12 United States Patent

US009928639B2

(10) Patent No.: US 9.928.639 B2

Toksvig et al. 45) Date of Patent: Mar. 27, 2018
(54) SYSTEM AND METHOD FOR (56) References Cited
DEADLOCK-FREE PIPELINING
U.S. PATENT DOCUMENTS
(71) Applicant: NVIDIA CORPORATION, Santa |
Clara, CA (US) 5,034,887 A 7/1991 Yasui et al.
j 5,301,295 A 4/1994 Leary et al.
(72) Inventors: Michael Toksvig, Palo Alto, CA (US); A9 A 1071995 _ShrOCk et al.
Erik Lindholm, Saratoga, CA (US) (Continued)
(73) Assignee: NVIDIA CORPORATION, Santa FOREIGN PATENT DOCUMENTS
Clara, CA (US) CN 1938730 3/2007
(*) Notice: Subject to any disclaimer, the term of this P 2008512771 , 4/31008
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 48 days.
OTHER PUBLICATIONS
(21) Appl. No.: 14/092,816
Brandt, Scott, “Module 2: Computer-System Structures,” http://
(22) Filed: Nov. 27, 2013 www/spe/icsc/edif-sbrandt/courses/Spring01/111/slides/mod2.1.
pdf, Jan. 1999, pp. 1-12.
(65) Prior Publication Data (Continued)
US 2014/0092114 Al Apr. 3, 2014
Related U.S. Application Data Primary Examiner — Hau H Nguyen
(62) Davision of application No. 12/420,751, filed on Apr. 57 ABSTRACT
8, 2009, now Pat. No. 8,698,823. (57)
A system and method for facilitating increased graphics
(51) Int. CL processing without deadlock. Embodiments of the present
G09G 5/00 (2006.01) invention provide storage for execution unit pipeline results
Goo6T 15/04 (2011.01) (e.g., texture pipeline results). The storage allows increased
GO6F 9/52 (2006.01) processing of multiple threads as a texture unit may be used
G061 1/20 (2006.01) to store information while corresponding locations of the
(Continued) register file are available for reallocation to other threads.
(52) U.S. CL. Fmbodiments turther provide for preventing deadlock by
CPC GO6T 15/04 (2013.01); GOGF 9/524 limiting the number of requests and ensuring that a set of
(2013.01); GO6T 1/20 (2013.01); GO6T 15/50 requests 1s not 1ssued unless there are resources available to
(2013.01); GO9G 5/393 (2013.01) complete each request of the set of requests. Embodiments
(58) TField of Classification Search of the present invention thus provide for deadlock free

CPC .. GO6F 9/324; GO6F 2209/485; GO6F 9/3016;
GO6T 15/04; GO6T 1/20
See application file for complete search history.

increased performance.

18 Claims, 6 Drawing Sheets

Exacution Unit

200

Texhre Unit
202
204
r:\)
206
N glots
O
O
Q
ZD(BF + I f
~210
™
1|
O N slots
O
O
|
o1 ’

292 i
N

24a

226

o » Schaduler
2d0

|

Register File .
240

US 9,928,639 B2

Page 2
(51) Int. CL 7,177,985 Bl 2/2007 Diefendorff
GO6T 15/50 (201101 7376346 B2 5008 Hawkins ot a
: : awkins et al.
GOIG 5/393 (2006.01) 7,389,466 Bl 6/2008 Harmer et al.
7,505,461 B2 3/2009 Matsuda et al.
; 7,525,986 B2 4/2009 Lee et al.
(56) References Cited 7.600,058 Bl 10/2009 Danilak
o 7,706,756 B2 4/2010 Sato et al.
U.S. PATENT DOCUMENTS 7'895.385 B2 22011 Raju
8,370,552 B2 2/2013 Mittal et al.
SooI Y o phenctal 2001/0001873 Al 5/2001 Wickeraad et al.
537063466 A /1998 Dockser 2001/0014928 A 8/2001 Chrysos ot al.
5"717’954 A 21998 Grieff of al 2002/0023204 A 2/2002 Barox_ﬂfskl et al.
557613468 A 6/1998 Fmberson ‘ 2002/0056027 A 5/2002 Kana_l et al.
537683548 A 6/1998 Youne of al 2002/0144054 A 10/2002 Fanning et al.
557905817 A /1908 As hfr of ai 2002/0184465 A 12/2002 Gros_;bach et al.
558223568 A 10/190% Swganstrom ‘ 2003/0126355 A 7/2003 Dawvid
53864ﬂ876 A /1999 Rossum ef al 2003/0187911 A 10/2003 A_l:)d-El-Malek et al.
55881j248 A 1/1999 Meoroard ‘ 2003/0191880 A 10/2003 Lin
559233859 A /1996 Melg ot al 2003/0229743 A 12/2003 Bro_wn
5.940.866 A /1999 Chisholm et al Sooypsanies Al 1S Matyuran el al
" ’ . ‘ et al.
20003 & AT Chishotm et al 2004/0024948 Al 2/2004 Winkler ef al.
65018j803 A 12000 Kardach ‘ 2004/0049641 A 3/2004 So et al.
63029ﬂ223 A 25000 Klein 2004/0064649 Al 4/2004 Volpe et al.
650293228 A 59000 Cal et al 2004/0083341 Al 4/2004 Robu_lson et al.
6508532’76 A 715000 VanDoreﬁ of al 2004/0088458 A 5/2004 Tomlinson et al.
63085ﬂ2’78 A 715000 Gates of al ‘ 2004/0117606 A 6/2004 Wa;r_lg et al.
630983114 A /7000 McDonald‘et Al 2004/0123043 A 6/2004 Rotithor et al.
63' Olj568 A /7000 Richardson ' 2004/0201647 A 10/2004 Jackson Pulver et al.
6jth57j980 A 12/2000 Arimilli o al 2005/0081014 A 4/2005 'Tran et al.
6jth75j634 ~ 12001 Graumann ‘ 2005/0138254 A 6/2005 Raghav_an et al.
631823112 Bi‘ 1/2001‘ Malek of al 2005/0216607 A 9/2005 Ml_mgula
631853634 Bi“ 2/2OOT Wilcox ‘ 2006/0031389 A 2/2006 Shimozono et al.
63205ﬂ524 Bi‘ B/ZOOT N 2006/0041721 A 2/2006 Hakura et al.
63226j695 Bih 5/200i‘ Kgiser ot 2006/0041722 A 2/2006 Hakura et al.
65233j656 Bi‘ 5/2OOT Tones ef al ‘ 2006/0041723 A 2/2006 Hakura et al.
65266j742 BT 7/2OOT Challenger* ot 2l 2006/0095677 A 5/2006 Hak_ura et al.
6298407 Bl 10/2001 Davis et al. 2007/0165042 Al 7/2007" Yagl
633 14’472 Bl 119001 Trieu et al 2007/0198758 AT 8/2007 Asano et al.
65345j341 N 29002 Arimilli ef al 2007/0296729 Al1* 12/2007 Duc.evvvnnnn, GO6F 9/3012
O . ’ 345/559
g’i?g’igg gi %883 }h;f;?jfﬂki ot al 2008/0074433 Al* 3/2008 Jia0 .covovvoveerrerrnen.. GO6T 15/005
"AAD | 345/522
§;j§§;§§§ Bo o00s Bronson ef al. 2009/0055566 Al 2/2009 Reinig et al.
6,526,518 B1 2/2003 Catlin et al. 2009/0066714 Al * 3/2009 L1ao .oooooveviivininiinnn, GO6T 11/001
6,560,657 Bl 5/2003 Gandhi et al. | 345/582
6,571,318 Bl 5/2003 Sander et al. 2009/0089477 A__h 4/2009 Reed
6,574,712 Bl 6/2003 Kahle et al. 2009/0228631 Ajh 9/2009 Marulkar et al.
6,578,102 Bl 6/2003 Batchelor et al. 2010/0057973 Al 3/2010 Barake et al.
6,631,434 Bl 10/2003 Johnson et al.
6,681,281 Bl 1/2004 Maleck FOREIGN PATENT DOCUMENTS
6,681,285 Bl 1/2004 Ng
6,696,854 B2 2/2004 Momtaz et al. KR 20070064337 6/2007
0,096,954 B2 2/2004 Chung WO 96/11443 4/1996
6,745,258 Bl 6/2004 Pellegrino et al. WO 2005/093665 10/2005
0,751,038 Bl 6/2004 Wada WO 2006031389 A2 3/2006
6,754,755 Bl 6/2004 Johnson et al.
6,782,457 B2 8/2004 Hill et al.
6,801,963 B2 10/2004 Smith et al. OTHER PUBLICAITONS
6,842,803 B2 1/2005 Schmidt et al. 3 _ _ _ o N
6,877,048 B2 4/2005 Bilak et al. Battery Charging Specification: Revision 1.0,” Mar. 8, 2007, pp.
6,898,649 B2 5/2005 Goudie 1-1v and 1-25.
6,901,467 B2 5/2005 Shah et al. “Device Class Specification Adopters Agreement,” Mar. 8, 2007,
6,904,473 Bl 6/2005 Bloxham et al. pp. 1-5.
6,907,480 B2 6/2005 Takei et al. Fritts, Jason, “Multi-Level Memory Prefetching for Media and
0,910,100 B2 6/2005 Sechrest et al. Stream Processing,” Proceedings 2002 IEEE International Confer-
g,g ; (5) ,ggg g% ;? 3882 g‘ﬁ’dft ail}:ﬂ ence on Multimedia and Expo 2002, ICME *02, vol. 2, Aug. 26-29,
s7 IV cil, JI. ¢l al. 2002, pp. 101-104.
6,957,290 Bl 10//(2005 Rowlands let al. Carter, John, et al., “Impulse: Building a Smarter Memory Control-
g’ggg’ggg E% g /3882 ﬁ?;fslfit b ler,” Proceedings, Fifth International Symposium on High Perfor-
7.027,062 B2* 4/2006 Lindholm GOGT 11/60 ~ mance Computer Architecture, Jan. 9-13, 1999, pp. 1-10.
245/55) Using SplIl-LO(?pS on Intel Pentium 4 Processor and Intel Xeon
7,032,046 B2 4/2006 Horii et al. Processor,” Version 2.1, May 2001, pp. 1-11.
7.096,291 B2 %/2006 Lin Jouppl, Nor.n.lan P., “Improving Dlrect-M:%],pped Cache Performance
7,124,232 B2 10/2006 Takeda et al. by the Addition of a Small Fully-Associative Cache and Prefetch
7,139.878 B2 11/2006 Malik et al. Buffers,” Proceedings 17th Annual International Symposium on
7,143,219 B1 11/2006 Chaudhan et al. Computer Architecture 1990, May 28-31, 1990, pp. 364-373.

US 9,928,639 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Muller, Alexander, “Der Stack Frame,” Online 2003,

XP002328991, Retrieved from the Internet: URL: http://www.a-m-
1.de/tips/stack/stack.php, retrieved on May 20, 2005, pp. 1-4.

* cited by examiner

U.S. Patent

Mar. 27, 2018

CPU

Memory

b I P i B A P 0 d BP0 2 WO U md P md P o

Sheet 1 of 6

US 9,928,639 B2

112

L,

L.ocal
Graphics
Memory

FI1G. 1

114

P i I I i I I i BB P P imd I i B B0 I i d B O

Display

U.S. Patent Mar. 27, 2018 Sheet 2 of 6 US 9,928.639 B2

Fxecution Unit

200

Texiure Unit Math Unit
202 220

204

200

N slots
Scheduler
230
208 210
212
Register File
240
N slots

DOOO

214

FI1G. 2

U.S. Patent Mar. 27, 2018 Sheet 3 of 6 US 9,928.639 B2

300
Resource
302 Allocation
\' 304 Request A +4
306 | Request B +0
308 | Request C +0
310 | Request D +0
312| MADD
314 Read Result A 1
316 | Read Result B _1
318 Read Result C -1
320 | Read Result D 1

FI1G. 3

U.S. Patent Mar. 27, 2018 Sheet 4 of 6 US 9,928.639 B2

400

Execution Unit
410

Scheduling Request Tracking
Module Module

Texture Unit
412

402 404

Math Unit Resource

414

Execution Module
408

Monitoring Module
406

F1G. 4

U.S. Patent Mar. 27, 2018 Sheet 5 of 6 US 9,928.639 B2

S0

Determining A Number Of Available

Resources
502

Determining A Number Of Resources

Being Requested
504

Allocating Resources Corresponding To

The One Or More Requests
506

Access A Second Thread
516

Adjusting The Number Of Available

Resources
508

[ssuing The One Or More Requests
510

Adjusting The Number Of Available

Resources
212

Reading One Or More Results In Response

To The One Or More Requests
514

FIG. 5

U.S. Patent Mar. 27, 2018 Sheet 6 of 6 US 9,928.639 B2

600

Accessing An Execution Unit Profile
602

Determining A Number Of Requests Per Thread Which Can Be

Executed Without Deadlock
604

Rearranging Instructions Of The Threads Based On The Number Of

Requests Per Thread Which Can Be Executed Without Deadlock
606

FIG. 6

US 9,928,639 B2

1

SYSTEM AND METHOD FOR
DEADLOCK-FREE PIPELINING

CROSS REFERENCE TO RELATED U.S.
APPLICATIONS

This Divisional application claims the benefit of the
co-pending, commonly-owned U.S. patent application, Ser.

No. 12/420,731, filed on Apr. 8, 2009, by Toksvig et al., and
titled “System and Method for Deadlock-iree Pipelining,”
which 1s incorporated herein by reference.

FIELD OF THE INVENTION

Embodiments of the present invention are generally

related to 1instruction processing on graphics processing
units (GPUs).

BACKGROUND OF THE INVENTION

As computer systems have advanced, graphics processing
units (GPUs) have become increasingly advanced. For
example, GPUs include multiple execution units and main-
taining the execution units as busy has become an increas-
ingly important task to ensuring high overall GPU pertor-
mance.

GPUs often include texture units for performing texturing
operations. The texture umts need to access a texture data
stored 1n memory to perform the texture operations. The
memory access usually takes a relatively long time relative
to the speed of the execution units of the GPU. Correspond-
ingly, several texture requests are 1ssued at a given time. In
some conventional GPUs, each of the texture requests
designates a register to obtain the parameters and that
register 1s typically the same for the result of the texture
operation.

Unfortunately, register file storage for all the texture
operations of a texture pipeline that can be 1n tlight amounts
to large amounts of memory storage. The limit on storage
thereby creates a limit on the number of requests that can be
1ssued and therefore pixels that can be processed at a time.
One solution has been to write the results of the texture
operation back to the storage location that contained the
texture request. However, this solution still leaves the stor-
age result space allocated for the texture request meaning
that the number of pixels can that can be processed 1n the
pipeline at any give time 1s limited and execution units may
not be kept busy thereby impacting the overall performance
of the GPU.

One other solution 1s for each thread to have multiple
outstanding texture requests, because this means that few
threads are required to cover the texture latency. Unifortu-
nately, each thread also would need more registers to accom-
modate simultaneous storage of intermediate results. This
increases the size of the register file required. It would be
advantageous to be able to 1ssue multiple texture instructions
per thread, while not requiring a correspondingly large
register file. In this fashion, more threads could be 1ssued
using the available register file size that 1s saved, e.g., not
allocated to the texture operations.

SUMMARY OF THE INVENTION

Accordingly, what 1s needed 1s a system capable of
reducing storage requirements and preventing deadlock for
graphics threads processing. Embodiments of the present
invention provide storage for execution unit pipeline results

10

15

20

25

30

35

40

45

50

55

60

65

2

(e.g., a buller for texture pipeline results). Embodiments
further provide for preventing deadlock by limiting the
number of requests of each thread and ensuring that a set of
requests 1s not 1ssued or started unless there are resources
available to complete all requests of the set of requests.
Embodiments of the present invention thus provide for
increased performance without deadlock.

More specifically, embodiments of the present invention
allow 1ncreased use of each thread having multiple outstand-
ing texture requests without requiring large register file
storage because the results of the texture operations are
stored 1n a pipeline builer. The texture istruction is split into
two parts, one 1s an 1ssue texture request to the texture unit
and the second 1s an operation reading the result back from
the texture unit. The result 1s placed into a pipeline bufler
unmit, not the register file. To avoid deadlock, a thread may
not 1ssue 1ts requests unless the bufller can accommodate all
of the requests. This will avoid the situation where a request
cannot be satisfied because its data 1s not present 1n the
bufler. Builered results will need to be read to avoid stalling
the pipeline because all the results slots are occupied. By
requiring less register file storages, more threads can be
simultaneously processed thereby increasing the parallel-
ism, and therefore performance, of the GPU.

In one embodiment, the present invention 1s a computer
implemented method for preventing deadlock of a graphics
processing unit (GPU). The method includes determining a
number of available pipeline buller resources which may be
portions of a pipeline (e.g., a portion of a texture pipeline or
a bufler of a texture unit) and determining a number of
resources being requested based on one or more texture
requests of a first thread. If the requested number of
resources 1s less than the number of available resources in
the buller then, resources corresponding to the one or more
requests are allocated 1n the bufler otherwise not. The
method further includes adjusting (e.g., decrementing) the
number of available resources and i1ssuing the one or more
requests. The number of resources may then be adjusted
(e.g., incremented) upon the contents of the bufler being
read out by other operations.

In another embodiment, the present ivention 1s 1mple-
mented as a system for graphics processing wherein a
texture operation 1s broken into a texture request operation
and a texture read back operation and further wherein results
ol a texture operation are stored in a bufler associated with
the texture pipeline, not the register file. The system includes
a scheduling module for selecting a thread for execution and
a request tracking module for determining a number of
texture requests of a thread. Each of the texture requests may
correspond to a resource of an execution pipeline (e.g., slot
of a texture pipeline or buller slot of a texture unit). The
system further includes a resource monitoring module for
determining a number of available buller resources of the
execution pipeline and an execution module for determining
whether to execute the requests based on the number of
available resources (e.g., slots 1n a texture unit) to prevent
deadlock and for allocating the resources of the execution
pipeline.

In this manner, embodiments of the present invention
generally facilitate increased utilization and therefore per-
formance ol graphics processing units (GPUs). Embodi-
ments provide storage (e.g., a bufler) for a texture pipeline
to store results thereby freeing up storage 1n the register file.
The increased space available 1n the register file advanta-
geously allows an execution unit to handle more threads
concurrently. Embodiments of the present invention further
prevent deadlock by controlling the number of multiple

[

US 9,928,639 B2

3

texture requests that may be i1ssued based on the available
bufler resources such that a pomnt in a thread where the
results are read can always be reached. Embodiments of the

present invention thus provide for increased performance
without deadlock.

In another embodiment, the present immvention 1s 1mple-
mented as a method for preventing computational deadlock
in a system that stores texture results 1n a pipeline butler, not
the register file, and which breaks a texture instruction in
two operations 1including a texture request and a texture read
back operation. The method 1includes accessing an execution
unit profile (e.g., for a texture unit). The execution umit
profile may include a number of units processed per clock
cycle and a number of pipeline resources. The number of
pipeline resources may include a pipeline depth and a bufler
s1ize. The method further includes determining a number of
requests per thread and threads which can be executed
without deadlock and operating on only that many threads
concurrently.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and 1n which like reference numerals refer
to similar elements.

FIG. 1 shows an exemplary computer system 1n accor-
dance with one embodiment of the present invention.

FIG. 2 shows a block diagram of an exemplary execution
unit 1 accordance with one embodiment of the present
invention.

FIG. 3 shows a diagram of an exemplary thread in
accordance with one embodiment of the present invention.

FIG. 4 shows a block diagram of an exemplary system in
accordance with one embodiment of the present invention.

FIG. 5 shows a flowchart of an exemplary computer
controlled process for preventing deadlock of a graphics
processing unit (GPU).

FIG. 6 shows a flowchart of an exemplary computer
controlled process for preventing deadlock in accordance
with one embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which
are 1illustrated 1n the accompanying drawings. While the
invention will be described in conjunction with the preferred
embodiments, 1t will be understood that they are not
intended to limit the invention to these embodiments. On the
contrary, the invention 1s mntended to cover alternatives,
modifications and equivalents, which may be 1ncluded
within the spirit and scope of the invention as defined by the
appended claims. Furthermore, in the following detailed
description of embodiments of the present invention, numer-
ous specific details are set forth i order to provide a
thorough understanding of the present invention. However,
it will be recognized by one of ordinary skill 1n the art that
the present invention may be practiced without these specific
details. In other 1instances, well-known methods, procedures,
components, and circuits have not been described in detail
as not to unnecessarily obscure aspects of the embodiments
of the present invention.

Notation and Nomenclature:

Some portions of the detailed descriptions, which follow,

are presented 1n terms ol procedures, steps, logic blocks,

10

15

20

25

30

35

40

45

50

55

60

65

4

processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled 1n
the data processing arts to most eflectively convey the
substance of their work to others skilled in the art. A
procedure, computer executed step, logic block, process,
etc., 1s here, and generally, conceived to be a self-consistent
sequence of steps or structions leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated 1n a computer system. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, 1t 1s appreciated
that throughout the present invention, discussions utilizing
terms such as “processing’ or “accessing”’ or “executing” or
“storing’” or “rendering” or the like, refer to the action and
processes of an integrated circuit (e.g., computing system
100 of FIG. 1), or similar electronic computing device, that
mampulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories 1mto other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

Computer System Platform:

FIG. 1 shows a computer system 100 in accordance with
one embodiment of the present invention. Computer system
100 depicts the components of a basic computer system 1n
accordance with embodiments of the present invention pro-
viding the execution platform for certain hardware-based
and software-based functionality. In general, computer sys-
tem 100 comprises at least one CPU 101, a system memory
1135, and at least one graphics processor unit (GPU) 110. The
CPU 101 can be coupled to the system memory 1135 via a
bridge component/memory controller (not shown) or can be
directly coupled to the system memory 115 via a memory
controller (not shown) internal to the CPU 101. The GPU
110 1s coupled to a display 112. One or more additional
GPUs can optionally be coupled to system 100 to further
increase 1ts computational power. The GPU(s) 110 1s
coupled to the CPU 101 and the system memory 115. The
GPU 110 can be implemented as a discrete component, a
discrete graphics card designed to couple to the computer
system 100 via a connector (e.g., AGP slot, PCI-Express
slot, etc.), a discrete integrated circuit die (e.g., mounted
directly on a motherboard), or as an integrated GPU
included within the integrated circuit die of a computer
system chipset component (not shown). Additionally, a local
graphics memory 114 can be included for the GPU 110 for
high bandwidth graphics data storage.

The CPU 101 and the GPU 110 can also be integrated into
a single integrated circuit die and the CPU and GPU may
share various resources, such as instruction logic, builers,
functional units and so on, or separate resources may be
provided for graphics and general-purpose operations. The
GPU may further be mtegrated into a core logic component.
Accordingly, any or all the circuits and/or functionality
described herein as being associated with the GPU 110 can
also be mmplemented 1n, and performed by, a suitably

US 9,928,639 B2

S

equipped CPU 101. Additionally, while embodiments herein
may make reference to a GPU, 1t should be noted that the
described circuits and/or functionality can also be imple-
mented and other types of processors (e.g., general purpose
or other special-purpose coprocessors) or within a CPU.

System 100 can be mmplemented as, for example, a
desktop computer system or server computer system having
a powerlul general-purpose CPU 101 coupled to a dedicated
graphics rendering GPU 110. In such an embodiment, com-
ponents can be included that add peripheral buses, special-
ized audio/video components, 10 devices, and the like.
Similarly, system 100 can be implemented as a handheld
device (e.g., cellphone, etc.), direct broadcast satellite
(DBS)/terrestrial set-top box or a set-top video game console
device such as, for example, the Xbox®, available from
Microsoit Corporation of Redmond, Wash., or the PlaySta-
tion3®, available from Sony Computer Entertainment Cor-
poration of Tokyo, Japan. System 100 can also be 1mple-
mented as a “system on a chip”, where the electronics (e.g.,
the components 101, 115, 110, 114, and the like) of a
computing device are wholly contained within a single
integrated circuit die. Examples include a hand-held instru-
ment with a display, a car navigation system, a portable
entertainment system, and the like.

Embodiments of the present invention generally facilitate
increased graphics processing utilization of the GPU and
therefore facilitate increased performance of the graphics
processing units (GPUs). Embodiments provide a texture
pipeline bufler to store texture results thereby freeing up
storage 1n the register file which conventionally 1s used. The
increased space available in the register file allows an
execution unit to handle more threads concurrently. Embodi-
ments of the present invention further prevent pipeline
deadlock by controlling the number of multiple texture
requests that may be 1ssued to the pipeline such that a point
in each thread where the results are read back will always be
reached and executable. Embodiments of the present inven-
tion thus provide for increased processor performance with-
out deadlock.

FIG. 2 shows a block diagram of an exemplary execution
unit of a GPU 1n accordance with one embodiment of the
present invention. Execution unit 200 includes texture unit
202, math umt 220, scheduler 230, and register file 240. It
1s appreciated that a GPU (e.g., GPU 110) may have multiple
execution units substantially similar to execution 200 for
execution of multiple threads 1n parallel. For example, a
GPU may have 8 processor groups each with 2 execution
units. Embodiments may thus support single instruction
multiple data (SIMD) execution (e.g., one instruction for 16
pixels 1in parallel). In one embodiment, a thread, as described
herein, 1s an 1individual pixel of an 1image or video frame as
1s well known 1n the art.

Texture unit 202 includes texture pipeline 204 and pipe-
line butler 210. Texture pipeline 204 has N slots or pipeline
locations 206-208. Texture pipeline 204 writes results to
pipeline buller 210. Texture operations often require going
to memory which can take a relatively long time (e.g., 300
clock cycles). Texture pipeline 204 may thus be 300 slots or
clements long to accommodate this delay. For example,
texture pipeline 204 may have each slot operable to receive
four pixels per clock cycle for computing a level of detail
(LOD) computation by analyzing the neighboring pixels and
determining how far ofl each of the pixels are 1n the texture.
In order to keep texture pipeline 204 busy with a sutlicient
workload, 1200 pixels or threads of work are needed for a
texture unit with 300 slots of depth with 4 pixels per slot.
Other threads may be worked on while texture operations

10

15

20

25

30

35

40

45

50

55

60

65

6

are performed by texture pipeline 204. For threads that 1ssue
multiple texture operations back to back less threads are
required to keep the pipeline full. For example, for threads
1ssuing two texture operations back to back, only half as
many threads are required to keep the pipeline full.

Math unit 220 includes math pipeline 222 which has slots
224-226. Math requests may be issued to math unit 220
while a thread waits for a texture request to complete. In one
embodiment, math unit 220 obtains source data from reg-
ister file 240 and returns results destination data to register
file 240. For example, 11 math unmt 220 can handle 16 pixels
per clock and takes 5 clocks to return results, 80 threads wall
keep the math unit busy as long as the instructions are
independent and each thread has one instruction outstanding
at a time. As another example, where each thread is able to
1ssue a math istruction each cycle will need 16 threads to
keep the pipeline busy. Referring to the above example,
1280 threads will keep both texture unit 202 and math unit
220 busy. If 1280 threads are not available, execution units
will be left without work resulting 1n a bubble or period of
no processing activity. It 1s appreciated that bubbles 1n the
execution unit are undesirable except when the pipeline 1s
being loaded.

It 1s desirable to process more threads through the pipeline
to increase performance. Therefore, using threads with mul-
tiple texture operations allows multiple increased texture
threads to be processed simultaneously. Embodiments of the
present invention provide pipeline buller 210 as an advan-
tageous means to provide texture storage without needing a
correspondingly large register file, which 1s typically
required 1n the convention art to accommodate the increased
number of threads being simultaneously processed.

Register File 240 stores thread information. Each unit of
work has state information associated with the unit of work
for handling thread. For example, for a pixel state informa-
tion may include X, Y, and texture coordinates. The size of
register file 240 can be based on the width (e.g., pixels per
clock) and depth (e.g., clock cycles) of the texture and math
units. That 1s, the number of registers controls the number of
pixels or threads that can reside i execution unit 200 1n an
incomplete state. In one embodiment, the use of texture
pipeline 204 and pipeline bufler 210 as storage for texture
data reduces the necessary resources of register file 240 to
process the same number of threads, or alternatively, a same
sized register file can process an increased number of
threads simultaneously thereby increasing performance over
a conventional unit.

In one embodiment, scheduler 230 writes coordinates of
texture operations into texture pipeline 202. No storage
locations 1n register file 240 are required that correspond to
the coordinates written into texture pipeline 202. In one
embodiment, texture unit 202 may have a bufler (not shown)
for texture operation requests to be stored before entering
texture pipeline 204. A builer for texture operations to be
stored belore entering texture pipeline 204 may thus allow
texture coordinates to be generated in the bufler before
texture pipeline 204 thereby freeing up registers that might
otherwise be used for bullering texture coordinates.

Pipeline builer 210 1s operable to store results output from
texture pipeline 204. A thread reads the texture operation
result out of the texture pipeline before the pipeline stalls
from each slot being occupied with an unread result. Pipe-
line bufler 210 includes N slots or storage locations 212-214.
Pipeline buller 210 allows a certain amount of time before
a result needs to be read out of pipeline bufler 210 to avoid
stalling the pipeline. It 1s appreciated that pipeline bufler 210
allows texture requests to be 1ssued to texture pipeline 204

US 9,928,639 B2

7

without having space allocated for the result in register file
240 at the time the request 1s 1ssued to texture pipeline 204
and while the texture request 1s processed by texture pipeline
204. Storage for reading a result from pipeline bufler 210
may thus be dynamically allocated for upon the result being
available 1n pipeline builer 210. Because texture operations
do not use the register file, in accordance with embodiments
of the present invention each texture operation 1s broken into
two operations, a request to the texture unit (texture request)
and an operation reading the result back from the texture
unit.

In one embodiment, when a texture request 1s 1ssued 1nto
a slot of texture pipeline 202 a slot 1 pipeline bufler 210 1s
assigned for storing the result of the texture request. Pipeline
builer 210 may be a variety of storage types including, but
not limited to, a first i, first out (FIFO) bufler. It 1s
appreciated that results can be read from pipeline butler 210
in an out of order manner. For example, for a bufler with 16
slots, each 16th request 1ssued will be assigned the same slot.
Further for a buller with 16 slots, each result from the texture
pipe 1s to be read withun 16 clock cycles to avoid stalling the
pipeline due to all the bufler slots being unavailable (e.g.,
having unread results). The bufler slot may be based on the
cycle the mstruction entered the texture pipeline.

Some texturing operations may require substantially more
storage than other texturing operations. For example, a
texturing operation may require sampling a texture at 16
samples and averaging the results. With conventional texture
pipelines, 16 samples would be required for each of the
locations which can then be averaged. The increased storage
in a register file of conventional texture pipelines thereby
limits the number of threads that can be processed at a given
time. Embodiments of the present invention can 1ssue 16
requests to the texture pipeline and then read the results out
one at a time and add the results to the results thus far
thereby reducing or obviating the need for space for the 16
samples in register file 240. It 1s further appreciated that a
compiler may be mvolved 1n determining when data needs
to be stored in the register file or can be computed as the
results are received 1n texture pipeline bufler 210.

The use of pipeline bufler 210 allows the use of a smaller
register file because requests can be 1ssued before storage
locations are need for the results. For example, 16 requests
can be 1ssued and the space corresponding to coordinates 1n
the register file can now be reallocated to additional threads.
Referring to the above example where the texture results are
averaged, their results do not require allocation of space as
the results can be combined in a single register. Pipeline
bufler 210 thus facilitates processing of more threads at a
given time thereby keeping execution units busy. More
specifically, pipeline bufler 210 allows texture pipeline 204
to eflectively be used as storage because the portion of
register file 240 that stored the coordinates or other data that
was written to texture pipeline 204 1s now available for
storage of data for other threads. It 1s appreciated that
pipeline buller 210 further prevents bubbles by allowing the
processing of more threads at a given time.

The use of pipeline bufler 210 allows emulation of source
and destination instructions. In one embodiment, a state
machine of scheduler 230 writes texture requests 1nto texture
unit 204 and reads the results out of pipeline buller 210
instead of using register file 240 as storage for results. For
example, an instruction for the texture operation of coordi-
nates stored in registers R0-R3 (e.g., “text R0-R3”), may be
executed where the data of registers R0-R3 1s written into
texture pipeline 204 and the results are read out of pipeline
bufler 210 and stored 1n registers R0-R3. It 1s appreciated

10

15

20

25

30

35

40

45

50

55

60

65

8

that a source and destination instruction may become two
instructions: 1) writing the texture instruction into the tex-
ture pipeline and 2) reading the result out of the texture umt
to the builer.

FIG. 3 shows a diagram of an exemplary thread in
accordance with one embodiment of the present mnvention
allowing multiple texture operations. Exemplary thread 300
includes request A 304, request B 306, request C 308,
request D 310, MADD 312, read result A 314, read result B
316, read result C 318, and read result D 320. It 1s appre-
ciated that MADD nstructions (e.g., MADD 312) may not

be dependent on a texture result and therefore do not need
to wait for a texture result. In one embodiment, thread 300
1s executed by a GPU execution unit (e.g., execution unit
200). It 1s appreciated that thread 300 may include more

requests, madds, and read results. Requests 304-310,
MADD 312, and read results 314-320 may have been

arranged by a compiler.

Program counter 302 starts execution of thread 300 at
request A 304. In one embodiment, the number of requests
1s determined, 1n this instance, there are four texture requests
304-310. The number of available resources (e.g., texture
umt slots including pipeline slots and buffer storage loca-
tions) 1s checked as to whether there are four texture umit
resources available. If there are four texture resources avail-
able, a resource allocation counter may be incremented by
four corresponding to requests 304-310 being 1ssued to
pipeline 204. The allocation of the four texture resources to
thread 300 ensures that when the texture operations are
complete, results 314-320 will be guaranteed to be readable
(e.g., from pipeline bufler 210) to prevent deadlock. In one
embodiment, the checking of the resources and allocation of
the resources are atomic operations.

If there are not four texture resources available, thread
300 may be put to sleep until there are four texture resources
available. Another thread may be executed 11 the there are
suflicient resources for the execution of that thread. Texture
resources become available as texture operations move
down the texture pipeline and texture processing results are
read from the pipeline bufler. According to embodiments, a
thread 1s only allowed to put all texture requests onto the
pipeline or put nothing. This prevents deadlock because a
thread cannot ever 1ssue any of its texture fetches until 1t gets
to the point where the thread can read texture processing
results out of the pipeline builer. When the results butler gets
tull, then the pipeline stops until something 1s read. If the
threads that are expected to read the texture results are
waiting to 1ssue further texture requests, then deadlock
results. In addition, if these threads take a path through the
shader program that does not read the texture results dead-
lock results.

In one embodiment, as program counter 302 moves onto
requests 306-308, a resource allocation counter may not be
changed with regard to the 1ssuing of request 306-308. Upon
the 1ssuing of each of read requests 314-320, the resource
allocation counter may be decremented by one correspond-
ing to a slot of a pipeline bufler (e.g., pipeline butler 210)
becoming free as each of read requests 314-320 are per-
formed.

It 1s appreciated that resource tracking may be performed
in a variety of ways. For example, the resource allocation
counter could be 1mitialized to a number of free or available
resources 1n a texture unit and each time a set of requests 1s
issued the counter 1s reduced by the number of requests. As
each result 1s read out of the texture unit, the counter 1s

US 9,928,639 B2

9

incremented (e.g., the counter 1s incremented as each of
results 314-320 1s read). This represents a dynamic alloca-
tion structure.

It 1s appreciated that a static allocation can also be used to
prevent deadlock. In this embodiment, 1t 1s know how many
spots the system can hold. For instance, 11 400 resources are
available 1n the texture pipeline, and each thread requires
four texture operations, then the scheduler 230 allows only
100 concurrent threads at any time to prevent deadlock. In
this mnstance no counter 1s required.

It 1s further appreciated that the instructions of a thread
can be arranged or ordered by a compiler to optimize
execution. For example, texture requests may be moved
ahead of math requests (e.g., MADD 312) where the texture
requests are not dependent upon the math requests, such that
the math requests may be completed while the texture
requests are being processed. This rearrangement of mnstruc-
tions allows the threads to occupy less space as mnstructions
are executed concurrently and the texture request informa-
tion 1s stored 1n the texture unit (e.g. texture unit 202). The
compiler may further arrange instructions to maintain an
expected workload ratio (e.g., four math requests for each
texture request). It 1s appreciated that the workload ratio may
be a factor around which the hardware units were designed
and balancing the work around that ratio ensures that
bubbles 1n the workload are minimized.

FIG. 4 1llustrates example components used by various
embodiments of the present mvention. Although specific
components are disclosed i system 400, 1t should be
appreciated that such components are examples. That 1is,
embodiments of the present mmvention are well suited to
having various other components or variations of the com-
ponents recited i system 400. It 1s appreciated that the
components 1 system 400 may operate with other compo-
nents than those presented, and that not all of the compo-
nents of system 400 may be required to achieve the goals of
system 400.

FIG. 4 shows a block diagram of an exemplary system in
accordance with one embodiment of the present invention.
System 400 may be implemented in hardware or software.
In one embodiment, system 400 facilitates processing graph-
ics 1nstructions for rendering of an image or video on a
display. System 400 communicates and/or controls execu-
tion unit 410 which may be part of a GPU. System 400
includes scheduling module 402, request tracking module
404, resource monitoring module 406, and execution mod-
ule 408.

Scheduling module 402 selects a thread for execution.
Scheduling module 402 may select a thread for execution
and schedule execution of a portion of the thread (e.g., one
or more texture requests and one or more math requests).
Scheduling module 402 may the select a next thread for
execution or a portion thereof.

Request tracking module 404 determines a number of
texture requests. In one embodiment, the requests may be
1ssued to an execution pipeline of texture unit 412 or math
unit 414. More specifically, the number of requests may be
a number of texture requests to a texture pipeline before a
read of the texture results. In one embodiment, the texture
pipeline of texture umt 412 includes a bufler for storing
results from the texture pipeline of texture unit 412. As
described herein, the requests may have been arranged by a
compiler.

Resource monitoring module 406 determines a number of
available resources of the execution pipeline (e.g., texture
pipeline and pipeline bufler). In one embodiment, resource
monitoring module 406 determines a number of available

10

15

20

25

30

35

40

45

50

55

60

65

10

resources ol the execution pipeline of texture unit 412. In
another embodiment, resource monitoring module 406
determines a number of available resources based on a
counter corresponding to a number of resources available
(e.g., unallocated), e.g., dynamic architecture. In yet another
embodiment, resource monitoring module 406 determines a
number of available resources by checking a number cor-
responding to a maximum number of threads that can be 1n
progress at a given time, €.g., static architecture.
Execution module 408 determines whether to execute the
requests based on the number of available resources and
allocates the resources of the execution pipeline. If adequate
resources are not available to store the data of the request,
then the request, or group of requests, 1s not 1ssued. In one
embodiment, execution module 408 determines whether to
execute the requests and allocates the resources of the
pipeline as an atomic operation thereby avoiding parallel
thread execution problems where the same resources are

assigned to two or more threads.

The determination of execution module 408 as to whether
to execute requests and allocate resources prevents dead-
lock. Execution module 408 ensures that portions of thread
(with requests) can always proceed to the portions where the
results are read out. In other words, the pipeline contents
only become empty when they are read out. If the thread
never can get to a point where 1t can read out its content
because the pipeline 1s full, then deadlock occurs. Embodi-
ments of the present invention allow either full allocation of
resources before a set of requests 1s 1ssued or no requests are
issued. This prevents deadlock because all the texture
requests are not 1ssued until i1t 1s checked that the program
will be able to proceed to the portion where the results are
read out of the texture unit. Generally speaking, for a thread
with X texture requests, X slots in the texture unit are
reserved or allocated before the X texture requests are
1ssued.

For example, where the texture pipeline has 300 slots and
the buffer has 16 slots or storage locations, 316 texture
requests may be made without the pipeline halting. Slots are
reserved 1n a group for each request up until the results are
read off. For example, 1f a thread includes four texture
requests, the four texture requests will be 1ssued (only 1t
there are four slots available) along with the four slots of the
texture unit allocated corresponding to those requests. Thus,
cach thread will be able to 1ssue requests only if there are
enough resources to ensure the threads will get to point
where the results will be read out of texture unit 412.

It 1s appreciated that once the texture unit resources are
allocated for that thread, the texture requests may be 1ssued
at the convenience of scheduling module 402 because the
allocation of resources to that thread ensures the requests
can be executed. Due to the time texture requests take for
completion, threads may be put to sleep by scheduling
module 402 until the results are ready for reading from the
texture umt or until other non-texture operations can be
completed. For instance threads that are waiting for texture
results may also have math requests 1ssued to the math units
(e.g., math unit 414).

With reference to FIGS. 5-6, flowcharts 500 and 600
illustrate example functions used by various embodiments of
the present mmvention. Although specific function blocks
(“blocks™) are disclosed in flowcharts 500 and 600, such
steps are examples. That 1s, embodiments are well suited to
performing various other blocks or varnations of the blocks
recited in flowcharts 500 and 600. It 1s appreciated that the
blocks 1n tlowcharts 500 and 600 may be performed 1n an

US 9,928,639 B2

11

order different than presented, and that not all of the blocks
in flowcharts 500 and 600 may be performed.

FIG. 5 shows a flowchart of an exemplary computer
controlled process for preventing deadlock of a functional
pipeline of graphics processing unit (GPU) that uses a
pipeline bufler to store execution results of various threads.
The method of flowchart 500 may further facilitate ethicient
use ol processing resources of a GPU by not requiring
register file storage to process texture operations of threads.
It 1s appreciated that the process of flowchart 500 may be a
dynamic process for preventing deadlock.

In block 502, a number of available resources of the
pipeline buller and/or pipeline 1s determined. As described
herein, the available resources may comprise a portion of a
pipeline bufler of a functional pipeline (e.g., a texture
pipeline) or a bufler portion of a texture pipeline. As
described herein, the number resources available may be
determined based on a counter tracking the number of
available resources.

In block 504, a number of resources being requested 1s
determined based on one or more texture requests of a first
thread. For texture requests made 1n groups, the number
being requested 1s all the requests 1n the group.

In block 506, 1n response to the requested number of
resources being less than the number of available resources,
resources corresponding to the one or more requests are
allocated to the pipeline. As described herein, the determin-
ing of the number of available resources and the allocating
of resources corresponding to the number of requested
resources may be atomic operations.

In block 508, the number of available resources 1is
adjusted to accommodate the 1ssued requests. As described
herein, the adjusting may include incrementing the number
tracking the available resources. It 1s appreciated that the
number of resources may be incremented or decremented
based on the manner in which the number tracking the
resources 1s compared to the resources of an execution unit.

In block 510, the one or more requests are issued. As
described herein, the requests may be texture requests. In
this fashion, the set of texture requests are 1ssued such that
when the corresponding reads of the same thread are
executed, the data 1s guaranteed to be 1n the buller.

In block 512, the number of available resources 1is
adjusted. As described herein, the adjusting may include
decrementing the number of available resources. It there are
additional threads with requests, block 516 may be per-
formed and a second thread 1s accessed. After block 516 is
performed, block 502 may be performed for the second
tread. I one or more of the request results are available,
block 514 may be performed.

In block 514, one or more results 1n response to the one
or more requests are read. As described herein, the results
are read from the pipeline bufller of the texture unit. Block
516 may then be performed and a second thread 1s selected.

FIG. 6 shows a flowchart of an exemplary computer
controlled process for preventing deadlock in accordance
with one embodiment of the present mvention in a system
which writes results data of a functional pipeline to a
pipeline builer, and not the register file. In one embodiment,
the method of flowchart 600 may be performed by a com-
piler. It 1s appreciated that the process of flowchart 600 may
be a static process for preventing deadlock.

In block 602, an execution unit profile 1s accessed for a
GPU. The execution unit may include a texture unit and a
math unit. In one embodiment, the execution unit profile
includes a number of units (e.g., pixels) processed per clock
cycle and a number of pipeline resources. The number of

10

15

20

25

30

35

40

45

50

55

60

65

12

pipeline resources may mclude a pipeline depth and a bufler
size. In one embodiment, the buller size corresponds to the
s1ze of a texture pipeline result butler.

In block 604, a number of texture requests per thread and
threads which can be executed without deadlock 1s deter-
mined. As described herein, the number of requests per
thread and threads may be based on the number of texture
requests needing issuance before the results of the texture
requests will be read. For example, i1 a texture pipeline and
pipeline bufler has 400 slots and there are four texture
requests per thread before a read 1s required, the number of
concurrent threads may be limited to 100 1n this system to
prevent deadlock. In one embodiment, the number of threads
1s based on a tile of an 1mage such that all threads of a spatial
tile will complete before the next tile 1s processed. For
example, the threads of a tile may be scheduled together to
take advantage of multiple tiles resident 1n a processor. It 1s
appreciated that this may take advantage of any cache
locality. A tile may thus be processed to enable completion
of a texture request and texture return sequence without
possibility of texture pipe stall due to lack of resources.

In block 606, instructions of the threads based on the
number of requests per thread which can be executed
without deadlock are rearranged. As described herein, a
compiler may rearrange instructions to ensure that a limited
number of requests may be 1ssued before the results are read
by a thread.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, and many modifications and variations are pos-
sible 1n light of the above teaching. The embodiments were
chosen and described in order to best explain the principles
of the mvention and its practical application, to thereby
enable others skilled 1n the art to best utilize the mmvention
and various embodiments with various modifications as are
suited to the particular use contemplated. It 1s intended that
the scope of the invention be defined by the claims appended
hereto and their equivalents.

What 1s claimed 1s:
1. A processor group of a graphics processing unit, said
Processor group comprising:

a register file for storing data related to a plurality of
threads concurrently operable within said processor
group,

a texture unit for processing texture operations ol said
plurality of threads wherein each texture operation
comprises a texture request operation and a correspond-
ing texture read-back operation;

a bufler separate from said register file and within said
texture unit for receiving results of said texture opera-
tions from said texture unit and storing said results,
wherein said corresponding texture read-back opera-
tion reads from said bufler; and

a circuit for preventing deadlock within said texture unit
and comprising a circuit for determining a number of
texture request operations for said texture unit of a
thread,

wherein said number of texture request operations com-
prises a number of multiple texture request operations
that are present within said thread before a texture
read-back operation 1s present within said thread.

2. A processor group as described in claim 1 further

comprising a math functional unit for processing math
operations of said plurality of threads, wherein said math

US 9,928,639 B2

13

functional unit 1s coupled to receive source operands from
said register file and also coupled to store results 1nto said
register file.

3. A processor group as described i1n claim 1 further
comprising a counter for maintaining a count of vacant
memory resources ol said bufler and said texture unait.

4. A processor group as described 1n claim 3 wherein said
circuit for preventing deadlock further comprises:

a circuit for 1ssuing said number of texture request opera-
tions to said texture unit provided there 1s suflicient
vacant memory resources of said buller and said texture
umt to accommodate all of said number of texture
request operations, otherwise not issuing any of said
number of texture request operations to said texture
unit.

5. A processor group as described 1n claim 1 wherein said
circuit for preventing deadlock within said texture unit 1s
turther for preventing deadlock by allowing only a prede-
termined number of threads, or less, to concurrently operate
with said texture unit wherein said predetermined number of
threads 1s based on a number of texture request operations
within each thread and based further on a size of said bufler
and said texture unait.

6. A processor group as described in claim 5 wherein said
predetermined number of threads 1s computed by dividing

said size of said bufler and said size of said texture unit by
said number of texture request operations within each
thread.

7. A processor group of a graphics processing unit, said

Processor group comprising:

a register file for storing data related to a plurality of
threads concurrently operable within said processor
group,

a texture unit for processing texture operations of said
plurality of threads wherein each texture operation
comprises a texture request operation and a correspond-
ing texture read-back operation; and

a bufler separate from said register file and within said
texture unit for receiving results of said texture opera-
tions from said texture unit and storing said results,
wherein said corresponding texture read-back opera-
tion reads from said bufler; and

a circuit for preventing deadlock within said texture unait,
said circuit for preventing deadlock comprising:

a circuit for determining a number of texture request
operations for said texture unit of a thread; and

a circuit for 1ssuing said number of texture request opera-
tions to said texture unit provided there 1s suflicient
vacant memory resources of said buller and said texture
umt to accommodate all of said number of texture
request operations, otherwise not issuing any of said
number of texture request operations to said texture
unit,

wherein said number of texture request operations com-
prises a number of multiple texture request operations
that are present within said thread before a texture
read-back operation 1s present within said thread.

8. A processor group as described in claim 7 further

comprising;

a math functional unit for processing math operations of
said plurality of threads, wherein said math functional
umt 1s coupled to receive source operands from said
register file and also coupled to store results into said
register {ile.

9. A processor group as described in claim 7 further

comprising;

10

15

20

25

30

35

40

45

50

55

60

65

14

a counter operable for maintamning a count of vacant

memory resources of said builer and said texture unait.

10. A processor group as described in claim 9 wherein
said maintaining of said count of vacant memory resources
of said buller comprises decreasing said count of said vacant
memory resources of said bufler responsive to said 1ssuing
said number of texture operation requests to said texture
unit.

11. A processor group as described 1in claim 9 wherein said
maintaining of said count of vacant memory resources of
said bufler comprises increasing said count of said vacant
memory resources of said bufler responsive to said thread
executing said read-back operations.

12. A processor group as described in claim 7 wherein
said circuit for 1ssuing said number of texture request
operations to said texture unit 1s operable to 1ssue only those
grouped texture request operations that have allocated result
space within said bufler wherein grouped texture request
operations are all unissued sequential texture request opera-
tions within a thread that precede a first umissued texture
read-back operation of said thread.

13. A processor group as described in claim 7 wherein
said register file does not recerve results from execution of
said texture unit.

14. A circuit comprising:

a Processor;

a register file;

a texture unit; and

a buller separate from said register file and within said

texture unit,

wherein said processor 1s configured to: store data in said

register file, wherein said data 1s related to a plurality
of threads concurrently operable within said processor;
process texture operations of said plurality of threads
using said texture unit, wherein each texture operation
comprises a texture request operation and a correspond-
ing texture read-back operation; store results of said
texture operations in said bufler, wherein said corre-
sponding texture read-back operation reads from said
bufler; and prevent deadlock within said texture unit by
allowing only a predetermined number of threads, or
less, to concurrently operate with said texture unit
wherein said predetermined number of threads 1s based
on a number of texture request operations within each
thread and based further on a size of said builer and
said texture unit, and

wherein said predetermined number of threads 1s com-

puted by dividing said size of said bufller and said size
of said texture unit by said number of texture request
operations within each thread.

15. A circuit as described in claim 14, wherein said
processor 1s configured to

process math operations of said plurality of threads,

receive source operands from said register file, and
store results into said register file.

16. A circuit as described 1n claim 14

wherein said processor 1s configured to maintain a count

of vacant memory resources of said bufler and said
texture unit.

17. A circuit as described 1n claim 16 wheremn said
processor 1s configured to maintain said count of vacant
memory resources of said buller by decreasing said count of
said vacant memory resources ol said builer responsive to
said 1ssuing said number of texture operation requests to said
texture unit.

18. A circuit as described in claim 17 wherein said
processor 1s configured to maintain said count of vacant

US 9,928,639 B2
15

memory resources of said bufller turther by increasing said
count of said vacant memory resources of said builer respon-
sive to said thread executing said read-back operations.

G e x Gx ex

16

	Front Page
	Drawings
	Specification
	Claims

