

depositing a thin film on a wafer from the combined

solution using pulse plating to form the magnetic
feature having the positive value; and

lapping the thin film to form an edge of the magnetic

feature.

2. The method of claim 1, wherein the magnetic feature 1s
a component of a magnetic transducer selected from the
group consisting of a writer pole, a reader shield, and a
writer shield.

3. The method of claim 1, wherein the selecting the
plurality of materials for the magnetic feature from the
candidate materials such that the product of the magneto-
striction and the tensile stress of the magnetic feature 1s the
positive value further comprises selecting a dopant and/or
the plurality of additives such that the product of the
magneto-striction and the tensile stress 1s the positive value.

4. The method of claim 3, wherein the dopant 1s a material
selected from the group consisting of S, O, H, N, C, and
combinations thereof.

5. The method of claim 1, wherein the plurality of
additives comprise hydroxylmethyl-P-tolysulione (HPT) 1n
a concentration between about 0 to about 10 parts per
million.

6. The method of claim 1:
wherein the magnetic feature comprises a writer pole; and
wherein the plurality of materials for the magnetic feature

comprise CoFe having an Fe content between about 50

and about 75 percent.

7. The method of claim 1:
wherein the magnetic feature comprises a writer pole;
wherein the plurality of materials for the magnetic feature
comprise CoFe with a preselected Fe content; and
wherein the selecting the plurality of additives comprises
selecting the plurality of additives to achieve the pre-
selected Fe content.
8. The method of claim 1:
wherein the adding the N to the combined solution
comprises adding the N to the combined solution to
remove oxygen from the combined solution; and

wherein the degassing the combined solution comprises
degassing the combined solution to remove oxygen and
N from the combined solution.

9. The method of claim 1, wherein the degassing the
combined solution comprises applying a vacuum pressure to
a membrane 1n contact with the combined solution.

10. The method of claim 1:

wherein the magnetic feature comprises Fe; and

the method further comprising providing a sacrificial

anode 1mmersed in the combined solution to reverse
oxidation of Fe " present in the combined solution.

11. The method of claim 10:
wherein the plurality of materials comprise Fe*; and
wherein the sacrificial anode comprises an active metal

and 1s immersed 1n the combined solution to reverse

oxidation of the Fe’*.

12. The method of claim 1, wherein the magnetic feature
comprises a writer pole.

13. The method of claim 12:

wherein the selecting the plurality of matenials for the

magnetic feature from the candidate materials such that
the product of the magneto-striction and the tensile
stress of the magnetic feature i1s the positive value
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further comprises selecting a dopant and/or the plural-
ity ol additives such that the product of the magneto-
striction and the tensile stress 1s the positive value; and
wherein the dopant 1s a matenal selected from the group
consisting of S, O, H, N, C, and combinations thereof.

14. The method of claim 13, wherein the plurality of

additives comprise hydroxylmethyl-P-tolysulfone (HPT) 1n
a concentration between about 0 to about 10 parts per

million.
15. The method of claim 14:
wherein the plurality of materials for the magnetic feature
comprise CoFe having an Fe content between about 50
and about 75 percent.

16. The method of claim 15, wherein the degassing the
combined solution comprises applying a vacuum pressure to
a membrane in contact with the combined solution.

17. The method of claim 16:

the method further comprising providing a sacrificial

anode 1mmersed 1n the combined solution to reverse
oxidation of Fe’* present in the combined solution.

18. The method of claim 17:

wherein the plurality of materials comprise Fe**; and
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wherein the sacrificial anode comprises an active metal
and 1s immersed in the combined solution to reverse
oxidation of the Fe’*.

19. The method of claim 1:

wherein the selecting the plurality of matenials for the
magnetic feature from the candidate materials such that
the product of the magneto-striction and the tensile
stress of the magnetic feature i1s the positive value
further comprises selecting a dopant and/or the plural-
ity ol additives such that the product of the magneto-
striction and the tensile stress 1s the positive value; and

wherein the dopant comprises S, O, H, and N.

20. The method of claim 1:

wherein the selecting, if the product 1s the positive value,
the plurality of maternials for the magnetic feature from
the candidate materials further comprises selecting a
dopant and/or the plurality of additives such that the
product of the magneto-striction and the tensile stress 1s
the positive value; and

wherein the dopant comprises S and H, wherein a con-
centration of H 1s greater than a concentration of S.

G o e = x
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