12 United States Patent

Jain et al.

US009922007B1

US 9,922,007 B1
Mar. 20, 2018

(10) Patent No.:
45) Date of Patent:

(54) SPLIT BROWSER ARCHITECTURE
CAPABLE OF DETERMINING WHETHER
TO COMBINE OR SPLIT CONTENT LAYERS
BASED ON THE ENCODING OF CONTENT
WITHIN EACH LAYER

(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventors: Saral Jain, Bellevue, WA (US); Dmitry
Sokolowski, Scattle, WA (US); James
Alan Umstot, Scattle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Reno, NV
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 53 days.

(21) Appl. No.: 14/285,442

(22) Filed: May 22, 2014

(51) Int. CL

GO6F 17/00 (2006.01)
GO6F 17/22 (2006.01)
GO6F 17/30 (2006.01)
HO4L 29/08 (2006.01)
(52) U.S. CL
CPC ... GOG6F 17/2247 (2013.01); GO6F 17/30905

(2013.01); HO4L 67/02 (2013.01); HO4L 67/28
(2013.01)

(58) Field of Classification Search
CPC GO6F 17/30905; GO6F 17/2247, HO4L
67/02; HO4L 67/04; HO4L 67/28; HO4N
21/234; HO4N 21/863

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,930472 A 7/1999 Smith

5,978,842 A 11/1999 Noble et al.

6,230,168 Bl 5/2001 Unger et al.

6,271,840 Bl 8/2001 Finseth et al.

6,356,908 Bl 3/2002 Brown et al.

6,657,647 Bl 12/2003 Bright

7,051,084 Bl 5/2006 Hayton et al.

7,191,211 B2 3/2007 Tuli

7,296,230 B2 11/2007 Fukatsu et al.

7,310,769 Bl 12/2007 Dash

7,499,051 B1* 3/2009 O’Donnell GO6T 15/503
345/421

7,917,618 Bl 3/2011 Bettis et al.

8,103,742 Bl 1/2012 Green

(Continued)

OTHER PUBLICATTIONS

Weilntraub, L., “How WebKit Renders the Web,” Fluent Conference,
May 31, 2012, 67 pages.™

(Continued)

Primary Examiner — Cesar Paula
Assistant Examiner — James H Blackwell

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear LLP

(57) ABSTRACT

An mtermediary system operates as an intermediary
between content servers and user devices, and provides
services for improving page load times as seen by end users.
One such service ivolves converting a retrieved content
page (e.g., web page) into a number of encoded layers that
can be decoded and rendered by the user device. The
intermediary system determines a suitable encoding tech-
nique for each of the layers. The intermediary system sends
the encoded layers to a browser component runming on the
user device for rendering by the GPU.

22 Claims, 6 Drawing Sheets

RN START
e

REGEIVE REQUEST FOR CONTENT PAGE
FROM BROWSER APPLICATION
(',f'

10
RETRIEVE GONTENT OF CONTENT PAGE
FROM HOST SERVICE OF CONTENT PAGE
15
/f

GEMERATE DOM Of CONTENT PAGE
/, 320

GENERATE RENDER TREE OF DOM \
322
I/r"'

GEWERATE LAYER TREE INCLUDING LAYER
CONTENT AND CONFIGURATION BASED ON
ANALYSIS OF LAYERS IN REMDER TREE

f/.«- 325

DETERMINE SUITABLE ENCODING
TECHNIQUE FOR EACH LAYER IN LAYER

PRCWIDE UPDATED RENDER LAYERS TO
USER DEVICE

PROVIDE ENCODED LAYERS ANDIOR LAYER
TREE TO USER DEVICE
I 35

: RECEIVE INDICATION OF INTERACTION WITH
: CONTENT OR PROGRAMMATIC UPDATE

US 9,922,007 B1

Page 2
(56) References Cited 2011/0225520 Al 9/2011 Watanabe
2011/0231746 Al 9/2011 Rohrabaugh et al.
U.S. PATENT DOCUMENTS 2012/0022942 Al 1/2012 Holloway et al.
2012/0054166 Al 3/2012 Jeremias
8,234,392 B2* 7/2012 Graffagnino GOG6F 17/2205 2012/0084663 Al 4/2012 Momchilov et al.
709/930 2012/0102416 Al 4/2012 Chmuel
- - : 2012/0110435 Al 5/2012 QGreen

8,314,809 Bl 11/2012 Grabowski et al. _ _ _ .

8331.566 Bl 12/2012 Féit;)\:tsaie : 2012/0117145 Al1* 52012 Clift ..o GO6F 9/4445

8,365,144 Bl 1/2013 Webb 709/203

8,539,338 B2 9/2013 Zhu et al. 2012/0151094 Al1* 6/2012 Cooke GO6F 17/30861

8,610,725 B2* 12/2013 Sandmel GO6T 15/005 709/250

345/501 2012/0151308 Al 6/2012 Falkenberg

8,732,571 B2 5/2014 Jain et al. 2012/0159308 Al 6/2012 Tseng et al.

8,769,052 Bl 7/2014 Tidd 2012/0188280 Al 7/2012 Charlesbois et al.

8,013,067 Bl * 12/2014 Kokkevis GOG6F 9/38 2012/0215834 Al 8/2012 Chen et al.

345/59 2012/0254727 Al 10/2012 Jain et al.

8,913,068 B1* 12/2014 Kokkevis GOGF 17/30905 2012/0265802 Al 10/2012° Shen et al.

i DR 451577 2013/0050249 Al 2/2013 Grabowski et al.

8,990,674 B2 3/2015 Shibukawa et al. 2013/0080895 Al 3/2013 Rossman

0454 515 BRI 9/2016 Jain 2th3/0145259 AT 6/2th3 Kiefer, III et al.

935633928 B 212017 Sokolowski et al 2013/0159923 Al 6/2013 French et al.

9,563,929 Bl 2/2017 Sokolowski et al oo AL 1200 Bunker et al /
2001/0038395 Al 82001 Holtzblatt : . L AS s HO‘%%;ﬁ
2001/0032238 A1 10/2001 Cronin, III et al. .

2002/0015042 Al /2007 R;?:)Iz)lt%am - 2014/0012685 Al1* 1/2014 Le Chevalier G06Q 30/02
2002/0091738 Al* 7/2002 Rohrabaugh GO6F 9/4443 | | | 705/14.73
715/249 2th4/0053054 AT 2/2th4 Shgn_
2002/0170053 Al 11/2002 Peterka et al. 2014/0059421 Al 2/2014 Chibisov et al.
2003/0014478 Al 1/2003 Noble 2014/0129920 Al 5/2014 Sheretov et al.
2003/0158916 Al 82003 Cronin, III et al. ggfjﬁgggg-‘g if gggfj Eumar et ai*
2003/0200507 Al1* 10/2003 Stern GO6F 17/211 - " " umar ¢t at.
- 153 2014/0136971 Al 52014 Kumar et al.
2004/0135784 Al 7/2004 Cohen et al. 201470136973 Al 52014 Kumar et al.
2004/0186861 Al 9/2004 Phatak 2014/0281896 Al 9/2014 Wiitala et al
2004/0239681 Al 12/2004 Robotham et al oo AL Ly et al.
2005/0232227 Al 10/2005 Jorgenson et al. . ; o eng ¢l dl
2005/0243097 Al 11/2005 Cohen et al. 20150121193 Al 4/2015 Beveridge et al.
2005/0256836 Al 11/2005 Awamoto et al. ggtgﬁgéﬁi‘gg N ;ggrg L o1tnoy ef al
2007/0156972 Al 7/2007 Uehara 20:‘5/0293929 Ajh 10/20T5 Na
2007/0263007 Al 11/2007 Robotham et al. S017/0011017 Al 12017 3 AMZUNS
2007/0271288 Al* 11/2007 Martin HO4N 19/25 ! : L4 Jal
2007/0288841 Al 12/2007 Rohrabaugh et al.
2008/0018658 Al1* 1/2008 Bruno GO6F ;Z;E;(S)g? OTHER PURIICATIONS
2008/0034292 Al1* 2/2008 Brunner GO06T 13/00 Garsiel, T. et al.“How Browsers Work: Behind the Scenes of
2008/0055623 Al /9008 Piersol ef al 715/700 Modern Web Browsers,” © Aug. 5, 2011, from HTML 5 Rocks, 57
2008/0077862 Al* 3/2008 Tolpincoee...... GO6F 17/243 pages.™
715/277 Grosskurth et al.,*Architecture and Evolution of the Modern Web
2008/0120626 Al1* 5/2008 Graffagnino GO6F 17/2205 Browser,” © Jun. 20, 2006 Elsevier Science, 24 pages.™
| 719/320 Stoyan Stephanov, “Rendering: repaint, reflow/relayout, restyle,” ©
2008/0222273 Ajh 9/2008 Lakshmanan et al. Dec. 17, 2009, Stoyan’s phpied.com, 16 pages.*
%882?83%2233 i ggggg Emdon | Herostratus’ Legacy,“Composited Video Support in
-_~ umtar el al. WebKitGTK+,” © 2013, 9 pages.*
2008/0295164 A1 11/2008 Steiner et al. o . D N
2009/0030976 A1* 1/2009 Shukla . . . HO4T. 65/4015 Wiltzius, T., “Accelerated Rendering in Chrome,” © Mar. 11, 2013,
709/203 Ll pages®
2009/0033986 Al 2/2009 Himpe X1a0, Y. et al.,Web Page Adaptation for Small Screen Mobile
2000/0089448 Al 4/2000 Sze et al. Device: A New P2P Collaborative Deployment Approach,” © 2008,
2009/0100257 Al* 4/2009 Sandmel GO6T 15/005 IEEE, pp. 191-196.%
713/100 okkevis, Vangelis ccelerated Compositing in Chrome
Kokkevis, Vangelis “GPU Accel d Compositing in Ch ”?
2009/0100356 Al 4/2009 Kujda The Chromium Projects, 2012, 9 pages.
2009/0125799 Al 5/2009 Kirby Anonymous, “ShrinkTheWeb (STW) Website Previews Plugin”,
2009/0158141 Al 6/2009 Bauchot et al. http://web.archive.org/web/20120710154658/http://wordpress.org/
2009/0177996 Al 7/2009 Hunt et al. extend/plugins/shrinktheweb-website-preview-plugin/screenshots/,
2009/0189890 Al 7/2009 Corbett et al. Jul. 10, 2012, 3 pages.
2009/0228782 Al* 9/2009 Fraser GOOF 12/135(3323 Anonymous, “ShrinkTheWeb—Website Previews API Documenta-
tion”, http://web.archive.org/web/20121029152521/http://www.
2009/0238279 AL™ 972009 T s %%1?;;%?2 shrinktheweb.com/uploads/STW__API Documentation.pdf, Oct.
2009/0307571 Al 12/2009 Gowda et al 29, 2012, 4 pages e b [] 1
7009/0307603 Al 12/2000 Gowda et al. Esteveo, Martin, *“l1ling in DirectX: Part 17, from gamedev.net, Jul.
2010/0194753 Al 8/2010 Robotham et al. 24, 2000, Spgs. ”
2010/0269152 Al 10/2010 Pahlavan et al. Esteveo, Martin, “Tiling in OpenGL”, from gamedev.net, Dec. 12,
2011/0078333 Al 3/2011 Jakubowski 2000, 6 pgs.
2011/0078593 Al 3/2011 Matsui PCWorld, Hands-on: Chrome Remote Desktop app for Android
2011/0145695 Al 6/2011 Matsui makes remote PC access easy, available at http://www.pcworld.
2011/0197126 Al 8/2011 Arastafar com/article/2144562/hands-on-chrome-remote-desktop-app-for-an-

US 9,922,007 Bl
Page 3

(56) References Cited
OTHER PUBLICATIONS

droid-makes-remote-access-easy.html, published Apr. 16, 2014 (last
accessed May 22, 2014), 4 pages.

Microsoft Windows Help, Connect to another computer using
Remote Desktop Connection, available at http://windows.microsoft.
com/en-us/windows/connect-using-remote-desktop-
connection#connect-using-remote-desktop-connection=windows-7
(last accessed May 22, 2014), 2 pages.

Bahl et al., “Advancing the State of Mobile Cloud Computing”,
MCS’ 12, Jun. 25, 2012, pp. 21-27.

Bjork et al., “WEST: A Web Browser for Small Terminals”, CHI
Letters, 1999, vol. 1, No. 1, pp. 187-196.

Buyukkokten et al., “Power Browser: Eflicient Web Browsing for
PDAs”, CHI Letters, 2000, vol. 2, No. 1, Apr. 1-6, 2000, pp.
430-437.

Deboosere et al., “Thin Client Computing Solutions i Low- and
High-Motion Scenarios”, Third International Conference on Net-
working and Services (ICNS’07), 2007, pp. 6.

Delwadia, Vipul, “RemoteME: Experiments in Thin-Client Mobile
Computing”, Thesis for Master of Science in Computer Science,
Victoria University of Wellington, 2009, pp. 114.

Dyken et al., “A Framework for OpenGL Client-Server Rendering”,
2012 IEEE 4th International Conference on Cloud Computing
Technology and Science, 2012, pp. 729-734.

Fox et al., “Experience With Top Gun Wingman: A Proxy-Based
Graphical Web Browser for the 3Com PalmPilot”, Middleware’98,
Session 9, 1998, pp. 407-424.

Freytag et al., “Resource Adaptive WWW Access for Mobile
Applications”, Computers & Graphics, 1999, vol. 23, pp. 841-848.
Han et al., “Dynamic Adaptation in an Image Transcoding Proxy for
Mobile Web Browsing”, IEEE Personal Communications, Dec.

1998, pp. 8-17.

Ku et al., “The Amazon Kindle Fire: Benchmarked, Tested, and
Reviewed”, http://www.tomshardware.com/reviews/amazon-
kindle-fire-review,3076.html, Nov. 23, 2011, pp. 37.

Stokes, Jon, “Amazon’s Silk 1s More Than Just a Browser: It’s a
Cloud OS for the Client”, http://web.archive.org/web/
20121217033708/http://www.wired.com/insights/2011/09/amazon-
silk, Sep. 28, 2011, pp. 4.

Tendulkar et al., “Abusing Cloud-Based Browsers for Fun and
Profit”, ACSAC 12, Dec. 3-7, 2012, pp. 219-228.

Wang et al., “Accelerating the Mobile Web with Selective Oflload-
ing”, MCC” 13, Aug. 12, 2013, pp. 45-50.

Xi1ao et al., “Browsing on Small Displays by Transforming Web
Pages into Hierarchically Structured Subpages™, ACM Transactions
on the Web, Jan. 2009, vol. 3, No. 1, pp. 36.

Zavou et al., “Exploiting Split Browsers for Efficiently Protecting
User Data”, CCSW’ 12, Oct. 19, 2012, pp. 37-42.

International Search Report and Written Opinion in PCT Applica-
tion No. PCT/US2013/069733, dated Jun. 30, 2014.

* cited by examiner

US 9,922,007 Bl

\O
n._.m, MINMIS
NUO
e
~—
L
L
7>
801
w MINMIS
— INFINOD
3 NIDIHO
=3
3
-
m 901

U.S. Patent

OLE

SHOINVHAY
A5 J49907]

FINAOW MHOMLIN ._n
SINISSTD0d |
NOLLOYMILNI

75T | St

FINAOW
ONISSHO0
STIiHd YD

est

FTNAOW
ONISSHO0&
ANHINOD

HASMONE SSTIUYIH

AFLSAS AAdVIOIWHTLNI

704

A}

Cigielei]
SOHA YD

=Xl E
44

HISMOMY

US 9,922,007 Bl

Sheet 2 of 6

Mar. 20, 2018

U.S. Patent

Z ‘o1,

AV 1dSIO
FINGOW FLVadn MICQOONS MIZATYNY
DULYNHYED 0N
Z9L ?
Gee
e VIVO AY 14810
AMNAON ONISSIO0N8d SOIHI VD ML MAAYT
ZS1
A A
GEZ Si7
SNOILINHISNI] MICONTM
19Cdn
HOLISOdNOYD
HOLYHINIO HIAVT
HIAYT L HOLYMINID —
SIONTY | woo |
551 | 951 V174
MI0330 SFLVAI
NIAYT ONIMIONT S
FINAON DNISSTOONd LNFINOD 5o TWOoO0T7
1]%4 IINCOW
GT7 SINILNQOD FOVd ANJINOO SOUHIYHD
SNOLLOMYLISNI E07 _ JLONIY
JLvaOdn noa IA LS8N0
SNOILOMHLSNI FINAON 39vd LNILINOD
TYAIRLLIS
J— TYAIINLIS szw....ﬁ
ONISSHOON b
NOLLDYNILNI HISMONE
Vel TV A
NOLLYDIGNI!
NOLLOVSALNI
HASMOMY SSATAVYHAH ADINFQ 48T

o
-
b)

U.S. Patent

300
N

Mar. 20, 2018 Sheet 3 of 6

START

305
[

RECEIVE REQUEST FOR CONTENT PAGE

FROM BROWSER APPLICATION

RETRIEVE CONTENT OF COI\IT_NT PAGE
FROM HOST SERVICE OF CONTENT PAGE

GENERATE DOM OF CONTENT PAG

ENDER TREE OF DOM

GENERAT

M
AJ

GENERATE LAYER TREE INCLUDING LAYER
CONTENT AND CONFIGURATION BASED ON
ANALYSIS OF LAYERS IN RENDER TREE

325

DETERMINE SUITABLE ENCODING
TECHNIQUE FOR EACH LAYER IN LAYE
TREE

PROVIDE ENCODED LAYERS AND/OR LAYER
TREE TO USER DEVICE

: RECEIVE INDICATION OF INTERACTION WITH
: CONTENT OR PROGRAMMATIC UPDATE

PROVID:! f ERS TO

US 9,922,007 Bl

U.S. Patent Mar. 20, 2018 Sheet 4 of 6 US 9,922.007 B1

40 ‘\ START

SEND REQUEST FOR CONTENT PAGE TO
INTERMEDIARY SYSTEM

RECEIVE, FROM INTERMEDIARY SYSTEM,
» LAYER TREE DATA INCLUDING ENCODED
LAYERS FOR RENDERING CONTENT PAGE

PROGRAMMATIC
UPDATE DECODE AND COMPOSITE LAYERS
455 ACCORDING TO LAYOUT TREE DATA

RENDER CONTENT PAGE FOR DISPLAY TO
USER

RECEIVE INDICATION OF INTERACTION WITH
CONTEN

vEs———<_ HANDLELOCALLY? ~ —5——NO
450 \/ 435
4 4 4 [~

r'

RENDER UPDATED CONTENT PAGE USING SEND REQUEST FOR UPDATED CONTENT
PROVIDED LAYERS PAGE TO INTERMEDIARY SYSTEM

|
|
|
|

RECEIVE, FROM INTERMEDIARY SYSTE ;
UPDATED ENCODED LAYER
CORRESPONDING TO UPDATED CONTENT

RENDER UPDATED CONTENT PAGE FOR
ISPLAY TO USE

END

US 9,922,007 Bl

Sheet 5 of 6

Mar. 20, 2018

U.S. Patent

0€s

¢ o1

005

4 T\
m_ - 0CY -10LG
M
W odAL < gLS
purvIq
_ STOXTId eSO «
7 62§~ T~—WIDOIS NI L «
s
pze ™~y 66'6F6% STOTIA() SUTIOII 0L
_ €257 v o AN¥XE
$EC VITINVI X ANVIL |
_ — I (N 7%
SJUBWISTIIAPY - Z£G ¢CS A 19)IG YDIPIG \)Nzw o
(& WOD ZAXRMIR 5) e € 3
\ = TET N S — >,

US 9,922,007 Bl

Sheet 6 of 6

Mar. 20, 2018

U.S. Patent

X WO ZAX MMM) D € >

\x & e

=}l

)

009

| £¢9

=
229

1
'
.w_
*
t
L 4
¥
¥
T
¥
m.
4

§M§U X Q2§m

n
llllllllllllllllllllllllllllllllllllll ﬂltilklh—ltlkl __._._..._.I..__.._._.....__._“r.-

059

WO ZACMAMA YY) D €D

>

%

./

i

009

Us 9,922,007 Bl

1

SPLIT BROWSER ARCHITECTURE
CAPABLE OF DETERMINING WHETHER
TO COMBINE OR SPLIT CONTENT LAYERS
BASED ON THE ENCODING OF CONTENT
WITHIN EACH LAYER

CROSS-REFERENCE TO
CONCURRENTLY-FILED APPLICATTONS

The present application’s Applicant 1s concurrently filing
the following U.S. patent applications on May 22, 2014:

Application
Ser. No. Title

14/285,317 EMULATION OF CONTROL RESOURCES FOR USE
WITH CONVERTED CONTENT PAGES

14/285,492 DELIVERY AND DISPLAY OF PAGE PREVIEWS
USING HARDWARE-INDEPENDENT GRAPHICS
COMMANDS

14/281,200 ON-DEMAND DETECTION OF USER INPUT
TARGETS

14/285,060 CONVERSION OF CONTENT PAGES INTO SETS OF
TILES FOR DELIVERY TO AND EFFICIENT
DISPLAY ON USER DEVICES

14/285,275 TRANSFERRING DAMAGED PORTIONS OF A
RENDERED PAGE TO A USER DEVICE

14/285,334 UPDATING DAMAGED PORTIONS OF RENDERED
PAGES THAT CONTAIN VIDEO CONTENT

14/285,300 SPLIT BROWSER ARCHITECTURE CAPABLE OF
DELIVERING VIDEO STREAMS TO USER DEVICES

14/285,477 DISTRIBUTED CONTENT BROWSING SYSTEM
USING TRANSFERRED HARDWARE-INDEPENDENT
GRAPHICS COMMANDS

14/285,531 BANDWIDTH REDUCTION THROUGH DELIVERY
OF HARDWARE-INDEPENDENT GRAPHICS
COMMANDS FOR PORTIONS OF CONTENT PAGES

14/285,557 CACHING OF CONTENT PAGE LAYERS

14/285,504 SPLIT BROWSER ARCHITECTURE CAPABLE OF

DELIVERING GRAPHICS COMMANDS TO USER
DEVICES

The disclosures of the above-referenced applications are
hereby incorporated by reference.

BACKGROUND

When a user requests a web page or other content page via
a browser, the user typically experiences a noticeable delay
betore the page 1s Tully or even partially displayed. Various
tactors can contribute to this delay. These factors include, for
example, (1) the speed of the wireless or wired connection
between the user’s device and the Internet, (2) the location
of, and load on, the origin server that hosts the page, (3) the
size ol the page, including any embedded graphics, (4)
whether, and the extent to which, the page includes embed-
ded objects that need to be separately retrieved (possibly
from different domains) once the page’s HTML has been
loaded, (5) the complexity of the page’s coding, including
any scripts, and (6) the processing power of the user’s
device. When the delay 1s significant (e.g., several seconds
or more), the task of browsing can be frustrating for users.

Various methods exist for reducing the delay experienced
by users. Some methods include the use of caching proxy
servers, which store recently-retrieved versions of content
and provide the content to users faster than origin servers
may be able to do so. For example, a caching proxy may be
located closer (in either a geographic or networking sense)
to a client device, or the caching proxy may have a faster
network connection to the client device. Origin servers may
also deploy certain content onto content delivery network

10

15

20

25

30

35

40

45

50

55

60

65

2

(“CDN”) servers. Client devices requesting the content may
be directed to the closest CDN server or to a CDN server that
can otherwise provide the requested content faster than the
origin server. Other methods of reducing the delay experi-
enced by users include the use of proxy servers or other
intermediary systems that compress or re-format content.
Such processed content may be transierred to client devices
faster, or may require less processing by the client devices
to render the content.

BRIEF DESCRIPTION OF DRAWINGS

Throughout the drawings, reference numbers may be
re-used to indicate correspondence between referenced ele-
ments. The drawings are provided to illustrate example
embodiments described herein and are not intended to limat
the scope of the disclosure.

FIG. 1 1llustrates a content delivery environment with an
intermediary system that processes content and generates
display commands for execution on user devices according
to one embodiment.

FIG. 2 illustrates example data flows and interactions
between a user device and intermediary system during
processing and consumption of content using layer transier
rendering according to some embodiments.

FIG. 3 illustrates an embodiment of a layer transfer
rendering technique as implemented by an intermediary
system.

FIG. 4 1illustrates an embodiment of a layer transfer
rendering technique as implemented by a user device.

FIG. 5 illustrates an example of a content page that can be
rendered using the layer transfer rendering techniques
described herein.

FIGS. 6A-6B illustrate another example of a content page
that can be rendered using the layer transier rendering
techniques described herein

DETAILED DESCRIPTION

Introduction

The present disclosure involves an architecture 1n which
the functions of a network content browsing system (e.g., a
“web browser” application) are distributed among a browser
component running on a server and a browser component
running on a user device. The server-based browser com-
ponent can retrieve and render content (e.g., web pages) on
behalf of a user device, and generate, for delivery to the user
device, layers of the content that can be composited by the
user device to display a visual representation of the content.
The sever-based browser may retrieve the content 1n
response to a user request, generate a document object
model representation of the content, generate a render tree
based on the document object model representation
(“DOM”), generate a layer tree based on the render tree
including content and layout of encoded layers, and provide
the layer tree to the browser component running at the user
device. The server-based browser may also determine a
suitable type of encoding for each layer based on the content
of the layer and send each layer to a user device using the
determined type of encoding. This can help optimize quality
and reduce bandwidth 1n some embodiments. In this con-
figuration, the server-based browser component may be
referred to as a “headless browser,” and the browser com-
ponent runmng at the user device may be referred to as a
“client browser.” The client browser can decode and com-

Us 9,922,007 Bl

3

posite the layers 1n the layer tree to display requested content
without the content processing that would normally be
required by the user device.

For at least some types of content pages and content, the
above process results 1n reduced “page-load” times as expe-
rienced by users. This reduction 1s due in-part to the reduced
or eliminated need for the client browser to process the page
coding (e.g., HITML, JavaScript, etc.) of the pages. In some
cases the process also reduces the quantity of data transmiut-
ted to the user device.

Conventional browser applications executing on a user
device typically request content on a particular network
address (e.g., www.abc.xyz) directly from an origin server at
the network address, indirectly from a content delivery
network (“CDN”) server configured to provide content on
behalf of the origin server, via an intermediary system such
as a proxy, or though some other route. The requested
content may be recerved 1n the form of an HI'ML file, which
1s then parsed by the browser application to i1dentily any
objects (e.g., 1images, videos, style sheets, script files, etc.)
referenced by the HTML file. The referenced objects are
then retrieved 1n a manner that 1s similar or identical 1n many
respects to the retrieval of the HTML file. The browser
application constructs a Document Object Model (“DOM”)
tree based on the parsed HIML file and the referenced
objects. The DOM tree includes nodes for each element of
the requested content (e.g., individual HTML tags, refer-
enced objects, scripts, etc.). A render tree 1s constructed
using style information (e.g., from referenced cascading
style sheets) and the visual elements from the DOM tree 1n
the order in which they are to be displayed. The purpose of
the render tree 1s to enable painting of the elements 1n the
correct order. The render tree 1s traversed and a paint
command 1s executed for each node 1n order to display
content on the screen.

Performance of the browser application 1s typically
dependent upon the latencies and resource requirements
associated with each of the processes summarized above. If
a user device has a low-bandwidth network connection, then
retrieval of the content may introduce substantial latency
before much of the processing to be performed on the user
device may begin. If a user device does not have enough
computing resources (e.g., CPU capacity, available memory,
etc.), the processing of content after 1t 1s retrieved may
introduce substantial latency before or during painting of the
content to the user device display.

As an alternative to implementing the browser fully on the
user device, an mtermediary system or system, for example
a headless browser implemented on a remote server or other
device, can be used to perform various steps of the content
page rendering process described above, oflloading some of
the processing required to access the content page from the
user device to the intermediary system. For example, the
intermediary system may retrieve and pre-render a content
page for a user device, and then deliver the pre-rendered
page to the user device as one or more bitmap images.
Although this approach 1s reduces user-perceived page load
times for many pages, the transier of bitmap 1mages some-
times consumes significant network bandwidth and intro-
duces delay.

The foregoing and other problems are addressed, 1n some
embodiments, by the layer transfer rendering process
described herein 1n which an intermediary system generates
the DOM of a content page, generate a render tree based on
the document object model representation (“DOM™), gen-
erate a layer tree based on the render tree including content
and layout of encoded layers, and provide the layer tree to

10

15

20

25

30

35

40

45

50

55

60

65

4

a browser component of a user device using the determined
type of encoding. The user device decodes and composites
the encoded layers to render a visual representation of the
content page. Thus, the task of rendering the page 1s divided
between the intermediary system and the user device. Such
later transfer rendering techniques can provide performance
improvements including significant reductions 1n user-per-
ceived page load times compared to running the browser
entirely on the user device, and can additionally provide
performance improvements including reduction in band-
width usage compared to traditional headless browser imple-
mentations. For instance, when content 1s updating, the layer
transfer rendering technique can send updated rendering
instructions only for layers of the content that have changed
compared to a previous 1nstance. In addition, if page layers
move relative to each other without changing content, the
layer transfer rendering technique can send updated layout
data that can be used to rearrange the layers without re-
rendering the content.

In some cases, the intermediary system may determine a
suitable encoding technique for each visible layer based on
the content of the layer. This may be done to increase the
visual quality of the layer in a visual representation of the
content page on the user device and/or to decrease band-
width usage in sending the layer to the user device. For
example, the intermediary system may identily a video
included in the content of a layer and may send the layer
including the video 1n pre-coded bytes to the user device to
be decoded by the user device. As another example, the
intermediary system may 1dentify static text in the content of
a layer and may provide instructions in drawing language,
such as Skia, to the user device for rendering the layer
including the static text. Further, the intermediary system
may 1dentily an image 1n the content of a layer and send the
layer to the user device as original or encoded image bytes.

In some embodiments, the itermediary system may
analyze the layers and determine whether combining two or
more layers would optimize performance based on factors
such as network bandwidth, processing capabilities of the
user device, and the ability of the user device to locally
handle updates, to name a few. If the same type of encoding
1s determined to be suitable for two or more layers, then
those layers can be combined into a single layer 1n some
cases. The mtermediary system may also analyze the layers
to determine whether splitting a layer into multiple layers
would optimize performance. For example, if a portion of a
content page 1s scrollable by itself, that portion may be
parsed into a single layer 1n the render tree. The intermediary
system may analyze the content in the single layer corre-
sponding to the scrollable portion and 1dentify images, static
text, and user interface elements. The intermediary system
can split the layer corresponding to the scrollable portion
into two separate visible layers: first, a graphical content
layer including the images and user interface elements and
second, a text layer to display the static text above the
graphical content layer. The intermediary system can also
generate a non-visible interactivity layer including instruc-
tions regarding locations and associated functions of user
selectable options in the scrollable portion.

In some embodiments, one or both of the user device and
intermediary system can assess, for a given content page,
whether transferring the layers of the content page to the
user device will reduce a user-percerved page load time
relative to at least one alternative rendering techmique. In
some cases, the user device and/or intermediary system can
determine whether the layer transfer rendering techmque 1s
preferable for a given page load based on a number of

Us 9,922,007 Bl

S

tactors, for example the speed, bandwidth, latency, and type
ol network connection with user device as well as charac-
teristics of the content site and whether this feature 1s
supported by the user device. In one example, the user
device and/or intermediary system can assess whether com-
positing of the layers on the user device will reduce a
user-perceived page load time relative to compositing of the
layers on the intermediary system. In another example, the
user device and/or intermediary system can assess whether
generating the render tree and layer tree on the intermediary
system will reduce a user-perceived page load time relative
to generating the render tree and layer tree on the user
device.

Some embodiments of the intermediary system can deter-
mine, based on a variety of factors such as network con-
nection parameters and user device capabilities, whether to
prioritize transmission o some layers to the user device over
transmission of other layers to a user device, or whether to
send a prioritized portion of some or all of the layers. For
example, the intermediary system can prioritize layers that
would be visible to a user 1n an 1nitial page configuration
over layers that would not be visible in the initial page
configuration, such as a layer that 1s obscured by another
layer that can subsequently move due to javascript or a layer
that 1s outside the current scrolled view of the page. In some
embodiments, the intermediary system can detect or receive
an 1indication that a user device has limited resources such as
RAM, and accordingly the intermediary system can only
send to the user device layer tree data for rendering a
predetermined number of page lengths above/below a cur-
rent scroll position of the user.

In the process described herein, the bandwidth-intensive
bitmap typically used to send pre-rendered page content
from the intermediary system to the user device 1s replaced
by (typically) more bandwidth eflicient encoded layers. The
user device can composite the layers, that 1s, use the layers
in the correct order to paint the visual representation of the
content page.

Aspects of the present disclosure relate to splitting the
graphics pipeline of a browser application among server-
based and client-based browser components (e.g., between a
headless browser and a client browser). The server (or
servers) on which a headless browser instance 1s running
may have access to a network connection that 1s substan-
tially faster than the network connection available to the user
device, and can therefore retrieve content much more
quickly than the user device. Alternatively or in addition, the
server(s) may have substantially more computing resources
than the user device, and may therefore perform the content
processing summarized above and described 1n greater detail
below much more quickly and efliciently than the user
device. As a result of the faster network connection and/or
greater available computing resources, a headless browser
instance running on a server may be able to produce layers
ol content pages faster than a conventional browser appli-
cation executing on a user device 1s able to produce the
layers.

Although aspects of the embodiments described in the
disclosure will focus, for the purpose of illustration, on a
distributed browsing system with separate server-based and
client-based browser components designed specifically to
work 1n conjunction with one another (e.g., a headless
browser instance running on a server and a corresponding,
client browser instance running on a user device), one
skilled 1n the art will appreciate that the techniques disclosed
herein may be applied to any number of services, processes,
or applications. In some embodiments, an existing browser

10

15

20

25

30

35

40

45

50

55

60

65

6

application that runs on a user device may be configured to
receive encoded layers from a server in lieu of unprocessed
content files. For example, a browser add-in or extension
may be installed on a user device to facilitate communica-
tion with a headless browser, receive encoded layers, decode
the encoded layers, and composite the layers, thereby
bypassing the parsing and DOM tree construction processes
that would normally be performed by the browser applica-
tion. In some embodiments, browsers executing on user
devices may be designed to receirve either conventional
content files or encoded layers (or a combination thereot).
For example, the browser may determine whether to request
content files or encoded layers based on current conditions
and performance metrics, data regarding prior browsing
sessions, or the like. Alternatively or 1n addition, an inter-
mediary system may determine whether to provide content
files or encoded layers based on current conditions, perfor-
mance metrics, prior browsing sessions, or the like.

Various aspects of the disclosure will now be described
with regard to certain examples and embodiments, which are
intended to illustrate but not limit the disclosure.

System Components

FIG. 1 illustrates an example network environment in
which features can be implemented for processing content
pages on an ntermediary system and generating display
commands for execution on a user device. The network
environment shown 1n FIG. 1 includes various user devices
102, an intermediary system 104, and various content
sources, 1mcluding origin content servers 106 and content
delivery network (“CDN™) servers 108. The system com-
ponents may communicate with each other via one or more
communication networks 110 in order to deliver layers
representing content pages hosted on CDN servers 108 to
user devices 102 via intermediary system 104, for example
in the form of a layer tree included encoded content of each
of a number of layers as well as data regarding layout of the
layers, such as layer size and positioming. A network 110
may be a publicly accessible network of linked networks,
possibly operated by various distinct parties, such as the
Internet. In other embodiments, the network 110 may
include a private network, personal area network, local area
network, wide area network, cable network, satellite net-
work, cellular telephone network, etc. or combination
thereol, each with access to and/or from the Internet.

As will be appreciated by those of skill 1n the relevant art,
the network environment may include any number of dis-
tinct user devices 102 and/or content sources 106, 108. In
addition, multiple (e.g., two or more) intermediary systems
104 may be used. For example, separate intermediary sys-
tems 104 may be located so that they are close (in either a
geographical or networking sense) to groups of current or
potential user devices 102 or content sources 106, 108. In
such a configuration, a user device 102 may request content
via the mntermediary system 104 to which 1t 1s closest, rather
than all user devices 102 requesting content via a single
intermediary system 104.

The user devices 102 can include a wide vanety of
computing devices, including personal computing devices,
terminal computing devices, laptop computing devices, tab-
let computing devices, electronic reader devices, mobile
devices (e.g., mobile phones, media players, handheld gam-
ing devices, etc.), wearable devices with network access and
program execution capabilities (e.g., “smart watches” or
“smart eyewear”), wireless devices, set-top boxes, gaming
consoles, entertainment systems, televisions with network
access and program execution capabilities (e.g., “smart
TVs”), and various other electronic devices and appliances.

Us 9,922,007 Bl

7

Individual user devices 102 may execute a browser appli-
cation 120 to communicate via the network 110 with other
computing systems, such as the intermediary system 104 or
content sources 106 and 108, 1n order to request and display
content.

Hlustratively, a user may use a browser application 120 to
request network-accessible content (e.g., content pages,
images, video, etc.) hosted or provided by a content source,
such as an origin content server 106 or a CDN server 108.
The user device 102 or browser application 120 may be
associated with the intermediary system 104 or otherwise
configured to request the content through, and receive con-
tent display commands from, the mtermediary system 104
rather than communicating directly with the content source.
The browser application 120 may include a remote graphics
module 122 that receives remotely-generated encoded lay-
ers, such as those generated by the intermediary system 104.
The remote graphics module 122 (or some other module of
the browser application 120) can decode the encoded layers
and composite the layers to display a representation of the
requested content on the user device 102. In some embodi-
ments, remote graphics module 122 can be the graphics
processing unit (GPU) of the user device 102 or a module of
browser application 120 configured to call the GPU. Advan-
tageously, the remote graphics module 122 may facilitate the
display of graphical representations of requested content at
the user device 102 without requiring the user device 102 to
receive content files (e.g., HTML files, JPEG images, etc.)
directly or indirectly from content sources 106 and 108.

In some embodiments, the browser 120 may be a con-
ventional web browser that 1s not specifically designed or
configured to execute remotely-generated graphics com-
mands and other display commands. For example, the
browser 120 may use or otherwise be associated with a
remote graphics module 122 that 1s not integrated with the
browser 120, such as a browser add-in or extension. In some
embodiments, applications other than a browser 120 may
include or use a remote graphics module 122 (or some
similar module) to execute graphics commands generated by
an intermediary system 104. For example, content aggrega-
tors or other specialized content display applications for
mobile devices (e.g., Flipboard) may utilize a remote graph-
ics module 122.

The intermediary system 104 can be a computing system
configured to retrieve content on behalf of user devices 102
and generate layers for compositing by the user devices 102.
For example, the intermediary system 104 can be a server or
group of servers that may be accessed via the network 110.
In some embodiments, the intermediary system 104 may be
a proxy server, a system operated by an internet service
provider (ISP), and/or some other device or group of devices
that retrieve content on behalf of user devices 102.

The intermediary system 104 may include various mod-
ules, components, data stores, and the like to provide the
content retrieval and processing functionality described
herein. For example, the intermediary system 104 may
include a server-based browser application or some other
content rendering application to process content retrieved
from content sources. Such a content rendering application
may be referred to as a “headless browser” 140. Generally
described, a headless browser 140 does not (or 1s not
required to) cause display of content by a graphical display
device of the server on which the headless browser 140 1s
executing. Instead, the headless browser 140 provides
encoded layers to separate user devices 102 that enable the
user devices 102 to cause display of the content. Illustra-
tively, the headless browser 140 may obtain requested

10

15

20

25

30

35

40

45

50

55

60

65

8

content from an origin content server 106 and/or CDN
server 108, obtain additional items (e.g., 1mages and execut-
able code files) referenced by the requested content, execute
code (e.g., JavaScript) that may be included in or reterenced
by the content, generate encoded layers to display a graphi-
cal representation of the content, and transmit the encoded
layers to the user device 102. By performing some or all of
these operations at the intermediary system 104, the sub-
stantial computing resources and high-speed network con-
nections typically available to network-based server systems
may be leveraged to perform the operations much more
quickly than would otherwise be possible on a user device
102 with comparatively limited processing capability. In
addition, by sending the layers instead of a fully rendered
content page to the user device 102 and allowing the user
device 102 to render the content page from the layers, the
data communications between user device 102 and interme-
diary system 104 may be faster and consume less network
bandwidth than would be used to send fully rendered content
pages.

The headless browser 140 may include various modules
to provide the functionality described above and 1n greater
detail below. For example, the headless browser 140 may
include a content processing module 150, a graphics pro-
cessing module 152, and an interaction processing module
154. The content processing module 150 may include any
system that can parse content files and generate a document
object model (“DOM™) representation of the content. Con-
tent processing module 150 can also generate a render tree
from the DOM mapping visible objects in the DOM to one
or more layers.

The graphics processing module 152 may include any
system that can receive the render tree and generate encoded
layers to render a graphical representation of the content on
a user device 102. In some cases, the graphics processing
module 152 may include logic for determining one of a
number of rendering techniques to use for each of a number
of layers in the render tree. Some embodiments of the
graphics processing module 152 can analyze the content
layers to determine whether to combine or split any layers.
For example, the graphics processing module 152 may
analyze a layer and determine that a first subset of the
content of the layer should be encoded as a video stream and
a second subset of the content of the layer should be encoded
as graphics commands, such as OpenGL or Skia commands.
Graphics processing module 152 can split the layer into two
layers according to the determined encoding techniques,
encode the layers using the determined video encoding and
graphics command encoding, and provide the encoded video
stream and graphics commands to the browser 120 and/or
the remote graphics module 122. As another example,
graphics processing module 152 may identify portions of
multiple layers that include static text and determine to use
the same rendering technique for all of the static text, such
as by sending one or more high resolution tiles of the text
together with graphics commands regarding locations of the
tiles on the content page, or by sending the text to the user
device 1n the form of Skia commands. Accordingly, graphics
processing module 152 can combine the portions of the
layers including static text mnto a single static text layer,
encode the static text layer according to the determined
encoding, and send the encoded static text layer to the user
device.

The interaction processing module 154 may include any
system that communicates with the browser 120 to receive
information regarding user interactions with the content at
the user device 102 and to update one or more layers for

Us 9,922,007 Bl

9

rendering the content, if necessary. Further, the interaction
processing module 154 may provide the updated layers to
the user device 102. In some embodiments, the headless
browser 140 may include additional or fewer modules than
those shown 1n FIG. 1, for example the additional modules
illustrated 1n FIG. 2.

As an example, the headless browser may be imple-
mented using the open source Chromium™ browser, with
appropriate modifications to implement encoded layer trans-
ter and the other features described herein. In some embodi-
ments, Chromium™ code may be modified to analyze the
layers of a content page, determine whether to combine or
split the layers, determine a suitable encoding technique for
cach layer, encode each layer according to the determined
encoding technique, and send the encoded layers to a user
device. In other embodiments, a headless browser compo-
nent can be developed specifically to implement the video
representation delivery techniques described herein.

The mtermediary system 104 may include additional
modules, components, data stores, and the like to provide the
teatures described above and 1n greater detail below. For
example, the intermediary system 104 may include a cache
142 that stores content 1tems received form content sources
106 and 108, layers generated by the headless browser 140,
and the like. The intermediary system 104 may also include
a logged ““user behaviors” data store 144 that stores infor-
mation about user requests and interactions with content.

In some embodiments, the cache 142 may store layer tree
representations of content pages generated by the headless
browser 140 for a predetermined period of time after the
content page request or after connection between the user
device and the mtermediary system has terminated. Accord-
ingly, if the user of the user device requests the content page
again within the predetermined time period, the layer tree
and any other data can be retrieved from the cache 142 and
delivered to user device 102 without the need to re-generate
the layer tree. In some embodiments, persistence of layer
tree data in the cache 142 can reduce user-perceived page
load times for recently requested pages. For instance, 1f a
user device runs out of battery power or otherwise powers
down 1n the middle of a browsing session, the layer tree may
be quickly retrieved and re-delivered to the user device upon
powering on and reestablishing connection with the inter-
mediary system 104. In some embodiments, interactions
stored 1n the logged user behaviors data store 144 can be
used to deliver a layer tree for rendering a representation of
the content page reflecting previous user interactions with
the page. In other embodiments, the cache 142 may store a
layer tree representing a most recent visual representation
displayed on the user device.

The intermediary system 104 may be a single computing,
device, or 1t may include multiple distinct computing
devices, such as computer servers, logically or physically
grouped together to collectively operate as an intermediary
system. The components of the intermediary system 104 can
cach be implemented as hardware, such as a server com-
puting device, or as a combination of hardware and soft-
ware. In addition, the modules and components of the
intermediary system 104 can be combined on one server
computing device or separated individually or into groups
on several server computing devices. In some embodiments,
the intermediary system 104 may include additional or fewer
components than illustrated in FIG. 1.

In some embodiments, the features and services provided
by the intermediary system 104 may be implemented as web
services consumable via the communication network 110. In
turther embodiments, the intermediary system 104 1s pro-

10

15

20

25

30

35

40

45

50

55

60

65

10

vided by one more virtual machines implemented 1n a hosted
computing environment. The hosted computing environ-
ment may include one or more rapidly provisioned and
released computing resources, which computing resources
may include computing, networking and/or storage devices.
A hosted computing environment may also be referred to as
a cloud computing environment.

The origin content servers 106 and CDN servers 108 can
correspond to logical associations of one or more computing
devices for hosting content and servicing requests for the
hosted content over the network 110. For example, a content
server 106 or CDN server 108 can include a web server
component corresponding to one or more server computing
devices for obtaining and processing requests for content
(such as content pages) from user devices 102, the interme-
diary system 104, or other devices or service providers. In
some embodiments, one or more content servers 106 may be
associated one or more CDN service providers (e.g., entities
that manage multiple CDN servers 108), application service
providers, etc.

Although 1n the examples described herein the interme-
diary system 104 1s configured to communicate between the
origin content servers 106 and CDN servers 108 and user
devices 102 to execute the layer transfer rendering tech-
niques, in some embodiments the origin content servers 106
and/or CDN servers 108 can be configured to generate layer
tree representations of content pages and send encoded
layers directly to a user device. For example, the capability
to perform the layer transier rendering techniques can be
provided to origin content servers 106 and CDN servers 108
in the form of an add-in or extension. The origin content
servers 106 or CDN servers 108 can, 1n some embodiments,
assess whether the layer transfer rendering techniques
should be used for a given page request based on factors
such as whether the techniques would result 1n reduced
user-perceived page load time, processor usage, or battery
usage, among other things, relative to at least one alternative
rendering technique. In some cases, the content servers 106
or CDN servers 108 can determine whether the layer transter
rendering technique 1s preferable for a given page load based
on a number of factors, for example the speed, bandwidth,
latency, and type of network connection with user device as
well as characteristics of the content site and whether this
feature 1s supported by the user device. Accordingly, any of
the layer tree rendering actions described herein as being
performed by the intermediary system can, 1n some embodi-
ments, be performed additionally or exclusively by the
origin content servers 106 and/or CDN servers 108, in which
case the intermediary system 104 may be omitted.
Example Component Communications

FIG. 2 illustrates example data flows and interactions
between a user device and intermediary system during
processing and consumption of content using layer transier
rendering according to some embodiments. Although the
illustrated communications involve the user device 102 and
headless browser 140 of FIG. 1, similar communications can
take place between any client device and intermediary
system capable of executing the layer transier rendering
techniques described herein.

The interactions shown 1n FIG. 2 will be discussed with
respect to a request for, processing of, and interaction with
a content page, such as a web page. Illustratively, the content
page may be any content page hosted or oflered by a content
source, such as a web site. The content page may be defined,
at least partially, by a base resource such as an HTML file.
The base resource does not need to be a pre-existing file, but
may instead be a dynamically generated stream of markup

Us 9,922,007 Bl

11

language, metadata, or other content. The base resource may
reference one or more embedded resources, such as images,
videos, script files, executable objects, and the like. For
example, 11 the base resource 1s an HTML {ile, it may include
tags referencing various external objects and including net-
work addresses of servers from where the external objects
may be obtained.

As 1llustrated, the browser 120 of the user device 102 can
send a request for a content page 205 to content retrieval
module 156 of the headless browser 140. The content page
request 205 can be, for example, a request for a web page
generated when the user selects a user-selectable option
directing the browser 120 to the web page URL. The content
page request 205 may be a standardized request, such as an
HTML GET request that requests a resource at a particular
location. In some embodiments, the content page request
205 may be a request for layers. In some embodiments, the
content page request 205 can be accompanied by data
representing capabilities of user device 102, for example one
or more ol processing capabilities, network connection
parameters, and configuration of browser 120, to name a
few.

As 1llustrated 1n FIG. 1, headless browser 140 may be part
of a larger intermediary system 104. The intermediary
system 104 may instantiate the headless browser 140 to
service the request from the client browser 120. For
example, the intermediary system 104 may identily a physi-
cal server with available resources to handle the request, and
the request can be routed to that server for processing by a
headless browser instance 140.

In some embodiments, when headless browser 140
receives the content page request 203, the headless browser
can assess, for the content page, whether sending the layers
of the content page to the user device will reduce a user-
perceived page load time relative to at least one alternative
rendering technique. In some cases, the headless browser
140 can determine whether the layer transier rendering
technique 1s preferable for a given page load based on a
number of factors, for example the speed, bandwidth, and
type of network connection of user device 102 as well as
characteristics of the content site. For example, headless
browser 140 can determine or predict whether the layer
transfer rendering technique will reduce a page load time
and/or bandwidth consumption compared to fully rendering
the content page on the browser 120 or fully rendering the
content page on the headless browser 140.

The content retrieval module 156 can retrieve the content
of the content page, for example HTML and image files,
from the host system of the content page. In some 1mple-
mentations, the network connection between the content
retrieval module 156 and the host system may be faster than
the network connection between the user device 102 and the
host system, thereby reducing latency in rendering the
content page for the user. The content source may be the
origin content server, a CDN server, a proxy server, or some
other source. In some embodiments, the requested content
may already be present at the intermediary system 104. For
example, the intermediary system 104 may include a cache
142, as shown 1n FIG. 1. In such cases, the requested content
may be retrieved from the cache 142 rather than the content
source 106.

Content processing module 150 can receive content page
contents 210 from the content retrieval module 156 and call
DOM generator 158 to construct a DOM representation of
the content page contents 210, for example based on a DOM
definition or specification. As an example, DOM generator
158 can convert elements of an HTML file representation of

10

15

20

25

30

35

40

45

50

55

60

65

12

the content page and any embedded resources into DOM
nodes. DOM generator 158 can also parse any available
style data, such as style data obtained from a referenced CSS
file or style data included 1n the HTML file. Parsed style data
together with markup instructions 1n the HIML {ile can be
used by the layer generator 159 to create the render tree
including one or more layers, which can be sent as render
tree data 2135 to the graphics processing module 152. Dii-
ferent layers of a content page can encompass different
two-dimensional areas of the content page (for example,
cover diflerent ranges ol coordinates without overlapping).
In some cases, one layer may partially or completely overlap
another layer (for example, a background layer may be
partially overlapped by any number of other layers, each of
which may partially or completely overlap other layers,
etc.).

Graphics processing module 152 can call layer analyzer
160 to analyze the layers and determine a suitable encoding
technique for each layer, for example based on the content
in the layer. In some cases, a suitable encoding technique
may be determined based on minimizing bandwidth used to
transier the layer, compatibility with capabilities of user
device 102, or minimizing a page load time. Layer analyzer
160 can analyze both the content and layout of the layers to
determine suitable encoding.

Layer analyzer 160 can also, in some embodiments,
determine whether to combine or split any of the layers 1n
the render tree data 215, for example based on an analysis
of the content 1n the layers. This determination can be based
on an analysis of one or both of the content or layout of each
layer 1n the render tree data 215. For example, certain
clements may be dynamic in nature, and may therefore
require updating more oiten than other elements, or in
response to diflerent events than other elements. Such
dynamic elements may therefore be grouped together 1n a
layer separate from static elements of the page. Examples of
clements that may trigger creation of a new layer to separate
them from the rest of the content page for processing
purposes include elements with animation, videos, GIFs, eftc.
Further, the layout of the layers can indicate that some layers
exhibit motion relative to other layers, and the relative
motion can be used to determine whether to combine or split
render tree layers into new layers. Layers can be combined
in some cases based on common determined encoding
techniques for layer content and split 1n some cases where
more than one encoding technique 1s determined for the
types of content within a layer.

Layer encoder 161 can encode each layer according to the
determined encoding techmque. In some embodiments, sta-
tionary content can be encoded as either vector graphics
commands or as a raster object. For example, a layer
including graphical content such as geometric objects can be
encoded as a set of graphics commands, such as vector
graphics commands such as Skia, in one embodiment, and
can be rasterized in another embodiment. A layer including
static text content can be encoded as a set of tiles (for
example, bitmaps, JPEGs, GIFs, tifls, or other image file
types) as well as graphics structions indicating to browser
120 where to display the tiles in one embodiment. In another
embodiment, static text layers can be encoded as a set of
graphics commands such as Skia commands. A layer includ-
ing 1mage content can be encoded as a plurality of image
bytes 1n some cases. A layer including video content can be
sent as a plurality of decoded frames from the original
encoded video content or as an encoded video stream 1n
some embodiments. In some embodiments, depending on
factors such as video size and network connection of the user

Us 9,922,007 Bl

13

device, a layer including video content can be encoded as a
URL such that browser 120 can retrieve the video directly
from the content host without needing to request updates
from headless browser 140 for each new video frame. In
some embodiments, video content can be transcoded from
one video format to another format, for example a format
that the user device can support, and can optionally be
compressed after transcoding. For example, some user
devices can natively decode certain video formats using less
power resources than decoding other video formats, such as
enabled by a hardware decoder on the user device. When
sending a content page request to a headless browser 140,
the browser 120 on the user device may send an indication
of such hardware decoders, and headless browser 140 can
use this mformation when making encoding decisions for
layers. Each encoded layer can include the content of the
layer as well as instructions regarding where to arrange the
layer on the content page and how to position the layer
relative to other layers (for example, a position relative to a
background and/or foreground layer).

Programmatic update module 162 can automatically gen-
erate updates to the content and/or layout of a layer, for
example 1n response to execution of a script such as
javascript in the page content running on the headless
browser 140, or in response to updates to an animated 1mage
or video. Such updates can be sent as updated layer tree data
220 including updates to the content and/or layout of some
or all of the layers.

The layer tree 220, including encoded layer content data
and layer layout data, can be provided to the remote graphics
module 122. Layer tree 220 can include or be accompanied
by data indicating the determined encoding technique asso-
ciated with each layer in some embodiments. Some embodi-
ments of the layer tree 220 can include or be accompanied
by 1nstructions for a non-visible interactivity layer to pre-
serve interactive features of the content page (1.€., scrollable
or drop down menus, navigation options, cursor click and
hover events, text input fields, radio buttons, and other
user-selectable options) including locations and associated
functions of the interactive features. Layer decoder 126 can
decode the encoded layers according to a decoding tech-
nique corresponding to the determined type of encoding for
cach layer.

The decoded layers can be provided to layer compositor
128 for generating instructions for display 124 to display a
visual representation of the content page based on the layers.
In some embodiments, the layer tree can be constructed so
that the layers will be decoded and provided to layer
compositor 128 in an order in which the layers should be
rendered. For example, layer compositor 128 can assemble
the decoded layers in the proper positioning and in the
proper order (e.g., with a background layer behind other
layers, foreground layers covering background layers with
overlapping coordinates, and with an interactivity layer in
front of the layers). Layer compositor 128 can use the
assembled layers to generate instructions to configure dis-
play 124 to display a visual representation of the content
page.

Instructions for displaying the visual representation of the
content page can be sent as display data 225 to the display
124. Display data 225 can indicate how to use the pixels (or
voxels) of display 124 to display an 1mage of the content
page (or a portion of the content page corresponding to a
viewable window based on scrolling or zooming) to the user.
Display 124 may be incorporated into user device 102 or
external to device 102, and can be any type of known display

10

15

20

25

30

35

40

45

50

55

60

65

14

including LED, LCD, plasma, stereoscopic, and may incor-
porate touch-sensitive technologies.

The browser 120 can also detect indications 230 of user
interaction with elements of the content page, such as
user-selectable options (e.g., a hyperlink URL, a graphical
button for adding an item to a digital cart, etc.), scrolling, or
zooming. The remote graphics module 122 can also be
configured to perform local rendering updates 240 in some
embodiments. As discussed above, a layer can be generated
corresponding to a scrollable portion of the content page.
Accordingly, browser 120 can use the scrollable layer data
to locally handle scrolling through the layer by updating the
portion of the scrollable layer content that 1s displayed in the
viewport, or boundary, of the scrollable layer. The browser
120 can also detect changing graphical content, for example
in a GIF or video, and send a request for updated content to
the headless browser 140 11 needed. In some embodiments
the browser 120 may have recerved a URL corresponding to
video content from the headless browser 140, and accord-
ingly may be able to handle the update to the portion of the
content page including the video without sending a request
to the headless browser 140.

For any interactions that are not able to be handled locally
using the provided layer tree 220, browser 120 can send the
indications 230 of user interaction to the interaction pro-
cessing module 154 of the headless browser 140. Interaction
processing module 154 can determine whether any updates
to the visual representation of the content page are neces-
sitated by the user interaction with the elements of the
content page.

In some examples, interaction processing module 154
may determine that the interaction indication requires addi-
tional content retrieval, and can send retrieval instructions
237 to the content retrieval module 156 indicating what
additional content should be retrieved. For example, a user
may select an option to navigate away from the current
content page to another content page or to load a new
content page.

In some examples, mteraction processing module 154
may determine that the interaction indication does not
require additional content retrieval but does require an
update to the DOM, and can send DOM update instructions
236 to the content processing module 150 indicating what
updates to perform to the DOM. For example, page content
or layout can change due to execution of a script running on
the headless browser, or due to user selection of a drop-down
menu. Accordingly, updates to the DOM can provide
updates for user mampulation of or programmatic changes
to existing content.

In some examples, mnteraction processing module 154
may determine that the interaction indication does not
require additional content retrieval nor an update to the
DOM, and can send update instructions 235 to the graphics
processing module 152 indicating what updates to perform
to the layer tree. For example, a hyperlink, once selected,
may change from a first color to a second color. The
interaction processing module 154 can determine that such
a user 1teraction with the hyperlink causes an update to the
visual representation of the content page. Interaction pro-
cessing module 154 can also identily a layer or layers
corresponding to the update. Accordingly, the interaction
processing module 154 can send update 1nstructions 235 to
the graphics processing module 152 to generate an updated
representation of layer tree 220 for mstructing browser 120
to display the hyperlink 1n the second color.

Us 9,922,007 Bl

15

Example Video Stream Rendering Techniques

FIG. 3 illustrates an embodiment of a layer transier
rendering technique 300 as implemented by an intermediary
system. For purposes of illustration, the process 300 1s
discussed herein as being implemented by the components
of the headless browser 140 of FIGS. 1 and 2.

At block 305, the headless browser 140 receives a request
for a content page from a user device, for example from
browser 120 of user device 102. The headless browser 140
can receive the request via one or more communication
networks 110, such as the Internet or a private network,
personal area network, local area network, wide area net-
work, cable network, satellite network, cellular telephone
network, etc. or combination thereof, each with access to
and/or from the Internet. The request for the content page
can include an identifier of the content page. The 1dentifier
may be based on a content page location represented by, for
example, a uniform resource locator (URL) or a umiform
resource indicator (URI), and may be received from a user
at the browser 120. In some embodiments, the block 305
may also include sending device configuration data and/or
metadata associated with the user device 102 to the inter-
mediary system 104. This device configuration data may
include any type of data relating to the configuration of the
user device 102. For example, the device configuration data
may include data relating to screen size, amount of graphics
memory, amount of random access memory (RAM), amount
ol storage space allocated to the browser 120, amount of
RAM allocated to the browser 120, capabilities of remote
graphics module 122, screen resolution, operating system
version, zoom capability of the user device 102, supported
font sizes, supported font types, and the like. In some
embodiments, the user device may alternatively send a
device 1dentifier that can be used by the mtermediary system
to look up previously-stored information about the device.

At block 310, the content retrieval module 156 of the
headless browser 140 retrieves content page contents, for
instance one or more of HITML content, XML content,
images, and videos. For example, the content retrieval
module may retrieve an HIML document, and may then
retrieve any inline objects (e.g., images) referenced by the
HTML document. The content retrieval module 156 can
retrieve the contents from a corresponding origin content
server 106. Alternatively, or in addition, the content page or
portions thereof may be accessed from one or more CDN
servers 108. The content retrieval module 156 can send the
content page contents 210 to the content processing module
150.

At block 315, the content processing module 150 can
generate a DOM representation of the content page. The
DOM representation or “DOM tree” organizes the content of
the requested content page, for example into a tree structure
including objects of the content page.

At block 320, based on the DOM tree, the content
processing module 150 can organize the objects into one or
more layers. Each layer can correspond to a diflerent portion
of the page or a diflerent type of content 1n some embodi-
ments. The content processing module 150 can send the
DOM tree data and render tree data to the graphics process-
ing module 152.

At block 322, the graphics processing module 152 can
analyze the content of the layers 1n the render tree 1n order
to generate a layer tree including content and layout data for
cach of a number of layers. As discussed above, 1n some
embodiments the layers in the render tree can be combined
and/or split based on an analysis of the content in the layers
and/or the positioning or movement of the content 1n order

10

15

20

25

30

35

40

45

50

55

60

65

16

to generate the layers of the layer tree. Each layer can be
associated with certain content data and layout data, where
layout data can refer to the size of the layer, positioning of
the layer relative to the content page or to other layers, and
a depth positioning of the layer (for example, where the
layer 1s located relative to a background or foreground
layer). Accordingly, the layers in the layer tree can be more
clliciently encoded for transmission to a user device than the
layers 1n the render tree in some embodiments.

At block 3235, the graphics processing module 152 can
determine a suitable rendering technique for each layer in
the layer tree. The determination can be made based on
several factors including the content of the layer, capabilities
of user device 102, configuration of browser 120, network
connection parameters, and the like. In some embodiments,
as discussed above, graphics processing module 152 can
analyze the layers to determine whether to split a layer or
combine two or more layers. This can occur after the
determination of suitable rendering techmiques in some
embodiments and can be based at least partly on the suitable
rendering techniques. The determination of whether to split
or combine layers can also be based on the content of the
layers in some examples.

At block 330, headless browser 140 can provide the layer
tree data including encoded layer content and layout to a
user device, for example to the browser component 120 of
user device 102. In some embodiments, the encoded layers
can include or be accompanied by data representing the
determined encoding technique for each layer. In some
embodiments, the rendering instructions can also include
istructions for preserving interactivity of the content page,
such as instructions regarding where to include a user
selectable option on the content page and what action to
associate with selection of the user selectable option.

In certain embodiments, the process 300, or portions
thereol, 1s performed continuously at least until layers are
provided to the user device 102 that correspond to the entire
content page with all of its content resources. Additional
layers may be selectively provided for changing portions of
the content page, for example a video 1included 1n the content
page or effects of user interaction with the content page. The
decision of how frequently to perform or re-perform por-
tions of the process 300 (e.g., the provisioning of updated
layers to the user device 102) may be based at least partially
on a number of factors. These factors may include, for
example, settings by a user (e.g., an administrator, a user
assoclated with the client device 102, a user associated with
the network page requested at the block 302), configuration
data associated with the user device 102, bandwidth avail-
able to the user device 102 and/or the intermediary system
104, and the like.

The process 300 also includes optional blocks 335 and
340 for handling updates to the page, for example providing
updated encoded layer content and/or layout based on user
interaction with the visual representation of the content page
as rendered on the user device, or providing an updated
encoded layer based on a programmatic update to the layer
content and/or layout. At optional block 333, the interaction
processing module 154 of the headless browser 140 can
receive, from the user device, an indication of user interac-
tion with elements of the content page. User interaction can
include selection of user-selectable options, scrolling, zoom-
ing, touch input, cursor clicks, cursor hovers, or text input,
to name a few. As discussed above, some user interactions
can be handled locally 1n some embodiments. Browser 120
can determine whether the provided layers include suthicient
data to locally handle the interaction and can send a request

Us 9,922,007 Bl

17

for updated instructions to the headless browser 140 if the
instructions are not suilicient. Alternatively or additionally,
the headless browser 140 can determine at programmatic
update module 162 that changing page content or layout
necessitates an update to the layer tree data sent to the user
device.

At block 340, the graphics processing module 152 can
send updated layer tree data including one or more updated
encoded layers to the user device based on the changes to the
visual representation of the page resulting from the user
interaction and/or programmatic update. In some embodi-
ments, only the layer to which the user interaction and/or
programmatic update necessitates an update can be sent to
the user 120 to preserve bandwidth, and the remove graphics
module 122 can use the updated encoded layer to update the
visual representation of the previously sent corresponding
layer on the device display. Blocks 335 and 340 can be
repeated, 1n some embodiments, 1n response to a new
indication of user interaction with the content page and/or
programmatic.

Blocks 335 and 340 can be executed by the process 300
in embodiments 1n which the headless browser 140 provides
updates to the user device and receives an updated page
request from the user device. However, 1n some embodi-
ments blocks 335 and 340 can be omitted. For example, the
layers sent 1n response to the user request for the content
page may include suflicient data for rendering the entire
content page including visual updates based on user inter-
action, for instance so that the user can continue to browse
the content page even 1f the network connection between the
user device and the headless browser 140 is interrupted.
Accordingly, the user device may handle the updates based
on the previously sent graphics commands and blocks 3335
and 440 can be omitted.

FIG. 4 illustrates an embodiment of a layer transier
rendering technique 400 as implemented by a user device.
For purposes of illustration, the process 400 1s discussed
herein as implemented by the browser 120 and other com-
ponents of the user device 102 of FIGS. 1 and 2, however
other client devices can implement the process 400 1n other
embodiments.

At block 4035, the browser 120 sends a request for a
content page to an intermediary system. As discussed above,
the intermediary system can include a headless browser 140
to communicate with the content page host service and
perform some of the graphics rendering for generating a
visual representation of the content page for the user.

At block 410, the browser component 120 of the user
device 102 recerves, from the mtermediary system, encoded
layers and layer tree data for rendering the requested content
page. The rendering instructions can include, for instance,
one or more layers of content of the content page encoded
in a suitable manner, data representing the determined
encoding technique for each layer, and interactivity instruc-
tions for non-visible interactive elements as specified by a
DOM tree of the content page. Each encoded layer can
include the content of the layer as well as instructions
regarding where to arrange the layer on the content page (for
example, coordinates of layer boundaries) and how to posi-
tion the layer relative to other layers.

At block 415, the browser component 120, for instance
remote graphics module 122, can decode the layers and
composite the decoded layers. Remote graphics module 122
can use a decoding technique corresponding to the deter-
mined encoding technique for each of the layers to decode
the encoded layer. Remote graphics module 122 can then
composite the decoded layers according to the layer tree

10

15

20

25

30

35

40

45

50

55

60

65

18

data, that 1s, assemble the layers according to their respec-
tive locations and relative order.

At block 420, remote graphics module 122 can render a
visual representation of the content page for display to the
user of device 102. Remote graphics module 122 can use the
composited layers to determine how to display the pixels or
voxels of a display associated with the device 102 1n order
to present the visual representation of the content page.

In some embodiments, the process can optionally transi-
tion from block 420 back to block 410 in response to
receiving a programmatic update 435 from the intermediary
system. For example, a programmatic update to the content
page can result from a script, such as javascript, associated
with the content page executing on the intermediary system.
Execution of the script can cause the intermediary system to
generate an update to one or both of layer content and layout,
and intermediary system can accordingly send an update
encoded layer to the browser component of the user device
for rendering an update to the content page.

Process 400 also includes optional blocks 425-445 for
handling interactivity of the page, for example providing an
updated visual representation of the content page based on
user interaction with the page. In some embodiments, a
content page may have no interactive features, and accord-
ingly blocks 425-445 can be omitted from the process 400.
In some embodiments, a content page may have interactive
features but a user may not interact with any of the inter-
active features, and accordingly blocks 425-445 can be
omitted from the process 400.

At optional block 425 the browser 120 can receive an
indication of user interaction with the content page. For
example, the user may interact with the page through an
iput device built i to user device 102 or connected to
device 102, for example a mouse, joystick, track pad, touch
screen, touch panel, scroll wheel, keypad, button, micro-
phone and voice command recognition module, camera and
gesture recognition module, or other input element. The user
interaction may include selection of user-selectable options,
scrolling, zooming, touch input, cursor clicks, or text input,
to name a few.

At optional decision block 430, browser 120 can deter-
mine whether the provided layers enable the browser 120 to
handle the user interaction or whether browser 120 requires
one or more updated layers from headless browser 140. As
discussed above, some user interactions can be handled
locally 1n some embodiments. Browser 120 can determine
whether the layers provide suflicient data to locally handle
the mteraction and can send a request for updated nstruc-
tions to the headless browser 140 1f the layers are not
suilicient.

If the layers are not suflicient for browser 120 to perform
updated rendering associated with the user interaction, at
block 435 the browser 120 sends a request for updated layers
to the intermediary system. In some embodiments, the
request may 1dentity one or more layers to which updates are
needed.

At block 440, the browser 120 receives one or more
updated encoded layers from the headless browser 140. As
discussed above, the updated layer can correspond to only
the portion of the content page that 1s changed by the update
in some embodiments. Accordingly, at block 445, the
browser 120 can perform the updated rendering based on the
updated encoded layers.

If the rendering instructions are suflicient for browser 120
to perform updated rendering associated with the user inter-
action, at block 450 browser 120 renders the updated content
based on the previously provided layers. As discussed

e

Us 9,922,007 Bl

19

above, 1n some embodiments a provided layer can include
content extending beyond the viewable window of browser
120 and accordingly browser 120 may be able to locally
render updates in response to a user scrolling.

Example User Interfaces

FIG. 5 illustrates an example of a content page 500 (e.g.,
web page) that can be rendered using the layer transier
rendering techniques described herein.

In one example, a render tree of content page 500 may
parse the page into three layers: a navigation layer 510, a
scrollable content layer 520, and an advertisement layer 330.
Navigation layer 510 can include static text 512, 516,
dynamic text 518 (for example, dynamic text 518 can shiit
up or down to display a subset of more specific filtering
options 1f the user selects one of the presented options), and
text input box 514. Scrollable content layer 520 can include
item 1mage 521, static text 522, 524, 525 as well as the text
of button 527 (which will remain static relative to the
remainder of the scrollable content layer 520 but not relative
to the other layers or the content page as a whole when a user
scrolls through scrollable content layer 520), graphical rat-
ing representation 523, cart icon 526, camera GIF 529, and
camera review video 328. Advertisement layer 530 can
include static text 532 and graphical advertisement content
534.

The intermediary system may generate the DOM tree and
render tree including the layers 510, 520, and 330, as
described above. The intermediary system can analyze the
layers 510, 520, and 530 and the corresponding content to
determine whether the render tree layers should be split or
combined and to determine a suitable encoding technique
for each layer.

In one embodiment, the intermediary system may deter-
mine that the graphical representation of text box 514 1n the
navigation layer 510 and graphical advertisement content
534 1n the advertisement layer 330 should be encoded
similarly, for example as graphics commands, and may split
these portions of layers 510 and 530 into a new graphical
content layer. Graphical content layer can be encoded as
graphics commands and provided to the user device for
rendering content page 500.

The mntermediary system may determine, 1n one embodi-
ment, that the static text 512, 516 and the dynamic text 518
of the navigation layer 510 and the static text 532 of the
advertisement layer 530 should be encoded similarly, for
example as tiles or Skia commands, and can accordingly
may split these portions of layers 510 and 530 into a new text
content layer. Text content layer can be encoded as tiles or
Skia commands and provided to the user device for render-
ing content page 500.

The intermediary system may analyze the scrollable con-
tent layer 520 and determine, in one embodiment, to split the
scrollable content layer into three layers based on deter-
mined encoding techniques for the content of scrollable
content layer 520. A first new layer generated from the
scrollable content layer 520 can be a scrollable graphical
content layer including item image 521, graphical rating
representation 523, cart icon 528, and the graphical repre-
sentation of button 527. In some embodiments, camera GIF
529 or similar ammated 1image content can be encoded as
graphical content with the scrollable graphical content layer,
and updates to the camera GIF 529 can be provided as
updates to the content of the scrollable graphical content
layer. Scrollable graphical content layer can be encoded as
graphics commands, for example vector graphics commands
or pre-rendered 1mages with graphics commands 1ndicating
location of the images, and provided to the user device for

10

15

20

25

30

35

40

45

50

55

60

65

20

rendering content page 500. The browser component of the
user device can position the scrollable graphical content
layer within the boundaries specified for the scrollable
content layer 520 1n the render tree.

A second new layer generated from the scrollable content
layer 520 can be a scrollable text content layer including
static text 522, 524, 525 as well as the text of button 527. The
intermediary system may, in some embodiments, combine
the scrollable text content layer with the text content layer
generated from layers 510 and 530 1n some embodiments.
However, because the scrollable text content layer can move
relative to the text content layer generated from layers 510
and 530 when the user scrolls through portion 520 of the
content page, the intermediary system can keep these layers
separate 1n some embodiments. The browser component of
the user device can position the scrollable text layer over the
scrollable graphical content layer and within the boundaries
specified for the scrollable content layer 520 1n the render
tree.

A third new layer generated from the scrollable content
layer 520 can be a video content layer including video 528.
The video content layer can be encoded, in one embodiment,
using a known video codec. In another embodiment, video
content layer can be encoded as a URL of the corresponding
video. The video content layer can also be transcoded into a
format preferred for decoding by a hardware decoder of the
user device. Video content layer can also be encoded with
instructions regarding where to position the video content
layer over the scrollable text layer and the scrollable graphi-
cal content layer, and within the boundaries specified for the
scrollable content layer 520 in the render tree. In some
embodiments, camera GIF 529 can be encoded as video
content with the video content layer, and updates to the
camera GIF 529 can be provided as updates to the content
of the video content layer.

Although one example of how to convert a render tree into
layers and corresponding encoding techniques has been
discussed with respect to FIG. §, this 1s for purposes of
example only and 1s not intended to be limiting. Based on
factors such as content page content, browser characteristics,
user device capabilities, and network connection, among
others, an mtermediary system can adaptively parse a con-
tent page into layers to optimize page load time, minimize
bandwidth consumption, or a balance of the two.

FIGS. 6A and 6B illustrate another example of a content
page 600 (e.g., web page) that can be rendered using the
layer transfer rendering techmiques described herein,
wherein the differences 1n layer content and configuration
between FIGS. 6 A and 6B provide one example of differ-
ential updates to layer content and layer configuration.

In one example, a render tree of content page 600 may
parse the page into three layers: (1) a text layer 630
including text 622, 624, 625, and the text of user interface
button 627, (2) a graphics layer 640 including the graphical
rating representation 523, cart icon 626, and the graphical
clements of user interface button 627, and (3) an image layer
650 including item 1mage 610.

The intermediary system may determine, in one embodi-
ment, that the text layer 630 should be encoded as tiles or
Skia commands, and can accordingly send a suitably
encoded version of the text layer 630 to the user device for
use 1n rendering the content page 600. The intermediary
system may determine, 1n one embodiment, that the graphics
layer 640 should be encoded as vector graphics commands
such as Skia commands. In another embodiment, the inter-
mediary system may determine that the graphics layer
should be encoded as a raster object. The termediary

Us 9,922,007 Bl

21

system can send a suitably encoded version of the text layer
630, graphics layer 640, and image layer 650 to the user

device for use 1n rendering the content page 600. For each
layer, the intermediary system can send the layer content and
layer configuration, such as coordinates or other represen-
tations of size and/or page position, to the user device. The
intermediary system can send the layer content and configu-
ration data as a layer tree indicating to the user device where
and 1n what order to render the layers.

As 1llustrated 1n FIG. 6A, 1n some embodiments the
intermediary system may determine, based on a variety of
factors such as network connection parameters and user
device capabilities, whether to prioritize the text layer 630
and graphics layer 640 over the image layer 650. In such
embodiments, the itermediary system may send all of the
layer tree data for text layer 630 and graphics layer 640 and
none or some of the layer tree data for image layer 650.
Accordingly, as 1llustrated 1n FIG. 6A, image layer 630 can
include an 1mage loading placeholder 605 as the user device
renders the text layer 630 and graphics layer 640 betfore the
image layer 650. The image layer 650 can be sized based on
the size of 1image loading placeholder 605.

As 1llustrated in FIG. 6B, the user device can subse-
quently receive updated layer tree data for the image layer
650 that instructs the device to render image 610. Accord-
ingly, the content of the image layer 650 1s updated to
display image 610 and the size of the image layer 650 is
updated based on the size of image 610. Due to the increased
s1ize of the 1mage layer 605, the intermediary system may
also 1include coordinate or positioning updates 1n the updated
layer tree data regarding new locations on the page 600 for
text layer 630 and graphics layer 640. Instead of re-render-
ing text layer 630 and graphics layer 640, the user device can
move the already rendered layers to the new locations
identified 1n the updated layer tree data from the interme-
diary system.

Terminology

Depending on the embodiment, certain acts, events, or
functions of any of the processes or algorithms described
herein can be performed i1n a different sequence, can be
added, merged, or left out altogether (e.g., not all described
operations or events are necessary for the practice of the
algorithm). Moreover, 1n certain embodiments, operations or
events can be performed concurrently, e.g., through multi-
threaded processing, interrupt processing, or multiple pro-
cessors or processor cores or on other parallel architectures,
rather than sequentially.

The various illustrative logical blocks, modules, routines,
and algorithm steps described 1n connection with the
embodiments disclosed herein can be implemented as elec-
tronic hardware, computer software, or combinations of
both. To clearly illustrate this interchangeability of hardware
and software, various 1llustrative components, blocks, mod-
ules, and steps have been described above generally 1n terms
of their functionality. Whether such functionality 1s imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. The described functionality can be implemented 1n
varying ways for each particular application, but such imple-
mentation decisions should not be interpreted as causing a
departure from the scope of the disclosure.

Moreover, the various 1llustrative logical blocks and mod-
ules described in connection with the embodiments dis-
closed herein can be implemented or performed by a
machine, such as a general purpose processor device, a

5

10

15

20

25

30

35

40

45

50

55

60

65

22

digital signal processor (DSP), an application specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any com-
bination thereof designed to perform the functions described
herein. A general purpose processor device can be a micro-
processor, but 1n the alternative, the processor device can be
a controller, microcontroller, or state machine, combinations
of the same, or the like. A processor device can include
clectrical circuitry configured to process computer-execut-
able mstructions. In another embodiment, a processor device
includes an FPGA or other programmable device that per-
forms logic operations without processing computer-execut-
able 1nstructions. A processor device can also be imple-
mented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, one or more miCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.
Although described herein primarily with respect to digital
technology, a processor device may also include primarily
analog components. For example, some or all of the signal
processing algorithms described herein may be implemented
in analog circuitry or mixed analog and digital circuitry. A
computing environment can include any type of computer
system, including, but not limited to, a computer system
based on a microprocessor, a mainframe computer, a digital
signal processor, a portable computing device, a device
controller, or a computational engine within an appliance, to
name a few.

The elements of a method, process, routine, or algorithm
described in connection with the embodiments disclosed
herein can be embodied directly in hardware, in a software
module executed by a processor device, or in a combination
of the two. A software module can reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of a non-transitory computer-readable
storage medium. An exemplary storage medium can be
coupled to the processor device such that the processor
device can read information from, and write information to,
the storage medium. In the alternative, the storage medium
can be 1ntegral to the processor device. The processor device
and the storage medium can reside 1n an ASIC. The ASIC
can reside 1n a user terminal. In the alternative, the processor
device and the storage medium can reside as discrete com-
ponents 1n a user terminal.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, 1s generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language 1s not generally mtended to imply
that features, elements and/or steps are 1n any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
other mput or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having,” and the like are synonymous and are used
inclusively, 1 an open-ended fashion, and do not exclude
additional elements, features, acts, operations, and so forth.
Also, the term “or” 1s used 1n its inclusive sense (and not 1n
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements 1n the list.

&k

Us 9,922,007 Bl

23

Disjunctive language such as the phrase “at least one of X,
Y, Z.,” unless specifically stated otherwise, 1s otherwise
understood with the context as used 1n general to present that
an item, term, etc., may be either X, Y, or Z, or any
combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally imntended to, and should
not, imply that certain embodiments require at least one of
X, at least one ol Y, or at least one of Z to each be present.

While the above detailled description has shown,
described, and pointed out novel features as applied to
various embodiments, 1t can be understood that various
omissions, substitutions, and changes 1n the form and details
of the devices or algorithms 1llustrated can be made without
departing from the spirit of the disclosure. As can be
recognized, certain embodiments described herein can be
embodied within a form that does not provide all of the
features and benefits set forth herein, as some features can
be used or practiced separately from others. The scope of
certain embodiments disclosed herein i1s indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope.

What 1s claimed 1s:

1. A system for providing access to network-accessible

content, the system comprising:

a browser component adapted to run on a user device, the
browser component configured to provide a user inter-
face on a display of the user device; and

an mntermediary system responsive to a request from the
user device for a content page by retrieving the content
page from a host system, the intermediary system
comprising one or more computing devices and further
comprising;

a content processing module configured to generate a
render tree representation of the content page; and
a graphics processing module configured to:

generate, based at least partly on the render tree
representation, a layer tree including content data
and layout data for each of a plurality of layers
usable for rendering a visual representation of the
content page:

analyze the plurality of layers to determine whether
to combine or split at least a portion of the content
data of any of the plurality of layers, wherein
determining whether to combine or split 1s based
on an encoding technique determined for the por-
tion of the content data;

combine or split the plurality of layers based on
analyzing the plurality of layers such that a dii-
ferent encoding technique of a plurality of difler-
ent encoding techniques 1s selected for each layer
of the plurality of layers, wherein the selected
encoding technique decreases bandwidth usage 1n
sending the layer to the user device relative to
sending the content of the layer without encoding;
and

generate, for each layer of the plurality of layers of
the layer tree, encoded layer data by encoding the
layer according to the selected encoding tech-
nique;

wherein the intermediary system i1s further configured to
send the encoded layer data to the user device;

wherein the browser component i1s configured to render
the visual representation of the content page on the
display of the user device based at least partly on the
encoded layer data.

10

15

20

25

30

35

40

45

50

55

60

65

24

2. The system of claim 1, wherein one of the imntermediary
system or the browser component configured to run on the
user device 1s configured to assess, for the content page,
whether sending the encoded layer data to the user device
will reduce a percerved page load time relative to at least one
content delivery technique.

3. The system of claim 1, wherein the graphics processing,
module 1s further configured to select a diflerent encoding
technique for at least two of the plurality of layers.

4. The system of claim 1, wherein the graphics processing,
module 1s configured to:

analyze one or both of the content data and layout data for

the plurality of layers and determine one layer of the
plurality of layers to split into two or more additional
layers; and

split the determined layer into the two or more additional

layers.

5. The system of claim 4, wherein the determined layer 1s
associated with two or more encoding techniques and
wherein the two or more additional layers each are associ-
ated with a different encoding technique.

6. The system of claim 1, wherein the graphics processing
module 1s configured to:

analyze one or both of the content data and layout data for

the plurality of layers and determine two or more layers
of the plurality of layers to combine into an additional
layer; and

combine the determined two or more layers into the

additional layer.

7. The system of claim 6, wherein the determined two or
more layers are associated with a single encoding technique
and wherein the additional layer 1s associated with the single
encoding technique.

8. The system of claim 1, wherein the browser component
comprises a remote graphics module configured to decode
and composite the plurality of layers.

9. A method of providing access to network-accessible
content system, the method comprising, by an intermediary
system that operates as an intermediary between user
devices and content servers:

receiving, from a browser component running on a user

device, a request for a content page;

retrieving the content page from a host system;

generating a render tree representation of the content

page,

generating, based at least partly on the render tree repre-

sentation, a layer tree including content data and layout
data for a plurality of layers for rendering a visual
representation of the content page;
analyzing the plurality of layers to determine whether to
combine or split at least a portion of the content data of
any ol the plurality of layers, wherein determining
whether to combine or split 1s based on a type of
encoding determined for the portion of the content data;

combining or splitting the plurality of layers based on the
analyzing such that a different type of encoding of a
plurality of different types of encoding 1s selected for
cach layer of the plurality of layers, the selected type of
encoding decreasing bandwidth usage 1n sending the
layer to the user device relative to relative to sending
the content of the layer without encoding;;

encoding the layer according to the selected type of

encoding; and

sending the layer tree, including the content data and the

layout data for the plurality of layers, wherein the
content data and the layout data include the encoded
layer, over a network to the browser component run-

Us 9,922,007 Bl

25

ning on the user device for rendering the visual repre-
sentation of the content page on a display associated
with the user device;

wherein the intermediary system comprises one or more

computing devices and 1s separate from the user device
and the host system.

10. The method of claim 9, further comprising selecting
a type of encoding for each of the plurality of layers.

11. The method of claim 10, turther comprising encoding
cach of the plurality of layers according to the selected type
of encoding.

12. The method of claim 10, further comprising selecting
a different type of encoding for at least two of the plurality
of layers.

13. The method of claim 10, further comprising deter-
mimng, based on the selected type of encoding for each of
the plurality of layers, whether to split or combine any of the
plurality of layers.

14. The method of claim 9, further comprising determin-
ing, based on an analysis of relative motion of layers to one
another indicated by the layout data, whether to split or
combine any of the plurality of layers.

15. The method of claim 9, further comprising assessing,
for the content page, whether sending the layers to the
browser component will reduce a perceived page load time
relative to at least one alternative content delivery technique.

16. The method of claim 9, further comprising determin-
ing an update indication including one or both of an indi-
cation of user interaction with the visual representation of
the content page or identifying a programmatic initiated
update.

17. The method of claim 16, further comprising assessing
whether the plurality of layers are suflicient for the user
device to render an update to the visual representation of the
content page responsive to the update indication.

18. The method of claim 17, further comprising generat-
ing an update to one or both of the content data and layout
data for at least one of the plurality of layers in response to
determining that the layers are not suflicient to render the
update.

5

10

15

20

25

30

35

26

19. The method of claim 18, further comprising sending
the update to the user device.

20. A non-transitory computer-readable medium storing,
computer executable mnstructions that direct a user device to
perform operations comprising:

sending a request for a content page to an intermediary

system that operates as an intermediary between user
devices and content servers:

receiving, from the intermediary system, a layer tree

including content data and layout data for each of a
plurality of layers generated by the intermediary system
based at least partly on a render tree representation of
the content page, wherein the plurality of layers have
been split or combined 1n response to encoding tech-
niques determined for portions of the content data such
that at least two of the plurality of layers are each
encoded with a different one of a plurality of different
encoding techniques selected to decrease bandwidth
usage 1n receiving the layer from the intermediary
system relative to sending the content of the layer
without encoding;

generating, based at least partly on the plurality of layers,

instructions to configure a display associated with the
user device to display the visual representation of the
content page; and

rendering, based at least partly on the instructions, the

visual representation of the content page on the display
of the user device.

21. The non-transitory computer-readable medium of
claim 20, wherein each of the plurality of layers 1s encoded
according to an encoding technique determined by the
intermediary system, the operations further comprising
decoding each of the plurality of layers according to a
decoding technique associated with the determined encod-
ing technique.

22. The non-transitory computer-readable medium of
claim 20, further comprising compositing the plurality of
layers via the browser component to generate the visual
representation of the content page.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 9,922,007 Bl Page 1 of 1
APPLICATION NO. . 14/285442

DATED : March 20, 2018

INVENTOR(S) . Saral Jain et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification
In Column 2 at Line 37, after “herein” insert --.--.

In the Claims

In Column 24 at Line 60 (Claim 9, Line 18), change “relative to relative to” to --relative to--.

Signed and Sealed this
Third Day of July, 2018

Andre1 Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

