12 United States Patent

Brainerd et al.

US009910901B2

US 9,910,901 B2
*Mar. 6, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(63)

(1)

(52)

(58)

GRAPHIC REPRESENTATIONS OF DATA
RELATIONSHIPS

Applicant: Ab Initio Technology LLC, Lexington,
MA (US)

Inventors: Jeffrey Brainerd, Jamaica Plain, MA
(US); Alan Morse, Lincoln, MA (US)

Ab Initio Technology LLC, Lexington,
MA (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/378,322

Filed: Dec. 14, 2016

Prior Publication Data

US 2017/0091345 Al Mar. 30, 2017

Related U.S. Application Data

Continuation of application No. 12/393,763, filed on
Feb. 26, 2009, now Pat. No. 9,760,612.

(Continued)
Int. CL
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL
CPC .. GO6F 17/30554 (2013.01); GO6F 17/30091

(2013.01); GO6F 17/30395 (2013.01); GO6F
17/30477 (2013.01); GO6F 17/30994
(2013.01)

Field of Classification Search
CPC GO6F 17/30554; GO6F 17/30864; GO6F
3/0481; GO6F 17/30572; GO6F 3/04842

(Continued)

User Inteface

101

/ Data item
202 |

aQg ®Config File 1 304
® Config File 2 306

'

(56) References Cited
U.S. PATENT DOCUMENTS
5,596,746 A 1/1997 Shen et al.
5,701,453 A 12/1997 Maloney et al.
(Continued)
FOREIGN PATENT DOCUMENTS
JP 03-294926 12/1991
JP 2003-067186 3/2003
(Continued)

OTHER PUBLICATIONS

Rajendra Bose et al. *“A Conceptual Framework for Composing and
Managing Scientific metadata Lineage”.*

(Continued)

Primary Examiner — Hung 1 Vy

(74) Attorney, Agent, or Firm — Occhiut1 & Rohlicek
LLP

(57) ABSTRACT

Presenting a diagram indicating relationships among data
items stored 1n a data management system includes: receiv-
ing a request that identifies a first data 1tem stored 1n the data
management system from a user interface; retrieving stored
configuration information that includes a plurality of selec-
tion specifications for selecting data items i1n the data
management system that are related to a given data item of
a predetermined type, where each selection specification 1s
associated with a different respective predetermined type;
querying the data management system to i1dentily a set of
one or more data 1tems according to a selection specification
from the configuration information that 1s associated with a
type of the first data 1tem; for each of multiple returned data
items 1n the i1dentified set, querying the data management
system to determine whether additional data items are
identified according to a selection specification from the
configuration information that 1s associated with a type of
the returned data item; generating a diagram indicating
relationships among data items identified using the configu-

(Continued)

Data Management System
340 D4
2
D

D1
D
F1
3

314

D1
Request

Diagram
Generator

320

% Query 330

&u
Config. File

>\

Storage

S’

380

US 9,910,901 B2
Page 2

ration information; and presenting the generated diagram
over the user interface.

34 Claims, 10 Drawing Sheets

Related U.S. Application Data
(60) Provisional application No. 61/031,672, filed on Feb.

26, 2008.
(58) Field of Classification Search
USPC 7077706, 722, 758, 759; 715/853;

709/224, 220, 225
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,734,886 A 3/1998 Grosse et al.

5,809,296 A 9/1998 Yong et al.

6,346,945 Bl 2/2002 Mansurov et al.

6,609,132 Bl 8/2003 White et al.

6,718,319 B1* 4/2004 Fisher, Jr. G06Q 20/3552
7,599,947 B1 10/2009 Tolbert et al.

7,734,619 B2 6/2010 Vierich et al.

7,899,833 B2 3/2011 Stevens et al.

8,407,262 B2 3/2013 Hsu et al.
2005/0257193 A1 11/2005 Falk et al.
2006/0095466 Al1* 5/2006 Stevens GO6F 17/30398
2007/0214179 Al1* 9/2007 Hoang GO6F 17/30398

FOREIGN PATENT DOCUMENTS

JP 2008-524671 7/2008
WO 02/11344 2/2002
WO W02006/050342 5/2006

OTHER PUBLICATTONS

International Search Report & Written Opinion, PCT/US05/39425,

dated Feb. 19, 2008, 11 pages.

International Search Report & Written Opinion, PCT/US09/35293,
dated Apr. 30, 2009, 12 pages.

Japanese Ofhice Action (with English translation), Application No.
2010-547873, dated Jun. 18, 2013, 9 pages.

Transaction History, U.S. Appl. No. 10/979,742, Jul. 17, 2013, 3
pages.

Bose, “A Conceptual Framework for Composing and Managing

Scientific Data Lineage”, Proc. of the [4th International Conf on
Scientific and Statistical Database Management, pp. 1-5, 2002.

* cited by examiner

U.S. Patent Mar. 6, 2018 Sheet 1 of 10 US 9,910,901 B2

10 108 Metadata
Interface

=@

sninkl

G B . B e m Y bR &S

Soklrw

=

Repository

Executive

106

Parallel Operating
Environment

FIG. 1

US 9,910,901 B2

Sheet 2 of 10

Mar. 6, 2018

U.S. Patent

¢ Old

dioq « yoOddngG e elepe)ay ssauisng sjdweg

SPI0J3] S3|es s.g Auedwion) Suoloesuen

SPI0Jal S8EsS Sy Auedwio’) Stonoesuen
uonduosaqQ ajl4 ejeQ

10} ajqisuocdsal si aaAojdwua siyj} saji4 ejeQ

ll

alou

uojdiLiosaQ ealy ssauisng uoinesijddy

\v 10} a|qisuodsaa s1 asAojdwa si1y} suoniesnjddy
N MN .. wocmci meEtmamo
8REC-GGG-LBL .9uoyd

aseqe]ep JNo Ui elep adueul4 ayj Jo Jsow Jo} sjqisuodsal si wip JUSIon
| MBIA BDIUYDD} | Jipe | Jamoyouy Mif [|duuosiag

90¢
< v d41004

1404
MIIA dH1 404
QdLVHINIO
INIINOD
dOVd 9aM

\ cOc¢
dvy
NOILVOIAVN

139V A3aNI430-d3Sn
H39NEIN SIHL 04 3NV IVA NOILVIONNY d38NJN AHOD3LVO

80¢

FJNVYN AH0941V0O

U.S. Patent

User Interface

300
@ Config File 2 306
. g

Data item
302

14

D1
Request

® Config File 1 304

Mar. 6, 2018 Sheet 3 of 10 US 9,910,901 B2

Data Management System

340 D4

Diagram
Generator

Query 330

320

Config. File
Storage
360

/ \

FIG. 3

US 9,910,901 B2
|
|
I
|
|
|
|
|
l
I
|
|
|
|
l
|
I
|
|
14

Sheet 4 of 10
(D4
|
|
l
12

Mar. 6, 2018

U.S. Patent

(D1,
|
|
|
|
|
|
|
|
|
10

FIG. 4A

US 9,910,901 B2

Sheet 5 of 10

Mar. 6, 2018

U.S. Patent

oLy
g

-~ ™~

/ ‘paAsIel
(sway ejep siow
J0 8U0 JO)as V/,

. -

f".\

\
/

145%
suoiljoe

uoljebireu

oy}
buiwiopadg

dv Ola

A% 7
suoleoljinads

uonepbireu

oy]
buinainey

oLY
adA} ay)

buiAjpuapi

US 9,910,901 B2

Sheet 6 of 10

Mar. 6, 2018

U.S. Patent

G Ol

P 1SNO Juawajgele(824no0S Yl Buiuels abeaui Blep wealjsumo

dw-speoj gp

©
o TR D
o

1910|dX 3 JaUia}U] SMOPUIM — PI 3SN> &

»/ 006

U.S. Patent Mar. 6, 2018 Sheet 7 of 10 US 9,910,901 B2

Receive a user
request

601
- - For each data

item
olell

Retrieve the pre-stored
configuration file
602

Determine the
selection specification
associated with the

type 654

Looping

Perform the selection
actions

656

Receive a set of one

or more data items
658

Display query results in a

data relationship diagram
604

Yes

FIG. 6

U.S. Patent Mar. 6, 2018 Sheet 8 of 10 US 9,910,901 B2

‘Subject Area' :
{'sel_spec":['inv_walk("SubjectAreaOID", "Logical Entity")]},

'Logical Entity’ :
{’sel_spec”.[r"""inv_walk("Parent_EntityOID","Entity
Relationship").filter(r"look _ahead("walk('Child_EntityOID','Logical

Entity').walk('SubjectAreaOID','Subject Area’).eval('ann.display name ==\"%s\"")")")""" %
bds.obj_display name]},

'Entity Relationship' :
{'sel_spec":['walk("Child EntityOID","Logical Entity")'],
'label spec:'eval("ann.Parent To Child Phrase™)'}

FIG. 7A

U.S. Patent Mar. 6, 2018 Sheet 9 of 10 US 9,910,901 B2

Downstream

'System’ :
{'walk descriptor’: |
'Inv_walk("SystemOID","dataset").inv_walk("DatasetsReadOID", "Executable")\
walk("DatasetsWrittenOID", "dataset").walk("SystemOID", "System")']}

Upstream

System' :
{'walk descriptor’:|
'inv_walk("SystemOID","dataset").inv_walk("DatasetsWrittenOID","Executable™)\
walk("DatasetsReadOID", "dataset”). walk("SystemOID", "System")'] }

®
&

¢

FIG. 7B

US 9,910,901 B2

Sheet 10 of 10

Mar. 6, 2018

U.S. Patent

Pl 1SND Jus W)

dwspeol qp

8 Ol

uonauosaq

Ag u) paosyQ
Lp-Ly-¢l 90-C1-900¢ | uj peydeyd
owapun |jo8loid

p# 9|dwex3 | swep

MO(]
abed s|iejop 0} 09
X b 9|dwex3] :ydelo

duwi'peojunqp

1a10|dX3 JauUlaju] SMOPUIM — Pl }SND

/ 008

I

i
&

US 9,910,901 B2

1

GRAPHIC REPRESENTATIONS OF DATA
RELATIONSHIPS

CLAIM OF PRIORITY

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 12/393,765, filed on Feb. 26, 2009, which
claims prionity under 35 USC § 119(e) to U.S. Patent

Application Ser. No. 61/031,672, filed on Feb. 26, 2008,
cach of which 1s incorporated herein by reference.

BACKGROUND

This description relates to graphic representations of data
relationships.

Enterprises may use various complex data processing
systems, such as data warechousing, customer relationship
management, and data mining, to manage data. In many data
processing systems, data are pulled from many different data
sources, such as database files, operational systems, flat files,
the internet, etc., into a central repository. Often, data are
transformed before being loaded in the system. Transforma-
tion may include cleansing, integration, and extraction. To
keep track of the transformations that have happened to the
data stored 1n a system, metadata can be used. Metadata are
data that describe other data’s origins, histories, inter-rela-
tionships, etc. In some systems, a user interface 1s provided
to manage metadata. Stored data items that include metadata
or otherwise represent or refer to data that has been (or will
be) stored 1n or processed by the system can be accessed
using object-oriented, relational, or other technmiques and
structures for managing stored data. For example, a data
item 1ncluding metadata can include mformation about a
table, file, or other dataset, or an application or data pro-
cessing element that generates a dataset.

SUMMARY

In one aspect, 1n general, a method for presenting a
diagram 1ndicating relationships among data items stored 1n
a data management system includes: receiving a request that
identifies a first data item stored in the data management
system from a user interface; retrieving stored configuration
information that includes a plurality of selection specifica-
tions for selecting data items 1n the data management system
that are related to a given data item of a predetermined type,
where each selection specification 1s associated with a
different respective predetermined type; querying the data
management system to 1dentify a set of one or more data
items according to a selection specification from the con-
figuration information that i1s associated with a type of the
first data 1tem; for each of multiple returned data items 1n the
identified set, querying the data management system to
determine whether additional data items are identified
according to a selection specification from the configuration
information that 1s associated with a type of the returned data
item; generating a diagram indicating relationships among
data 1tems i1dentified using the configuration information;
and presenting the generated diagram over the user interface.

Aspects can include one or more of the following features.

Querying the data management system to identify the set
ol one or more data 1tems according to the selection speci-
fication 1includes dynamically formulating a query using the
selection specification in response to the request, processing
the query by the data management system, and receiving a
query result from the data management system i1dentifying
the set of one or more data 1tems.

10

15

20

25

30

35

40

45

50

55

60

65

2

The query includes at least one navigation action that
navigates the data management system to retrieve data items
that are referenced by an attribute of the first data item.

The query includes at least one navigation action that
navigates the data management system to retrieve data items
that have an attribute referencing the first data item.

Processing the query by the data management system
includes navigating the management system recursively and
returning at least some data 1tems found at each of multiple
steps of the recursion.

Querying the data management system to determine
whether additional data items are identified includes per-
forming multiple iterations of queries, where each iteration
includes determining another set of one or more data items
cach related to at least one data item of a previous set of one
or more data i1tems from a previous iteration.

Iterations of queries are performed until no more data
items are found that are related to any of the previous sets
ol one or more data items.

The method further includes receiving from the user
interface a selection of a configuration file including the
configuration mformation from multiple stored configura-
tion {iles.

The configuration information includes a label specifica-
tion associated with the type of the first data item for
constructing a label for a node of the generated diagram
representing the first data item.

The configuration mnformation includes a label specifica-
tion associated with the type of the first data item for
constructing a label for an edge of the generated diagram
representing a relationship between the first data item and
another data i1tem.

Each predetermined type corresponds to a different por-
tion of a dataflow graph processing system.

At least one predetermined type corresponds to a data
item representing a portion of a datatflow graph that includes
nodes representing processing components and links repre-
senting flows of data between the processing components.

At least one predetermined type corresponds to a data
item representing a field in a dataset.

The first data item includes metadata describing stored
data that corresponds to at least a portion of a dataset or an
executable program.

The stored data 1s stored 1n a first data source diflerent
from the data management system, and the generated dia-
gram 1ncludes an edge representing a data lineage relation-
ship between a node representing the stored data and a node
representing data that corresponds to at least a portion of a
dataset or an executable program stored i1n a second data
source different from the first data source and the data
management system.

The generated diagram includes an edge representing a
downstream data lineage relationship between a node rep-
resenting the stored data and a node representing an entity
aflected by the stored data.

The generated diagram includes an edge representing an
upstream data lineage relationship between a node repre-
senting the stored data and a node representing a source from
which the stored data 1s derived.

In another aspect, 1n general, a system for presenting a
diagram indicating relationships among data items stored 1n
a data management system includes: a data management
system storing data items; a user interface including an 1nput
interface configured to receive a request that identifies a first
data item stored 1n the data management system; a storage
system storing configuration information that includes a
plurality of selection specifications for selecting data 1tems

"y

US 9,910,901 B2

3

in the data management system that are related to a given
data item of a predetermined type, where each selection
specification 1s associated with a diflerent respective prede-
termined type; a data management system interface config-
ured to query the data management system to identily a set
ol one or more data items according to a selection specifi-
cation from the configuration information that 1s associated
with a type of the first data item, and for each of multiple
returned data items in the identified set, query the data
management system to determine whether additional data
items are identified according to a selection specification
from the configuration information that 1s associated with a
type of the returned data item; and one or more processors
configured to execute a diagram generator to generate a
diagram indicating relationships among data items identified
using the configuration information. The user interface
includes an output interface configured to present the gen-
crated diagram.

In another aspect, 1n general, a system for presenting a
diagram indicating relationships among data 1tems stored 1n
a data management system includes: means for recerving a
request that identifies a first data i1tem stored in the data
management system from a user interface; means for retriev-
ing stored configuration information that includes a plurality
of selection specifications for selecting data items 1n the data
management system that are related to a given data item of
a predetermined type, where each selection specification 1s
associated with a different respective predetermined type;
means for querying the data management system to 1identify
a set of one or more data 1tems according to a selection
specification from the configuration information that 1s
associated with a type of the first data item, and querying the
data management system, for each of multiple returned data
items 1n the identified set, to determine whether additional
data items are identified according to a selection specifica-
tion from the configuration information that i1s associated
with a type of the returned data 1tem; means for generating,
a diagram indicating relationships among data items 1den-
tified using the configuration information; and means for
presenting the generated diagram over the user intertace.

In another aspect, i general, a computer-readable
medium stores a computer program for presenting a diagram
indicating relationships among data items stored 1n a data
management system. The computer program including
instructions for causing a computer to: receive a request that
identifies a first data item stored in the data management
system from a user interface; retrieve stored configuration
information that includes a plurality of selection specifica-
tions for selecting data items 1n the data management system
that are related to a given data item of a predetermined type,
where each selection specification 1s associated with a
different respective predetermined type; query the data man-
agement system to identily a set of one or more data 1tems
according to a selection specification from the configuration
information that 1s associated with a type of the first data
item; for each ol multiple returned data items 1n the 1den-
tified set, query the data management system to determine
whether additional data items are identified according to a
selection specification from the configuration information
that 1s associated with a type of the returned data item;
generate a diagram indicating relationships among data
items 1dentified using the configuration information; and
present the generated diagram over the user interface.

Aspects can include one or more of the following advan-
tages.

Sometimes a database user may want to ivestigate how
certain data are derived from different data sources. For

10

15

20

25

30

35

40

45

50

55

60

65

4

example, a database user may want to know from which
source a dataset or data object 1s imported. Tracing a dataset
back to sources from which 1t 1s derived 1s called upstream
data lineage tracing. Sometimes a database user may want to
investigate how certain datasets have been used (down-
stream data lineage tracing), for example, which application
has read a given dataset. A database user may also be
interested 1n knowing how a dataset 1s related to other
datasets. For example, a user may want to know if a dataset
1s modified, what tables will be affected. The techniques
described herein can be used to help a user find answers to
a variety of data relationship queries including queries 1n
which the relevant data span multiple distributed, heteroge-
neous sources.

Other features and advantages of the invention waill
become apparent from the following description, and from
the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram of an exemplary data processing
system.

FIG. 2 1s an example of a web user interface for data
browsing.

FIG. 3 1s a schematic diagram 1illustrating a process of
generating data relationship diagrams.

FIG. 4A shows an exemplary data relationship diagram.

FIG. 4B 1s a flowchart of a process for retrieving data
items.

FIG. 5 shows an exemplary data relationship diagram.

FIG. 6 1s a flowchart of a process for generating data
relationship diagrams.

FIGS. 7A and 7B are examples of configuration files.

FIG. 8 shows an exemplary interface for displaying
detailed information for a node of a data relationship dia-
gram.

DESCRIPTION

A user can browse, modity, or create new data items 1n a
data processing system using a user interface. Some data
items correspond to programs or program modules (e.g.,
source code or executable code), and some data items
correspond to metadata representing programs, datasets,
data sources, or collections of other data items. Various types
of user interfaces can be provided for different types of
users. For example, a user that develops applications for the
system (a developer) may use one kind of interface, and a
user that executes applications or views results of applica-
tions may use another kind of interface.

FIG. 1 shows an exemplary data processing system 100
that includes a Graphical Development Environment (GDE)
102, which 1s a user interface that allows users to build
applications using datatlow graphs. Dataflow graphs use
functional modules called components and data conduits
called tlows to represent data movement from one compo-
nent to another. A graph-based application can thus be
represented by a directed graph, with vertices 1n the graph
representing components (ei1ther data storage components or
executable computation components), and the directed links
or “edges” connecting vertices 1 the graph representing
flows of data between components. A datatlow graph (also
called simply a “graph™) 1s a modular entity. Each graph can
be made up of one or more other graphs, and a particular
graph can be a component 1n a larger graph. The GDE 102
enables developers to develop, test, and deploy applications
as executable graphs that are tailored to a given user-specific

US 9,910,901 B2

S

environment. An exemplary dataflow graph shown in FIG. 1
being constructed using the GDE 102 includes a component
112 that generates data, a component 114 that receives data
over a flow 116 and provides data to an output dataset 118
over a flow 120.

The GDE 102 communicates with a repository 104 and a
parallel operating environment 106. The repository 104 1s,
for example, a scalable object-orniented database system
designed to support the development and execution of
graph-based applications and the interchange of metadata
between the graph-based applications and other systems
(c.g., other operating systems). The repository 104 1s a
storage system for all kinds of metadata, including docu-
mentation, record formats (e.g., fields and data types of
records 1n a table), transform functions, graphs, jobs, and
monitoring information, for example. The parallel operating
environment 106 interprets programs represented by data-
flow graphs that users have constructed in the GDE 102,
generates computer instructions based on the processing
logic and resources defined 1n the graphs, and executes those
instructions on one or more processors and/or computer
systems (which need not be homogeneous).

An executive 110 1s an optional repository-based job
scheduling system. The executive 110 maintains jobs and
j0b queues as objects within the repository 104.

A metadata interface 108 (e.g., a web browser based
interface) provides a user interface for data items stored 1n
the repository 104 that consist of or include or reference
metadata. Through the metadata interface 108, a user can
access the repository 104 to browse existing data 1tems, alter
existing data items, create new data items, and specily
application parameters. Some of the data items represent
dataflow graphs or other executable programs, datasets that
provide sources for graphs or store results of graphs, or
information about developers of the graphs, for example.
The metadata interface 108 also provides a user an 1nterface
to view and mampulate jobs and job queues in the executive
110. Through the metadata interface 108, a user can specily
values of the runtime parameters for a data flow graph to
allow the executive 110 to run the job generated from the
data tflow graph.

U.S. application Ser. No. 10/979,742, entitled “Managing
Related Data Objects,” incorporated herein by reference,
discloses techniques of managing and providing an interface
to related data 1items. The techniques disclosed there give a
user the capability of defining a view to be presented on a
web browser. Such a view allows the user to access desired
information contained in and/or associated with data items.
Each view 1s associated with a type of data item and includes
one or more “view-elements” that define the data to be
rendered. Each view-element includes an element-descriptor
that enables retrieval of data 1items 1n the category associated
with the view.

FIG. 2 shows an example of a view presented 1n a web
browser. The view includes a navigation bar 202, a content
section 204, and a footer 206. The content section 204 1s
displayed according to the view defined by the user. In this
case, the view includes four view-elements: a category name
208 (e.g., Personnel), the name of a category member 210
(e.g., Jim Anchower), a view clement 212 that shows the
applications this employee 1s responsible for, and a view-
clement 214 that shows the data files that this employee 1s
responsible for.

When a user 1s interested 1n knowing the history of a data
item and its relationship with other data 1items 1n the reposi-
tory 104, he can seek the desired information through a
manual process. He can use the interface 108 to browse

10

15

20

25

30

35

40

45

50

55

60

65

6

linked data 1tems sequentially. Alternatively, the user can use
a programming language to query the database. In both
approaches, i order to extract the historical information, the
user may need to send a first query, wait for the query result,
extract the field immformation i1n the query result, send a
second query based on the extracted field information. This
step-by-step manual process may become tedious 11 a user 1s
interested 1n the history of a data item that has a long data
lineage or 1s iterested in the relationship of a data object
that 1s deeply embedded.

It 1s advantageous to allow a user to pose ad-hoc queries
related to data lineage, for example, or other type of data
relationship and to allow a user to retrieve data relationship
information in a dynamic and user configurable manner. It 1s
also advantageous to present query results in diagrams.

Referring to FIG. 3, in an exemplary implementation of
another approach to extracting desired information, a user
initiates a data relationship diagram generating process by
selecting a data item 302 presented on a user interface 300
(e.g., an 1terface such as the GDE 102 or the metadata
interface 108). A diagram generator 320 (e.g., an application
running on the operating system 106) interacts with a data
management system 340 (e.g., a database implemented in
the repository 104) using a data management system inter-
face (e.g., a communication port to for sending queries and
receiving responses) to retrieve data items related to the
selected data item 302 and automatically generate a data
relationship diagram for presentation to the user on the user
interface 300. The selected data item 302 1s labeled as D1 1n
FIG. 3. The user uses mput interfaces (e.g., buttons, menus,
etc.) to select a type of data relationship diagram that he 1s
interested 1n, data lineage for example, and optionally any
associated information such as upstream (e.g., how this data
item 1s dernived from, or used to receive mput data from, a
source) and/or downstream (e.g., how this data item 1s
received by, or used to generate output data for, an affected
entity), indicating whether the data relationship diagram 1s
to show relationships for data items upstream, downstream,
or both, from the selected starting data item. A request 314
1s made to the diagram generator 320 with an indication of
the selected data item D1 passed as an argument. The data
item D1 1s used as the starting point for generating the
diagram to be presented to the user using an output interface
(e.g., a window on a screen).

The diagram generator 320 receives the request 314 and
searches 1n the configuration file storage 360 for a configu-
ration {ile that corresponds to the request 314. A typical
configuration file 380 contains one or more selection speci-
fications, 382, 384, ctc., ecach associated with a correspond-
ing predetermined data item type. For example, each data
item type can correspond to a different portion of a datatlow
graph processing environment. Some data item types can
correspond to data items that represent graphs. Some data
item types can correspond to data items that represent
components within graphs. Some data item types can cor-
respond to data items that represent datasets. Some data 1tem
types can correspond to data items that represent fields
within datasets.

A selection specification specifies a selection action or a
series ol selection actions to navigate among and select data
items stored 1n the data management system 340. A selection
action can include, for example, a navigation action that
indicates how to navigate from one data item to the next, or
another type of action that determines which data 1items will
be returned by performing functions such as filtering. In the
configuration file 380, each type of data item 1s associated
with a selection specification. For example, the selection

US 9,910,901 B2

7

specification 382 1s associated with type A, and the selection
specification 384 1s associated with type B. A type of a data
item may be specified, for example, according to a database
schema that defines attributes (or “fields™ or “columns”) and
relationships among those attributes (e.g., represented by an
entity-relationship diagram).

The diagram generator 320 retrieves the configuration {file
380 corresponding to the request 314 from the configuration
file storage 360, and uses the configuration file to 1ssue a
query 330 to the data management system 340.

A series of multiple query interactions between the dia-
gram generator 320 and the data management system 340
may happen. The diagram generator 320 uses D1 as the
starting point for a first query for navigating the data
management system 340 based on the selection specification
associated with the type of D1 and receives a query result
that may include one or more additional data items. For
example, 1f the type of D1 1s type B, the diagram generator
320 selects the selection specification 384 and formulates a
query that includes the series of selection actions contained
in the selection specification 384. The query 1s formulated,
for example, 1n terms of a query language that the data
management system 340 1s able to interpret. With each
query, a set of one or more data items may be retrieved. In
some cases, a query may not return any data items.

[lustrated 1n FIG. 3 as an example, the data management
system 340, starting with D1, retrieves a set of one or more
data 1items using the selection specification 384. The selec-
tion specifications specily the kinds of relationships (e.g.,
primary key/foreign key relationships) are to be navigated in
the data management system 340 to retrieve the set of data
items. In this example, the retrieved set of data items
contains D2, D3, and P1 and 1s returned to the diagram
generator. The data items D2 and D3 are of the same type as
D1, type B. The data item P1 is of a diflerent type, type A.

For each data item 1n the retrieved set of data items, the
diagram generator 320 looks up the selection specification
associated with the type of that data item and sends a query
to the data management system 340 to retrieve another set of
data items by following the selection actions 1n the selection
specification associated with that type. The selection speci-
fication for D2 and D3 1s the selection specification 384
because D2 and D3 are of the same type as D1. The selection
specification for P1 1s the selection specification 382
because P1 1s of type A with which the selection specifica-
tion 382 1s associated. The data management system
attempts to retrieve a new set of one or more data items for
each data item 1n the retrieved set, so for the first set of D2,
D3, and P1, the data management system can potentially
retrieve three new sets of one or more data 1tems using the
selection specification 384 for D2 and D3 and the selection
specification 382 for P1. In some cases, the attempt to
retrieve a new set of data items results 1n no data 1tems being,
found. For each data item contained 1n each new set of one
or more data items retrieved for D2, D3, or P1 that are
returned to the diagram generator 320, the diagram generator
320 finds the selection specification for the type of that data
item and sends out a new query to the data management
system 340. The data management system 340 then carries
out the selection actions 1n the specification and attempts to
retrieve another set of one or more data 1tems to the diagram

generator.

FIGS. 4A and 4B further illustrate this looping process.
FIG. 4A shows the sets of data items retrieved 1n each
iteration of this process, and the relationship links that were
traversed to reach those data items. D1 1s the starting data
item (iteration 10). From D1, the set of data items retrieved

5

10

15

20

25

30

35

40

45

50

55

60

65

8

contains D2, D3, and P1 (iteration 11). From D2, the set of
one or more data 1tems retrieved contains only one data 1tem
D4. From D3, zero data items are retrieved. From P1, the set
of one or more data 1tems retrieved contains two data items,
P2 and D5. So 1n the next iteration (12) three data items were
retrieved. From D4, the set of one more data items retrieved
contains P3 (iteration 13). From P3, the set of data items
retrieved contains P53 (iteration 14). Zero data items are

retrieved from P2, DS, and P5.

FIG. 4B shows a flowchart for an exemplary process for
retrieving the data 1tems. Starting with the data item Ds, the
type of Ds 1s i1dentified 1n step 410. The selection specifi-
cation associated with the type of Ds 1s determined 1n step
412. The selection actions defined in the selection specifi-
cation are performed 1n step 414, potentially resulting 1n a
set of one or more data items being retrieved (step 416). The
process terminates when no more selection actions are need
because no more data items are found.

In the example of FIG. 4A, the data items returned to the
diagram generator 320 as query results are represented as
nodes connected by edges that correspond to how they are
related in the data management system 340. For example,
the edges can represent a primary key/foreign key relation-
ship between the corresponding data items. The edges can
represent any of a variety of relationships as described, for
example, 1n U.S. application Ser. No. 10/979,742 mentioned
above.

FIG. 5 1s an example of a data relationship diagram that
1s generated by the diagram generator 320 based on the
retrieved data items presented 1n a window 500 of the user
interface 300. Rectangles and rounded rectangles in FIG. 5
are nodes that represent data items. Connections between
nodes are directed edges that represent relationships
between the nodes. The direction of the arrow indicates that
the downstream data item represents an entity that 1s affected
by the entity represented by the upstream data item. For
example, 1n the diagram shown in FIG. § the nodes corre-
spond to metadata representing fields 1n various datasets and
graphs that process the data in those datasets. Rounded
rectangles represent data items of type “field.” Rectangles
represent data items of type “graph” which are applications
that act on 1nput associated with the data 1tems positioned to
the immediate left and provide output associated with the
data items positioned to the immediate right. For example,
a component 1 a graph may access data in a first field
(whose metadata 1s stored 1n a first data item), and may
output data in a second field (whose metadata 1s stored 1n a
second data item).

The first data 1tem 3510, the field cust_id, i1s the starting
data 1tem selected by the user for data relationship diagram
generation. The diagram of FIG. 5 presents a picture of how
the field cust_1d, 510, has been used, 1.e., a downstream data
lineage diagram. The application db_unload.mp reads 1n and
processes data from the field cust_id, then outputs data 1n the
two fields custid. The application Example #4 then reads in
and processes data from one of the two fields, and outputs
data 1n field 1d. The field 1d then 1s read by the application
reporting.mp which outputs data 1n four fields. Finally, the
application db_load.mp reads i two of the four fields
resulted from the application reporting.mp and writes four
more fields.

The data relationship diagram of FIG. 5 1s what 1s
presented to a user when he clicks on the data 1item cust_id
displayed 1n the metadata browser, an example of which 1s
shown 1n FIG. 2. An exemplary process, from when the user
clicks on the data item on which he 1s interested 1n finding

US 9,910,901 B2

9

data relationship information to when the diagram 1s pre-
sented, 1s 1llustrated in the flowchart shown 1n FIG. 6.

FIG. 6 shows a dynamic and user configurable process for
generating a data relationship diagram. A user imitiates the
process by selecting (e.g., clicking on) the data item he 1s
interested 1n and specifies the configuration file to be used,
for example, by clicking on the corresponding radio button
(shown 1n FIG. 3). A user request then 1s sent on behalf of
the user. The diagram generator 320 receives the user
request 1n step 601. The user request identifies the starting,
data 1tem, and any other information that may be needed to
indicate the appropriate configuration file to be used to
generate the data relationship diagram desired by the user. In
step 602, the diagram generator retrieves the configuration
file from the configuration file storage 360. Step 603 1s a
looping process. The looping process starts with a first data
item, 1.e., the starting data 1tem. Each iteration of the loop
includes the following steps for each data item that is
returned from the previous iteration (or for the starting data
item 1n the first 1teration): step 652—identity the type of the
data 1tem, step 634—determine the selection specification
associated with the type, step 656—perform the selection
actions contained 1n the selection specification, step 658—
retrieve a set of one or more data 1tems as results of step 6356,
and step 660—determine whether the looping process
should terminate by checking whether there i1s any retrieved
data item that has yet to be processed.

In the example above, the looping 1s based on individual
data 1tems retrieved. Alternatively, a nested looping process
can be constructed with first level looping based on steps
(e.g., edges 1n an entity-relationship diagram) away from the
first data 1tem, and second level looping based on data 1tems
contained 1n the set of one or more data 1tems retrieved 1n
cach first level loop iteration.

When there are no more data items to be retrieved
(according to the selection actions 1n the selection speciii-
cations defined by the configuration file), the looping pro-
cess terminates and the collection of data items and their
inter-relationships obtained during the looping process are
processed 1n step 604 and a data relationship diagram 1s
generated based on the processing of the returned query
results. All data items retrieved in the looping process are
returned and rendered on a data relationship diagram. Alter-
natively, the diagram generator 320 may render the data
relationship diagram as the looping process 1s being per-
formed, eliminating the need for some or all of the process-
ing performed 1n step 604.

One example of a query language 1n which the selection
actions may be formulated 1s described 1 U.S. application
Ser. No. 10/979,742, which discloses a method for managing
and analyzing data stored in a data system. In that applica-
tion, selection actions, including navigation actions and
expression actions, for retrieval of desired data from a data
store are described. Among the navigation actions, the
tollowing four types are defined, walk, inv_walk, gather_all,
find ultimate.

The action walk takes two parameters, an annotation rule
and a category. The action walk returns the data items 1n the
specified category that are referenced by the specified anno-
tation rule. In some 1implementations, data items correspond
to objects that are related according to a defined schema and
the type of a data item 1s determined by 1ts category in the
defined schema.

The action inv_walk takes two parameters as well, an
annotation rule and a category. The action inv_walk returns

10

15

20

25

30

35

40

45

50

55

60

65

10

the data i1tems in the specified category cat that have an
annotation rule that references the data item upon which an
action inv_walk 1s invoked.

The action gather_all takes as a parameter a series of one
or more navigation actions. It performs the navigation
action(s) recursively and returns all the data objects found at
cach step of the recursion.

The action find_ultimate also takes as a parameter a series
of one or more navigation actions. It performs the navigation
action(s) recursively and returns all the “leal node” data
objects found at the end of the recursion.

With the above four actions, a user can compose a series
ol navigation actions to navigate data objects stored 1n a
database. The composition ol navigation actions may be
stored as a selection specification 1n a configuration file.

The user can also 1ncorporate expression actions 1nto
selection specifications. Expression actions operate on a set
of one or more data items. For example, the expression
action sort(expr) sorts the set of one or more data items by
expr. Expression action filter(expr) filters the set of one or
more data items by expr. Expression action eval(expr)
evaluates expr on the set of one or more data 1tems.

For a given type of starting data item, the configuration
file uses a selection specification with one or more selection
actions (such as the navigation and expression actions
described above) to identily a set of one or more objects
related to that starting data item. The configuration file can
also include a label specification along with the selection
specification for a given type of data item. The label
specification 1s used to construct a label for the node 1n the
data relationship diagram representing the starting item.

FIGS. 7A, 7B, and 7C show three examples of configu-
ration files with selection specifications composed of navi-
gation and expression actions as the selection actions.

FIG. 7A shows an example of a configuration file with
three selection specifications defined for three types of data
items, ‘Subject Area’, ‘Logical Enftity’, and ‘Entity Rela-
tionship’. For a data i1tem that 1s of type ‘Subject Area’, the
corresponding selection specification, designated
as sel_spec, includes a navigation action, inv_walk(*“Sub-
jectAreaOID”, “Logical Entity”), which returns a set of one
or more data items that belong to category Logical Entity
and have an annotation rule SubjectAreaOID that references
the set of one or more data items on which this selection
specification 1s imposed. For a data item that 1s of type
‘Logical Entity’, the selection specification, designated as
sel_spec, includes a composition of four actions, a naviga-
tion action inv_walk, followed by an expression action filter,
followed by two navigation actions walk. For a data item
that 1s of type °

Entity Relationship’, the corresponding
selection specification, designated as sel_spec, includes a
navigation action walk. A label specification, designated as
label_spec, includes an expression action eval. The returned
value of this expression action 1s used for labeling the node
that represents the data item 1n the data relationship diagram
being generated. In this example, the value obtained from
expression action eval 1s used as a node label of data items
that are of type ‘Entity Relationship’.

FIG. 7B shows a portion of a configuration file with a
selection specification defined for a ‘system’ type of data
item. In this example, there are two different selection
specifications defined for the same type of data item, which
enables the diagram generator 320 to use diflerent selection
actions for the upstream and downstream directions of the
data relationship diagram. Therefore, 1n the final data rela-
tionship diagram, the starting data 1item will be positioned
somewhere in the middle, instead of either end. In the

US 9,910,901 B2

11

downstream section, designated as # Downstream, the data
item type ‘system’ corresponds to a selection specification
with a composition of two 1nv_walk navigation actions and
two walk navigations. In the upstream section, designated as
Upstream, the data item type ‘system’ also corresponds to 5
a selection specification with a composition of two inv_walk
navigation actions and two walk navigations, but the anno-
tation rule indicating whether a given dataset 1s being read
or written 1s swapped compared to the downstream direc-
tion. 10

The configuration file can also include a label specifica-
tion to define a node label, and a label specifications to
define a label for the edge from the node from which
navigation actions originate. A label based on the type of the
nodes at either end of the edge can be used for edge labeling. 15
Alternatively an edge label may be customized by a user
through a value assigned to variable in the configuration file.

In some 1mplementations, a selection specification can
include a set of multiple selection actions to enable the
diagram generator 320 to execute multiple queries at a time, 20
rather than one query at a time, and allows a sequence of sets
ol nodes, rather than a single set of node, to be returned. This
teature can be helptul for accurate rendering of the diagram
when there are certain kinds of dependency among the
nodes. 25

Even though the exemplary selection specifications dis-
cussed above are written 1n one particular language, it
should be understood that the methodology disclosed here 1s
equally applicable to other languages used for navigating or
tracing data stored 1n a data storage. 30

So far, the data relationship diagram generation process
described above 1s user configurable 1n the sense that a user
can configure how he desires certain selection actions to be
carried out by defining selection specifications in a configu-
ration file. 35

A user can further configure a data relationship diagram
generation process by controlling the looping process
depicted in FIG. 6. The looping process can continue with as
many 1terations are needed, until no additional data items are
returned 1n any query results. Alternatively, a user can limit 40
the number of iterations of the looping process by imposing,
an exit condition such as nsn_max, with n as the number of
first level 1terations executed 1n the nested looping scheme
mentioned above so that n._ max 1s the maximum number of
edges along a path away from the node representing the 45
selected starting data 1item. A user could also directly control
how many nodes and edges to display on the final diagram
in the diagram rendering process.

In some 1implementations, a user can move back and forth
between data relationship diagrams and a user interface for 50
data browsing. For example, in a data browsing interface, a
user can select a first data 1item and request a data relation-
ship diagram for that data item. In the data relationship
diagram, a user can select a node that 1s different from the
node associated with the first data item, to redirect the user 55
interface to the data browsing interface for corresponding
data item.

In some implementations, a user can select a node 1n a
data relationship graph for detailed information, which may
be displayed 1 a pop-up window, for example, as 1n the 60
window 800 shown in FIG. 8.

The techniques described above can be implemented
using software for execution on a computer. For instance,
the software forms procedures 1 one or more computer
programs that execute on one or more programmed or 65
programmable computer systems (which may be of various
architectures such as distributed, client/server, or grid) each

12

including at least one processor, at least one data storage
system (including volatile and non-volatile memory and/or
storage clements), at least one mput device or port, and at
least one output device or port. The software may form one
or more modules of a larger program, for example, that
provides other services related to the design and configura-
tion of datatlow graphs. The nodes and elements of the graph
can be implemented as data structures stored 1n a computer
readable medium or other organized data conforming to a
data model stored in a data repository.

The software may be provided on a storage medium, such
as a CD-ROM, readable by a general or special purpose
programmable computer or delivered (encoded 1n a propa-
gated signal) over a communication medium of a network to
the computer where 1t 1s executed. All of the functions may
be performed on a special purpose computer, or using
special-purpose hardware, such as coprocessors. The soft-
ware may be implemented 1n a distributed manner in which
different parts of the computation specified by the software
are performed by different computers. Each such computer
program 1s preferably stored on or downloaded to a storage
media or device (e.g., solid state memory or media, or
magnetic or optical media) readable by a general or special
purpose programmable computer, for configuring and oper-
ating the computer when the storage media or device 1s read
by the computer system to perform the procedures described
herein. The inventive system may also be considered to be
implemented as a computer-readable storage medium, con-
figured with a computer program, where the storage medium
so configured causes a computer system to operate in a
specific and predefined manner to perform the functions
described herein.

A number of embodiments of the invention have been
described. Nevertheless, 1t will be understood that various
modifications may be made without departing from the spirit
and scope of the invention. For example, some of the steps
described above may be order independent, and thus can be
performed 1n an order different from that described.

It 1s to be understood that the foregoing description 1s
intended to illustrate and not to limit the scope of the
invention, which 1s defined by the scope of the appended
claims. For example, a number of the function steps
described above may be performed in a different order
without substantially affecting overall processing. Other
embodiments are within the scope of the following claims.

What 1s claimed 1s:

1. A method for presenting a data lineage diagram indi-
cating relationships among metadata 1tems stored 1n a meta-
data management system accessible to a computing system,
the method including:

recerving a request that identifies a first metadata item,

stored 1n the metadata management system, from a user
interface, the first metadata item including metadata
describing first stored data that corresponds to at least
a portion ol a dataset or an executable program and 1s
stored 1n a first data source diflerent from the metadata
management system;

providing a plurality of selection specifications {for

executing queries from the computing system to select
metadata items 1n the metadata management system
that are related to a given metadata item;

querying the metadata management system using one or

more of the plurality of selection specifications to
identily a set of one or more metadata 1tems that are
related to the first metadata item, where a first selection
specification from the plurality of selection specifica-
tions 1s associated with the first metadata item:

US 9,910,901 B2

13

for each of multiple returned metadata items in the
identified set, querying the metadata management sys-
tem to 1dentily additional metadata 1tems according to
a selection specification from the plurality of selection
specifications that 1s associated with the returned meta-
data 1tem, including performing multiple 1terations of
queries, where each iteration includes identifying
another set of one or more metadata 1tems each related
to at least one metadata item of a previous set of one or
more metadata 1tems from a previous iteration, and
where 1terations of queries are performed until no more
metadata items are found that are related to any of the
previous sets of one or more metadata 1tems; and
generating a data lineage diagram indicating data lineage
relationships among programs and data represented by
the metadata items 1dentified using the querying, where
the data lineage diagram includes nodes that corre-
spond to the programs and data represented by the
metadata 1items and edges that represent the data lin-
cage relationships among the programs and data rep-
resented by the metadata 1tems, and the edges include
two or more of:
an edge representing a data lineage relationship
between a node representing the first stored data and
a node representing stored data that corresponds to at
least a portion of a dataset or an executable program
stored 1 a second data source different from first
data source and the metadata management system:;
an edge representing a downstream data lineage rela-
tionship between the node representing the {first
stored data and a node representing stored data that
corresponds to at least a portion of a dataset or an
executable program aflected by the first stored data,
wherein the downstream data lineage relationship
enables downstream data lineage tracing to indicate
how the first stored data has been used; and
an edge representing an upstream data lineage relation-
ship between the node representing the first stored
data and a node representing stored data that corre-
sponds to at least a portion of a dataset or an
executable program, wherein the upstream data lin-
cage relationship enables upstream data lineage trac-
ing to indicate one or more sources from which the
first stored data 1s derived.

2. The method of claim 1, wherein querying the metadata
management system to identily the set of one or more
metadata 1tems that are related to the first metadata item
includes dynamically formulating a query using the {first
selection specification in response to the request, processing
the query by the metadata management system, and receiv-
ing a query result from the metadata management system
identifying the set of one or more metadata items.

3. The method of claim 2, wherein the query includes at
least one navigation action that navigates the metadata
management system to retrieve metadata items that are
referenced by an attribute of the first metadata 1tem.

4. The method of claim 2, wherein the query includes at
least one navigation action that navigates the metadata
management system to retrieve metadata items that have an
attribute referencing the first metadata 1tem.

5. The method of claim 2, wherein processing the query
by the metadata management system includes navigating the
metadata management system recursively and returning at
least some metadata 1tems found at each of multiple steps of
the recursion.

6. The method of claim 1, further including receiving
from the user interface a selection of a configuration file

10

15

20

25

30

35

40

45

50

55

60

65

14

including the plurality of selection specifications from mul-
tiple stored configuration files.
7. The method of claim 1, further including providing a
label specification associated with the first metadata item for
constructing a label for a node of the generated data lineage
diagram representing the first metadata item.
8. The method of claim 1, further including providing a
label specification associated with the first metadata item for
constructing a label for an edge of the generated data lineage
diagram representing a relationship between the first meta-
data item and another metadata item.
9. The method of claim 1, wherein each of two or more
selection specifications of the plurality of selection specifi-
cations 1s associated with a different predetermined type, and
cach predetermined type corresponds to a diflerent portion
ol a datatlow graph processing system.
10. The method of claim 9, wherein at least one prede-
termined type corresponds to a metadata 1tem representing a
portion ol a datatlow graph that includes nodes representing
processing components and links representing flows of data
between the processing components.
11. The method of claim 9, wherein at least one prede-
termined type corresponds to a metadata 1tem representing a
field 1n a dataset.
12. A computing system for presenting a data lineage
diagram indicating relationships among metadata items
stored 1n a metadata management system, the computing
system 1ncluding;:
a metadata management system storing metadata items;
a user interface mcluding an input interface configured to
receive a request that identifies a first metadata 1tem,
stored 1n the metadata management system, the first
metadata 1tem including metadata describing first
stored data that corresponds to at least a portion of a
dataset or an executable program and 1s stored 1n a first
data source diflerent from the metadata management
system;
a storage system providing a plurality of selection speci-
fications for executing queries from the computing
system to select metadata 1tems in the metadata man-
agement system that are related to a given metadata
item;
a metadata management system interface configured to
query the metadata management system using one or
more of the plurality of selection specifications to
1dentily a set of one or more metadata 1tems that are
related to the first metadata item, where a first
selection specification from the plurality of selection
specifications 1s associated with the first metadata
item, and

for each of multiple returned metadata 1items 1n the
identified set, query the metadata management sys-
tem to 1dentity additional metadata 1tems according
to a selection specification from the plurality of
selection specifications that 1s associated with the
returned metadata item, including performing mul-
tiple 1iterations ol queries, where each iteration
includes identifying another set of one or more
metadata 1items each related to at least one metadata
item of a previous set of one or more metadata items
from a previous iteration, and where iterations of
queries are performed until no more metadata items
are found that are related to any of the previous sets
of one or more metadata items; and

one or more processors configured to execute a diagram
generator to generate a data lineage diagram indicating
data lineage relationships among programs and data

US 9,910,901 B2

15

represented by the metadata items 1dentified using the
querying, where the data linecage diagram includes
nodes that correspond to the programs and data repre-
sented by the metadata items and edges that represent
the data lineage relationships among the programs and
data represented by the metadata 1items, and the edges
include two or more of:
an edge representing a data lineage relationship
between a node representing the first stored data and
a node representing stored data that corresponds to at
least a portion of a dataset or an executable program
stored 1 a second data source different from first
data source and the metadata management system:;
an edge representing a downstream data lineage rela-
tionship between the node representing the first
stored data and a node representing stored data that
corresponds to at least a portion of a dataset or an
executable program aflected by the first stored data,
wherein the downstream data lineage relationship
enables downstream data lineage tracing to indicate
how the first stored data has been used; and
an edge representing an upstream data lineage relation-
ship between the node representing the first stored
data and a node representing stored data that corre-
sponds to at least a portion of a dataset or an
executable program, wherein the upstream data lin-
cage relationship enables upstream data lineage trac-
ing to indicate one or more sources from which the
first stored data 1s derived.

13. The computing system of claim 12, wherein querying
the metadata management system to identify the set of one
or more metadata 1tems that are related to the first metadata
item 1ncludes dynamically formulating a query using the
first selection specification 1n response to the request, pro-
cessing the query by the metadata management system, and
receiving a query result from the metadata management
system 1dentifying the set of one or more metadata items.

14. The computing system of claim 13, wherein the query
includes at least one navigation action that navigates the
metadata management system to retrieve metadata items that
are referenced by an attribute of the first metadata item.

15. The computing system of claim 13, wherein the query
includes at least one navigation action that navigates the
metadata management system to retrieve metadata items that
have an attribute referencing the first metadata 1tem.

16. The computing system of claim 13, wherein process-
ing the query by the metadata management system includes
navigating the metadata management system recursively
and returning at least some metadata 1tems found at each of
multiple steps of the recursion.

17. The computing system of claim 12, wherein the user
interface 1s configured to provide a selection of a configu-
ration file including the plurality of selection specifications
from multiple stored configuration files.

18. The computing system of claim 12, wherein the
storage system 1s configured to provide a label specification
associated with the first metadata item for constructing a
label for a node of the generated data lineage diagram
representing the first metadata item.

19. The computing system of claim 12, wherein the
storage system 1s configured to provide a label specification
associated with the first metadata 1tem for constructing a
label for an edge of the generated data lineage diagram
representing a relationship between the first metadata item
and another metadata item.

20. The computing system of claim 12, wherein each of
two or more selection specifications of the plurality of

10

15

20

25

30

35

40

45

50

55

60

65

16

selection specifications 1s associated with a different prede-
termined type, and each predetermined type corresponds to
a diflerent portion of a datatflow graph processing system.
21. The computing system of claim 20, wherein at least
one predetermined type corresponds to a metadata item
representing a portion of a dataflow graph that includes
nodes representing processing components and links repre-
senting flows of data between the processing components.
22. The computing system of claim 20, wherein at least
one predetermined type corresponds to a metadata item
representing a field in a dataset.
23. A computing system for presenting a data lineage
diagram indicating relationships among metadata items
stored 1n a metadata management system, the computing
system 1ncluding;:
means for receiving a request that identifies a first meta-
data 1tem, stored 1n the metadata management system,
from a user interface, the first metadata item including
metadata describing first stored data that corresponds to
at least a portion of a dataset or an executable program
and 1s stored in a first data source different from the
metadata management system;
means for providing a plurality of selection specifications
for executing queries from the computing system to
select metadata 1tems in the metadata management
system that are related to a given metadata item;

means for querying the metadata management system
using one or more of the plurality of selection speci-
fications to 1dentify a set of one or more metadata items
that are related to the first metadata item, where a first
selection specification from the plurality of selection
specifications 1s associated with the first metadata 1tem,
and querying the metadata management system, for
cach of multiple returned metadata i1tems in the i1den-
tified set, to identily additional metadata items accord-
ing to a selection specification from the plurality of
selection specifications that 1s associated with the
returned metadata item, including performing multiple
iterations ol queries, where each iteration includes
identifying another set of one or more metadata items
cach related to at least one metadata item of a previous
set of one or more metadata i1tems from a previous
iteration, and where iterations of queries are performed
until no more metadata 1tems are found that are related
to any of the previous sets of one or more metadata
items; and

means for generating a data lineage diagram indicating

data lineage relationships among programs and data
represented by the metadata 1tems 1dentified using the
querying, where the data linecage diagram includes
nodes that correspond to the programs and data repre-
sented by the metadata 1tems and edges that represent
the data lineage relationships among the programs and
data represented by the metadata 1items, and the edges
include two or more of:
an edge representing a data lineage relationship
between a node representing the first stored data and
a node representing stored data that corresponds to at
least a portion of a dataset or an executable program
stored 1n a second data source different from first
data source and the metadata management system;
an edge representing a downstream data lineage rela-
tionship between the node representing the {first
stored data and a node representing stored data that
corresponds to at least a portion of a dataset or an
executable program aflected by the first stored data,
wherein the downstream data lineage relationship

US 9,910,901 B2

17

enables downstream data lineage tracing to indicate
how the first stored data has been used; and

an edge representing an upstream data lineage relation-
ship between the node representing the first stored
data and a node representing stored data that corre-
sponds to at least a portion of a dataset or an
executable program, wherein the upstream data lin-
cage relationship enables upstream data lineage trac-
ing to ndicate one or more sources from which the
first stored data 1s derived.

24. A computer-readable medium storing a computer
program for presenting a data lineage diagram indicating
relationships among metadata 1items stored in a metadata
management system, the computer program including
instructions for causing a computing system to:

receive a request that identifies a first metadata item,

stored 1n the metadata management system, from a user
interface, the first metadata item including metadata
describing {first stored data that corresponds to at least
a portion of a dataset or an executable program and 1s
stored 1n a first data source diflerent from the metadata
management system;

provide a plurality of selection specifications for execut-

ing queries from the computing system to select meta-
data 1items 1n the metadata management system that are
related to a given metadata item;

query the metadata management system using one or

more of the plurality of selection specifications to
identify a set of one or more metadata items that are
related to the first metadata item, where a first selection
specification from the plurality of selection specifica-
tions 1s associated with the first metadata 1tem;

for each of multiple returned metadata items in the

identified set, querying the metadata management sys-
tem to 1dentily additional metadata 1tems according to
a selection specification from the plurality of selection
specifications that 1s associated with the returned meta-
data 1item, including performing multiple iterations of
queries, where each iteration includes identifying
another set of one or more metadata items each related
to at least one metadata item of a previous set of one or
more metadata items from a previous iteration, and
where 1terations of queries are performed until no more
metadata 1tems are found that are related to any of the
previous sets ol one or more metadata 1tems; and
generate a data lineage diagram indicating data lineage
relationships among programs and data represented by
the metadata 1tems 1dentified using the querying, where
the data lineage diagram includes nodes that corre-
spond to the programs and data represented by the
metadata 1items and edges that represent the data lin-
cage relationships among the programs and data rep-
resented by the metadata 1tems, and the edges include
two or more of:
an edge representing a data lineage relationship
between a node representing the first stored data and
a node representing stored data that corresponds to at
least a portion of a dataset or an executable program
stored 1n a second data source different from first
data source and the metadata management system;
an edge representing a downstream data lineage rela-
tionship between the node representing the {first
stored data and a node representing stored data that
corresponds to at least a portion of a dataset or an
executable program aflected by the first stored data,
wherein the downstream data lineage relationship

10

15

20

25

30

35

40

45

50

55

60

65

18

enables downstream data lineage tracing to idicate
how the first stored data has been used; and

an edge representing an upstream data lineage relation-
ship between the node representing the first stored
data and a node representing stored data that corre-
sponds to at least a portion of a dataset or an
executable program, wherein the upstream data lin-
cage relationship enables upstream data lineage trac-
ing to indicate one or more sources from which the
first stored data 1s derived.

25. The computer-readable medium of claim 24, wherein
querying the metadata management system to identify the
set of one or more metadata 1tems that are related to the first
metadata 1tem includes dynamically formulating a query
using the first selection specification in response to the
request, processing the query by the metadata management
system, and receiving a query result from the metadata
management system identifying the set of one or more
metadata 1tems.

26. The computer-readable medium of claim 25, wherein
the query includes at least one navigation action that navi-
gates the metadata management system to retrieve metadata
items that are referenced by an attribute of the first metadata
item.

277. The computer-readable medium of claim 25, wherein
the query includes at least one navigation action that navi-
gates the metadata management system to retrieve metadata
items that have an attribute referencing the first metadata
item.

28. The computer-readable medium of claim 25, wherein
processing the query by the metadata management system
includes navigating the metadata management system recur-
sively and returning at least some metadata items found at
cach of multiple steps of the recursion.

29. The computer-readable medium of claim 24, further
including instructions for causing the computing system to
receive from the user interface a selection of a configuration
file 1including the plurality of selection specifications from
multiple stored configuration files.

30. The computer-readable medium of claim 24, further
including instructions for causing the computing system to
provide a label specification associated with the first meta-
data item for constructing a label for a node of the generated
data lineage diagram representing the first metadata item.

31. The computer-readable medium of claim 24, turther
including instructions for causing the computing system to
provide a label specification associated with the first meta-
data 1tem for constructing a label for an edge of the gener-
ated data lineage diagram representing a relationship
between the first metadata 1item and another metadata item.

32. The computer-readable medium of claim 24, wherein
cach of two or more selection specifications of the plurality
of selection specifications 1s associated with a different
predetermined type, and each predetermined type corre-
sponds to a diflerent portion of a datatlow graph processing
system.

33. The computer-readable medium of claim 32, wherein
at least one predetermined type corresponds to a metadata
item representing a portion of a datatlow graph that includes
nodes representing processing components and links repre-
senting flows of data between the processing components.

34. The computer-readable medium of claim 32, wherein
at least one predetermined type corresponds to a metadata
item representing a field in a dataset.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

