12 United States Patent

Motwani

US009911509B2

US 9,911,509 B2
Mar. 6, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

COUNTER TO LOCATE FAULTY DIE IN A
DISTRIBUTED CODEWORD STORAGE
SYSTEM

Applicant: Intel Corporation, Santa Clara, CA

(US)
Inventor: Ravi H. Motwani, Fremont, CA (US)
Assignee: Intel Corporation, Santa Clara, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2 days.

Appl. No.: 14/099,551

Filed: Dec. 6, 2013

Prior Publication Data

US 2015/0162100 Al Jun. 11, 2015

Int. CIL.

GI1IC 29/00 (2006.01)

G11C 29/44 (2006.01)

G11C 29/42 (2006.01)

G11C 29/04 (2006.01)

U.S. CL

CPC GI1I1C 29/44 (2013.01); G11C 29/42

(2013.01); G1IC 29/82 (2013.01); GIIC
2029/0409 (2013.01); G11C 2029/0411
(2013.01)

Field of Classification Search

CPC G11C 29/44
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,267,242 A * 11/1993 Lavallee et al. 714/6.32
7,359,261 Bl 4/2008 Wu et al.
/ 1340
Die 1 Die 2 [iie 8 Die 9 Dis 10
318 316 318 316 i 318

SRR T
e,
e,

Pttt
G
[, L

S

Codeward Paorlion

S B S S S ol
AT et at et
SRS
. it 0 36
S S S

i

EDC

flatadaia

7,984,345 B2 7/2011 Ozawa et al.
8,959,407 B2* 2/2015 Motwani HO3M 13/3723
714/704
9,037,943 B2* 5/2015 Motwani HO3M 13/2927
714/758

9,105,305 B2 82015 Werner et al.

2002/0133769 Al 9/2002 Cowles et al.
2009/0274245 Al1* 11/2009 Brown G11C 7/1006
375/340

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101178943 A 5/2008
CN 101310342 A 11/2008
CN 103348330 A 10/2013

OTHER PUBLICAITONS

Office Action and Search Report received for Taiwanese Patent
Application No. 103138361, dated Dec. 9, 2015, 6 pages including
1 page of English translation.

(Continued)

Primary Examiner — Sam Rizk

(74) Attorney, Agent, or Firm — Alpine Technology Law
Group LLC

(57)

Methods and apparatus related to utilization of counter(s) for
locating faulty die 1n a distributed codeword storage system
are described. In one embodiment, first logic determines a
plurality of values. Each of the plurality of values corre-
sponds to a number of zeros or a number of ones 1n bits read
from a portion of each of a plurality of memory dies. Second
logic determines one or more candidates as a faulty die
amongst the plurality of memory dies based at least 1n part
on a comparison of the plurality of values for the plurality
of memory dies. Other embodiments are also disclosed and
claimed.

ABSTRACT

23 Claims, 7 Drawing Sheets

/"‘ 150

Miax
7/ (zeros,ones)

!
Count Total Zeros/Ones i '

|
S
Die 1 S
B
|

: »{ Count Total Zeros/QOnes }

Taop

Sorter f Candidate(s)

Max Legic |

-

152

MMax
(Zeros, ones)

'{ Count Total Zeros/Ones ‘g -

]
|
|
|
|
|
|
|
|
|
| {(zeros,ones)
|
|
|
|
|
|
[
|
|

US 9,911,509 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2012/0266050 Al1* 10/2012 Cideciyan HO3M 13/05
714/773
2014/0089760 Al* 3/2014 Schnudt GO6F 11/1044
714/766
2014/0157087 Al1* 6/2014 Yurzola et al. 714/773

OTHER PUBLICATIONS

Letters of Patent received for Taiwanese Patent Application No.
103138361, dated Feb. 1, 2017 as Patent No. 1569277, 2 pages
including 1 page of English translation.

English translation of O

1ce Action received for Chinese Patent

Application No. 2014108107774, dated Jul. 19, 2017 and cited in an
IDS filed on Jul. 31, 2017, 15 pages.

Ofhce Action recerved

for Chinese Patent Application No.

201410810777.4, dated Jul. 19, 2017, 8 pages.

* cited by examiner

U.S. Patent Mar. 6, 2018 Sheet 1 of 7 US 9,911,509 B2

100

/

PROCESSOR 162-1

CoreE2 R 1 CoReM } | INTERCONNECTION
1{}6-2 106-M 5 104

S

ROUTER {19
110

__ ? MEMORY
--------- CONTROLLER
120

PROCESSOR 102-2 bcee———
___ . PROCESSOR 102-3
'
'
PROCESSOR 102-N Rreeoesssesssccrsssscned SOLID STATE |
N | STORAGE |
___ CONT. LOGIC |
125 |

COUNTER(S)
150

SORTER

T’ [1 | LogGIC

Sheet 2 of 7

Mar. 6, 2018

U.S. Patent

204

Y

PR L R L
o .ﬁiﬁ.*.ﬁ.f i#..#
QRS

gLc

1%}

A
R

“
s

]

gL¢

@ ®_D

R SR S R R R
0 ST S SO0
_ i+++w+i+iﬂriii++i+iﬂﬂ

|

e Sl WO e Wl W ol Nl WO sl O i SOl N e

gqL€

9 8i(]

gL¢

¢ 2

gL¢

L 21(]

US 9,911,509 B2

Sheet 3 of 7

Mar. 6, 2018

U.S. Patent

AAJI

(S)eyepipue
doj

o/

¢ DIy

csl

21607
191108

|
|

Alll%llr SOU()/S0J97 [R10] JUNOY
|

(S9U0's018Z)
XEeN

(SQU0'S01DZ)
XeW

SOU()/S0437 [e]l0] JUnon

SOU()/S0JB7 [e10] JUNoY

(seuo‘soiaz)

0L °id

¢ 9id

L 9td

/
N 0G1 [\\\

US 9,911,509 B2

Sheet 4 of 7

Mar. 6, 2018

U.S. Patent

T e e T e T e T N T N N S I S i -

s

T T Y e e Y e S S T S A

ERET)

T T T T T P A T T T TR R T TN

i

A e e T e s e e T e e e

= v e

%

I R I T . L I I I L L L

L A N N N N L L o o T T A A I o o T A A N N N N A A e

S, I...“..I LT T TN N WY Y TN R R RN TR TN W TR T W W TR T T OB T O N LT T T T T R Y T

<
T

L
PR

-

LY

..“_..__.
o
VR
,...,.__..”

oy Sy

LA
SE Lk & a

L

U T B - R - - B TR T R LR R B U T - B U T T B B U]
e o ke e e b o o o ke e e b o e e o e b ey
o

'

-
4

T it e iiieiiiasassasasssasssaasaaasaaaaan

¥
kY
.,..
-
k.

-
-

0tl
ass

T
T'h'
T,
*

i dr A A

Trrrrrrrrrrrr ok w koo bk kb b

B e o T T ok oL S S S H

-
L L ™
- . PRS-

| T ey Sy A ERp SR S Bt SR

N I A

P N B N O I N R I T
A S S SRR L L A S S S S S S,
NN N N N N N N N N R N N N N
L} L} L] --)

I

-
<

e ke G A S,k k. i, OD

. woE

7 sng Jo jpuuey) i

L X 3
ﬂ:ﬂ

...
1I1I1IIIFIFIFIFJ|JI1W \‘
¢
¢
. ’
¢
s
-,

-

- - - - - S

. T P TR

P O

ECETRT]

oty e e S s e

7l

o .
e PN i i T e S A R R A L
n

L T T T T O T L B R R R URR U TR T)

L

<

.::'.t:-.i..i...i. A e e e S g g e Ty oy oy e o A, A,

e T B Bl B L B B B o B |
S
L]) L} L}) L]) L} L}) L]) L} L} L] L} L} L] L} N

SR .
L]) L} N L}) L]) L} N L}) L]) L} N L}) L]) L} N L} L] L} N
S
L]) L} L}) L]) L} L}) L]) L} L} L] L} L} L] L} N
S
L]) L} L}) L]) L} L}) L]) L} L} L] L} L} L] L}

L}) L]) L} L} L] L} - L}
T T T T T T

b Tl B e el T e e R e el R B e Bl Bt
A
-.---.- L} L] L} L} L] L} --.- L} ---
SR .
S
s
-- L} L] L} L} L] L} --.- L} ---
e
-- L} L] L} L} L] L} --.- L} ---
-- L} - L} L] . L} L} . L]
T T T T T

' (s)10ssan0:

T I B e I T T I A O

8Y

13[jOIIUO)

R R e L R R R L R
g

-----------------qwjn

.q.._....f.fp
__..-.- ' L ...r.-.._.... LT
A LN . St T
.15.__.._. ' S =
. o .. N .
Bl M = .‘.... A
{ . q (L 1
a o F I .
{ - 1 . +
i - & .
[I 1 . . ¥
o . om a4 .
[1 LA 4
roaa o I A
| . Fe o I
an -1 oo e
[. Ao .
PRI .k o T
{ - H ko '
PRI .1 A |
¥+ E .
o -1 LI -1
L - b - H
o . o .k
L I B .
TR A | o A |
q . . i -
D oror o0 . P oo [
[- T e
...._”.... ' © e e Tﬂ.
W o .
L 'q.__...
(R PR |
.—.-.r. - P ..1.‘
P ar s oa b kP oroaoaonom e L DR R N T P T e T T I T O L
I e A . e e__.......|._.|...#Lu*.f.f##hv##.{.f.fh..b.#hvl..fl.*#i
LN O L N R TR IR BRI | NN N
AT T ' ' ' ' ' ' ' [e R o ' ' ' ' ' '
L B R R R B R R B L A |_..........................._
N N A P R TR TR | N N N N N N N
L T e R T T T 1 [Fm 1 o 0 & 1 41 I 1 ' 1 ' [|
.v.-........i.......; —.x........_
.“.................. il ' v T T T T Ty 'u._n............. B ' T T T T 0
.u.-................ -y PPN rxl.. S .'. N \ o
...r.-................L -...II. - ... -—
.-................-.......‘—I-. [| -... N) 1 1) .—
L T . . P | A
P ! ! - . L . .
L - 2 |
! - 21 K
! - A >
A | i E
~t []
iy - A g
] i]
R . 1
! 1 A i
I o o o o e o o e o o e o o e o e e e e e - 1 L o o o e e o o e o o e o e e o e e e e e e = a
R T i T e L e LT L et TR T T R T R R T i T e B e N e e B e L e -

-

M TRl e kel B kel e ke o

- d .

<
Y

o mp e e mp

-

VS X9)

.
-\-z-a-z-'\-'-'\.'-.

v DL

| TS
L DIDOT
{ o dHIAOS

061

S v\ (@m0

e

$CH
DIDOT “INOD)
HOVIOLS
ALVIS arios

U.S. Patent Mar. 6, 2018 Sheet 5 of 7 US 9,911,509 B2

500

PROCESSOR |} PROCESSOR

~ CORE(S) CORE(S)
106 } 106

502-n | 504

e
.-"J/
) B} MEMORY
MeM, CONTROLLER 310 Fei— - 114
GMCH GRATHICS § § § GRAPHICS
INTERFACTE g4 | ACCFLERATOR
- 518 DispLAY/
/" TOUCH SCREEN
5 517
Y g =t
ICH PERIPHERAL 579
BRIDGE -
324
AUDIO NETWORK
DEVICE INTERFACE
____________________________ 5 526 DEVICE
CHIPSET 506 230

FIG. 5

NETWORK
303

U.S. Patent Mar. 6, 2018 Sheet 6 of 7 US 9,911,509 B2

600

606 —— . — o 608
PROCESSOR 604

I CORE(S) 106 l

.
™,
s

N
MEMORY T
610
MCH

CACHF
PO

RUS Bl | 7170 Deviers | E- AuDlo |
LS BRIDGE /O DEVICES DEVICES 644
el — 647 |/

KM"BOAW ;
R COMM DEVICES | DATA STORAGE 648
MOUSE 646 |
645 —

CODE |

U.S. Patent Mar. 6, 2018 Sheet 7 of 7

SOC PACKAGE 702

/O 5
INTERFACE §
140 '

/O DEVICE(S)
1760

| MEMORY _
CONTROLLER b—mmmmm—— —

742

LOGIC
125

US 9,911,509 B2

MEMORY
760

FIiG. 7

US 9,911,509 B2

1

COUNTER TO LOCATE FAULTY DIE IN A
DISTRIBUTED CODEWORD STORAGE
SYSTEM

FIELD

The present disclosure generally relates to the field of
clectronics. More particularly, some embodiments generally
relate to counter for locating faulty die in a distributed
codeword storage system.

BACKGROUND

Generally, memory used to store data in a computing
system can be volatile (to store volatile information) or
non-volatile (to store persistent information). Volatile data
structures stored in volatile memory are generally used for
temporary or intermediate mformation that 1s required to
support the functionality of a program during the run-time of
the program. On the other hand, persistent data structures
stored 1n non-volatile memory are available beyond the
run-time of a program and can be reused. Moreover, new
data 1s typically generated as volatile data first, before the
user or programmer decides to make the data persistent. For
example, programmers or users may cause mapping (i.e.,
instantiating) of volatile structures 1n volatile main memory
that 1s directly accessible by a processor. Persistent data
structures, on the other hand, are instantiated on non-volatile
storage devices like rotating disks attached to Input/Output
(I/O or 10) buses or non-volatile memory based devices like
flash memory.

As computing capabilities are enhanced 1n processors,
one concern 1s the speed at which memory may be accessed
by a processor. For example, to process data, a processor
may need to first fetch data from a memory. After comple-
tion of the data processing, the results may need to be stored
in the memory. Therefore, the memory access speed can
have a direct effect on overall system performance.

Another important consideration 1s power consumption.
For example, 1n mobile computing devices that rely on
battery power, 1t 1s very important to reduce power con-
sumption to allow for the device to operate while mobile.
Power consumption 1s also important for non-mobile com-
puting devices as excess power consumption may increase
costs (e.g., due to additional power usage, increased cooling
requirements, etc.), shorten component life, limit locations
at which a device may be used, etc.

Hard disk drives provide a relatively low-cost storage
solution and are used 1n many computing devices to provide
non-volatile storage. Disk drives however use a lot of power
when compared to flash memory since a disk drive needs to
spin 1ts disks at a relatively high speed and move disk heads
relative to the spinning disks to read/write data. This physi-
cal movement generates heat and increases power consump-
tion. To this end, some higher end mobile devices are
migrating towards flash memory devices that are non-
volatile.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s provided with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number {irst appears. The use of the same reference
numbers 1 different figures indicates similar or i1dentical
items.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 1 and 5-7 illustrate block diagrams of embodiments
of computing systems, which may be utilized to implement
various embodiments discussed herein.

FI1G. 2 1illustrates a distributed codeword architecture,
according to an embodiment.

FIG. 3 illustrates a flowchart of a faulty die detection
method, according to an embodiment.

FIG. 4 1llustrates a block diagram of various components
of an SSD, according to an embodiment.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth 1 order to provide a thorough understanding of
various embodiments. However, various embodiments may
be practiced without the specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described in detail so as not to obscure the
particular embodiments. Further, various aspects of embodi-
ments may be performed using various means, such as
integrated semiconductor circuits (“hardware”), computer-
readable 1nstructions organized mto one or more programs
(“software”), or some combination of hardware and soft-
ware. For the purposes of this disclosure reference to “logic™
shall mean either hardware, software, firmware, or some
combination thereof.

In the case of Non-Volatile Memory (NVM) such as
NAND, NOR, or three dimensional cross-point memory (or
other non-volatile memory technologies such as memristors
(a portmanteau of “memory resistor’), resistive random
access memory, Phase Change Memory (PCM), Spin Torque
Transter Random Access Memory (STTRAM), etc.), Error
Correction Code (ECC) may be used to protect data from
raw bit errors, e.g., expressed as Raw Bit Error Rate (RBER)
which generally refers to the fraction of data bits failing
during a read operation. A large ECC codeword spread over
multiple memory dies may be utilized 1n some 1implemen-
tations, e.g., since larger ECC codeword sizes generally
provide better resilience to RBER. In case of a fatal ECC
error (e.g., an ECC error that impedes forward progress), the
retry flow to recover from the fatal ECC error may include
the localization of the die with high RBER. The codeword
bits 1n this die may be then reconstructed using an XOR die
(e.g., mn case ol RAID (Redundant Array of Independent
Disks) configuration of NVM devices) or decoding done
alter flagging those bits as erasures.

Moreover, localizing the die with high RBER can be done
on an exhaustive search basis. The search has an 1impact on
latency of the retry flow and may prove to be a bottleneck
in meeting Quality of Service (QoS) in the system. Instead
of randomly selecting a die as failed, it 1s more eflicient to
make an educated guess regarding the failed die based on the
read bits for example.

To this end, some embodiments provide techmques for
utilizing counter(s) to locate a faulty die 1n a distributed
codeword storage system. For example, a bad die may be
identified 1n the first attempt and with a very high probabaility
instead of having to perform an exhaustive search. In an
embodiment, the bits read from the dies are separately
counted (e.g., by using one or more counters) for the number
of zeros and/or ones (e.g., at least one counter per die to
count the number of zeros and/or to count the number of
ones, although more counters may be used per die, e.g., to
count both the number of zeros and ones). These counts are
then used to locate the faulty die, as will be further discussed
herein.

US 9,911,509 B2

3

Further, the techniques discussed herein may be used for
any distributed codeword scheme for non-volatile memories
and although some embodiments are discussed with refer-
ence to an SSD (Solid State Drive) having 3D Cross Point
Memory, embodiments are not limited to 3D Cross Point
Memory technology and may be expanded to other non-
volatile memory technologies such as NOR memory, mem-
ristors, resistive random access memory, Phase Change
Memory (PCM), Spin Torque Transfer Random Access
Memory (STTRAM), NAND, etc. Moreover, QoS can be an
important performance parameter and quick detection of a
taulty die helps improve the QoS 1n the retry flow path after
an ECC error occurs. Additionally, the counting of zeros/
ones 1s a relatively eflicient and/or low-overhead technique
which can lead to significant system performance improve-
ment (for example, when compared with an exhaustive
search approach).

More particularly, various ECC schemes may be used for
non-volatile memory storage. These schemes may consist of
storing one ECC codeword in one non-volatile memory die
or spreading one ECC codeword across multiple dies. Stor-
ing an ECC codeword 1n a single die has its advantages,
particularly for NAND flash memory since the system’s
QoS cannot be met 1f one single section calls for read
operations from multiple dies. However, for three dimen-
sional cross-point memory such limitations are transcended
and storing an ECC codeword across multiple dies 1s fea-
sible. For instance, for three dimensional cross-point
memory, a codeword may be distributed across several dies.
The three dimensions refer to the two dimensions within the
die and the third dimension across dies. The across die
component 1s generally not available for NAND flash
memory since a distributed codeword across dies will have
to be read from all dies and that gives rise to a reduced
number of channels or less parallelism which 1n turn reduces
the throughput for NAND flash memory. However, a code-
word may still be distributed across several dies using
NAND flash memory (e.g., to provide redundancy, etc.) with
somewhat reduced efliciency for read operations. Storing a
single codeword across multiple dies permits larger code-
word sizes and also capitalizes on the RBER diversity across
dies to offer higher resilience to RBER.

However, storing single codeword or distributed code-
word schemes have their own disadvantages. In addition to
the latency hit and higher decoding complexity, localizing
the die with high RBER 1s also a problem. In case of an ECC
tatal error, 1t becomes 1mportant to localize the high RBER
die or outhier (as we will call it going forward, which
generally refers to the next die with 1ssues following the high
RBER die). Once the outlier 1s 1dentified, XOR die (e.g., of
the RAID) recovery can be used to reconstruct the codeword
bits 1n the outlier to retry decoding. For Reed-Solomon
based distributed codeword schemes which may not support
an XOR, the codeword bits 1n the outlier may be declared as
erasures during retry decoding. Hence, such retry mecha-
nisms need outlier 1dentification.

Moreover, an exhaustive search generally consists of
choosing any die as an outlier and retrying the decoding
process. I decoding fails, another die 1s then chosen as an
outlier and this search continues until a successtul decode
results and 11 all dies are exhausted as being flagged outliers,
recovery 1s exited. As such, an exhaustive search can have
a very large latency impact.

To this end, an embodiment uses the bits read from the
non-volatile memory dies to determine a likely candidate as
a failed die. Failures of a die generally manifest themselves
as word line short circuits or open circuits. Such failures will

10

15

20

25

30

35

40

45

50

55

60

65

4

result in bits being read as all-zeros or all-ones. Since data
stored 1n the medium 1s likely source coded, the occurrence
probability of zeros and ones 1s half or fifty percent. Hence,
reading all-zeros or all-ones 1s a rare event and the prob-
ability of having k zeros or ones read is 27". So, if k bits are
read-out of a die and if they are all-zeros or all-ones, this
already indicates that that die 1s highly probable to have
gone bad (or the word line read 1n that die). This 1s then used
as the basis of the bad die detection scheme discussed with
reference to some embodiments.

The techniques discussed herein may be provided in
various computing systems (e.g., including a non-mobile
computing device such as a desktop, workstation, server,
rack system, etc. and/or a mobile computing device such as
a smartphone, tablet, UMPC (Ultra-Mobile Personal Com-
puter), laptop computer, Ultrabook™ computing device,
smart watch, smart glasses, etc.), including those discussed
with reference to FIGS. 1-7. More particularly, FIG. 1
illustrates a block diagram of a computing system 100,
according to an embodiment. The system 100 may include
one or more processors 102-1 through 102-N (generally
referred to herein as “processors 102 or “processor 1027).
The processors 102 may communicate via an interconnec-
tion or bus 104. Each processor may include various com-
ponents some of which are only discussed with reference to
processor 102-1 for clarity. Accordingly, each of the remain-
ing processors 102-2 through 102-N may include the same
or stmilar components discussed with reference to the pro-
cessor 102-1.

In an embodiment, the processor 102-1 may include one
or more processor cores 106-1 through 106-M (referred to
herein as “cores 106,” or more generally as “core 106), a
cache 108 (which may be a shared cache or a private cache
in various embodiments), and/or a router 110. The processor
cores 106 may be implemented on a single integrated circuit
(IC) chip. Moreover, the chip may include one or more
shared and/or private caches (such as cache 108), buses or
interconnections (such as a bus or iterconnection 112),
memory controllers (such as those discussed with reference
to FIGS. 5-7), or other components.

In one embodiment, the router 110 may be used to
communicate between various components of the processor
102-1 and/or system 100. Moreover, the processor 102-1
may include more than one router 110. Furthermore, the
multitude of routers 110 may be 1n communication to enable
data routing between various components mside or outside
of the processor 102-1.

The cache 108 may store data (e.g., including instruc-
tions) that are utilized by one or more components of the
processor 102-1, such as the cores 106. For example, the
cache 108 may locally cache data stored 1n a memory 114 for
faster access by the components of the processor 102. As
shown in FIG. 1, the memory 114 may be 1n communication
with the processors 102 via the interconnection 104. In an
embodiment, the cache 108 (that may be shared) may have
various levels, for example, the cache 108 may be a mid-
level cache and/or a last-level cache (LLC). Also, each of the
cores 106 may include a Level 1 (LL1) cache (116-1) (gen-
crally referred to herein as “LL1 cache 116”). Various com-
ponents of the processor 102-1 may commumnicate with the
cache 108 directly, through a bus (e.g., the bus 112), and/or
a memory controller or hub.

As shown 1n FIG. 1, memory 114 may be coupled to other
components of system 100 through a memory controller
120. Even though the memory controller 120 1s shown to be
coupled between the interconnection 104 and the memory
114, the memory controller 120 may be located elsewhere 1n

US 9,911,509 B2

S

system 100. For example, memory controller 120 or portions
of 1t may be provided within one of the processors 102 1n
some embodiments. Also, 1n some embodiments, system
100 may include logic (e.g., solid state storage controller
logic 125) to control access to one or more Non-Volatile
Memory devices (including one or more SSDs 130), where
the one or more NVM devices may be provided on the same
integrated circuit die 1n some embodiments.

Furthermore, even though logic 125 i1s shown to be
directly coupled to the interconnection 104 in FIG. 1, logic
125 can alternatively communicate via a storage bus/inter-
connect (such as the SATA (Serial Advanced Technology
Attachment) bus, Peripheral Component Interconnect (PCI)
(or PCI express (PCle) interface), etc.) with one or more
other components of system 100 (for example where the
storage bus 1s coupled to interconnect 104 via some other
logic like a bus bridge, chipset (such as discussed with
reference to FIGS. 5-6), etc.). Additionally, logic 125 may be
incorporated into a memory controller logic (such as those
discussed with reference to FIGS. 1 and 5-7) or provided on
a same integrated circuit device in various embodiments.

Additionally, logic 125 may be coupled to (or alterna-
tively include, e.g., as shown 1n FIG. 1) one or more counters
150 (to count the zeros and ones read from die(s) that form
the SSD 130) and a sorter logic 152 (to sort the counted
values by the counters 150 as will be further discussed
herein with reference to FIGS. 2-3). System 100 may also
include one or more sensors (not shown) coupled to logic
125 to provide information (e.g., in the form of one or more
bits or signals) to indicate the status of or values detected by
the one or more sensors. The sensor(s) may be provided
proximate to components of system 100 (or other computing
systems discussed herein such as those discussed with
reference to other figures including 5-7, for example),
including the cores 106, interconnections 104 or 112, com-
ponents outside of the processor 102, SSD, SSD bus, SATA
bus, logic 125, etc., to sense variations in various factors
aflecting power/thermal behavior of the system/platiorm,
such as temperature, operating frequency, operating voltage,
power consumption, and/or inter-core communication activ-
ity, etc.

FIG. 2 1llustrates a distributed codeword scheme, accord-
ing to an embodiment. More specifically, FIG. 2 illustrates
data stored 1n a plurality of dies that of SSD 130. Further-
more, although some embodiments are discussed with ref-
erence to an SSD (Solid State Drive) having 3D Cross Point
Memory flash memory, embodiments are not limited to 3D
Cross Point Memory technology and may be used with other
non-volatile memory technologies such as NOR memory,
memristors, resistive random access memory, Phase Change

Memory (PCM), Spin Torque Transfer Random Access
Memory (STTRAM), NAND, etc.

As shown 1n FIG. 2, a (e.g., Reed-Solomon (RS)) code-
word 1s distributed over 10 dies. For example, 256B of user
data 1s encoded per RS code to a 310B RS codeword, which
can correct 24 symbol errors. 10B of space 1s still available
and this 1s shared by the metadata. In FI1G. 2, EDC refers to
Error Detection Code, which includes 0.5B of space on each
die. Moreover, even though specific byte sizes are discussed
with reference to FIG. 2, other (e.g., non-equal) byte sizes
may be utilized per die (e.g., by scaling the available space

(for example based on percentages)).
FIG. 3 illustrates a flowchart of a faulty die detection

scheme, according to an embodiment. The bad die detection
scheme utilizes a running count of the (e.g., maximum)
number of zeros and/or ones as the codeword bits are read
from each die (e.g., with counters 150, which include a

10

15

20

25

30

35

40

45

50

55

60

65

6

counter per die for number of zeros read from each die
and/or another counter per die for the number of ones read
from each die). After k bits are read from each die, a
comparison of the count 1s done by sorter logic 152 that sorts
the count values to determine the top and/or bottom entries
in the correct order (1.e., identilying dies with the most ones
and/or most zeros, respectively—or vice versa depending on
the sorting being done 1n ascending or descending orders).

For example, 11 sorter logic 152 sorts the counted values
based on the number of ones in ascending order, the top
results are the most likely candidates for faulty die(s) (e.g.,
since as discussed herein, the dies with all/most ones (or
zeros) are likely faulty), the bottom results would be the
die(s) with the least ones (1.e., most zeros) and potentially
faulty die(s) too. These determined candidates are then used
to flag the potentially bad dies 1n order. Alternatively, if the
sorter logic 152 sorts the counted values based on the
number of zeros 1n ascending order, the top sorting results
are the most likely candidates for faulty die(s) with the
most/all zero bits, while the bottom sorting results would be
the most likely candidates for faulty die(s) with the most/all
one bits. Hence, sorter logic 152 may perform various
sorting operations, €.g., 1 ascending/descending order and/
or based on the counted number of zeros and/or ones it bits
read from a portion of the memory dies.

Moreover, while the top and bottom sorted results/entries
are considered as top candidates for faulty die detection 1n
some embodiments (e.g., where the sorting 1s done per the
number of ones and/or the number of zeros read from each
die portion), the next entries (following the top and bottom
sorted results/entries in sort order) can be used to determine
the next likely faulty die(s). The counting may be done for
cach word line or other portion of the dies (such as banks,
etc.) depending on the implementation. Also, the sorted
entries/results may be stored 1n memory (such as any of the
memory devices discussed with reference to FIGS. 1-7
herein) for future access.

Accordingly, some embodiments allow for die(s) with the
largest error count number to be flagged as the faulty die(s).
For example, let us consider that we will count up to 32 bits
and make a decision based on the counts for the 10 dies. The
good dies will have 50% zeros and ones and the probability
of detecting all-zeros or all-ones is 27°°=2.3e-10. The faulty
die which has either word line short circuits or open circuits
will have all-zeros or all-ones with probability of 1. This
provides a robust technique for detecting faulty dies.

FIG. 4 1llustrates a block diagram of various components
of an SSD, according to an embodiment. As shown 1n FIG.
4, SSD 130 includes a controller logic 482 (which in turn
includes one or more processor cores or processors 484 and
a memory controller logic 486), Random Access Memory
(RAM) 488, firmware storage 490, and one or more memory
modules or dies 492-1 to 492-n (which may include 3D
Cross Point Memory, NAND, NOR, or other types of
non-volatile memory). Memory modules 492-1 to 492- are
coupled to the memory controller logic 486 via one or more
memory channels or busses. Also, SSD 130 communicates
with logic 125 via an mterface (such as a SATA, PCle
(Peripheral Component Interconnect express), etc. inter-
face). One or more of the operations discussed with refer-
ence to FIGS. 2-3 may be performed by one or more of the
components of FIG. 4 (e.g., processors 484 and/or controller
482 may cause performance ol the read operations from
memory modules 492-1 to 492-» to cause counting of the
number of ones and zeros read). Also, one or more of the
operations ol FIGS. 2-3 may be programmed into the
firmware 490.

US 9,911,509 B2

7

FIG. 5 1llustrates a block diagram of a computing system
500 1n accordance with an embodiment. The computing
system 500 may include one or more central processing
unit(s) (CPUs) 502 or processors that communicate via an
interconnection network (or bus) 504. The processors 502
may include a general purpose processor, a network proces-
sor (that processes data communicated over a computer
network 503), an application processor (such as those used
in cell phones, smart phones, etc.), or other types of a
processor (including a reduced instruction set computer
(RISC) processor or a complex instruction set computer
(CISC)). Various types of computer networks 503 may be
utilized including wired (e.g., Ethernet, Gigabit, Fiber, etc.)
or wireless networks (such as cellular, 3G (Third-Generation

Cell-Phone Technology or 3rd Generation Wireless Format
(UWCC)), 5G, Low Power Embedded (LPE), etc.). More-
over, the processors 502 may have a single or multiple core
design. The processors 502 with a multiple core design may
integrate different types of processor cores on the same
integrated circuit (IC) die. Also, the processors 502 with a
multiple core design may be implemented as symmetrical or
asymmetrical multiprocessors.

In an embodiment, one or more of the processors 502 may
be the same or similar to the processors 102 of FIG. 1. For
example, one or more of the processors 502 may include one
or more ol the cores 106 and/or cache 108. Also, the
operations discussed with reference to FIGS. 1-4 may be
performed by one or more components of the system 500.

A chipset 506 may also communicate with the intercon-
nection network 504. The chipset 506 may include a graph-
ics and memory control hub (GMCH) 508. The GMCH 508
may 1nclude a memory controller 510 (which may be the
same or similar to the memory controller 120 of FIG. 1 1n
an embodiment) that communicates with the memory 114.
The memory 114 may store data, including sequences of
instructions that are executed by the CPU 502, or any other
device included 1n the computing system 500. Also, system
500 1ncludes logic 125 and SSD 130 (which may be coupled
to system 500 via bus 522 such as illustrated, via other
interconnects such as 504, where logic 125 1s incorporated
into chipset 506, etc. in various embodiments). In one
embodiment, the memory 114 may include one or more

volatile storage (or memory) devices such as random access
memory (RAM), dynamic RAM (DRAM), synchronous

DRAM (SDRAM), static RAM (SRAM), or other types of
storage devices. Nonvolatile memory may also be utilized
such as a hard disk, flash, PCM, 3D Cross Point Memory,
Resistive Random Access Memory, memristors, and
STTRAM. Additional devices may communicate via the
interconnection network 504, such as multiple CPUs and/or
multiple system memories.

The GMCH 508 may also include a graphics interface 514
that communicates with a graphics accelerator 516. In one
embodiment, the graphics interface 514 may communicate
with the graphics accelerator 516 via an accelerated graphics
port (AGP) or Peripheral Component Interconnect (PCI) (or
PCI express (PCle) interface). In an embodiment, a display
517 (such as a flat panel display, touch screen, etc.) may
communicate with the graphics interface 514 through, for
example, a signal converter that translates a digital repre-
sentation of an 1mage stored in a storage device such as
video memory or system memory into display signals that
are mterpreted and displayed by the display. The display
signals produced by the display device may pass through
various control devices belfore being interpreted by and
subsequently displayed on the display 517.

10

15

20

25

30

35

40

45

50

55

60

65

8

A hub imterface 518 may allow the GMCH 508 and an
input/output control hub (ICH) 520 to communicate. The
ICH 3520 may provide an interface to I/O devices that
communicate with the computing system 500. The ICH 520
may communicate with a bus 522 through a peripheral
bridge (or controller) 524, such as a peripheral component
interconnect (PCI) bridge, a unmiversal serial bus (USB)
controller, or other types of peripheral bridges or controllers.
The bridge 524 may provide a data path between the CPU

502 and peripheral devices. Other types of topologies may
be utilized. Also, multiple buses may communicate with the
ICH 520, e.g., through multiple bridges or controllers.
Moreover, other peripherals 1n commumnication with the ICH

520 may include, 1n various embodiments, integrated drive
clectronics (IDE) or small computer system interface (SCSI)
hard drive(s), USB port(s), a keyboard, a mouse, parallel
port(s), serial port(s), floppy disk drive(s), digital output
support (e.g., digital video interface (DVI)), or other
devices.

The bus 522 may communicate with an audio device 526,
one or more disk drive(s) 528, and a network interface
device 530 (which 1s 1n communication with the computer
network 503, e.g., via a wired or wireless interface). As
shown, the network interface device 330 may be coupled to
an antenna 531 to wirelessly (e.g., via an Institute of
Electrical and Electronics Engineers (IEEE) 802.11 inter-
face (including IEEE 802.11a/b/g/n, etc.), cellular interface,
3G, 5G, LPE, etc.) communicate with the network 503.
Other devices may communicate via the bus 522. Also,
various components (such as the network interface device
530) may communicate with the GMCH 508 in some
embodiments. In addition, the processor 502 and the GMCH
508 may be combined to form a single chip. Furthermore,
the graphics accelerator 316 may be included within the
GMCH 508 1n other embodiments.

Furthermore, the computing system 300 may include
volatile and/or nonvolatile memory (or storage). For
example, nonvolatile memory may include one or more of
the following: read-only memory (ROM), programmable
ROM (PROM), erasable PROM (EPROM), electrically
EPROM (EEPROM), a disk drive (e.g., 5328), a floppy disk,
a compact disk ROM (CD-ROM), a digital versatile disk
(DVD), flash memory, a magneto-optical disk, or other types
of nonvolatile machine-readable media that are capable of
storing electronic data (e.g., including instructions).

FIG. 6 illustrates a computing system 600 that 1s arranged
in a point-to-point (PtP) configuration, according to an
embodiment. In particular, FIG. 6 shows a system where
processors, memory, and mput/output devices are ntercon-
nected by a number of point-to-point interfaces. The opera-
tions discussed with reference to FIGS. 1-5 may be per-
tformed by one or more components of the system 600.

As 1llustrated in FIG. 6, the system 600 may include
several processors, of which only two, processors 602 and
604 are shown for clarity. The processors 602 and 604 may
cach mclude a local memory controller hub (MCH) 606 and
608 to enable communication with memories 610 and 612.
The memories 610 and/or 612 may store various data such
as those discussed with reference to the memory 114 of
FIGS. 1 and/or 5. Also, MCH 606 and 608 may include the
memory controller 120 1n some embodiments. Furthermore,
system 600 includes logic 125 and SSD 130 (which may be
coupled to system 600 via bus 640/644 such as illustrated,
via other point-to-point connections to the processor(s)
602/604 or chipset 620, where logic 1235 1s incorporated nto
chipset 620, etc. 1n various embodiments).

US 9,911,509 B2

9

In an embodiment, the processors 602 and 604 may be
one of the processors 502 discussed with reference to FIG.
5. The processors 602 and 604 may exchange data via a
point-to-point (PtP) interface 614 using PtP interface circuits
616 and 618, respectively. Also, the processors 602 and 604
may each exchange data with a chipset 620 via individual
PtP interfaces 622 and 624 using point-to-point interface
circuits 626, 628, 630, and 632. The chipset 620 may further
exchange data with a high-performance graphics circuit 634
via a high-performance graphics interface 636, ¢.g., using a
PtP interface circuit 637. As discussed with reference to FIG.
5, the graphics interface 636 may be coupled to a display
device (e.g., display 517) in some embodiments.

As shown 1n FIG. 6, one or more of the cores 106 and/or
cache 108 of FIG. 1 may be located within the processors
602 and 604. Other embodiments, however, may exist in
other circuits, logic units, or devices within the system 600
of FIG. 6. Furthermore, other embodiments may be distrib-
uted throughout several circuits, logic units, or devices
illustrated 1n FIG. 6.

The chipset 620 may communicate with a bus 640 using
a PtP interface circuit 641. The bus 640 may have one or
more devices that communicate with 1t, such as a bus bridge
642 and 1/0O devices 643. Via a bus 644, the bus bridge 642
may communicate with other devices such as a keyboard/
mouse 645, communication devices 646 (such as modems,
network interface devices, or other communication devices
that may communicate with the computer network 503, as
discussed with reference to network interface device 330 for
example, including via antenna 331), audio I/O device,
and/or a data storage device 648. The data storage device
648 may store code 649 that may be executed by the
processors 602 and/or 604.

In some embodiments, one or more of the components
discussed herein can be embodied as a System On Chip
(SOC) device. FIG. 7 1llustrates a block diagram of an SOC
package 1n accordance with an embodiment. As 1llustrated in
FIG. 7, SOC 702 icludes one or more Central Processing
Unit (CPU) cores 720, one or more Graphics Processor Unit
(GPU) cores 730, an Input/Output (I/O) interface 740, and a
memory controller 742. Various components of the SOC
package 702 may be coupled to an interconnect or bus such
as discussed herein with reference to the other figures. Also,
the SOC package 702 may include more or less components,
such as those discussed herein with reference to the other
figures. Further, each component of the SOC package 720
may include one or more other components, ¢.g., as dis-
cussed with reference to the other figures herein. In one
embodiment, SOC package 702 (and 1ts components) is
provided on one or more Integrated Circuit (IC) die, e.g.,
which are packaged onto a single semiconductor device.

As 1llustrated 1n FIG. 7, SOC package 702 1s coupled to
a memory 760 (which may be similar to or the same as
memory discussed herein with reference to the other figures)
via the memory controller 742. In an embodiment, the
memory 760 (or a portion of 1t) can be integrated on the SOC
package 702.

The I/0 interface 740 may be coupled to one or more /O
devices 770, e.g., via an interconnect and/or bus such as
discussed herein with reference to other figures. I/O device
(s) 770 may 1nclude one or more of a keyboard, a mouse, a
touchpad, a display, an 1image/video capture device (such as
a camera or camcorder/video recorder), a touch screen, a
speaker, or the like. Furthermore, SOC package 702 may
include/integrate the logic 125 1 an embodiment. Alterna-
tively, the logic 125 may be provided outside of the SOC
package 702 (1.e., as a discrete logic).

10

15

20

25

30

35

40

45

50

55

60

65

10

The following examples pertain to further embodiments.
Example 1 includes an apparatus comprising: first logic to
determine a plurality of values, wherein each of the plurality
of values 1s to correspond to a number of zeros or a number
of ones 1n bits read from a portion of each of a plurality of
memory dies; and second logic to determine one or more
candidates as a faulty die amongst the plurality of memory
dies based at least in part on a comparison of the plurality of
values for the plurality of memory dies. Example 2 includes
the apparatus of example 1, wherein the first logic 1s to
comprise at least one counter for each of the plurality of
memory dies to count the number of zeros or the number of
ones 1n the bits read from the portion of each of the plurality
of memory dies. Example 3 includes the apparatus of
example 1, wherein the second logic 1s to determine the one
or more candidates as the faulty die amongst the plurality of
memory dies based at least 1n part on sorting of the plurality
of values for the plurality of memory dies. Example 4
includes the apparatus of example 3, wherein the one or
more candidates are one or more of top results of the sorting
of the plurality of values for the plurality of memory dies.
Example 5 includes the apparatus of example 3, wherein the
one or more candidates are one or more of bottom results of
the sorting of the plurality of values for the plurality of
memory dies. Example 6 includes the apparatus of example
1, wherein the portion 1s to comprise a word line or a
memory bank. Example 7 includes the apparatus of example
1, wherein the portion of each of the plurality of memory
dies 1s to store at least part of a codeword. Example 8
includes the apparatus of example 7, wherein the codeword
1s to comprise a Reed-Solomon (RS) codeword. Example 9
includes the apparatus of example 1, wherein the portion of
cach of the plurality of memory dies is to store an equal part
of a codeword. Example 10 includes the apparatus of
example 9, wherein the codeword 1s to comprise an RS
codeword. Example 11 includes the apparatus of example 1,
wherein a non-volatile memory device 1s to comprise the
plurality of the memory dies. Example 12 includes the
apparatus of example 11, wherein the non-volatile memory
device 1s to comprise one or more of: a solid state device, a
phase change memory, a 3D (3-Dimensional) cross point
memory, a resistive random access memory, a memristor
memory, and a spin torque transfer random access memory.
Example 13 includes the apparatus of example 1, wherein
one or more of the first logic, the second logic, the plurality
of memory dies, and a processor core are on a same
integrated circuit die.

Example 14 includes a method comprising: determining a
plurality of values, wherein each of the plurality of values
corresponds to a number of zeros or a number of ones 1n bits
read from a portion of each of a plurality of memory dies;
and determining one or more candidates as a faulty die
amongst the plurality of memory dies based at least 1n part
on a comparison of the plurality of values for the plurality
of memory dies. Example 15 includes the method of
example 14, wherein determining the plurality of values
comprises counting the number of zeros or the number of
ones 1n the bits read from the portion of each of the plurality
of memory dies. Example 16 includes the method of
example 14, wherein determining the one or more candi-
dates as the faulty die amongst the plurality of memory dies
1s performed based at least 1n part on sorting of the plurality
of values for the plurality of memory dies. Example 17
includes the method of example 16, wherein the one or more
candidates are one or more of top results of the sorting of the
plurality of values for the plurality of memory dies. Example
18 1ncludes the method of example 16, wherein the one or

US 9,911,509 B2

11

more candidates are one or more of bottom results of the
sorting of the plurality of values for the plurality of memory
dies. Example 19 includes the method of example 14,
wherein the portion comprises a word line or a memory
bank. Example 20 includes the method of example 14,
wherein the portion of each of the plurality of memory dies
stores at least part of a codeword. Example 21 includes the
method of example 14, wherein the portion of each of the
plurality of memory dies stores an equal part of a codeword.
Example 22 includes the method of example 14, wherein the
plurality of the memory dies are included 1n one or more of:
a solid state device, a phase change memory, a 3D (3-Di-
mensional) cross point memory, a resistive random access
memory, a memristor memory, and a spin torque transier
random access memory.

Example 23 includes a computer-readable medium com-
prising one or more 1nstructions that when executed on a
processor configure the processor to perform one or more
operations to: determine a plurality of values, wherein each
of the plurality of values corresponds to a number of zeros
or a number of ones in bits read from a portion of each of
a plurality of memory dies; and determine one or more
candidates as a faulty die amongst the plurality of memory
dies based at least 1 part on a comparison of the plurality of
values for the plurality of memory dies. Example 24
includes the computer-readable medium of example 23,
further comprising one or more instructions that when
executed on the processor configure the processor to per-
form one or more operations to cause a determination of the
plurality of values by counting the number of zeros or the
number of ones in the bits read from the portion of each of
the plurality of memory dies. Example 25 includes the
computer-readable medium of example 23, further compris-
ing one or more instructions that when executed on the
processor configure the processor to perform one or more
operations to cause a determination of the one or more
candidates as the faulty die amongst the plurality of memory
dies based at least 1n part on sorting of the plurality of values
for the plurality of memory dies.

Example 26 includes a computer-readable medium com-
prising one or more instructions that when executed on a
processor configure the processor to perform one or more
operations of any of examples 14 to 22. Example 27 includes
an apparatus comprising means to perform a method as set
forth 1n any of examples 14 to 22. Example 28 includes an
apparatus comprising means to perform a method as set
forth 1n any preceding example. Example 29 includes a
machine-readable storage including machine-readable
instructions, when executed, to implement a method or
realize an apparatus as set forth 1n any preceding example.

Example 30 includes a system comprising: a plurality of
memory dies; and at least one processor core to access the
plurality of memory dies; first logic to determine a plurality
of values, wherein each of the plurality of values 1s to
correspond to a number of zeros or a number of ones 1n bits
read from a portion of each of the plurality of memory dies;
and second logic to determine one or more candidates as a
faulty die amongst the plurality of memory dies based at
least 1n part on a comparison of the plurality of values for the
plurality of memory dies. Example 31 includes the system of
example 30, wherein the first logic 1s to comprise at least one
counter for each of the plurality of memory dies to count the
number of zeros or the number of ones in the bits read from
the portion of each of the plurality of memory dies. Example
32 1ncludes the system of example 30, wherein the second
logic 1s to determine the one or more candidates as the faulty
die amongst the plurality of memory dies based at least 1n

10

15

20

25

30

35

40

45

50

55

60

65

12

part on sorting of the plurality of values for the plurality of
memory dies. Example 33 includes the system of example
32, wherein the one or more candidates are one or more of
top results of the sorting of the plurality of values for the
plurality of memory dies. Example 34 includes the system of
example 32, wherein the one or more candidates are one or
more of bottom results of the sorting of the plurality of
values for the plurality of memory dies. Example 35
includes the system of example 30, wherein the portion 1s to
comprise a word line or a memory bank. Example 36
includes the system of example 30, wherein the portion of
cach of the plurality of memory dies 1s to store at least part
of a codeword. Example 37 includes the system of example
36, wherein the codeword 1s to comprise a Reed-Solomon
(RS) codeword. Example 38 includes the system of example
30, wherein the portion of each of the plurality of memory
dies 1s to store an equal part of a codeword. Example 39
includes the system of example 38, wherein the codeword 1s
to comprise an RS codeword. Example 40 includes the
system of example 30, wherein a non-volatile memory
device 1s to comprise the plurality of the memory dies.
Example 41 includes the system of example 40, wherein the
non-volatile memory device 1s to comprise one or more of:
a solid state device, a phase change memory, a 3D (3-Di1-
mensional) cross point memory, a resistive random access
memory, a memristor memory, and a spin torque transier
random access memory. Example 42 includes the system of
example 30, wherein one or more of the first logic, the
second logic, the plurality of memory dies, and the at least
one processor core are on a same integrated circuit die.

In various embodiments, the operations discussed herein,
¢.g., with reference to FIGS. 1-7, may be implemented as
hardware (e.g., circuitry), soltware, firmware, microcode, or
combinations thereof, which may be provided as a computer
program product, e.g., including a tangible (e.g., non-tran-
sitory) machine-readable or computer-readable medium
having stored thereon instructions (or software procedures)
used to program a computer to perform a process discussed
herein. Also, the term “logic” may include, by way of
example, software, hardware, or combinations of software
and hardware. The machine-readable medium may include a
storage device such as those discussed with respect to FIGS.
1-7.

Additionally, such tangible computer-readable media may
be downloaded as a computer program product, wherein the
program may be transferred from a remote computer (e.g.,
a server) to a requesting computer (e.g., a client) by way of
data signals (such as 1n a carrier wave or other propagation
medium) via a communication link (e.g., a bus, a modem, or
a network connection).

Reference in the specification to “one embodiment™ or

“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment may be included in at least an implementation. The
appearances of the phrase “in one embodiment™ 1n various
places 1n the specification may or may not be all referring to
the same embodiment.

Also, 1n the description and claims, the terms “coupled”
and “connected,” along with their derivatives, may be used.
In some embodiments, “connected” may be used to indicate
that two or more elements are 1n direct physical or electrical
contact with each other. “Coupled” may mean that two or
more elements are i direct physical or electrical contact.
However, “coupled” may also mean that two or more
clements may not be 1n direct contact with each other, but
may still cooperate or interact with each other.

US 9,911,509 B2

13

Thus, although embodiments have been described in
language specific to structural features and/or methodologi-
cal acts, 1t 1s to be understood that claimed subject matter
may not be limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as sample
forms of implementing the claimed subject matter.

The 1nvention claimed 1s:

1. An apparatus comprising:

first logic to determine a plurality of values, wherein each

of the plurality of values 1s to correspond to one of: a
number count of zeros in bits read from a portion of
cach of a plurality of memory dies or a number count
of ones 1n bits read from the portion of each of the
plurality of memory dies; and

second logic to determine one or more candidates as a

faulty die amongst the plurality of memory dies based
at least 1n part on a comparison ol the plurality of
values for the plurality of memory dies, wherein the
second logic 1s to detect the faulty die based at least 1n
part on encoded user data distributed over the plurality
of memory dies, wherein the portion of each of the
plurality of memory dies 1s to store an equal portion of
a single codeword, wherein, in case of an error that
impedes forward progress, one or more bits of the
codeword are to be reconstructed based on an operation
to be localized for a first die of the plurality of memory
dies with a higher Raw Bit Error Rate (RBER) than
other dies from the plurality of memory dies.

2. The apparatus of claim 1, wherein the first logic 1s to
comprise at least one counter for each of the plurality of
memory dies to count the number of zeros or the number of
ones 1n the bits read from the portion of each of the plurality
of memory dies.

3. The apparatus of claim 1, wherein the second logic 1s
to determine the one or more candidates as the faulty die
amongst the plurality of memory dies based at least 1n part
on sorting of the plurality of values for the plurality of
memory dies.

4. The apparatus of claim 3, wherein the one or more
candidates are one or more of top results of the sorting of the
plurality of values for the plurality of memory dies.

5. The apparatus of claim 3, wherein the one or more
candidates are one or more of bottom results of the sorting
of the plurality of values for the plurality of memory dies.

6. The apparatus of claim 1, wherein the portion 1s to
comprise a word line or a memory bank.

7. The apparatus of claim 1, wherein the codeword 1s to
comprise a Reed-Solomon (RS) codeword.

8. The apparatus of claim 1, wherein a non-volatile
memory device 1s to comprise the plurality of the memory
dies.

9. The apparatus of claim 8, wherein the non-volatile
memory device 1s to comprise one or more of: a solid state
device, a phase change memory, a 3D (3-Dimensional) cross
point memory, a resistive random access memory, a mem-
ristor memory, and a spin torque transier random access
memory.

10. The apparatus of claim 1, wherein one or more of the
first logic, the second logic, the plurality of memory dies,
and a processor core are on a same integrated circuit die.

11. The apparatus of claim 1, wherein the operation 1s an
XOR operation to be performed by an XOR die.

12. The apparatus of claim 1, wherein the operation 1s to
be performed based on a decode to be done after tflagging the
one or more bits as erasures.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

13. The apparatus of claim 1, wherein each of the plurality
of memory dies are to store the portion of the single
codeword, error detection code, and meta data.

14. A method comprising:

determining a plurality of values, wherein each of the

plurality of values corresponds to one of: a number
count ol zeros 1n bits read from a portion of each of a
plurality of memory dies or a number count of ones 1n
bits read from the portion of each of the plurality of
memory dies; and

determining one or more candidates as a faulty die

amongst the plurality of memory dies based at least 1n
part on a comparison of the plurality of values for the
plurality of memory dies, wherein determining the one
or more candidates 1s to comprise encoding of user data
and distributing a codeword over the plurality of
memory dies, wherein the portion of each of the
plurality of memory dies stores an equal portion of a
single codeword, wherein, 1 case of an error that
impedes forward progress, one or more bits of the
codeword are reconstructed based on an operation to be
localized for a first die of the plurality of memory dies
with a higher Raw Bit Error Rate (RBER) than other
dies from the plurality of memory dies.

15. The method of claim 14, wherein determining the
plurality of values comprises counting the number of zeros
or the number of ones in the bits read from the portion of
cach of the plurality of memory dies.

16. The method of claim 14, wherein determining the one
or more candidates as the faulty die amongst the plurality of
memory dies 1s performed based at least 1n part on sorting
of the plurality of values for the plurality of memory dies.

17. The method of claim 16, wherein the one or more
candidates are one or more of top results of the sorting of the
plurality of values for the plurality of memory dies.

18. The method of claim 16, wherein the one or more
candidates are one or more of bottom results of the sorting
of the plurality of values for the plurality of memory dies.

19. The method of claim 14, wherein the portion com-
prises a word line or a memory bank.

20. The method of claim 14, wherein the plurality of the
memory dies are included in one or more of: a solid state
device, a phase change memory, a 3D (3-Dimensional) cross
point memory, a resistive random access memory, a mem-
ristor memory, and a spin torque transier random access
memory.

21. A system comprising:

a plurality of memory dies; and

at least one processor core to access the plurality of

memory dies;

first logic to determine a plurality of values, wherein each

of the plurality of values is to correspond to one of: a
number count of zeros 1n bits read from a portion of
cach of a plurality of memory dies or a number count
of ones 1n bits read from the portion of each of the
plurality of memory dies; and

second logic to determine one or more candidates as a

faulty die amongst the plurality of memory dies based
at least 1n part on a comparison of the plurality of
values for the plurality of memory dies, wherein the
second logic 1s to detect the faulty die based at least 1n
part on encoded user data distributed over the plurality
of memory dies, wherein the portion of each of the
plurality of memory dies 1s to store an equal portion of
a single codeword, wherein, in case of an error that
impedes forward progress, one or more bits of the
codeword are to be reconstructed based on an operation

US 9,911,509 B2
15

to be localized for a first die of the plurality of memory
dies with a higher Raw Bit Error Rate (RBER) than
other dies from the plurality of memory dies.

22. The system of claim 21, wherein the first logic 1s to
comprise at least one counter for each of the plurality of 5
memory dies to count the number of zeros or the number of
ones 1n the bits read from the portion of each of the plurality
of memory dies.

23. The system of claim 21, wherein the second logic 1s
to determine the one or more candidates as the faulty die 10
amongst the plurality of memory dies based at least 1n part
on sorting of the plurality of values for the plurality of
memory dies.

16

	Front Page
	Drawings
	Specification
	Claims

