#### US009931043B2 # (12) United States Patent Wilson et al. (45) Date of Patent: US 9,931,043 B2 Apr. 3, 2018 (54) SYSTEM AND METHOD FOR MEASURING THE PRESSURE OF A FLUID SYSTEM WITHIN A PATIENT (71) Applicant: INTEGRA LIFESCIENCES SWITZERLAND SÀRL, Le Locle (CH) (72) Inventors: **Stephen F. Wilson**, Easton, MA (US); Alan J. Dextradeur, Franklin, MA (US) (73) Assignee: INTEGRA LIFESCIENCES SWITZERLAND SÀRL, Le Locle (CH) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 14/956,833 (22) Filed: **Dec. 2, 2015** (65) Prior Publication Data US 2016/0089044 A1 Mar. 31, 2016 #### Related U.S. Application Data - (62) Division of application No. 12/496,871, filed on Jul. 2, 2009, now Pat. No. 9,220,424, which is a division (Continued) - (51) Int. Cl. A61B 5/03 (2006.01) A61B 19/00 (2006.01) (Continued) #### (58) Field of Classification Search (10) Patent No.: CPC ...... A61B 5/032; A61B 5/031; A61B 5/742; A61B 2562/0247 See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS 2,396,351 A 3/1946 Thompson 3,757,770 A 9/1973 Brayshaw et al. (Continued) #### FOREIGN PATENT DOCUMENTS AU 729467 2/2001 CN 2555770 Y 6/2003 (Continued) #### OTHER PUBLICATIONS [No Author Listed] "User's Manual HD2114.0-HD2134.0, HD2164.0-HD2114B.0, HD2114, 2-HD21342, HD2164.2-Rev. 1.0", Delta OHM, Via G. Marconi, 5-35020 Caselle Di Selvazzano(PD)—Italy, pp. 2-6 (Oct. 1, 2004). (Continued) Primary Examiner — Sean Dougherty (74) Attorney, Agent, or Firm — Troutman Sanders LLP #### (57) ABSTRACT A pressure sensing apparatus has a pressure sensor component that includes a pressure sensing port, a pressure sensor for sensing a pressure of a fluid in the pressure sensing port, and a digital processor communicating with the pressure sensor for performing calculations involving fluid pressures sensed. The pressure sensing apparatus further includes a first chamber in fluid contact with the pressure sensing port, a second chamber fluidically connectable with a patient's cerebrospinal fluid system, and a membrane located between the first and second chambers so as to transmit fluid pressure from the second chamber to the first chamber. #### 6 Claims, 4 Drawing Sheets # US 9,931,043 B2 Page 2 | | Doloted II C | Annlication Data | 5 711 302 A | 1/1008 | Lampropoulog et al | |-------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------|------------------|-------------------------------------------| | Related U.S. Application Data | | | 5,711,302 A<br>5,716,342 A | | Lampropoulos et al.<br>Dumbraveanu et al. | | | of application No. 1 | 1/025,683, filed on Dec. 29, 2004, | 5,721,382 A | | Kriesel et al. | | | now Pat. No. 7,585 | | 5,785,822 A | | Cerri et al. | | | 110 11 11 11 11 11 11 11 11 11 11 11 11 | ,, | 5,797,403 A | 8/1998 | DiLorenzo | | (51) | Int. Cl. | | 5,803,917 A | | Butterfield et al. | | (51) | A61B 5/00 | (2006.01) | 5,836,886 A | | • | | | | | 5,873,840 A * | 2/1999 | Neff A61B 5/031 | | | A61B 90/00 | (2016.01) | 5,928,182 A | 7/1999 | 343/767<br>Kraus et al. | | (52) | U.S. Cl. | | 5,935,083 A * | | Williams A61B 5/032 | | | | /064 (2016.02); A61B 2562/0247 | 0,500,000 11 | 0, 1333 | 600/488 | | | (2013. | .01); A61M 2202/0464 (2013.01) | 5,970,801 A | 10/1999 | Ciobanu et al. | | | | | , , | 11/1999 | | | (56) | Refer | ences Cited | | 11/1999 | <u> </u> | | | | | 6,010,482 A | | Kriesel et al. | | | U.S. PATEN | IT DOCUMENTS | 6,025,725 A<br>6,071,267 A | | Gershenfeld et al.<br>Zamierowski | | | 2 996 049 A 6/10 <sup>4</sup> | 75 Holeim | 6,083,174 A | | Brehmeier-Flick et al. | | | , , , | 75 Hakim<br>76 Elliott et al. | 6,111,520 A | | Allen et al. | | | , , , , | 76 Dye et al. | 6,113,553 A | 9/2000 | Chubbuck | | | | 78 Gangemi | 6,120,457 A | | Coombes et al. | | | | 78 Wilkinson | 6,158,965 A | | Butterfield et al. | | | , , | 78 Bullara | , , | 1/2001<br>1/2001 | | | | | 79 Shannon | · | | McQueen et al. | | | | 30 Schulman et al.<br>32 Hakim et al. | · · · · · · · · · · · · · · · · · · · | | Miesel et al. | | | | 33 Cosman | 6,264,612 B1 | 7/2001 | McConnell et al. | | | | 33 Hakim et al. | , , | | Allen et al. | | | | 33 Marshall | 6,316,522 B1 | | Loomis et al. | | | | 35 Fischell | 6,371,976 B1<br>6,416,291 B1 | | Vrzalik et al.<br>Butterfield et al. | | | / / | 35 Hooven | 6,432,050 B1 | | Porat et al. | | | | 35 Hakim et al.<br>35 Raines | , , | 8/2002 | | | | , , , , | 86 Wallace et al. | , , | 10/2002 | | | | , , | 36 Cosman | · · · · · · · · · · · · · · · · · · · | | Yost et al. | | | 4,595,390 A 6/198 | | 6,481,292 B1 | | | | | | 36 Heimes | 6,503,208 B1<br>6,533,733 B1 | | Skovlund et al.<br>Ericson et al. | | | 4,615,691 A 10/198 | | 6,537,232 B1 | | Kucharczyk et al. | | | 4,625,730 A 12/198 | 37 Cosman A61B 5/0002 | | | Meyerson et al. | | | T,055,500 A 5/170 | 600/561 | · · · · · · · · · · · · · · · · · · · | | Kucharczyk et al. | | | 4,660,568 A * 4/198 | 37 Cosman A61B 5/0002 | 6,636,769 B2 | | Govari et al. | | | | 600/561 | · | | Roy et al. | | | 4,676,772 A 6/198 | 37 Hooven | 6,724,310 B1<br>6,731,976 B2 | | Gershenfeld et al.<br>Penn et al. | | | , | 37 Brooks | 6,770,030 B1 | | Schaupp et al. | | | | 38 Tanaka et al.<br>38 Sussman | 6,855,115 B2 | | Fonseca et al. | | | | 88 Haber | 6,891,474 B1 | | Fletcher | | | 4,772,257 A 9/198 | | · | | Meythaler et al. | | | · | 38 Cosman | 7,435,229 B2<br>7,585,280 B2 | 10/2008 | | | | , , | 39 DeSatnick et al. | 9,220,424 B2 | | | | | | 39 Griffith et al. | · · · · · · · · · · · · · · · · · · · | | Brockway A61B 5/0215 | | | | 39 Millar<br>39 Watanabe et al. | | | 600/486 | | | | 90 Bray, Jr. | 2002/0052563 A1 | 5/2002 | Penn et al. | | | | 91 Wallace | 2002/0077553 A1 | | Govari et al. | | | / / | 91 Wallace et al. | 2002/0077558 A1 | | Itonaga et al. | | | · · · · · · · · · · · · · · · · · · · | 91 Wallace | 2002/0087059 A1 | | O'keefe | | | | 22 Lampropoulos et al. | 2002/0099428 A1<br>2003/0023134 A1 | | Kaufman<br>Tracey | | | | 93 Lampropoulos et al.<br>93 Urbas et al. | 2003/0023134 A1<br>2003/0032915 A1 | 2/2003 | - | | | 5,265,606 A 11/199 | | 2003/0032313 AT | | Leussler | | | | 94 Potts | 2003/0216666 A1 | | Ericson et al. | | | , , | 94 Zimmer et al. | 2004/0073137 A1 | | Lloyd et al. | | | , , | 94 Evans | 2004/0134991 A1 | 7/2004 | Fletcher et al. | | | | 95 Dawe<br>95 Strittmatter | 2004/0147871 A1 | | Burnett | | | , , | 95 Strittmatter<br>95 Wise et al. | 2004/0193021 A1 | | Zdeblick et al. | | | | 75 Taylor et al. | 2005/0043669 A1 | | Rosenberg | | | | 25 Zimmer et al. | 2005/0043670 A1 | | Rosenberg Turner et al | | | | 25 Lampropoulos et al. | 2005/0165317 A1<br>2005/0187487 A1 | | Turner et al.<br>Azizkhan et al. | | | | 75 Taylor et al. | 2005/018/48/ A1<br>2005/0197585 A1* | | Brockway A61B 5/0215 | | | | 96 Rosenberg<br>97 Brown | 2005/017/505 AI | J1200J | 600/486 | | | , , | 97 Brown<br>97 Lewis et al. | 2005/0277839 A1 | 12/2005 | Alderman et al. | | | , | 97 Prem et al. | 2006/0009699 A1 | | Roteliuk et al. | | | 5,643,194 A 7/199 | 97 Negre | 2006/0020239 A1 | | Geiger et al. | | | 5,704,352 A 1/199 | 98 Tremblay et al. | 2006/0036208 A1 | 2/2006 | Burnett | | | | | | | | #### (56) References Cited #### U.S. PATENT DOCUMENTS | 2006/0149161 | A1* | 7/2006 | Wilson A61B 5/032<br>600/561 | |--------------|------------|-------------------|------------------------------| | 2006/0189888 | A1 | 8/2006 | Hassler et al. | | 2006/0211944 | | e, <b>=</b> 0 0 0 | Mauge et al. | | 2006/0211945 | | | Mauge et al. | | 2006/0211946 | A1 | | Mauge et al. | | 2007/0167867 | A1 | 7/2007 | <u> </u> | | 2008/0139959 | A1 | 6/2008 | Miethke et al. | | 2009/0107233 | <b>A</b> 1 | 4/2009 | Kassem | | 2009/0112103 | A1* | 4/2009 | Kassem A61B 5/0031 | | | | | 600/488 | | 2009/0112147 | A1 | 4/2009 | Kassem | | 2009/0112308 | <b>A</b> 1 | 4/2009 | Kassem | | 2009/0270759 | A1 | 10/2009 | Wilson et al. | | 2009/0112308 | A1 | 4/2009 | Kassem<br>Kassem | #### FOREIGN PATENT DOCUMENTS | DE | 4042335 A1 | 8/1991 | |----|----------------|---------| | DE | 4042336 A1 | 8/1991 | | EP | 0 115 548 A1 | 8/1984 | | EP | 0 619 101 A1 | 10/1994 | | EP | 1 312 302 A2 | 5/2003 | | EP | 1 389 477 A1 | 2/2004 | | EP | 1 491 137 A2 | 12/2004 | | EP | 1676527 A1 | 7/2006 | | EP | 1 738 792 A1 | 1/2007 | | JP | 59-144438 A | 8/1984 | | JP | 02-003821 A | 1/1990 | | JP | 11-299742 A | 11/1999 | | JP | 2006-187621 A | 7/2006 | | WO | 91/05575 A1 | 5/1991 | | WO | 99/53990 A1 | 10/1999 | | WO | 01/021066 A1 | 3/2001 | | WO | 2005/046467 A1 | 5/2005 | | WO | 2006/048664 A2 | 5/2006 | | WO | 2006/117123 A1 | 11/2006 | | WO | 2007/014582 A1 | 2/2007 | | WO | 2007/041843 A1 | 4/2007 | | WO | 2007/081741 A2 | 7/2007 | | | | | #### OTHER PUBLICATIONS Ekstedt, J., "CSFS Hydrodynamic Studies in Man, 1. Method of Constant Pressure CSF Infusion", J. Neurology, Neurosurgery & Psych. 40:105-19 (1977). European Search Reoort, Appl. No. 052580800.0, dated May 15, 2006. Shapiro, K. et al.: "Characterization of Clinical CSF Dynamics and Neural Axis Compliance Using the Pressure-Volume Index: I. the Normal Pressure-Volume Index", Annals of Neurology, 7(6):508-14 (1980). [No Author Listed] "Sensor-Transponder for Pressure and Temperature", data sheet of Fraunhofer, Institut Mikroelektronische Schaltungen und Systeme, pp. 1-2, Feb. 2000. [No Author Listed] "Surface Micromachined Pressure Sensor Technologies", product data sheet of Fraunhofer, Institut Mikroelektronische Schaltungen und Systeme, pp. 1-2, Sep. 2002. [No Author Listed] "Telemetric Integrated Pressure Sensors", product data sheet of Fraunhofer, Institut Mikroelektronische Schaltungen und Systeme, p. 1, Sep. 2002. Dobkin, D.M., et al., "A Radio-Oriented Introduction to RFID-Protocols, Tags and Applications," High Frequency Electronics, 32-46 (2005). Ko, W.H., et al., "Cerebrospinal Fluid Control System," Proceeding of the IEEE, IEEE. New York, US, vol. 76, No. 9, Sep. 1, 1988 (Sep. 1, 1988), pp. 1226-1235, XP000094517 ISSN: 0018-9219. Kroin, J.S., et al., "Long-term testing of an intracranial pressure monitoring device", J. Neurosurg, V. 93, pp. 852-858, 2000. Jan. 29, 2007 Office Action issue for U.S. Appl. No. 10/907,663 (16 pages). Jul. 30, 2007, Office Action issued for U.S. Appl. No. 10/907,663 (17 pages). Oct. 18, 2007, Office Action issued for U.S. Appl. No. 10/907,663 (3 pages). Mar. 21, 2008 Office Action issued for U.S. Appl. No. 10/907,663 (12 pages). Feb. 8, 2007, Office Action issued for U.S. Appl. No. 10/907,664 (6 pages). Jul. 24, 2007, Office Action issued for U.S. Appl. No. 10/907,664 (5 pages). Oct. 15, 2007, Office Action issued for U.S. Appl. No. 10/907,664 (4 pages). Jan. 10, 2008, Office Action issued for U.S. Appl. No. 10/907,664 (7 pages). Jul. 7, 2008, Office Action issued for U.S. Appl. No. 10/907,664 (6 pages). Dec. 4, 2007 Office Action issued for U.S. Appl. No. 10/907,665 (9 pages). Jul. 15, 2008 Office Action issued for U.S. Appl. No. 10/907,665 (8 pages). Dec. 30, 2009, Office Action issued for U.S. Appl. No. 11/931,041 (7 pages). May 11, 2010, Office Action issued for U.S. Appl. No. 11/931,187 (9 pages). <sup>\*</sup> cited by examiner ## SYSTEM AND METHOD FOR MEASURING THE PRESSURE OF A FLUID SYSTEM WITHIN A PATIENT #### RELATED APPLICATIONS This application is a divisional of U.S. patent application Ser. No. 12/496,871, filed Jul. 2, 2009, which is a divisional of U.S. patent application Ser. No. 11/025,683, filed Dec. 29, 2004, now patented as U.S. Pat. No. 7,585,280, on Sep. 8, 10 2009, and entitled "System and Method for Measuring the Pressure of a Fluid System Within a Patient," which applications are incorporated by reference herein. #### BACKGROUND OF THE INVENTION Cerebrospinal fluid, typically abbreviated as CSF, is a fluid that protects the brain and spine and helps distribute nutrients to these structures. CSF is a clear, colorless fluid that is primarily produced by the choroid plexus and sur- 20 rounds the brain and spinal cord. Hydrocephalus is a condition in which a patient accumulates an excess volume of CSF. This often results from an obstruction of the cerebrospinal fluid pathways or from an inability to absorb the necessary volume of CSF. Increased CSF production relative to absorption causes the ventricles to become wider or dilate to make room for the extra fluid. Hydrocephalus is usually accompanied by an increase in CSF pressure which can be measured with a spinal tap, also known as a lumbar puncture. A spinal tap is a procedure in which a needle is 30 inserted into a space inside the spinal canal for the purpose of removing some of the CSF. The treatment of hydrocephalus has conventionally involved draining the excess fluid away from the ventricles and rerouting the cerebrospinal fluid to another area of the 35 patient's body, such as the peritoneal cavity. A drainage system, commonly referred to as a shunt, is often used to carry out the transfer of fluid. In order to install the shunt, typically a scalp incision is made and a small hole is drilled in the skull. A proximal, or ventricular, catheter is installed 40 in the ventricular cavity of the patient's brain, while a distal, or drainage, catheter is installed in that portion of the patient's body where the excess fluid is to be reintroduced. Generally, the shunt systems include a valve mechanism that operates to permit fluid flow only once the fluid pressure 45 reaches a certain threshold level. That is, fluid flows through the valve only when the fluid pressure overcomes the valve mechanism's resistance to open. Some valve mechanisms permit the adjustment, or programming, of the opening pressure level, or resistance level, at which fluid flow 50 commences. These valve mechanisms can comprise a variety of configurations. For example, the valve mechanism can be configured as a ball-in-cone as illustrated and described in U.S. Pat. Nos. 3,886,948, 4,332,255, 4,387,715, 4,551, 128, 4,595,390, 4,615,691, 4,772,257, and 5,928,182, all of 55 which are hereby incorporated by reference. In some cases, however, hydrocephalus is characterized by an increase in the volume of CSF and a dilating of the ventricles with only slight or no increase in CSF pressure. This condition is known as normal pressure hydrocephalus. 60 Even without an abnormal increase in CSF pressure, the widening of the ventricles to make room for excess CSF volume can have a deleterious impact on certain brain structures. Normal pressure hydrocephalus can be difficult to diag- 65 nose. In part, the condition is difficult to diagnose because tests used to scan inside the brain, such as CT or MRI 2 imaging, do not show a pattern that definitively indicates that a patient's condition is normal pressure hydrocephalus. A classic triad of symptoms (gait disorder, dementia, and incontinence) is also used in normal pressure hydrocephalus diagnosis. CSF pressure dynamics assessment can also be used, however, there is no convenient equipment for tracking and analyzing CSF pressure over time or measuring its response to stimulus. Once diagnosed, normal pressure hydrocephalus can be treated with shunting generally as described above. #### SUMMARY OF THE INVENTION The present invention provides a pressure sensor with integrated fluid dynamics assessment that can be coupled with a patient's fluid system, for example a patient's CSF system, to measure and analyze the patient's CSF pressure, as well as methods for doing the same. The invention can be used to diagnose a variety of conditions, especially, but not limited to, normal pressure hydrocephalus, and can further be used to aid in treatment, helping to determine for example the appropriate pressure characteristics of a shunt to be used in the treatment. In a first aspect, the invention provides a pressure sensing apparatus having a pressure sensor component. The pressure sensor component includes a pressure sensing port, a pressure sensor for sensing a pressure of a fluid in the pressure sensing port, and a digital processor communicating with the pressure sensor for performing calculations involving fluid pressures sensed. The pressure sensing apparatus further includes a first chamber in fluid contact with the pressure sensing port, a second chamber fluidically connectable with a patient's cerebrospinal fluid system, and a membrane located between the first and second chambers so as to transmit fluid pressure from the second chamber to the first chamber. In certain embodiments, the tube can be configured to be connected to a patient's cerebrospinal fluid system through a lumbar tap. The apparatus can also include a bolus apparatus, such as a three way stopcock located between a patient connecting end of the tube and the second chamber with the three way stopcock including a port through which a fluid may inserted or withdrawn, for example, using a syringe. In still further embodiments, the pressure sensor component includes a display that can be configured to display a graph of fluid pressures sensed over time. The pressure sensor component can further be configured to calculate a resting pressure, an output resistance, and/or a pressure volume index based on fluid pressures measured. The pressure sensor component can also be an integrated, hand-held unit. In another aspect, the invention provides a pressure sensor component including a pressure sensing port for containing a fluid for pressure sensing, a pressure sensor for measuring a pressure of a fluid in the pressure sensing port, and a processor in electrical communication with the pressure sensor. The processor is configured to calculate at least one selected from the group consisting of resting pressure, outflow resistance, and pressure volume index based on fluid pressure measured by the pressure sensor. In a further aspect, the invention includes a method for measuring a pressure of a cerebrospinal fluid system in a patient using a pressure sensing system having sterile portion for connecting to a patient's cerebrospinal fluid system and a non-sterile portion including a pressure sensor component having a pressure sensor and a processor for analyz- ing cerebrospinal fluid pressures measured by the pressure sensor. The method further includes connecting the nonsterile portion to the patient's cerebrospinal fluid system and measuring and displaying the patient's cerebrospinal fluid pressure on the pressure sensor component. #### BRIEF DESCRIPTION OF THE DRAWINGS The invention will be more fully understood from the following detailed description taken in conjunction with the <sup>10</sup> accompanying drawings, in which: FIG. 1 illustrates a system of the invention for measuring a pressure of a fluid system in a patient; FIG. 2 is diagrammatic view illustrating additional features of the system of FIG. 1; FIG. 3 illustrates a pressure sensor component of the invention; and FIG. 4 illustrates a pressure graph used to illustrate calculations made by the pressure sensor of FIG. 3. # DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A system 10 representative of one embodiment of the 25 minimize CSF volume loss. invention is presented in FIG. 1 as including a pressure sensor component 12 with integrated fluid dynamics assessment that can be coupled with a patient's **14** CSF system to measure and analyze the patient's CSF pressure, as well as methods for doing the same. As shown, the system is 30 coupled to the patient's CSF system at a puncture site 16 which may represent a conventional lumbar tap. Tubing 18 fluidically couples the puncture site to a coupling element 20—in the illustrated embodiment, a three-way stopcock. The three-way stopcock 20 couples tubing 18 with syringe 35 22 (through tubing 24) and a first chamber 26. First chamber 26 is separated from a second chamber 30 by a membrane 28 (internal to the system illustrated in FIG. 1) that is movable to allow pressure from a fluid in the first chamber to be transmitted to fluid in the second chamber. Second 40 chamber 30 is in fluid communication with pressure sensor port 32 of pressure sensor component 12 where a pressure sensor of the pressure sensor component can measure the pressure of a fluid in the second chamber for analysis and display. Accordingly, system 10 can measure the pressure of 45 fluid in the patient's CSF system by way of the fluid and pressure communication sequence from puncture site 16 to pressure sensor port 32. System 10 can be further described by reference to FIG. 2 which illustrates diagrammatically the system of FIG. 1. The patient's CSF system is illustrated by functional block 40 which is fluidically coupled to CSF Access Equipment 42. The CSF Access Equipment includes the elements necessary to tap into the patient's CSF system and provide access to that system outside of the patient's body. As noted 55 above, this access is typically gained through a lumbar tap in which a large gage needle is used to access the CSF system in the space between the patient's vertebrae, often between the third and fourth lumbar vertebrae. As suggested in the Figure, however, this access could be gained using any 60 variety of needle, catheter, stylet and/or connectors as might be appropriate for accessing the patient's CSF system. Further, if a system of the invention is deployed for use with a different fluid system of the patient, a person skilled in the art will recognize that access equipment suitable for cou- 65 nent. pling to that fluid system can be used within the spirit of the invention. 4 CSF Access Equipment 42 can be fluidically coupled to Bolus Equipment 44 if desired for manipulation of the fluid within the system. The Bolus Equipment typically includes a syringe for the injection and/or withdrawal of fluid from the system. A three-way stopcock can also be employed to control the flow of fluid. A person of skill in the art will recognize that other equipment may be used, a bi-directional or infusion pump for example, to inject or withdraw fluid from the system. The elements so far described by reference to FIG. 2 fall within a sterile portion 46 of system 10. As these elements are exposed within the patient by virtue of the flow of fluid within the system, these element should be sterile as is well known in the art. The fluid flowing within the sterile portion of system 10 will generally include fluid from the patient's system being measured, in the illustrated embodiment CSF, and can also include other biocompatible fluids such as saline. Such biocompatible fluids can be used within the syringe to provide a bolus. Further, where fluidic coupling is long, especially between CSF Access Equipment 42 and Bolus Equipment 44 so as to make the positioning of the Bolus Equipment and the pressure sensor component more convenient for use, at least portions of the system may be filled with saline prior to connection with the patient to minimize CSF volume loss. The fluid in the sterile portion 46 of system 10 can be coupled through membrane 28 to the pressure sensor 48. In general, pressure sensor 48 will reside in a non-sterile portion 50 of system 10 as it is likely to be re-used from patient to patient and the system can be constructed so as to separate the non-sterile portion from contact with the patient's fluids. Typical high accuracy pressure sensors require fluid coupling, such that there is a vetted surface on the sensor. This sensor is often located in a protected area within a lumen that is not easily accessed (e.g., within pressure sensor port 32). The pressure sensor lumen can be filled with water (or other liquids such as oil or alcohol depending on the particular sensor embodiment used) for this purpose. Membrane 28 can be located so as to contact fluid in the sterile region 46 on one side, and fluid in the non-sterile region 50 on the other. Where membrane 28 is movable or flexible, changes in fluid pressure in the sterile portion of the system (including the patient's CSF system) are transmitted by movement of the membrane to the fluid in the non-sterile portion **50**. These pressures can be read by pressure sensor 48. A pressure sensor component 12 for use with the invention can further be described by reference to FIG. 3. Pressure sensor component 12 can be a known hand-held fully integrated pressure sensor having a digital processor that can be configured to analyze the pressure signals provided in accordance with the description of FIGS. 1 and 2 above. Such known pressure sensors could include, for example, the Dwyer Instruments Series 477 handheld digital manometer available from Dwyer Instruments, Inc. of Michigan City, Ind., or the Fluke Model 717 or 718 pressure calibrators available from Fluke Corporation of Everett, Wash. Pressure sensor component 12 includes pressure sensor port 32, and also a second pressure sensor port 64 for pressure differential measurements. This second port can remain exposed to the atmosphere if it is not otherwise used. Pressure sensor component 12 also includes a display 60 for displaying pressure measurement results and analysis, and user input elements, buttons 62, for operating the compo- Display 60 in FIG. 1 illustrates a graphical display of pressure measurements over time, while display 60 in FIG. 3 illustrates the current pressure 66 along with calculated values for the resting, baseline or starting pressure (Po) 70, the pressure-volume index (PVI) 72, and resistance to outflow (Ro) 74. The results are indicated to be for a third iteration (n=3) 68 of measurements. These CSF pressure 5 dynamics testing results can yield information that can be used to confirm the probable diagnosis of Normal Pressure Hydrocephalus and aid in the selection of a shunt opening pressure for a shunt to be implanted in the patient. While the illustrated display shows outflow resistance and 10 pressure-volume index values, and exemplary methods for calculating and using these values are described below, the invention described herein is not limited to this choice of parameters or particular methods of calculation. Pressure sensor component 12 can be programmed to calculate other 15 pressure based parameters and also to calculate the aforementioned parameters in ways other than those disclosed herein. In fact, clinicians or researchers could develop new parameters to more accurately diagnose NPH or other fluid system abnormalities, the analysis of which using the sys- 20 tems and methods described herein is believed to fall within the present invention. In one embodiment of the present invention, pressure sensor component is programmable so as to allow a user to program the calculation of the user's own preferred parameters or to carry out the calculations using 25 the user's preferred methods of calculation. Further information relating to the relationship between CSF abnormalities and pressure related parameters can be found in Shapiro K, Marmarou A, Shulman K, Characterisation of clinical CSF dynamics and neural axis compliance using the pres- 30 sure-volume index, Annals of Neurology 7 (6) 508-514 (June 1980), which is incorporated herein by reference. The resting pressure, P<sub>o</sub>, can provide general information that may be used as an indicator for shunt opening pressure selection; its value can also used in further calculations as 35 described below. The PVI can be calculated from the pressure change resulting from a rapid injection or withdrawal of fluid from the CSF space and has found widespread use both clinically and experimentally as a measure of lumped craniospinal compliance. The outflow resistance, R<sub>o</sub>, has been 40 shown to be a good indicator of patents who will benefit from CSF shunting. In general, normal values for R<sub>o</sub> are generally about 1.5 to 4 mmHg/ml/min, while patients suffering from NPH generally have R<sub>o</sub> values of about 4 to 12. One exemplary approach to calculating these values using system 10 of FIG. 1, including pressure sensor component 12 as further illustrated in FIG. 3, can further be described by reference to FIG. 4. FIG. 4 provides a graph of pressure versus time that represents the patient's CSF pressure over 50 time including the pressure response of the patient's CSF system to a bolus injection. The resting pressure, $P_o$ , can be seen on the graph at a time before the bolus injection. At a given time, a bolus of volume $V_o$ is added to the system, for example using the syringe 22 of FIG. 1. The bolus injection 55 results in a sharp rise in pressure reaching a peak pressure of $P_p$ . The pressure drops over time from its peak and can be measured at a time $t_2$ , typically two minutes after bolus injection, to generate a pressure reading $P_2$ that is indicative of the return trajectory of the patient's CSF pressure. With these variables known, the patient's pressure-volume index can be calculated as follows: $$PVI=V_o/Log(P_p/P_o)$$ and the CSF outflow resistance can be calculated as: $$R_o = t_2 \times P_o / \text{PVI} \times \text{Log} \{ (P_2 / P_p) (P_p - P_o) / (P_2 - P_o) \}$$ 6 As noted above, the bolus injection, measurements and calculations may be performed in multiple iterations, with either individual iterations or mean values. In one embodiment, a user can select iterations for averaging, leaving out any apparently abnormal data. Pressure sensor component 12 can also provide user defined variables. For example, the following variables with the following exemplary default values can be set: | Infusion Volume | 4 cc | |----------------------|---------| | Recovery Time | 180 sec | | PVI Limit | 13 ml | | P <sub>o</sub> Limit | 30 mmHg | | $P_p$ Limit | 30 mmHg | These values/limits can be user adjustable to conform to particular circumstances. Pressure sensor component 12 can also be configured to prompt a user through a measuring procedure. For example, with the pressure sensor component powered on, the user defined variables set as desired, and the system connected to a patient as illustrated in FIG. 1, the component will begin by displaying the resting pressure P<sub>o</sub>. Once P<sub>o</sub> is recorded, the pressure sensor component can prompt the user to infuse the system with a measured volume of fluid. The user can then begin the infusion, typically by infusing 4 cc of saline at approximately 1 cc/sec. The user can watch the real-time pressure display to confirm the absence of anomalous peaks during infusion. Once the infusion is complete and $P_p$ is recorded, the pressure sensor component can prompt the user to wait, typically for three minutes or until the current pressure is less than P<sub>o</sub> plus 2 mmHg, while the component measures P<sub>2</sub>. The pressure sensor component can then calculate $P_o$ , PVI, and $R_o$ for that iteration and display them to the user. Once the pressure reading has recovered from the infusion, the pressure sensor component can prompt the user to perform another iteration or disconnect the system from the patient. The user can select iterations to include or exclude from mean calculations, and mean values can be calculated and displayed. The pressure sensor component 12 illustrated in FIGS. 1 and 3 is shown as an integral handheld unit having a pressure sensor located within pressure sensor port 32, and all of the digital electronic components required to perform the calculations described above. A person skilled in the art will understand, however, that other configurations are possible. For example, the pressure sensor port 32, or only the sensor itself, could be fluidically coupled to second chamber 30 while maintaining electronic communication to a digital processing unit for performing desired display and calculation based on the pressure signal. Still further, the pressure sensor could be provided as part of the sterile portion 46 of system 10, making second chamber 30 unnecessary. Accordingly, the embodiments of the present invention are not limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety. ## What is claimed is: 1. A method for measuring a pressure of a cerebrospinal fluid system in a patient comprising: providing a pressure sensing system having a sterile portion for connecting to a patient's cerebrospinal fluid system and a non-sterile portion, the non-sterile portion including a pressure sensor component having a pres- sure sensor and a processor for analyzing cerebrospinal fluid pressures measured by the pressure sensor; - connecting the sterile portion to the patient's cerebrospinal fluid system through a puncture site, the sterile portion providing access to the cerebrospinal fluid system outside of the patient's body; - measuring the patient's cerebrospinal fluid pressure using the pressure sensor component and displaying the patient's cerebrospinal fluid pressure on the pressure 10 sensor component. - 2. The method of claim 1, wherein the pressure sensor component calculates a resting pressure based on fluid pressures measured. - 3. The method of claim 1, wherein the sterile portion includes a bolus apparatus and the method further comprises injecting or withdrawing a bolus of known fluid volume to the patient's cerebrospinal fluid system while the pressure sensor component measures and displays the patient's cerebrospinal fluid pressure. 8 - 4. The method of claim 3, wherein the pressure sensor component calculates an output resistance based on fluid pressures measured. - 5. The method of claim 3, wherein the pressure sensor component calculates a pressure volume index based on fluid pressures measured. - 6. The method of claim 1, wherein - the pressure sensor component has a pressure sensing port with the pressure sensor sensing a pressure of a fluid in the pressure sensing port; - the non-sterile portion of the pressure sensing system includes a first chamber in fluid contact with the pressure sensing port; - the sterile portion of the pressure sensing system includes a second chamber fluidically connectable with a patient's cerebrospinal fluid system; and - the pressure sensing system further includes a membrane located between the first and second chambers so as to transmit fluid pressure from the second chamber to the first chamber. \* \* \* \* \*