United States Patent

US009910821B2

(12) (10) Patent No.: US 9.910.821 B2
Mizobuchi 45) Date of Patent: Mar. 6, 2018
(54) DATA PROCESSING METHOD, 7,065,097 B2* 6/2006 Kumazaki HO4N 7/52
DISTRIBUTED PROCESSING SYSTEM, AND 370/428
PROGRAM (Continued)
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, FOREIGN PATENT DOCUMENTS
Kanagawa (JP)]
L__P 9-231184 9/1997
(72) Inventor: Yuji Mizobuchi, Kawasaki (JP) 1P 10-97544 _ /1998
(Continued)
(73) Assignee: FUJITSU LIMITED, Kawasaki (IP)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 Chen et al,. “Tiled-MapReduce: Optimizing Resource Usages of
U.S.C. 154(b) by 661 days. Data parallel Applications on Multicore with Tiling”, Sep. 11-15,
2010, PACT’10, 12 pages total.*
(21) Appl. No.: 14/243,327 Ji et al., Using Shared Memory to Accelerate MapReduce on
Graphics Processing Units, May 2011, Proceedings of the 2011
(22) Filed: Apr. 2, 2014 IEEE International Parallel & Distributed Processing Symposium. ™
Hiroshi, “Caching Mechansim Based on Udpate Frequency”, Apr.
(65) Prior Publication Data 2010, (11 pages total).*
US 2014/0215003 A1 Jul. 31, 2014 (Continued)
Related U.S. Application Data Primary Examiner — Vivek Srivastava
_ _ o Assistant Examiner — Todd L Barker
(63) gflclltlnuag)losl (;f az%pllllcatlon No. PCT/IP2011/073099, (74) Attorney, Agent, or Firm — Staas & Halsey LLP
ed on Oct. 6, .
57 ABSTRACT
(51) Int. CL 57) ‘ |
GO6F 157173 (2006.01) A storage device stores rfe:sqlts of ﬁrs1£ datat processing
GO6F 9/50 (2006.01) previously perfonped. A sphttmg umt splits, with refrarence
(52) U.S. CL. to the storage device, data into a first segment for which the
CPC GO6F 15/17331 (2013.01); GOGF 9/5066 results stored 1n the storage de::wce are usable and a ph.lral%ty
(2013.01) of second segments for which the results stored i1n the
: : : storage device are not usable. A control unit assigns the
(58) Field of Classification Search . .
CPC GOGF 17/30451: GOGE 17/30545: GOGF plurality of second segments to a plurality of nodes, and uses
""""" 0/5066- GOGE 15’ 17331 GOGE 1 2" 10%47- the plurality of nodes in parallel to perform the first data
o ’ ’ processing on the plurality of second segments. A control
(Continued) unit exercises control so as to perform second data process-
_ ing on a previous result corresponding to the first segment,
(56) References Cited which 1s stored 1n the storage device, and results obtained
U.S. PATENT DOCUMENTS from the plurality of second segments using the plurality of
nodes.
6,973,650 B1* 12/2005 Parkes GO6F 9/4843
711/118 5> Claims, 27 Drawing Sheets
/EH DATA,

SG1 5G2 | 85G3

¥

INFORMATION
PRCOCESSING
APPARATUS

2a

SPUTTING
UNIT

STORAGE

BEVIC

_— INFORMATICN —
PROCESSING
APPARATUS

CONTROL
UNIT

Fl
d SGE2 | 5G3

SR nH AT el ket e] AR
e tbI=t] SRR T ittt att:
Bt e 4 :
B sl sl 3
TS TR Te: I

US 9,910,821 B2
Page 2

(58) Field of Classification Search
CPC GO6F 12/084; GO6F 12/0868; GO6F 15/16;
GO6F 9/4812; GO6F 9/4843; GOG6F
9/5005; GO6F 9/52; GO6F 8/71; GO6F
17/30; GO6F 17/30194; GO6F 17/3023;
GO6F 17/40; GO6F 15/1733; G06Q)
10/107; G06Q) 30/0621

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,181,417 B1* 2/2007 Langseth G06Q 30/0621
705/26.5

2003/0187628 Al 10/2003 Nagase
2005/0246323 Al* 11/2005 Becher GOO6F 17/30575
2006/0200637 Al* 9/2006 Galipeau GOO6F 11/2097
711/162
2007/0106844 Al* 5/2007 Ohkawa GOOF 15/16
711/130
2007/0106849 Al* 5/2007 Moore GO6F 17/30132
711/137
2007/0220026 Al* 9/2007 Isard GO6F 12/0802
2007/0271565 Al* 11/2007 Tirumalar GO6F 9/4843
718/100

2008/0120314 Al
2011/0072006 Al*

5/2008 Yang et al.
3/2011 Yu ..o, GOO6F 17/30451

707/718

2011/0154339 Al 6/2011 Lee et al.

2011/0191333 Al* 8/2011 Gutlapalli GOOF 3/048
707/725
2012/0197596 Al* 8/2012 Comiooevvvvvnvnnn, GO6F 9/5066
702/188

FOREIGN PATENT DOCUMENTS

JP 2003-296395 10/2003
JP 2010-92222 4/2010
JP 2010092222 o 4/2010 . GO6F 15/16
JP 2010092222 A * 4/2010
JP 2010-244470 10/2010
WO WO 2011/134875 * 1172011 ... GO6F 9/48

OTHER PUBLICATIONS

Popa, “DryadInc: Resuing work 1n large-scale computations”, Jun.

2009, HotCloud 2009, Workshop on Hot Topiics in Cloud Com-

puting, USENIX.*

Vecchiola, “High Performance Cloud Computing: A View of
Scientifc Applications”, 2009 10th Interrnational Symposium on
Pervasive Systems, Algorithms, and Networks.*

Popa, “DryadINc:Reusing work 1n large scale computations”, Jun.
2009, HotCloud 2009, Workshop on Hot Topics 1n Cloud Comput-
ing, USENIX.*

Japanese Oflice Action dated May 12, 2015 in corresponding
Japanese Patent Application No. 2013-537333.

U. Banerjee et al., “Automatic Program Parallelization,” Proceed-
ings of the IEEFE (Institute of Electrical and Electronics Engineers),
vol. 81, No. 2, Feb. 1993, pp. 211-243.

D. Culler et al., Parallel Computer Architecture: A Hardware/
Software Approach (|[DRAFT: Parallel Computer Architecture,) The
Morgan Kaufmann Series in Computer Architecture and Design,
Aug. 1997, pp. 1-880 (877 pages).

Patent Abstracts of Japan, Publication No. 09-231184, Published
Sep. 5, 1997.

Patent Abstracts of Japan, Publication No. 10-097544, Published
Apr. 14, 1998.

Patent Abstracts of Japan, Publication No. 2003-2963935, Published
Oct. 17, 2003.

J. Dean et al., “MapReduce: Simplified Data Processing on Large
Clusters,” Proceedings of the 6th Symposium on Operation Systems
Design and Implementation, Google Research Publications, Dec.
2004, pp. 137-149 and Cover Sheet with Abstract.

Patent Abstracts of Japan, Publication No. 2010-92222, Published
Apr. 22, 2010.

Patent Abstracts of Japan, Publication No. 2010-244470, Published
Oct. 28, 2010.

International Search Report dated Nov. 8, 2011 1n corresponding
International Patent Application No. PCT/JP2011/073099.

Parvizi, “Inkrementelle Neuberechnungen mit MapReduce”, Bach-
elor Thesis, Technische Universitat Kaiserslautern, Jun. 27,
2011,pp. 1-1v, 1-44.

Extended European Search Report dated Jun. 7, 2016 1n correspond-
ing European Patent Application No. 11873769.1.

* cited by examiner

U.S. Patent Mar. 6, 2018 Sheet 1 of 27 US 9,910,821 B2

D1 DATA

Y
2 3
INFORMATION INFORMATION
PROCESSING PROCESSING
APPARATUS APPARATUS

3a

CONTROL
UNIT

2a

STORAGE
DEVICE

SG3

{
i
i
i
i
I
i
|
i
i
I
i
!
!
i
i
I

U.S. Patent Mar. 6, 2018 Sheet 2 of 27 US 9,910,821 B2

EXECUTION
CONTROL SERVER

100

EC SERVER
20

°fr

///a/‘ ‘ /‘
VAU

600 200

/A
1 °I/‘ /4 °l/‘

INPUT DATA PROCESS
MANAGEMENT ANALYSIS SERVER
SERVER

10

emone?

INTERMEDIATE DATA
MANAGEMENT SERVER

700

///°/‘
L\

RESULT DATA
MANAGEMENT SERVER

800

W °!7‘

FIG. 2

PROCESS
TRANSFORMATION
SERVER

300

400

T
‘:r-‘
N DATA
f’i ANALYSIS
SERVER
X
—w
O
X

500

" REGISTRATION
SERVER

DATA PROCESSING
SERVER

900

U.S. Patent Mar. 6, 2018 Sheet 3 of 27 US 9,910,821 B2

100
EXECUTION CONTROL SERVER

101 104
VIDEO SIGNAL
CPU PROGESSING

11

UNIT =
DISPLAY
102 105 19
INPUT SIGNAL
RAM PROCESSING
UNIT
INPUT DEVICE
103 106 9
HDD DISK DRIVE | €--4--~
RECORDING
MEDIUM 10

107

COMMUNI-
CATION UNIT

FIG. 3

U.S. Patent

20

EC SERVER
21

EC APP

INPUT DATA
MANAGEMENT
SERVER

610

INPUT DATA
STORAGE UNIT

700

600

INTERMEDIATE
DATA
MANAGEMENT

SERVER
710

INTERMEDIATE
DATA
STORAGE UNIT

800

RESULT DATA
MANAGEMENT
SERVER

810

RESULT DATA
STORAGE UNIT

Mar. 6, 2018

100

EXECUTION
CONTROL
SERVER

110

EXECUTION

CONTROL
UNIT

200

PROCESS
ANALYSIS
SERVER

210

PROCESS
ANALYSIS
UNIT
10
NETWORK

Sheet 4 of 27

CLIENT

US 9,910,821 B2

300

PROCESS
TRANSFORMATION
SERVER

310

PROCESS

TRANSFORMATION

UNIT

400

DATA
ANALYSIS
SERVER 410

DATA
ANALYSIS
UNIT

000

REGISTRATION
SERVER
910

PROCESSING
RESULT
REGISTRATION
UNIT

30

31

BROWSER

DATA
PROCESSING
SERVER

910

900

DATA
PROCESSING
UNIT

US 9,910,821 B2

ASVHd UNODOAES

Sheet 5 of 27

Ju Emini aminr dm e SR el b G R B e A R b

Mar. 6, 2018

ASVHd 1Sdl

U.S. Patent

¢S

)

S|UNYS

1408

¥
alNUS

U.S. Patent Mar. 6, 2018 Sheet 6 of 27 US 9,910,821 B2

611

RATING VALUE TABLE

PRODUCT RATING VALUE
DATE D

N I
N O N
N R N
N I I
N N N N
N N I
N N N
N N N K
N I N
N R I I
0N R N N
RN O N
RN I N N
N A N N

FIG. 6

U.S. Patent Mar. 6, 2018 Sheet 7 of 27 US 9,910,821 B2

711

INTERMEDIATE DATA TABLE

INPUT DATA HASH
VALUE |

123a5¢ 2011/03/01-05 RESULT 01-05
b21982 2011/03/02-05 RESULT 02-05
fad9e?2 2011/03/06 RESULT 06

511bbc 2011/03/03-05 RESULT 03-05
713da$% 2011/03/07 RESULT 07

FIG. 7

U.S. Patent

INPUT DATA OF STEP St

Taro, Iteml, 2011/3/1, 1
Jiro, 1tem2, 2011/3/1, 2
Kenji, Item3, 2011/3/1, 3
Satoshi, Itemd, 2011/3/1,5
Jiro, [tem1, 2011/3/2, 4
Kenji, Item2, 2011/3/2, 4
Kenji, [teml, 2011/3/3, 2
Satoshi, [tem2, 2011/3/3, 4
Satoshi, Iteml, 2011/3/4, 2
Taro, [temb, 2011/3/4, 4
Jiro, Item6, 2011/3/4, 2
Kenji, Item6, 2011/3/4, 5
Taro, [temd, 2011/3/5, 2
Jiro, [temb, 2011/3/5, 1
Jiro, Item4, 2011/3/5, 5
Taro, [tem2, 2011/3/5, 5
Satoshi, [temb, 2011/3/5, 1

Mar. 6, 2018

Sheet 8 of 27

D11

FIG. 8

OQUTPUT DATA OF STEP S1

(Itemt, Taro-2011/3/1-1)
(Item2, Jiro-2011/3/1-2)
(Item3, Kenji~2011/3/1-3)
(1tem4, Satoshi-2011/3/1-5)
(Item1, Jiro-2011/3/2-4)
(Item2, Kenji-2011/3/2-4)
(Item1, Kenji-2011/3/3-2)
(Item2, Satoshi~-2011/3/3-4)
(Item1, Satoshi-2011/3/4-2)
(Itemb, Taro-2011/3/4-4)
(Item6, Jiro-2011/3/4-2)
(Item6, Kenji-2011/3/4-5)
(Item4, Taro-2011/3/5-2)
(Itemb, Jiro-2011/3/5-1)
(1temd, Jiro-2011/3/5-5)
(I1tem2, Taro-2011/3/5-5)
(Itemb, Satoshi-2011/3/5-1)

US 9,910,821 B2

D12

6 Ol

US 9,910,821 B2

‘ ((91B4+ — +9]1BP+ — +OWRU)IXS| MOU ‘(WSL1)1X8| MBU)91IIM "1X8]UOD

ANVA SV (, -,) SNIHdAH
HLIM Q3LOINNOD 3NTTVA DNILVY ANV JLVQ DNILYY “JWVN ¥3SN 40 dn JAYW ONIYLS ONV A3 SV I 19Nndo¥d ¥3LSIHAY//

e~
o C()UBYO|IXBU "J9Z1UIYO0] = 93k4 FuUlJlS
° ANIYA ONILVY ST NINOL HL¥N0d4//
- O UaXO[3XaUu "JoZ 1 Uad0] = 2]Bp mc:uw
@ 3LVQ ONILVY ST NINOL GYIHL//
7 ‘ (JUSY0]1XoU "19Z|UsY03 = Wayl 3Jul.Jls
19n00Yd a31VY 40 4 LONAO¥d ST NINOL ON0D3S//
hO U9MO[1XaU "J18Z|Us)0]l = vleu mc:uw
0 AMIYA ONILVY GIYIINT OHM ¥ISN 40 JWYN ¥3SN SI NINOL 1SUI4//
~ c(, ", 'dul])J9zZlusyojsul 1g goc = JOZ|UBY0] JaZIus)o]sulJls
< SNINOL SY @3SN ANV (VWNOD) . ', A9 Q3LINITEA JUV SHNIYLS//
- .Avm:mLumoy.m:_m> = 9ul| 3ulJl§
- an|BA NI SISIX3 AYOLSIH 3ISVHOUNd 40 3INIT INO//

} uol3daoxjpeldniialu] ‘uolldeoxyp] SMOJYl (IX8IU0O 1Xo1U0n ‘sn|BA 1X8] ‘A8Y 8|qel!JmSuoT)dew pPlOA pe10930.4d

}
(ajqellipAedly ‘1xa] '1x8] ‘e|qelligSuoT>Jaddep sjuswe |dwl depjsseyd 3ultal|lJeAlleioge|jo) sSSe|D 211B1S 21 [gnd

116

U.S. Patent

U.S. Patent

INPUT DATA OF STEP S2

(Iteml, Taro-2011/3/1-1)
(Item2, Jiro-2011/3/1-2)
(Item3, Kenji-2011/3/1-3)
(1tem4, Satoshi-2011/3/1-5)
(Iteml, Jiro-2011/3/2-4)
(Item2, Kenji-2011/3/2-4)
(Iteml, Kenji-2011/3/3-2)
(Item2, Satoshi-2011/3/3-4)
(Iteml, Satoshi-2011/3/4-2)
(Itemb, Taro-2011/3/4~-4)
(Item6, Jiro—-2011/3/4-2)
(1tem6, Kenji-2011/3/4-5)
(Itemd, Taro—-2011/3/5-2)
(Itemd, Jiro—2011/3/5-1)
(Itemd, Jiro—2011/3/5-5)
(Item2, Taro-2011/3/5-5)
(Itemb, Satoshi-2011/3/5-1)

Mar. 6, 2018

D12

Sheet 10 of 27

OUTPUT DATA OF STEP 52

(Iteml, Taro-2011/3/1-1)
(Itemt, Jiro-2011/3/2-4)
(Iteml, Kenji-2011/3/3-2)
(Iteml, Satoshi-2011/3/4-2)

(Item2, Jiro-2011/3/1-2)
(Item2, Kenji—-2011/3/2-4)
(Item2, Satoshi-2011/3/3-4)
(Item2, Taro-2011/3/5-5)

(Item3, Kenji-2011/3/1-3)

(Itemd, Satoshi-2011/3/1-5)
(1temd, Taro-2011/3/5-2)
(Itemd Jiro-2011/3/5-5)

(Itemb, Taro—-2011/3/4-4)
(Itemb, Jiro-2011/3/5-1)
(Item5, Satoshi-2011/3/5-1)

(Item6, Jiro-2011/3/4-2)
(I1tem6, Kenji-2011/3/4-5)

FIG. 10

US 9,910,821 B2

D13

L1 OIS

US 9,910,821 B2

»

=

- (((Z'0411) “ (G 1Tusy)) ‘gual])

E (((y'0de]) (1 '0d1p) * (] ‘1yso1eS)) ‘GUO])

7 (((G'1Ys01.S) ‘(G '04ip) ‘(7 ‘04B))) ‘pUWOI])

((¢ “1Tuay) ‘gwal])

((G'0Je]) ‘(¥ ‘1ysoles) (¢ “1Tuay) ‘(g ‘041p) ‘quwal])

= (((Z '1Yyso3es) “(Z ‘1Tusy) ‘(¢ ‘0dip) ‘(] ‘0de])) ‘|WeI])

0 p1LQ

M. eS d418S 40 vivdad LNdino

>

U.S. Patent

eLd

(G-/€/110¢-!Tusy ‘guel])
(C-¥/€/1102-041p "guial])

(1-6/€/110¢-1Ysoles ‘Guai)
(1-G/€/110¢-041 "qual)
(b-¥/€/110¢~04e] "quwal)

(G-G/€/110¢-041P "puiel])
(C-G/€/110¢-04€] "pwal)
(G-1/¢/110¢-1Ysoles “pwal)

(E-1/€/110¢-11us)y ‘gusl])

(6-G/€/110¢-04e] "qUel])
(¥-€/€/110¢-1Yysoleg "¢usl])
(b—¢/€/110¢-1Tusy ‘gwai])
(C—-1/€/1102-0411 "qWal])

(6-¥/€/110¢-1Ys0leg "jwel|)
(¢-€/€/1102-"Tuay " |wai])
(P—2/€/110¢-0411 "Jwel])
(I-1/€/110¢-048] "|Wwa3f)

€S d41S 40 V1VQA 1NdNI

U.S. Patent Mar. 6, 2018 Sheet 12 of 27 US 9,910,821 B2

912

public class Collaborativeliltering phasel Reduce implements
Reducer<Text, ArrayWritable, Text MapWritable> |

//FUNCTION OF RECEIVING KEY-VALUE PAIRS GENERATED IN map AND
PERFORMING Reduce OPERATION

orotected void reduce (Text key, [terable<{Text> values, Context
context) throws I0Exception, InterruptedException |

String value ratelList = 77,
Map<String, ArrayList> map = new HashMap<String, ArrayList>():;

Map<String, String> map value = new HashMap<{String, String>():

for (Text value : values) {
Stringlokenizer tokenizer = new Stringlokenizer (value. toString (),
"y
//NAME OF PERSON WHO RATED
String name = tokenizer. nextToken();
//DATE
String date = tokenizer. nextToken();

//RATING VALUE
String rate = tokenizer. nextToken() :

//CREATION OF Date OBJECT
Stringl] s = date.split("/");
Date d = new Date (Integer. valueOf (s[0]). intValue(),
Integer. valueOf (s[1]). intValue(), Integer.valueQf(s[2]). intValue());

ArraylList list = map. get (name) .

Date d2 = (Date)list.get (0):

//SELECT LATEST RATING DATE

i f(d. after (d2)) {
list.clear () ;
| ist. add (d2) ;
| ist. add (rate) ;

} map. put (name, |ist);

}

//PUT LATEST RATING VALUE GIVEN BY EACH USER IN value

lterator iter = map. keySet (). iterator () ;

while(iter. hasNext) {

String name = (String) iter. next();

String rate = (String) ((ArrayList)map. get (name)). get (1) ;
| map_value. put (hame, rate) ;
//REGISTER PRODUCT NAME AS KEY AND MAP OF USER AND RATING VALUE FOR
FEACH PRODUCT NAME AS VALUE

context. write (key, new MapWritable (context. write(key, new
MapWr itable (map)) :

|

(G°7) “ITusy-odir)
(L1 1ysojeg-odir)
(1 'p) "1ysojeg-oJej)
((1'y) o4ip-0de])
((G°G) "1ysojeg-odir)

US 9,910,821 B2

» ((§2) ‘1ysojes—o.e])
S ((§ Q) ‘041p-0uey)
— ((F ') '1ysoles-—Ilusy)
2 ((¥'Z) '1Ys01eS-041p)
7 ((77) '1fuay-041p)

((¥ 'q) '1ysoleg-oJe])
% ((f'g) "ITus)y-oJe})
= ((2'G) ‘041p-0ue))
3 ((Z'2) '1ysoles-1fusy)
m ((2'P) '1ysojes-ouip)

((¢'Yy) "1Tusy-odir)
((¢ 1) "1ysojeg-o.e])
((2°1) “1fusy-oJe])
((7°1) odip-oJe])

¢
7S d41S 40 v1vd 1Nd1no

U.S. Patent

1 ¢d

cl Ol

(((¢'odip) "(G 1fusy)) "gual])

(((Fo4e]) (L odlp) “(I 1ysoleg)) "gwal|)
(((G1ysoleg) (G odip) (¢ 04el)) YyWwol])

((€ "1Tusy) "gwal])

((G'04e]) (¥ "lysoleg) (¥ "1Tusy) " (g "o41p) "gwalf)
(((¢ "1ysoles) (¢ "1Tusy) “(y ‘o4ip) "(] ‘04el)) "|wal])

VS 4418 30 V.1VvQA LNdNI

U.S. Patent Mar. 6, 2018 Sheet 14 of 27 US 9,910,821 B2

OUTPUT DATA OF STEP S5
D23

INPUT DATA OF STEP S5 (Taro-diro, (1, 4))
D22 (Taro-diro, (4 1))

(Taro-diro, (2,5))

(Taro—-diro, (1,4)) (Taro=dJiro. (5. 2))

(Taro-Kenji, (1, 2))
(Taro-Satoshi, (1, 2))
(Jiro-Kenji, (4,2))
(Jiro-Satoshi, (4,2))
(Kenji-Satoshi, (2,2))
(Taro—-diro, (b, 2))
(Taro-Kenji, (b, 4))
(Taro~Satoshi, (5, 4))
(Jiro-Kenji, (2,4))
(Jiro-Satoshi, (2, 4))
(Kenji-Satoshi, (4, 4))
(Taro—diro, (2,5))
(Taro-Satoshi, (2,5))
(Jiro-Satoshi, (5, 5))
(Taro-diro, (4,1))
(Taro-Satoshi, (4, 1)
(Jiro-Satoshi, (1, 1))
(Jiro-Kenji, (2, 5)

(Taro-Kenji, (1,2))
(Taro—Kenji, (5, 4))

(Taro-Satoshi, (1,2))
(Taro-Satoshi, (2, 5))
(Taro-Satoshi, (5, 4))

(Jiro-Kenji, (4, 2))
(Jiro—Kenji, (2,5)
(Jiro-Kenji, (2,4))

(Jiro-Satoshi, (2, 4))
(Jiro-Satoshi, (4,2))
(Jiro—Satoshi, (5, 5))
(Jiro-Satoshi, (1,1))

(Kenji-Satoshi, (2,2))
(Kenji-Satoshi, (4 4))

FIG. 14

U.S. Patent Mar. 6, 2018 Sheet 15 of 27 US 9,910,821 B2

INPUT DATA OF STEP S6

D23
(Taro-dJiro, (1,4))
(Taro-dJiro, (4, 1))
(Taro-Jiro, (2,5))
(Taro-diro, (5, 2))

OQUTPUT DATA OF STEP $6

(Taro-Kenji, (1.2)) D24
(Taro—Kenji, (5, 4)) Similality(Taro,dJiro)= -0.8
(Taro-Satoshi, (1, 2)) Similality(Taro,Kenji)= 1
(Taro—-Satoshi, (2. 5))
(Taro~8atoshi,(5,4)) Similality(Taro, Satoshi)= 0
(Jiro-Keniji, (4,2)) Similality(Jiro, Kenji)= -0. 94491
(Jiro—Kenji, (2, 5))
(Jiro-Kenji, (2, 4)) Similality(Jiro, Satoshi) =1
(Jiro-Satoshi, (2,4)) Similality(Kenji, Satoshi)=1

(Jiro-Satoshi, (4, 2))
(Jiro-Satoshi, (5, 5))
(Jiro-Satoshi, (1. 1))

(Kenji-Satoshi, (2, 2))
(Kenji—Satoshi, (4, 4))

FIG. 15

U.S. Patent Mar. 6, 2018 Sheet 16 of 27 US 9,910,821 B2

PREDICTED RATING VALUES FOR

INDIVIDUAL USERS

OUTPUT DATA OF STEF 56 D24 (RECOMMENDATION INFORMATION)

o | D25
Similality (Taro, Jiro)= -0.8 Rate (Taro, I[teml)= VI
Similality (Taro,Kenji)= 1 Rate (Taro, [tem2)= V2
Similality (Taro, Satoshi)= 0 Rate (Taro, [tem3)= V3
Similality(Jiro, Kenji)= -0. 94491 Rate (Taro, [temd)= V4
Similality(Jiro, Satoshi) =1 Rate(Taro, [temb)= V5
Similality(Kenji, Satoshi)=1 Rate (Taro, [tem6)= V6

FIG. 16

U.S. Patent Mar. 6, 2018 Sheet 17 of 27 US 9,910,821 B2

START
S11
IDENTIFY DATA PARALLELIZABLE PART

S12

I IDENTIFY PROCESSED DATA I

S13
IDENTIFY DATA FOR WHICH
INTERMEDIATE DATA IS AVAILABLE

S14
PERFORM PROCESS
TRANSFORMATION

S19

PERFORM PROCESSING
S16

REGISTER PROCESSING RESULT

FIG. 17

U.S. Patent Mar. 6, 2018 Sheet 18 of 27 US 9,910,821 B2

START

S21
READ INPUT DATA

S22
READ ONE LINE

S23
CHECK DATE OF DATA

S24

CHECK DATES OF INTERMEDIATE
DATA

529
HAS DATA BEEN PROCESSED?

No
S26 S27

OUTPUT TO Fg—gas PROCESSED OUTPUT TO FILE AS NEW DATA

S28

Yes

LAST LINE?

No
Yes

END

FIG. 18

U.S. Patent Mar. 6, 2018 Sheet 19 of 27 US 9,910,821 B2

START
_ SJIT
READ PROCESSED DATA

S32
S33

OBTAIN SET a OF REGISTRATION DATES
OF RATING VALUES
LAST LINE?

GENERATE POWER SET List OF DATES

INDICATED IN INTERMEDIATE DATA
y S36
EXCLUDE EMPTY SET AND

OVERLAPPING ELEMENTS FROM List

EXCLUDE ELEMENTS WHOSE UNION IS
NOT A SUBSET OF SET a FROM List

SJ38

TAKE ELEMENTS THAT GONSTITUTE
MAXIMUM UNION IN List AS AVAILABLE
PORTIONS

S39

RETURN RESPONSE OF DATES
INCLUDED IN THE UNION OF THE
ELEMENTS

END

FIG. 19

U.S. Patent Mar. 6, 2018 Sheet 20 of 27 US 9,910,821 B2

START
S41
READ INPUT DATA

S42
IS THERE DATA BLOCK THAT No
NEEDS TO BE PROCESSED?

SEND NOTIFICATION OF DATA TO
BE PROCESSED AND REQUEST
PROCESSING

S44

IS THERE DATA BLOCK
WHICH HAS BEEN PROCESSED
BUT FOR WHICH INTERMEDIATE
DATA IS UNAVAILABLE?

SEND NOTIFICATION OF DATA TO
BE PROCESSED AND REQUEST
PROCESSING

S46

IS THERE DATA BLOCK FOR
WHICH INTERMEDIATE DATA IS
AVAILABLE?

SEND NOTIFICATION OF
INTERMEDIATE DATA AND
REQUEST PROCESSING

D FIG. 20

]
an
~ ._
© ¢ Ol
~
—
<\
&N
7P,
U r
601L1S 17NS3Y NOLLYWHOASNYHL
801 1S—1L7NS3H SISATVNY
» VIVd
m LOLLS 31 VIQIWHILNI
= 901.1S—{V.LVQ ILVIGINYILNI
,_m HOd4 1S3N0FY |
= GOLLS—1LS3IND3IY SISATVYNY
7 P,

POLLISH. 1S3ND3Y NOLLYWHOASNYHL
= €0L1S— 1INS3Y
gl
e 2011S—T1 __ 1sanoad
~ SISATVNY SS3D0dd
M s

LOLLS 1S3N03y
| ONISS3004d

YEINER
TOH.LINOD LNJIO

0¢

ddAddS HAAHIS d3AHAS
NOILLVINHOASNVHL

S5400dd

dIAH4S
SISATVNY
©5490d4d

INIWIOVNVN VIiVd| | SISATVYNY
31 VIQIWNH I LNI vV.ivd

NOLLNOIX3
00L 00 00¢€ 004 001

U.S. Patent

US 9,910,821 B2

Sheet 22 of 27

Mar. 6, 2018

U.S. Patent

LLLLS

d3IAHLS
INIFWIOVNVIA

vivad 11Nsdyd
008

ELLLS

¢LLLS

009

dJAHS
INJWFOVNVIA
Viva L1NdNI

6LLLS—{ NOILITdWOD
ONISSID0Hd 40
a111S—{ NOILT1dnoD | NOLLVOIHLLON
ONISSIO0Hd 40 |
17NS3Y T¥YNI4 40 NOILVOIHLLON
NOLLYHLSIDIY
911181 o
31VIAIWHILNI 40 NOLLYHLSIDIY
GL11S—] V1iVa N8VIIVAY
b111S—] V.iVd I19VIIVAY
404 1S3nNd3d
: V1Va LNdNI
SO EEIRVEL
LLLLS IRERIVEL
HNISSID0OHd
HIAHIS YIAHIS YEINER YEINER
INIFWIDOVYNVI | | NOLLYYHLSIDIY HNISSIDOYd TOY.LNOD LN4MO
V1VQ _ _ Viva NOLLND3X3
ILVIGINEIINI) g 06

006 001
00L

€¢ Old

US 9,910,821 B2

D071 S ,AVA H14ld

~ 5071 S AVA HLYNOAS
gl
=
e SHOT . SAVA SO0 . SAVA
w. H1dl4 Ol 1SHI4 WOMH Hidl4 Ol 1SHId
> Q3LVYINID ‘AVA HLIXIS WOH4 31vHINID N0 S AVA QHIHL
= 404 NOILYIWHOANI ATTMAN Y.1va
L NOLLVANIWNODIY J1VIA3IWHILNI
G¢Qd rANe
" 50T S AVA ANOD3S
e
~
gl
&
m D01 S AVQ 1SHIA

G0-10 1INS3Y G0-10/€0/1102
V.1VQ 3LVIGIWHILNI 31va V.1V 43¢ _
V.LVd 1NdN]

J18v.L VIvd A1LVIAdWHE LNI

LLL

U.S. Patent

US 9,910,821 B2

Sheet 24 of 27

Mar. 6, 2018

U.S. Patent

¢ Old

SAVA HL1dld Ol
15414 404 V1Vd
31 VIAdWH 3 LNI
(d31VYHINGD
ASNOIAIHEd

¢1d

€L1d

| D07TS AVA HIXIS
507 S ,AVA H14l

001 S AVA H1HNOA

D01 S AVA AYHIHL

V01 S AVA ANOOJS

V015 ,AVQA LSdld

21¢

d355400dd 349 01 YOO8

(T1aVIIVAY SI

ViVQA ALVIGIWHILNI ON)
AD014 d4553d004d

G¢ Ol

D01 S AVA HLIXIS

WOH4d d31LVHINDD
ATM3AN YvVa | 018 AVAU HLXIS
FLVIAdWS T LNI

US 9,910,821 B2

SH07 ,SAVQ " N
HLXIS OL ANOD3S WOuA ¢ld | DO07S,AVA HL4H

A3 LVHINTID 'AvA HLNIAZS

d0O4 NOILLVINHOANI
NOILVANIZAWWOO

SHO1 SAVA 901 S AVd HL1ANO

e
Ged HL1l4ld OL ANODIS

WOHd ddLVHINTD
ATMIN V1VQ

31 VIQIWHILNI | 907S.AvA QYIHL

Sheet 25 of 27

€¢lid

90 17NS3Y 90/£0/010Z 5071 S ,AVAd ANODIS

G0-¢0 L1NS3YH G0-¢0/£0/0103

Mar. 6, 2018

elLd
60-10 LINS3M 60-10/£0/0102 A viva LndNi

V1VQa 41VIQJWHI NI J1vd V1vQ

F4718V.1L V1VA d1VIAGWAE.LNI

LLL

U.S. Patent

US 9,910,821 B2

Sheet 26 of 27

Mar. 6, 2018

U.S. Patent

9¢ Ol

AV{

F1VIOdWHS LNI
(Jd1VdaNdD
ATSNOIATHEd

qclid

SAVA H14ld
Ol ANOJHS d0O4
V.iVQA FLVIGIWNHALNI
J4LVHINGD
A TSNOIAdAd

ec1d

SAVA H1dI4 OL
15Suld 404 V.1vQ
31 VIA3WH 3 LNI
CEIRZaENELY
A 1SMOIAJHd

¢1d

91 1d

HLXIS 404 V.1VQd

001 S ,AVU ANODHS

D071 S AVA 15dld

V01 S AVA HLNIAGS

9071 S AVA HLXIS

D01S ,AVA H1dI

9071 S ,AVA HLHNOA

9071 S ,AVA AHIHL

L1

€1 1d

d3$$S3004Hd 49 O1 MO0 14

(I1aV1IVAY
SI VLVA JLVIGIWHILND
MO019 d3SSIAD0Hd

(FMGVIIVAY SI
V1ivQ ALVIAIWNLILNI ON)
MN0071d d4553004d

D0
S AV HLNIALS
| WO QdLVHINSGD
ATTM3AN V1V(
A1VIAIWAH 4 1NI

L¢ Ol

AHH_ 071 S .AVA HLNIAIS

IN"[¢ D01 S AVA HLXIS

| HLXIS 404 V.LVQ
__ | 3LVIQINYEIALNI
BERCEINCENER

A TSNOIAGLd 901 S AVA H14ld

US 9,910,821 B2

Pcld

SO0T1 SAVQ
HINDALS OL GuIHL
WOHH d41VdANdD
'AVd HLHDI3
H04 NOLLVINHOANI
NOLLVANIWWNOOdY

qc7q q¢id
SV0T SAVA
Hldld Ol ddIHL
WOHd ddLVHddNdD 901 S ,AVA H14NO4

ATMIN VLV(Q

Sheet 27 of 27

ALVIQdWH S LNI

¢ 1d

L0 LNSTH [0/€0/010Z D01S AVA GHIHL

G0~-£0 L'1NS4d G0-€0/€0/010¢

- 9110
90 LINSI 90/€0/0102 vV1vQd 1NdNI

40-¢0 LINSdd G0-¢0/€0/010¢

Mar. 6, 2018

GO~10 L'INS3d G0-10/€0/010¢

L1
V.iVQ J1VIAdNGALN]T | 31lva vivad _

318V.L VivVQd d1LVIAJWHILNI

U.S. Patent

US 9,910,821 B2

1

DATA PROCESSING METHOD,
DISTRIBUTED PROCESSING SYSTEM, AND
PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation application of Interna-
tional Application PCT/JP2011/073099 filed on Oct. 6, 2011

which designated the U.S., the entire contents of which are
incorporated herein by reference.

FIELD

The embodiments discussed herein relate to a data pro-
cessing method, a distributed processing system, and a
program.

BACKGROUND

Data processing may be performed using a distributed
processing system that includes a plurality of nodes (for
example, computers or other information processing appa-
ratuses) connected to a network. By splitting and assigning,
data to a plurality of nodes and using the plurality of nodes
in parallel, higher-speed data processing may be achieved.
Such parallelization of data processing 1s employed for
processing large amount of data, for example, for analyzing
access logs indicating accesses to a server apparatus.

To support creation of a program for parallel data pro-
cessing, frameworks such as MapReduce or the like have
been proposed. A data processing method defined 1n MapRe-
duce includes a Map phase and a Reduce phase. In the Map
phase, mput data i1s split into data blocks, which are then
processed using a plurality of nodes. In the Reduce phase,
the results obtained in the Map phase are aggregated using,
one or more nodes according to keys or the like. The results
obtained in the Reduce phase may be given to the next Map
phase. It 1s possible to cause the framework to automatically
perform the data split and aggregation.

There has been proposed a distributed processing system
that confirms a change in the amount of data before and after
processing, and sets a higher distribution degree when the
amount of data decreases or sets a lower distribution degree
when the amount of data increases, to thereby prevent
communication between nodes from becoming a bottleneck.
In addition, to achieve higher-speed simulation 1n the elec-
tromagnetic analysis simulation for electric circuits, there
has been proposed a method 1n which the analysis results of
a main part are stored, and when an additional patch 1is
inserted, electromagnetic analysis 1s performed only on the
additional patch, using the stored analysis results of the main
part.

Japanese Laid-open Patent Publication No. 2010-2444770

Japanese Laid-open Patent Publication No. 2003-296395

Jefirey Dean and Sanjay Ghemawat, “MapReduce: Sim-
plified Data Processing on Large Clusters™, Proc. of the 6th
Symposium on Operating Systems Design and Implemen-
tation, pp. 137-150, December 2004

In some distributed processing systems, data 1s split 1nto
blocks which are then processed through first-stage data
processing using a plurality of nodes, and then the results of
the first-stage data processing are processed through second-
stage data processing. However, in the conventional distrib-
uted processing systems in which given data 1s automatically
split and processed 1n parallel, the first-stage data processing

10

15

20

25

30

35

40

45

50

55

60

65

2

may be performed on the entire data each time the data 1s
entered, which means wasting the previous results of the

data processing.

SUMMARY

According to one aspect, there 1s provided a data pro-
cessing method executed 1n a system where first data pro-
cessing 1s performed using a plurality of nodes 1n parallel
and second data processing 1s performed on a result of the
first data processing. The data processing method includes:
splitting, by a processor, data mto a first segment and a
plurality of second segments with reference to a memory
storing results of the first data processing previously per-
formed, the first segment being a segment for which the
results stored in the memory are usable, the plurality of
second segments being segments for which the results stored
in the memory are not usable; assigning, by the processor,
the plurality of second segments to the plurality of nodes,
and using the plurality of nodes in parallel to perform the
first data processing on the plurality of second segments; and
performing, by the processor, the second data processing on
a previous result corresponding to the first segment, which
1s stored in the memory, and results obtained from the
plurality of second segments using the plurality of nodes.

The object and advantages of the mmvention will be
realized and attained by means of the elements and combi-
nations particularly pointed out 1n the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1llustrates a distributed processing system accord-
ing to a first embodiment;

FIG. 2 1llustrates a distributed processing system accord-
ing to a second embodiment;

FIG. 3 illustrates an example of a hardware configuration
of an execution control server;

FIG. 4 illustrates an example of a software configuration
of the distributed processing system;

FIG. 5 illustrates an example of distributed processing;

FIG. 6 illustrates an example of a rating value table;

FIG. 7 illustrates an example of an intermediate data
table;

FIG. 8 illustrates an example of mput and output data of
a first Map operation;

FIG. 9 illustrates an example of a first Map class;

FIG. 10 illustrates an example of input and output data of
a first shuflle and sort operation;

FIG. 11 1llustrates an example of input and output data of
a first Reduce operation;

FIG. 12 1llustrates an example of a first Reduce class;

FIG. 13 1llustrates an example of input and output data of
a second Map operation;

FIG. 14 1llustrates an example of input and output data of
a second shuflle and sort operation;

FIG. 15 illustrates an example of input and output data of
a second Reduce operation;

FIG. 16 illustrates an example of recommendation infor-
mation;

FIG. 17 1s a flowchart illustrating an example of how to
control distributed processing;

FIG. 18 1s a flowchart illustrating an example of how to
identify processed data;

US 9,910,821 B2

3

FIG. 19 1s a flowchart illustrating an example of how to
identily data for which intermediate data 1s available;

FIG. 20 1s a flowchart 1llustrating an example of how to
perform process transformation;

FIG. 21 1s a sequence diagram 1llustrating an example of
how to control the distributed processing;

FIG. 22 15 a sequence diagram 1llustrating the example of
how to control the distributed processing;

FI1G. 23 1llustrates an example of a first-round process;

FI1G. 24 illustrates an example of mnput data for a second-
round process;

FI1G. 25 illustrates an example of the second-round pro-
Cess;

FIG. 26 illustrates an example of mput data for a third-
round process; and

FI1G. 27 illustrates an example of the third-round process.

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention will be
described with reference to the accompanying drawings.

First Embodiment

FIG. 1 illustrates a distributed processing system accord-
ing to a first embodiment. In the distributed processing
system of the first embodiment, first data processing 1s
performed using a plurality of nodes in parallel, and second
data processing 1s performed on the results of the first data
processing. For example, in the case of MapReduce, a Map
phase 1s executed as the first data processing, and a Reduce
phase 1s executed as the second data processing. The dis-
tributed processing system of the first embodiment imncludes
a storage device 1, information processing apparatuses 2 and
3, and nodes 4 and 4a. The storage device 1, information
processing apparatuses 2 and 3, and nodes 4 and 4a are
connected over a network. The nodes 4 and 4a are designed
to process mput data in parallel. Each of the information
processing apparatuses 2 and 3 and nodes 4 and 4a may be
a computer which 1s equipped with a processor, such as a
CPU (Central Processing Unit) or the like, and a memory,
such as a RAM (Random Access Memory) or the like, and
in which the processor executes a program stored in the
memory.

The storage device 1 1s data storage that 1s accessible over
the network. For example, the storage device 1 stores data in
an HDD (Hard Disk Drive), an SSD (Solid State Drive), or
another device. The storage device 1 stores the results of the
first data processing previously performed.

The mformation processing apparatus 2 includes a split-
ting unit 2a. The splitting unit 2a splits, with reference to the
storage device 1, data D1 into a first segment SG1 for which
the results stored in the storage device 1 are usable and
second segments SG2 and SG3 for which the results stored
in the storage device 1 are not usable.

The mmformation processing apparatus 3 includes a control
unit 3a. The control unit 3a assigns the second segments
SG2 and SG3 to the nodes 4 and 44, and uses the nodes 4
and 4a 1n parallel to perform the first data processing on the
second segments SG2 and SG3. The control unit 3a then
exercises control so as to perform the second data processing
on a previous result SGla corresponding to the first segment
SG1, which 1s stored 1n the storage device 1, and the results
SG2a and SG3a obtained from the second segments SG2
and SG3 using the nodes 4 and 4a. What 1s subjected to the
second data processing 1s data D2 that 1s a result of pro-
cessing the data D1 1n parallel. The data D2 includes the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

results SGla, SG2a, and SG3a obtained by processing the
segments SG1, SG2, and SG3. The control unit 3a uses, for

example, the nodes 4 and 4a 1n parallel to perform the
second data processing on the data D2.

In the distributed processing system of the first embodi-
ment, the splitting unit 2aq splits, with reference to the
storage device 1, the data D1 into the first segment SG1 for
which the results stored in the storage device 1 are usable
and the second segments SG2 and SG3 for which the results
stored 1n the storage device 1 are not usable. The control unit
3a assigns the second segments SG2 and SG3 to the nodes
4 and 4a, and uses the nodes 4 and 4a 1n parallel to perform
the first data processing on the second segments SG2 and
SG3. The control unit 3a then exercises control so as to
perform the second data processing on the previous result
SGla corresponding to the first segment SG1, which 1s
stored 1n the storage device 1, and the results SG2a and
SG3a obtamned from the second segments SG2 and SG3
using the nodes 4 and 4a.

The above approach makes 1t possible to streamline the
data processing. More specifically, this approach causes the
nodes 4 and 4a to process the segments SG2 and SG3 other
than the segment SG1 for which previous processing results
are available, 1n a distributed manner. Therefore, there 1s no
need of processing the entire data D1. Control of skipping
the same processing as previously performed improves
processing efliciency and achieves higher-speed processing.
It 1s also possible to reduce the workloads of the nodes 4 and

4a.

Second Embodiment

FIG. 2 1llustrates a distributed processing system accord-
ing to a second embodiment. The distributed processing
system of the second embodiment splits mput data and
causes a plurality of nodes to process the data 1n a distributed
manner. In e-commerce, the distributed processing system of
the second embodiment receives the rating values of prod-
ucts given by a user, and extracts products to be recom-
mended to the user on the basis of the rating values. More
specifically, the distributed processing system extracts, as
recommended products, products that are predicted to be
highly rated by the user, on the basis of correlations of rating
value for each product between the user and other users. The
distributed processing system of the second embodiment
processes large amount of rating value data for a large
number ol users and a large number of products 1n a
distributed manner, so as to achieve high-speed processing
for extracting recommended products. In the following
description, information on a rating value predicted for each
user with respect to each product, which is output from the
distributed processing system of the second embodiment,
may be referred to as recommendation information.

It 1s now assumed that, in the distributed processing
system of the second embodiment, MapReduce 1s employed
for distributed processing. For example, Hadoop 1s a well-
known framework for using the MapReduce. In this con-
nection, another technique for the distributed processing
may be employed 1n the system. For example, other tech-
niques for distributed processing include MPI (Message
Passing Interface), OpenMP (registered trademark), and so
on. Alternatively, for example, there 1s considered a system
that performs distributed processing using execution {iles
generated by a parallelizing compiler.

The distributed processing system of the second embodi-
ment mcludes an EC (Electronic Commerce) server 20, a
client 30, an execution control server 100, a process analysis

US 9,910,821 B2

S

server 200, a process transformation server 300, a data
analysis server 400, a registration server 300, an input data
management server 600, an intermediate data management
server 700, a result data management server 800, and data
processing servers 900, 900q, Each server 1s connected
to a network 10. The network 10 may be a LAN (Local Area
Network), for example. The network 10 1s also connected to
the Internet (not illustrated).

The EC server 20 1s a server computer that controls sales
of products through e-commerce. The EC server 20 receives
the rating values of products given by users. A user operates,
for example, a terminal device (not illustrated) that 1is
capable of performing communication over the Internet, to
send the rating values of products to the EC server 20. The
EC server 20 stores the received rating values 1n association
with information identifying the user (for example, user
name) 1n the mput data management server 600.

The client 30 1s a client computer that 1s operated by an
administrator who manages the distributed processing sys-
tem. The administrator operates the client 30 to send a
source program for generating recommendation mnformation
to the execution control server 100. The source program 1s
written 1n, for example, Java (registered trademark). The
administrator also operates the client 30 to specily input data
to be processed to the execution control server 100.

The execution control server 100 1s a server computer that
controls the entire distributed processing system. The execu-
tion control server 100 controls execution of distributed
processing 1n collaboration with other servers on the basis of
the source program receirved from and the input data speci-
fied from the client 30. More specifically, the execution
control server 100 sends the source program to the process
analysis server 200 to request analysis of the program to
identily parts 1n which parallel processing 1s possible. The
execution control server 100 also requests the process trans-
formation server 300 to perform process transformation for
the mput data to be processed in parallel. The process
transformation 1s to adjust a process so as to use existing,
processing results, which improves the efliciency of the
distributed processing.

The execution control server 100 controls the distributed
processing that 1s performed by the data processing servers
900, 900a, . . . , on the basis of the transformation
result obtained by the process transformation server
300. More specifically, the execution control server 100
assigns individual Map operations or Reduce operations to
servers 1n 1dle state among the data processing servers 900,
9004, A node that exercises control, like the execution
control server 100, may be called a master.

The process analysis server 200 1s a server computer that
analyzes the processing logic of a source program. In
response to a process analysis request from the execution
control server 100, the process analysis server 200 analyzes
the source program to identify parts i which parallel
processing 1s possible. The process analysis server 200
returns the analysis result to the execution control server
100.

The process transformation server 300 1s a server com-
puter that performs process transiformation for parallel pro-
cessing, 1n response to a process transformation request
from the execution control server 100. More specifically, the
process transformation server 300 adjusts a process for a
block (segment) of 1nput data for which previous calculation
results are available so as to use the previous calculation
results. The process transformation server 300 requests the
data analysis server 400 to analyze the input data to identity
data blocks for which previous processing results are avail-

10

15

20

25

30

35

40

45

50

55

60

65

6

able. The process transformation server 300 returns the
result of the process transformation to the execution control
server 100.

The data analysis server 400 1s a server computer that
analyzes 1mput data in response to an analysis request from
the process transformation server 300. More specifically, the
data analysis server 400 accesses the intermediate data
management server 700 to search for the previous calcula-
tion results with respect to the data blocks included 1n the
input data. The data analysis server 400 classifies the mput
data into: (1) data blocks that need to be subjected to
calculation; and (2) data blocks that have previously been
processed. The data analysis server 400 further classifies (2)
the data blocks that have previously been processed into:
(2-1) data blocks for which there are no available processing
results; and (2-2) data blocks for which there are available
processing results. The data analysis server 400 returns the
analysis result to the process transformation server 300.

The registration server 500 1s a server computer that
registers data. The registration server 500 obtains data
generated through the distributed processing performed by
the data processing servers 900, 900q, . . . , and stores the
data in the intermediate data management server 700 or the
result data management server 800.

The mput data management server 600 1s a server com-
puter that manages mput data. The input data 1s made up of
a registration date, iformation identifying a user, and a
rating value of a product given by the user.

The mtermediate data management server 700 1s a server
computer that manages intermediate data. The intermediate
data 1s data that 1s generated 1n the middle of the distributed
processing. The itermediate data includes the results of a
Map operation.

The result data management server 800 1s a server com-
puter that manages result data. The result data 1s data that 1s
generated as a result of the distributed processing. The result
data includes the results of a Reduce operation and finally
generated recommendation information.

The data processing servers 900, 900a, . . . are server
computers that process data in parallel. Each of the data
processing servers 900, 900q, . . . performs an i1ndividual
Map operation or Reduce operation assigned by the execu-
tion control server 100. Nodes 1n charge of such parallel data
processing may be called workers or slaves.

FIG. 3 illustrates an example of a hardware configuration
ol an execution control server. The execution control server
100 includes a CPU 101, a RAM 102, a HDD 103, a video
signal processing unit 104, an 1mput signal processing unit
105, a disk drive 106, and a communication unit 107. Each
unit 1s connected to a bus of the execution control server
100. The other servers and the client 30 may be configured
with the same hardware units as the execution control server
100.

The CPU 101 1s a processor that controls information
processing that 1s performed by the execution control server
100. The CPU 101 loads at least part of a program and data
from the HDD 103 to the RAM 102, and executes the
program. In this connection, the execution control server
100 may be equipped with a plurality of processors to
execute a program 1n a distributed manner.

The RAM 102 1s a volatile memory that temporarily
stores a program to be executed by the CPU 101 and data to
be used in processing. In this connection, the execution
control server 100 may be equipped with another kind of
memory than RAM or a plurality of memories.

The HDD 103 1s a non-volatile storage device that stores
programs, such as OS (Operating System) program, appli-

US 9,910,821 B2

7

cation program, and other programs, and data. The HDD 103
performs data read and write operations on a built-in mag-
netic disk 1n accordance with instructions from the CPU 101.
In this connection, the execution control server 100 may be
equipped with another kind of non-volatile storage device
(for example, SSD or the like) than HDD or a plurality of
storage devices.

The video signal processing unit 104 outputs video to a
display 11 connected to the execution control server 100 1n
accordance with instructions from the CPU 101. As the
display 11, for example, a CRT (Cathode Ray Tube) display,
a liquid crystal display, or another display may be used.

The put signal processing unit 105 receives an input
signal from an mput device 12 connected to the execution
control server 100, and outputs the mput signal to the CPU
101. As the input device 12, for example, a pointing device,
such as a mouse, a touch panel, or another, a keyboard, or
another device may be used.

The disk drive 106 1s a driving device that reads programs
and data from a recording medium 13. As the recording
medium 13, for example, a magnetic disk, such as a tlexible
disk (FD), an HDD, or another, an optical disc, such as a CD
(Compact Disc), or a Digital Versatile Disc (DVD), or
another, or a Magneto-Optical disk (MO) may be used. The
disk drive 106 stores, for example, a program or data read
from the recording medium 13 1n the RAM 102 or HDD 103
in accordance with instructions from the CPU 101.

The communication unit 107 1s a communication inter-
face that enables communication with another server over
the network 10. The communication unit 107 may be a wired
communication interface or a wireless communication inter-
face.

FIG. 4 1llustrates an example of a soitware configuration
of the distributed processing system. Some or all of the units
illustrated 1 FIG. 4 may be implemented as program
modules that are executed by corresponding servers. In
addition, some or all of the units illustrated 1n FIG. 4 may be
implemented by using FPGA (Field Programmable Gate
Array), ASIC (Application Specific Integrated Circuit), or
other electronic circuits. The data processing servers
900a, . . . may be configured with the same units as the data
processing server 900.

The EC server 20 includes an EC application (APP) 21.
The EC application 21 1s application for implementing the
e-commerce functions. The EC server 20 functions as a Web
server. As a Web application on the Web server, the EC
application 21 1s accessible from users” terminal devices.

The client 30 includes a browser 31. The browser 31 1s a
Web browser for Web access to the execution control server
100 (the execution control server 100 also functions as a
Web server). The administrator uses the browser 31 to send
a processing request to the execution control server 100.
Together with the processing request, the administrator 1s
able to send a source program describing the contents of the
processing to the execution control server 100 and to specily
input data (or a range of input data) to be processed. The
processing request from the client 30 to the execution
control server 100 may be made using, for example, a CLI
(Command Line Interface).

The execution control server 100 includes an execution
control unit 110. The execution control unit 110 controls
execution of distributed processing. The execution control
unit 110 starts to generate recommendation iformation in
response to a processing request from the client 30. The
execution control unit 110 sends a source program to the
process analysis server 200 to request analysis of the source
program to i1dentily parallelizable parts. The execution con-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

trol unit 110 then requests the process transformation
server 300 to request process transformation by speciiying
the parallelizable parts of the source program. The execution
control unit 110 assigns individual Map operations
and Reduce operations to the data processing servers 900,
900q, . . ., on the basis of the transformation result. The
execution control unit 110 then returns recommendation
information generated by the distributed processing to the
client 30.

The process analysis server 200 includes a process analy-
s1s unit 210. The process analysis umt 210 analyzes a source
program received from the execution control unit 110 to
identify parts in which parallel data processing i1s possible.
The parts 1n which parallel data processing 1s possible may
be 1dentified based on, for example, whether data parallelism
exists or not. When the data parallelism exists, there are the
tollowing characteristics: (1) a result obtained by splitting
and separately processing input data 1s the same as a result
obtained by processing the data without splitting the data;
and (2) a process does not depend on other processes
(previous and subsequent processes). The data parallelism 1s
described 1n, for example, the following document.

[Document Relating to Data Parallelism]

David Culler and Jaswinder Pal Singh, “Parallel Com-
puter Architecture: A Hardware/Software Approach (The
Morgan Kauimann Series in Computer Architecture and
Design)”’, August 1998

The process analysis unit 210 identifies parts 1n which
parallel data processing 1s possible by detecting prescribed
parts that are declaratively written 1n the source program.
More specifically, interfaces of types defined by the MapRe-
duce framework may be detected. In this case, the process
analysis unit 210 identifies classes implementing prescribed
interfaces (“Mapper”, “Reducer”, or the like) in a source
program, as the parts in which parallel data processing 1s
possible. Alternatively, classes that mnherit from prescribed
classes (“Mapper”, “Reducer”, or the like) may be 1dentified
as the parts 1n which parallel data processing 1s possible.

In this connection, 1n the case where such parallelizable
parts are not explicitly indicated or in the case of a process
in which parallelizable parts are not explicitly specified, the
process analysis unit 210 may use a parallelizing compiler to
identify such parallelizable parts. The 1dentification of par-
allelizable parts by a parallelizing compiler 1s described 1n,
for example, the following document.

|[Document Relating to Parallelizing Compiler]

Utpal Banerjee, Rudolf Figenmann, Alexandru Nicolau
and David A. Padua, “Automatic Program Parallelization”,
Proc. of the IEEE (Institute of FElectrical and Electronics
Engineers), Vol. 81 No. 2, February 1993

The process transformation server 300 includes a process
transformation unit 310. The process transformation unit
310 adjusts parallelizable parts identified by the process
analysis unit 210 so as to use previous processing results.
The process transformation unit 310 requests the data analy-
s1s server 400 to identify blocks of mput data for which
previous processing results are available.

The data analysis server 400 includes a data analysis unit
410. The data analysis unit 410 i1dentifies blocks of mput
data for which previous processing results are available, and
notifies the process transformation unit 310 of the data
blocks.

The registration server 500 includes a processing result
registration unit 510. The processing result registration unit
510 obtains the results of the Map operations and the Reduce
operations performed by the data processing servers 900,

US 9,910,821 B2

9

900q, . . . , and stores the results 1n the intermediate data
management server 700 or the result data management
server 800.

The mput data management server 600 1includes an input
data storage unit 610. The input data storage unit 610 stores
iput data.

The intermediate data management server 700 includes an
intermediate data storage unit 710. The intermediate data
storage unit 710 stores intermediate data.

The result data management server 800 includes a result
data storage unit 810. The result data storage unit 810 stores
result data.

The data processing server 900 includes a data processing,
unit 910. When assigned a Map operation by the execution
control unit 110, the data processing unit 910 obtains partial
data of mput data and performs the Map operation. When
assigned a Reduce operation by the execution control unit
110, the data processing unit 910 performs the Reduce
operation on the result of the Map operation. The logic of the
Map and Reduce operations i1s described in the source
program.

FIG. 5 illustrates an example of distributed processing.
The distributed processing system of the second embodi-
ment uses MapReduce 1n two phases, 1.e., a first phase and
a second phase, 1n order to generate recommendation infor-
mation. The first and second phases are executed by the data
processing servers 900, 900q, As a result of the first and
second phases, correlations of rating value between users are
obtained. Then, on the basis of the correlations between the
users, products that are predicted to be highly rated by each
user are extracted and determined as recommended prod-
ucts.

The first phase includes steps S1, S2, and S3. Step S1 1s
a first Map operation. In step S1, data 1n csv format 1s input.
The input data includes a user name, information identifying
a product, a rating date, and a rating value. In step S1,
key-value pairs are generated from the mmput data. More
specifically, a key 1s information i1dentifying a product. A
value 1s a list of the name of a user that rated the product,
a rating value, and a rating date. The processing result
registration unit 510 obtains the key-value pairs generated in
step S1, and stores them as intermediate data in the inter-
mediate data storage unit 710.

Step S2 1s a first shuflle and sort operation. In step S2, the
output of step S1 1s mput. In step S2, the input key-value
pairs are sorted by keys and then output.

Step S3 1s a first Reduce operation. In step S3, the output
of step S2 1s input. In step S3, the mput data 1s merged, and
new key-value pairs are output. More specifically, a key 1s
information 1dentifying a product, and a value 1s a list of
rating values of the product given by all users.

The second phase includes steps S4, S5, and S6. Step S4
1s a second Map operation. In step S4, the output of step S3
1s mput. In step S4, new key-value pairs are output on the
basis of the input data. More specifically, a key 1s a series of
the name of a user and the name of another user. A value 1s
a list of the rating values given by the respective users.

Step S5 15 a second shuflle and sort operation. In step S5,
the output of step S4 1s mnput. In step S5, the input key-value
pairs are sorted by keys and then output.

Step S6 1s a second Reduce operation. In step S6, the
output of step S5 1s input. In step S6, a correlation coethlicient
between users 1s obtained based on the input key-value patrs,
and 1s taken as a degree of rating similarity, Similarity
(userl, user2). For example, a degree of similarity between

10

15

20

25

30

35

40

45

50

55

60

65

10

a user “Taro” and a user “Jiro” (T and J stand for “Taro” and
“J1iro”, respectively), Sitmilarity (1, J), 1s calculated with the
following equation (1).

Cov(T, J)

drdy

Z (T; = T)(J; =)

) \/Z(T;-—Tf \/Z(J;-—Jf

L (1)
Similarit 7T, J) =

Cov(T, J) 1s a covariance 1n rating values between the
users “Taro” and “Jiro”. oT 1s the standard deviation of the
rating values given by “lTaro”. ol 1s the standard deviation
of the rating values given by “Jiro”. 11 1s a rating value given
by “Taro” for a product “Item”. J1 1s a rating value given by
“Jiro” for the product “Item”. Overlined T and J represent
the arithmetic mean of T1 and J1, respectively.

In the manner described above, the first and second phases
are executed to thereby calculate correlation coeflicients
between users. For example, using the correlation coetli-
cients between the users, a predicted rating value, Rate (T,
item) (“I” stands for “Taro”), of the product “Item” for
“Taro™ 1s calculated with the following equation (2).

2.1

HAEF

(Rate{user, [tem) — ziser) % (2)
Similarity(7T, user)

Rate(7, Item) =T +

2. |Rate(user, Item)|

HAEY

In this equation, X represents the sum of rating values of
the “Item™ given by all of users who gave the ratings during
a time period specified for the calculation. Overlined “user”
represents an arithmetic mean of the rating values given by
all the users during the time period.

FIG. 6 illustrates an example of a rating value table. A
rating value table 611 1s stored 1n the mput data storage unit
610. The rating value table 611 includes the following fields:
Date, Product ID (IDentifier), and Rating value.

The Date field contains a date indicating when a rating
value was registered. The Product ID field contains infor-
mation indicating a rated product. The Rating value field
contains a rating value given by a user. For example, a rating
value of “1” entered by the user ““laro” was registered for a
product with a product ID “Item1” on Mar. 1, 2011. In this
example, a product with a higher rating value 1s a higher-
rated product.

In this connection, data registered 1n the rating value table
611 may be stored in another data format such as csv format.

FIG. 7 illustrates an example of an intermediate data
table. An intermediate data table 711 1s stored 1n the inter-
mediate data storage unit 710. The intermediate data table
711 includes the following fields: Input Data Hash Value,
Data Date, and Intermediate Data.

The Input Data Hash Value field contains the hash value
of mput data 1n csv format entered in step S1. The Data Date
field contains a range of the dates indicated 1n the input data.
The Intermediate Data field contains intermediate data out-
put 1n step S1. For example, intermediate data (data name
“RESULT 01-057) 1s registered for the hash value “123a5¢”
of the mput data including the rating values entered between
Mar. 1 and Mar. 5, 2011.

US 9,910,821 B2

11

FIG. 8 illustrates an example of mput and output data of
a first Map operation. Data D11 1s input data of step S1 (first
Map operation). The data D11 1s obtained by extracting data
in csv format falling within a time period specified by an
administrator from the rating value table 611. The data D11
1s made up of information 1n the order of user name, product
ID, rating date, and rating value. Data D12 1s output data of
step S1. The data D12 1s made up of key-value pairs. A key
1s a product ID included 1n the data D11. A value includes
a user name, a rating date, and a rating value, which are
connected with hyphens “-”. The first Map class describing
the first Map operation 1s described as follows, for example.

FIG. 9 illustrates an example of a first Map class. A
program 911 1s part of a source program. The program 911
describes a process of obtaining records one line by one line
from the data D11, extracting each of strings delimited by
commas “,”, and generating the data D12. The first Map
class “CollaborativeFiltering_phasel_Map™ 1s a class that
implements a “Mapper” interface. In the distributed pro-
cessing system of the second embodiment, the data paral-
lelization 1n a process using the method “map™ of the first
Map class 1s guaranteed by the definition of the “Mapper”
interface type. By detecting that the first Map class imple-
ments the “Mapper” interface, the process analysis unmit 210
1s able to identify the process using the method “map” as a
parallelizable part.

FIG. 10 illustrates an example of input and output data of
a first shuflle and sort operation. The data D12 1s output data
of step S1 and 1s mput data of step S2 (first shuflle and sort
operation). Data D13 1s output data of step S2. The data D13
1s generated by sorting the key-value pairs included in the
data D12 by keys (product ID).

FIG. 11 illustrates an example of input and output data of
a first Reduce operation. The data D13 1s output data of step
S2 and 1s input data of step S3 (first Reduce operation). Data
D14 1s output data of step S3. The data D14 1s generated by
merging the key-value pairs included in the data D13 by
keys (product ID), and 1s an aggregation of the rating values
given by all users for the individual product IDs. For
example, as a value for a key (product ID), a combination of
a user and a rating value 1s extracted for every user who gave
the ratings. The data D14 has a format of “(product ID,
((userl, rating value given by userl), (user2, rating value
given by user2), . . .)). In this connection, if a user rated the
same product more than once, the latest rating value 1s used.

FIG. 12 1llustrates an example of a first Reduce class. A
program 912 1s part of a source program. The program 912
describes a process of obtaining records one line by one line
from the data D13, extracting each of strings delimited by
hyphens *“-” from the value associated with each key, and
generating the data D14. The first Reduce class
“CollaborativeFiltering_phasel _Reduce™ 1s a class that
implements a “Reducer” interface. Similarly to the “Map-
per’ interface, the data parallelism of the first Reduce class
1s guaranteed by the definition of the “Reducer” interface
type. Therefore, a process using the method “Reduce” of the
first Reduce class 1s also a parallelizable part.

FIG. 13 illustrates an example of input and output data of
a second Map operation. Data D21 1s output data of step S3
and 1s input data of step S4 (second Map operation). Data
D22 1s output data of step S4. The data D22 1s new key-value
pairs generated based on the data D21. More specifically,
with respect to each line of the data D21, a pair of users who
gave the ratings 1s extracted as a key, and a pair of the rating
values given by the extracted users 1s used as a value. In the
data D22, a key 1s a series of user names connected with

hyphens “-” (for example, “Taro-Jiro”). A value 1s a list of

5

10

15

20

25

30

35

40

45

50

55

60

65

12
the rating values given by the users, which are delimited by
commas “,” (for example, “(1, 4)7).

FIG. 14 illustrates an example of input and output data of
a second shufile and sort operation. The data D22 1s output
data of step S4 and 1s mnput data of step S5 (second shuflle
and sort operation). Data D23 1s output data of step S5. The
data D23 1s generated by sorting the key-value pairs
included 1n the data D22 by keys (a pair of user names).

FIG. 15 illustrates an example of input and output data of
a second Reduce operation. The data D23 1s output data of
step S5 and 1s mput data of step S6 (second Reduce
operation). Data D24 1s output data of step S6, and 1is
generated from the data D23. Fach line of the data D24
indicates a degree of similanty (correlation coeflicient)
between users, calculated based on the data D23 with the
equation (1).

FIG. 16 illustrates an example of recommendation infor-
mation. The data D24 1s output data of step S6. Data D25

lists predicted rating values for individual users with respect
to each product, calculated with the equation (2) using the
degrees of similarity between users, and 1s recommendation
information to be used for extracting recommended prod-
ucts. For example, 1n the case where three recommended
products are extracted for a user “Taro”, three highest Rates
(Taro, Item) are selected from the data D25, and the corre-
sponding products are 1dentified.

FIG. 17 1s a flowchart 1llustrating an example of how to
control distributed processing. The process of FIG. 17 will
now be described step by step.

(Step S11) The execution control unit 110 receives, from
the client 30, a processing request including a source pro-
gram to be used for processing and a range of iput data to
be processed (a range of dates). For example, an adminis-
trator uses the browser 31 to enter information (or a path to
the information) to be sent to the execution control unit 110.
The execution control unit 110 sends a process analysis
request to the process analysis unit 210 to analyze the source
program. The source program includes the programs 911 and
912 relating to the first phase of the MapReduce job. When
detecting that the first Map class included in the program 911
implements a “Mapper” interface, the process analysis unit
210 1dentifies this part as a data parallelizable part. In
addition, when detecting that the first Reduce class included
in the program 912 implements a “Reducer” interface, the
process analysis unit 210 idenftifies this part as a data
parallelizable part. The process analysis unit 210 notifies the
execution control unit 110 of the identified parts. The
execution control unit 110 executes the processes described
in the source program up to a data parallelizable part.

(Step S12) The execution control unit 110 requests the
process transformation unit 310 to perform process trans-
formation with respect to parts for which intermediate data
may be available out of the data parallelizable parts. Regard-
ing the first Map operation for which intermediate data may
be available, the previous processing results (intermediate
data) of the first Map operation are accumulated in the
intermediate data table 711 stored in the intermediate data
storage unit 710. Since the first Map operation correspond-
ing to the first Reduce operation 1s a process to generate
intermediate data, the process transformation unit 310 starts
the process transformation regarding the first Map operation.
The process transformation unit 310 requests the data analy-
s1s unit 410 to analyze the input data. The data analysis unit
410 1dentifies data blocks of the input data which have been
processed with reference to the intermediate data table 711.
The process of this step will be described 1n detail later.

US 9,910,821 B2

13

(Step S13) The data analysis unit 410 identifies data
blocks for which intermediate data 1s available from the
processed data blocks identified 1n step S12. The process of
this step will be described 1n detail later. The data analysis
unit 410 returns, to the process transformation unit 310,
information indicating, out of the input data, the data blocks
that need to be subjected to calculation, the data blocks for
which intermediate data 1s unavailable, and the data blocks
tor which intermediate data 1s available.

(Step S14) With respect to the data blocks for which
intermediate data 1s available, the process transformation
unit 310 adjusts the process of the first phase so as to use the
intermediate data registered in the intermediate data table
711. This transformation process will be described in detail
later. The process transformation unit 310 returns the trans-
formation result to the execution control unit 110.

(Step S15) The execution control unit 110 requests the
data processing servers 900, 900q, . . . to perform distributed
processing, on the basis of the transformation result obtained
by the process transformation unit 310. For example, the
data processing unit 910 sequentially performs assigned
operations, 1.e., the first Map operation, the first shuflle and
sort operation, the first Reduce operation, the second Map
operation, As data to be processed, the execution control
unit 110 notifies the data processing server 900 of the data
blocks that need to be subjected to calculation and the data
blocks which have been processed but for which interme-
diate data 1s unavailable, out of the mput data specified by
the client 30. The data processing unit 910 outputs interme-
diate data newly obtained as a result of performing the first
Map operation on each data block, to the processing result
registration unit 510. In addition, 1n the first Map operation,
with respect to the data blocks for which intermediate data
1s available, the data processing unit 910 obtains the inter-
mediate data corresponding to the data blocks from the
intermediate data table 711 and then performs subsequent
operations. Then, the data processing unit 910 generates
information on the degrees of similarity between users (data
D24) and recommendation information (data D25), and
outputs them to the processing result registration unit 510.
The data processing units of the data processing servers
900a, . . . operate 1n the same way as above.

(Step S16) The processing result registration unit 510
collectively registers the intermediate data received from the
data processing servers 900, 900q, . . . 1n the intermediate
data table 711. A range of dates of the data included 1n the
intermediate data 1s also registered. In addition, a hash value
of the data blocks of the input data which fall within the
range of dates 1s registered as an imndex. On the other hand,
the processing result registration umt 310 stores the infor-
mation on the degrees of similarity between users and
recommendation mformation received from the data pro-
cessing servers 900, 900q, . . . 1 the result data storage unit
810.

As described above, 1n the distributed processing system
of the second embodiment, a process that uses intermediate
data 1s performed, 11 the intermediate data 1s available, 1n the
first Map operation. With respect to data blocks for which
intermediate data 1s unavailable, the first Map operation 1s
performed, and the resulting intermediate data 1s registered
in the intermediate data table 711. This allows the result to
be used at a later time for generating recommendation
information. The following describes how to execute step
S12.

FIG. 18 1s a flowchart 1llustrating an example of how to
identity processed data. The process of FIG. 18 will be
described step by step.

10

15

20

25

30

35

40

45

50

55

60

65

14

(Step S21) The data analysis unit 410 reads nput data
specified by the process transformation unit 310. The data
analysis unit 410 may obtain the input data from the process
transformation unit 310 or may obtain the mnput data falling
within a range of dates specified by the process transforma-
tion unit 310, from the rating value table 611 stored in the
input data storage umt 610. The process transformation unit
310 obtains the input data in csv format.

(Step S22) The data analysis unit 410 reads one line from
the 1mput data.

(Step S23) The data analysis unit 410 obtains a date
indicated in the read line.

(Step S24) The data analysis unit 410 obtains the ranges
of dates (Data Date field) of the intermediate data included
in the imtermediate data table 711.

(Step S25) The data analysis unit 410 determines whether
the data 1n the read line of the input data has been processed
or not. IT the data has been processed, the process proceeds
to step S26. If the data has not been processed, the process
proceeds to step S27. The data analysis unit 410 determines
whether the data in the read line has been processed or not,
based on whether the date indicated in the line 1s included 1n
the data dates registered 1n the intermediate data table 711 or
not. If the date 1s included, the data 1s determined to have
been processed. If the date 1s not included, the data 1s
determined to have not been processed.

(Step S26) The data analysis unit 410 outputs the line read
in step S22 to a file as processed data. Then, the process
proceeds to step S28.

(Step S27) The data analysis unit 410 outputs the line read
in step S22 to a file as new data. Then, the process proceeds
to step 528.

(Step S28) The data analysis unit 410 determines whether
the line read in step S22 1s the last line of the input data or
not. I the line 1s not the last line, the process proceeds back
to step S22. If the line 1s the last line, the process is
completed.

As described above, the data analysis unit 410 classifies
the input data into data blocks that need to be subjected to
calculation and data blocks that have been processed, and
outputs these data blocks to separate files. With respect to
the processed data blocks, the data analysis unit 410 further
identifies data blocks for which intermediate data 1s avail-
able. The following describes how to execute step S13 of
FIG. 17.

FIG. 19 1s a flowchart illustrating an example of how to
identify data for which intermediate data 1s available. The
process of FIG. 19 will be described step by step.

(Step S31) The data analysis unmit 410 reads processed data
that 1s output 1n the process of identifying processed data.

(Step S32) The data analysis unit 410 reads one line from
the processed data.

(Step S33) The data analysis unit 410 obtains the date
indicated 1n the read line as an element of a set a. The set a
1s a set of the registration dates of rating values.

(Step S34) The data analysis unit 410 determines whether
the line read 1n step S32 1s the last line of the processed data
or not. If the line 1s not the last line, the process proceeds to
step S32. If the line 1s the last line, the process proceeds to
step S35. For example, assuming that the dates indicated 1n
the processed data are all the dates 1n a range of 03/03/2011 -
03/06/2011, the set a={03/03/2011, 03/04/2011, 03/05/2011,
03/06/2011}.

(Step S35) The data analysis unit 410 generates a power
set List of the dates indicated in the intermediate data
with reference to the intermediate data table 711.

For example, a set List={{¢}, {03/01-03/05/2011},

US 9,910,821 B2

15
{03/02-03/05/2011}, . . ., {03/01-03/05/2011, 03/02-03/05/
2011}, . .. } is obtained with reference to the intermediate

data table 711.

(Step S36) The data analysis unit 410 excludes the empty
set {¢} and overlapping elements from the set List.

(Step S37) The data analysis unit 410 excludes elements
whose union 1s not a subset of the set a, from the set List.

(Step S38) The data analysis unit 410 takes the elements
that constitute the maximum union 1n the set List as avail-
able portions. The maximum union indicates a union includ-
ing the maximum number of elements, 1.e., dates.

(Step S39) The data analysis unit 410 notifies the process
transformation unit 310 of the dates included in the union of
the elements 1dentified as the available portions in the set
List.

As described above, the data analysis unit 410 identifies
data blocks for which intermediate data 1s available from the
processed data. Data blocks for which intermediate data 1s
unavailable are to be processed 1n the first Map operation.
That 1s to say, 1n the input data, the data blocks that are
output to a file as new data 1n step S27 of FIG. 18 and the
data blocks for which intermediate data 1s unavailable are
treated as data blocks that are to be processed in the first Map
operation. The following describes step S14 of FIG. 17.

FIG. 20 1s a flowchart 1llustrating an example of how to
perform process transformation. The process of FIG. 20 will
be described step by step.

(Step S41) The process transformation unit 310 reads the
input data.

(Step S42) The process transformation unit 310 deter-
mines based on the analysis result obtained by the data
analysis unit 410 whether the mput data includes a data
block that needs to be subjected to calculation or not. If there
1s a data block that needs to be subjected to calculation, the
process proceeds to step S43. If there 1s no data block that
needs to be subjected to calculation, the process proceeds to
step S44.

(Step S43) The process transformation unit 310 notifies
the execution control unit 110 of the data blocks that need to
be subjected to calculation out of the mput data and the
calculation logic (the “map”™ method of the first Map opera-
tion or the like), and requests processing. On the basis of the
notification from the process transtormation unit 310, the
execution control unit 110 requests the data processing
servers 900, 900q, . . . to perform ndividual first Map
operations on the data blocks.

(Step S44) The process transformation unit 310 deter-
mines based on the analysis result obtained by the data
analysis unit 410 whether or not the input data includes a
data block which has been processed but for which inter-
mediate data 1s unavailable. If there 1s a data block which has
been processed but for which intermediate data 1s unavail-
able, the process proceeds to step S45. It there 1s no data
block which has been processed but for which intermediate
data 1s unavailable, the process proceeds to step S46.

(Step S45) As 1n step S43, the process transformation unit
310 notifies the execution control unit 110 of the data blocks
which have been processed but for which intermediate data
1s unavailable out of the input data and the calculation logic
(the “map” method of the first Map operation or the like),
and requests processing. On the basis of the notification
from the process transformation unit 310, the execution
control umt 110 requests the data processing servers 900,
900q, . . . to perform individual first Map operations on the
data blocks.

(Step S46) The process transformation unit 310 deter-
mines based on the analysis result obtained by the data

5

10

15

20

25

30

35

40

45

50

55

60

65

16

analysis unit 410 whether or not the input data includes a
data block for which mtermediate data 1s available. 11 there
1s a data block for which intermediate data 1s available, the
process proceeds to step S47. If there 1s no data block for
which intermediate data 1s available, the process 1s com-
pleted.

(Step S47) The process transformation unit 310 notifies
the execution control unit 110 of the data blocks for which
intermediate data 1s available out of the mput data, and
requests processing following the first Map operation. On
the basis of the notification from the process transiformation
umt 310, the execution control unit 110 requests the data
processing servers 900, 900q, . . . to obtain existing inter-
mediate data for the data blocks, not to perform the first Map
operation. In this case, 1n step S15 of FIG. 17, the data
processing unit 910 obtains corresponding intermediate data
from the intermediate data storage unit 710, and performs
the subsequent first shuflle and sort operation and first
Reduce operation. In the case where one or both of steps S43
and S44 are executed, the data processing unit 910 performs
the subsequent operations on the corresponding intermediate
data and the intermediate data newly obtained 1n steps S43
and S44.

As described above, the process transformation unit 310
classifies the mput data into three groups and makes a
processing request to the execution control umt 110. The
execution control umt 110 controls the data processing
servers 900, 900q, . . . so as to perform distributed process-
ing appropriate for the groups of the input data.

FIG. 21 1s a sequence diagram 1llustrating an example of
how to control the distributed processing. The process of
FIG. 21 will be described step by step.

(Step ST101) The client 30 sends the execution control
server 100 a processing request for generating recommen-
dation mformation with a source program and a range of
dates for input data specified. The execution control server
100 recerves the processing request.

(Step ST102) The execution control server 100 sends the
process analysis server 200 a process analysis request with
the source program specified. The process analysis server
200 receives the process analysis request.

(Step ST103) The process analysis server 200 returns the
analysis result to the execution control server 100. The
execution control server 100 receives the process analysis
result. This analysis result specifies, as data parallelizable
parts, step S1 (first Map operation) and step S3 (first Reduce
operation) 1n the first phase of the MapReduce job.

(Step ST104) The execution control server 100 sends the
process transformation server 300 a process transiormation
request for the first Map operation for which intermediate
data may be available out of the data parallelizable parts.
The process transformation server 300 receives the trans-
formation request.

(Step ST105) The process transtormation server 300
sends the data analysis server 400 an analysis request for
input data and intermediate data. The data analysis server
400 receives the analysis request.

(Step ST106) The data analysis server 400 requests the
intermediate data from the intermediate data management
server 700. The intermediate data management server 700
receives the request.

(Step ST107) The intermediate data management server
700 returns the intermediate data with reference to the
intermediate data table 711 stored in the intermediate data
storage unit 710. The data analysis server 400 receives the
returned intermediate data.

US 9,910,821 B2

17

(Step ST108) The data analysis server 400 classifies the
input data into data blocks that need to be subjected to
calculation 1n the first Map operation and data blocks for
which intermediate data 1s available, on the basis of the
range ol dates of the imput data and the intermediate data.
The data analysis server 400 returns the analysis result to the
process transiformation server 300. The process transforma-
tion server 300 receives the returned analysis result.

(Step ST109) The process transformation server 300 splits
the input data on the basis of the analysis result, and adjusts
a process so as to use mntermediate data. The process
transformation server 300 returns the transformation result
to the execution control server 100.

FIG. 22 15 a sequence diagram 1llustrating the example of
how to control the distributed processing. The process of
FIG. 22 will be described step by step. Although FIG. 22
illustrates the data processing server 900 only, the data
processing servers 900q, . . . operate 1n the same way as the
data processing server 900.

(Step ST111) The execution control server 100 sends a
processing request for performing operations including the
first Map operation to the data processing server 900,
900q, . . . on the basis of the process transformation result
obtained by the process transformation server 300. The
processing request specifies a range of dates for mput data
that needs to be subjected to calculation in the first Map
operation. The execution control server 100 also sends the
data processing server 900, 900q, . . . information on a range
of dates indicating blocks of the input data for which
intermediate data 1s available. The information indicating
the data blocks for which intermediate data 1s available
may be sent to any one of the data processing servers 900,
900q, Alternatively, the data blocks for which inter-
mediate data 1s available may be split and distributed to a
plurality of data processing servers.

(Step ST112) The data processing server 900, 900q, . . .
requests the mput data that needs to be subjected to calcu-
lation, from the mmput data management server 600. In this
connection, the data blocks that need to be subjected to
calculation are requested by specifying a range of dates. The
input data management server 600 receives the request.

(Step ST113) The mput data management server 600
responds by returning data falling within the specified range
of dates with reference to the input data stored 1n the input
data storage unit 610. The data processing server 900
receives the response.

(Step ST114) The data processing server 900, 900q, . . .
requests the intermediate data corresponding to the data
blocks for which intermediate data 1s available, from the
intermediate data management server 700. The intermediate
data management server 700 receives the request.

(Step ST115) The intermediate data management server
700 obtains the intermediate data falling within the
requested range of dates with reference to the intermediate
data table 711 stored in the intermediate data storage unit
710, and responds by returning the intermediate data. The
data processing server 900, 900aq, . . . receives the response.

(Step ST116) The data processing server 900, 900aq, . . .
executes the first phase of the MapReduce job. In the first
Map operation, the data blocks for which intermediate data
1s available are excluded from being processed. With respect
to these data blocks, the intermediate data obtained in step
ST115 1s treated as their processing results of the first Map
operation, and the subsequent operations are performed
thereon. When obtaining the mtermediate data by perform-
ing calculation on data blocks of the mput data 1n the first
Map operation at this time, the data processing server 900,

10

15

20

25

30

35

40

45

50

55

60

65

18

900a, . . . sends the intermediate data to the registration
server 500. The registration server 500 stores the interme-
diate data recerved from the data processing server 900,
900aq, . . . 1n the intermediate data management server 700.

(Step ST117) The data processing server 900, 9004, . . .
executes the second phase of the MapReduce job. Then,
when obtaining information on the degrees of similarity
between users, the data processing server 900, 900q, . . .
generates recommendation information on the basis of the
information. In addition, the data processing server 900,
900q, . . . sends the information to the registration server
500. The registration server 500 stores the information on
the degrees of similarity between users and the recommen-
dation information received from the data processing server
900, 9004, . . . 1n the result data management server 800.

(Step ST118) The data processing server 900, 900q, . . .
notifies the execution control server 100 of the completion
of the processing for generating recommendation mforma-
tion. The execution control server 100 receives the notifi-
cation.

(Step ST119) The execution control server 100 notifies
the client 30 of the completion of the requested processing.
The client 30 receives the notification. The administrator 1s
able to use the client 30 and recognize the tendency of users’
product ratings with reference to the recommendation nfor-
mation stored 1n the result data management server 800. In
addition, the EC server 20 1s able to extract products that are
predicted to be highly rated, for each user with reference to
the recommendation information, and display the products
as recommended products on the browser of the terminal
device used by the user.

As described above, the distributed processing 1s con-
trolled 1n the distributed processing system.

The following describes a specific process of generating
recommendation information. It 1s assumed that, to generate
recommendation mformation for a certain date, the logs of
rating values made 1n the previous five days are processed.
In the following description, a first-round process 1s to
generate recommendation information for Mar. 6, 2011. A
second-round process 1s to generate recommendation infor-
mation for Mar. 7, 2011. A third process 1s to generate
recommendation information for Mar. 8, 2011. In addition,
it 1s also assumed that no intermediate data 1s registered 1n
the intermediate data table 711 immediately before the
first-round process starts.

FIG. 23 1llustrates an example of a first-round process.
Input data 1n the first-round process 1s data D11. The data
D11 includes the first to fifth days’ logs including rating
value information (hereinaiter, referred to as like “first day’s
log” simply) entered on Mar. 1, 2011. As a result of inputting
the data D11 and performing the first Map operation, data
D12 1s output. The data D12 1s intermediate data newly
generated from the first to fifth days’ logs. The registration
server 500 collects the results of the first Map operation
performed by the data processing servers 900, 900q, . . .,
generates the data D12, and registers the data D12 together
with the range of the dates indicated in the data D12 in the
intermediate data table 711. In this connection, 1n FIG. 23,
the Hash Value field in the intermediate data table 711 1s not
illustrated (the same applies hereatter).

After that, the first shuflle and sort operation, the first
Reduce operation, the second Map operation, are sequen-
tially performed to thereby generate data D25. The data D25
1s recommendation mformation for a sixth day, generated
from the first to fifth days’ logs.

FIG. 24 1llustrates an example of input data for a second-
round process. The input data 1n the second-round process 1s

US 9,910,821 B2

19

data D11a. The data D11a includes the second to sixth days’
logs. At this time point, the intermediate data (data D12) on
the first to fifth days’ logs 1s registered 1n the intermediate
data table 711. The log of each day 1n the data D11a 1s treated
as follows in the processes of FIGS. 18 and 19.

(1) The second to fifth days’ logs are processed data,
which has already been processed. This 1s because the data
D12 1s already obtained by processing the data D11 includ-
ing the first to fifth days’ logs. In addition, the second to fifth
days’ logs are not data blocks for which intermediate data 1s
available. This 1s because a set of the dates (first to fifth
days) indicated 1n the data D12, which 1s intermediate data,
1s not a subset of the set of dates indicated by the second to
fifth days.

(2) The sixth day’s log 1s newly added data, which needs
to be subjected to calculation. This 1s because intermediate
data including a result of processing the sixth day’s log has
not been obtained.

FI1G. 25 illustrates an example of the second-round pro-
cess. The data Dlla mput in the first Map operation 1s
processed as follows.

(1) Data D12a that i1s intermediate data 1s generated from
the second to fifth days’ logs. The registration server 500
collects the results of performing the first Map operation on
the second to fifth days’” logs by the data processing servers
900, 900q, . . ., generates the data D12a, and registers the
data D12a together with the range of the dates indicated 1n
the data D12a in the intermediate data table 711.

(2) Data D12b that 1s intermediate data 1s generated from
the sixth day’s log. The registration server 500 collects the
results of performing the first Map operation on the sixth
day’s log by the data processing servers 900, 900q, . . .,
generates the data DI12b, and registers the data D12b
together with the range of the dates indicated in the data
D12b in the intermediate data table 711.

After that, the first shuflle and sort operation, the first
Reduce operation, the second Map operation, . . . are
sequentially performed to thereby generate data D25a. The
data D23a 1s recommendation information for the seventh
day, generated from the second to sixth days’ logs.

FIG. 26 1llustrates an example of mput data for a third-
round process. The input data in the third-round process 1s
data D11b. The data D11b includes the third to seventh days’
logs. At this time point, the intermediate data (data D12)
regarding the first to fifth days’ logs, the intermediate data
(data D12a) regarding the second to fifth days’ logs, and the
intermediate data (D12b) regarding the sixth day’s log are
registered 1n the intermediate data table 711. The log of each
day 1n the data D11b 1s treated as follows 1n the processes
of FIGS. 18 and 19.

(1) The third to fifth days’ logs are processed data, which
has already been processed. This 1s because the data D12 1s
already obtained by processing the data D11 including the
first to fifth days’ logs. Or this 1s because the data D12a 1s
already obtained by processing the data D11a including the
second to fifth days’ logs. However, the third to fifth days’
logs are not data blocks for which intermediate data 1s
available. This 1s because the sets of the dates (first to fifth
days) indicated in the data D12 and D12a, which 1s inter-
mediate data, and a union of the dates indicated 1n the data
D12, D12a, and D12b are not a subset of the set of the dates
indicated by the third to sixth days.

(2) The sixth day’s log 1s processed data, which has
already been processed. This 1s because the data D12b 1s
already obtained by processing the data D11a including the
sixth day’s log. In addition, the sixth day’s log 1s a data block
tor which imntermediate data 1s available. This 1s because a set

10

15

20

25

30

35

40

45

50

55

60

65

20

of the dates (sixth day) indicated 1n the data D12b, which 1s
intermediate data, 1s a subset of the set of the dates indicated
by the third to sixth days.

(3) The seventh day’s log i1s newly added data, which
needs to be subjected to calculation. This 1s because none of
the data D12, D12a, and D12b includes a result of process-
ing the seventh day’s log.

FIG. 27 illustrates an example of the third-round process.
The data D11b 1mput 1n the first Map operation 1s processed
as follows.

(1) Data D12c that 1s intermediate data 1s generated from
the third to fifth days’ logs. The registration server 500
collects the results of performing the first Map operation on
the third to fifth days’ logs by the data processing servers
900, 900q, . . ., generates the data D12c, and registers the
data D12c together with the range of the dates indicated 1n
the data D12c in the intermediate data table 711.

(2) With respect to the sixth day’s log, the data D12b,
which 1s existing available intermediate data, 1s obtained
from the intermediate data table 711.

(3) Data D12d that 1s intermediate data 1s generated from
the seventh day’s log. The registration server 300 collects
the results of performing the first Map operation on the
seventh day’s log by the data processing servers 900,
900q, . . ., generates the data D12d, and registers the data
D12d together with the range of the dates indicated in the
data D12d 1n the intermediate data table 711.

After that, the first shuflle and sort operation, the first
Reduce operation, the second Map operation, . . . are
sequentially performed to thereby generate data D25b. The
data D23b 1s recommendation information for the eighth
day, generated from the third to seventh days’ logs.

As described above, 1n the distributed processing system
of the second embodiment, data blocks for which previously
generated intermediate data 1s available 1s 1dentified from
input data. Then, the previous intermediate data 1s obtained
for the data blocks of the mput data, and the other data
blocks are subjected to the distributed processing.

This approach makes 1t possible to streamline the data
processing. More specifically, the data processing servers
900, 9004, . . ., are caused to process data blocks other than
data blocks for which previously generated intermediate
data 1s available, 1n a distributed manner. This eliminates the
need of processing the enftire mput data. Skipping the
same processing as previously performed improves process-
ing eiliciency and achieves higher-speed processing. In
addition, 1t 1s possible to reduce the amount of data that 1s

processed by the data processing servers 900, 900q, . . . , so
as to reduce the workloads of the data processing servers
900, 900q,

In this connection, as an example, the distributed pro-
cessing system of the second embodiment manages inter-
mediate data by a range of dates of input data. Alternatively,
the intermediate data may be managed by another data item.
For example, each day 1s used to manage all of intermediate
data. In this case, for example, the processing result regis-
tration umt 510 groups mtermediate data by the day, and
registers the intermediate data 1n the intermediate data table
711 stored in the intermediate data storage unit 710. This
improves the reusability of the intermediate data.

Further, the distributed processing system of the second
embodiment determines based on the registration dates of
rating values whether input data has been processed or not
and whether there i1s available intermediate data or not.
Alternatively, another data item may be used for the deter-
mination. For example, the determination may be made
based on year, month, week, time zone, or the like.

US 9,910,821 B2

21

Still further, as an example, the distributed processing
system ol the second embodiment classifies input data by,
but not limited to, date (time). For example, the above
method 1s applicable for the case where input data 1s
classified by place (coordinate values or the like). More
specifically, for input data on locations within a certain area,
it 1s determined for the data on each location 1n a partial area
of the area whether previous calculation results are available
or not, 1n the same way as described 1n the second embodi-
ment, to thereby control the subsequent processing efli-
ciently.

Still further, the distributed processing system of the
second embodiment distributes processing to a plurality of
server apparatuses. Alternatively, at least some of the func-
tions of the plurality of server apparatuses may be integrated
in a single server apparatus. For example, the tunctions of
the execution control server 100, process analysis server
200, process transiormation server 300, and data analysis
server 400 may be implemented by using a single server
apparatus.

According to one aspect, 1t 1s possible to streamline data
processing.

All examples and conditional language provided herein
are mntended for the pedagogical purposes of aiding the
reader 1n understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples 1n the specification relate to a showing of the
superiority and inferiority of the mnvention. Although one or
more embodiments of the present invention have been
described 1n detail, 1t should be understood that wvarious
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What 1s claimed 1s:

1. A data processing method executed 1n a system includ-
ing an information processing apparatus connected to a
network, a memory device connected to the network, and a
plurality of nodes connected to the network, where first data
processing 1s performed using the plurality of nodes in
parallel and second data processing 1s performed on a result
of the first data processing, the data processing method
comprising:

splitting, by a processor included in the information

processing apparatus, a data set including a plurality of
segments mnto a first segment and a plurality of second
segments with reference to previous results of the first
data processing previously performed, which are stored
in the memory device, the first segment being a seg-
ment for which one or more of the previous results
stored 1n the memory device are usable as a result of
performing the first data processing on the first seg-
ment, the plurality of second segments being segments
for which the previous results stored in the memory
device are not usable, wherein the data set includes
clements of a prescribed parameter as a first set, the
previous results are respectively associated with second
sets of elements of the prescribed parameter included 1n
corresponding data sets used for obtaining the previous
results, and the one or more of the previous results that
are usable for the first segment are respectively corre-
sponding to one or more second sets associated with
different elements that are a maximum number of
elements all included 1n the first set;

assigning, by the processor, the plurality of second seg-

ments to the plurality of nodes, and performing, by

10

15

20

25

30

35

40

45

50

55

60

65

22

using the plurality of nodes in parallel, the first data

processing on the plurality of second segments; and

performing, by the processor, the second data processing
on the one or more of the previous results correspond-
ing to the first segment, which are stored 1n the memory
device, and results obtained from the plurality of sec-
ond segments using the plurality of nodes;

wherein the splitting includes splitting the data set in such

a way that a first block of the data set which has not

previously been subjected to the first data processing

and a second block of the data set which has previously
been subjected to the first data processing but for which
usable previous results are not stored in the memory
device belong to different second segments; and
wherein the using the plurality of nodes in parallel to

perform the first data processing includes storing a

result of performing the first data processing on the first

block and a result of performing the first data process-
ing on the second block separately 1n the memory.

2. The data processing method according to claim 1,
wherein the processor determines that a result generated by
performing the first data processing previously on a part of
the data set and other data set, which 1s stored in the memory,
will not be used for processing the data set.

3. The data processing method according to claim 1,
wherein the second data processing includes a process of
aggregating a result of performing the first data processing
on the first segment and results of performing the first data
processing on the plurality of second segments.

4. A distributed processing system where first data pro-
cessing 1s performed using a plurality of nodes connected to
a network 1n parallel and second data processing 1s per-
formed on a result of the first data processing, the distributed
processing system comprising:

an information processing apparatus connected to the

network, the information processing apparatus includ-

ng:
a memory connected to the network and configured to
store previous results of the first data processing
previously performed; and
a processor configured to perform a process including:
splitting, with reference to the memory, a data set
including a plurality of segments into a first seg-
ment and a plurality of second segments, the first
segment being a segment for which one or more of
the previous results stored in the memory are
usable as a result of performing the first data
processing on the first segment, the plurality of
second segments being segments for which the
previous results stored in the memory are not
usable, wherein the data set includes elements of
a prescribed parameter as a {first set, the previous
results are respectively associated with second
sets of elements of the prescribed parameter
included 1n corresponding data sets used for
obtaining the previous results, and the one or more
of the previous results that are usable for the first
segment are respectively corresponding to one or
more second sets associated with diflerent ele-
ments that are a maximum number of elements all
included 1n the first set; and

assigning the plurality of second segments to the
plurality of nodes, performing, by using the plu-
rality of nodes 1n parallel, the first data processing
on the plurality of second segments, and exercis-
ing control so as to perform the second data
processing on the previous result corresponding to

US 9,910,821 B2

23

the first segment, which 1s stored i the memory,

and results obtained from the plurality of second

segments using the plurality of nodes;

wherein the splitting includes splitting the data set 1n
such a way that a first block of the data set which
has not previously been subjected to the first data
processing and a second block of the data set
which has previously been subjected to the first
data processing but for which usable previous
results are not stored in the memory belong to
different second segments; and

wherein the using the plurality of nodes in parallel to
perform the first data processing includes storing

a result of performing the first data processing on
the first block and a result of performing the first
data processing on the second block separately 1n
the memory.

5. A non-transitory computer-readable medium storing a
computer program for controlling a system including a
computer connected to a network, a memory device con-
nected to the network, and a plurality of nodes connected to
the network, where first data processing 1s performed using
the plurality of nodes in parallel and second data processing
1s performed on a result of the first data processing, the
computer program causing the computer to perform a pro-
Cess comprising:

splitting a data set including a plurality of segments into

a first segment and a plurality of second segments with
reference to previous results of the first data processing
previously performed, which are stored 1n the memory
device, the first segment being a segment for which one
or more of the previous results stored in the memory
device are usable as a result of performing the first data
processing on the first segment, the plurality of second

10

15

20

25

30

24

segments being segments for which the previous results
stored 1n the memory device are not usable, wherein the
data set includes elements of a prescribed parameter as
a first set, the previous results are respectively associ-
ated with second sets of elements of the prescribed
parameter included in corresponding data sets used for
obtaining the previous results, and the one or more of
the previous results that are usable for the first segment
are respectively corresponding to one or more second
sets associated with different elements that are a maxi-
mum number of elements all included 1n the first set;:

assigning the plurality of second segments to the plurality

of nodes, and performing, by using the plurality of
nodes 1n parallel, the first data processing on the
plurality of second segments; and

exercising control so as to perform the second data

processing on the one or more of the previous results
corresponding to the first segment, which are stored 1n
the memory device, and results obtained from the
plurality of second segments using the plurality of
nodes;

wherein the splitting includes splitting the data set 1n such

a way that a first block of the data set which has not
previously been subjected to the first data processing
and a second block of the data set which has previously
been subjected to the first data processing but for which
usable previous results are not stored 1n the memory
belong to different second segments; and

wherein the using the plurality of nodes in parallel to

perform the first data processing includes storing a
result of performing the first data processing on the first
block and a result of performing the first data process-
ing on the second block separately 1n the memory.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

