12 United States Patent

(10) Patent No.:

US009910812B2

US 9,910,812 B2

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

U.S.C. 154(b) by 538 days.
Appl. No.: 14/505,003
Filed: Oct. 2, 2014

Prior Publication Data

US 2016/0098375 Al Apr. 7, 2016

Int. CI.

GO6F 13/00 (2006.01)

GO6F 13/42 (2006.01)

GO6F 9/46 (2006.01)

GO6F 13/40 (2006.01)

U.S. CL

CPC GO6F 13/4208 (2013.01); GO6F 9/466

(2013.01); GO6F 13/4022 (2013.01)

Field of Classification Search

CPC e, GO6F 13/4022; GO6F 13/4208
See application file for complete search history.

Pean et al. 45) Date of Patent: Mar. 6, 2018
INITIATING MULTIPLE DATA (56) References Cited
TRANSACTIONS ON A SYSTEM BUS |
U.S. PATENT DOCUMENTS
Applicant: Atmel Corporation, San Jose, CA (US) 5915734 A 0/1998 T ec
6,457,074 Bl 9/2002 Gaillard
Inventors: Guillaume Pean, Aix en Provence 6,499.077 B1* 12/2002 Abramson GO6F 13/4059
(FR); Vincent Debout, La Ciotat (FR); 208335 By 008 Sonk 710/104
: : 398, onksen
Patrice Vilchez, Toulon (FR) 2003/0221026 Al* 11/2003 Newman HO4L 29/06
710/8
Assignee: Atmel Corporation, San Jose, CA (US) 2014/0089536 Al 3/2014 Pedersen
20;5/0161065 Al 6/20_}5 Lunadier et al.
Notice: Subject to any disclaimer, the term of this %8;?833%% i gggg Iﬁzanfl ot al
patent is extended or adjusted under 35 2016/0132445 Al 5/2016 Birsan et al.

* cited by examiner

Primary Examiner — Zachary K Huson
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Initiating data transactions on a system bus 1s disclosed. In
some 1mplementations, a controller receives first informa-
tion from a {irst peripheral requesting a first data transaction.
The first information 1s received over a first communication
link between the controller and the first peripheral. The
controller receives second information from a second
peripheral requesting a second data transaction. The second
information received over a second communication link
between the controller and the second peripheral. The con-
troller determines first and second ranks for the first and
second data transactions, respectively, based on the first and
second information, and initiates based on the first and
second ranks, the first and second data transactions on a
system bus.

17 Claims, 3 Drawing Sheets

400

¢

DETERMINING STATE
OF TRANSACTION
QUEUE OF PERIPHERAL

402

Y

GENERATING INFORMATION
INDICATING STATE OF

TRANSACTION QUEUE

404

TRANSMITTING INFORMATION TO
CONTROLLER OVER INDEPENDENT
COMMUNICATION LINK

406

RECEIVING ACCESS TO SYSTEM
BUS AND QoS ACCORDING TO
STATE OF TRANSACTION QUEUE
AND STATES OF TRANSACTION

QUEUES OF OTHER PERIPHERALS

408

U.S. Patent Mar. 6, 2018 Sheet 1 of 3 US 9,910,812 B2

100
\‘
102 104
CPU DMA/PDC
AHB/AXI MATRIX
118
106 DDR LCD 110
APB 108
MATRIX
120 USART USART
— COMMUNICATION LINK
\
SP| 196 1223
114
124 TWI
COMMUNICATION LINK
TWI
112 \
122b
116

SP| COMMUNICATION LINK

FIG. 1 122¢

]
an
a .
~ o221 ¢ DIA
=
= TWNOIS 1NdLNO ATOHSTHHL
o~ MOT3E JLYLS O414 XL 1HVSN N ——
7
- axy axl MOT3€ 3LVLS Ol
LHVSN A8 3¥I00ML
ISYIHONI SOD
~0LZ S0P TAINNYHD YHS
H3L4IHS X1 0C NHLINO9TY | €
._mz_,_frwﬁum%m: S| ONIONVH |« 5
er, 00O mOO ,QS_D
= SOD TAINNVHD S3V N
m o T o T ¢ | SO0 TINNVHO ¥aa 80¢
= 3 JTOHSINHL gY.1 SO0 YWG
7 _. LaL
| WNOIS QTOHSIHHL
¢al 14 MOT3E JLVLS O4I-
o eaL _TENNVHOWHS |/ LuVSN A Gi00RL
= 97| OISO STONVHD LSIT ALINOIN
< 1SI7 4 L4YSN aio T
- Alld0ldd T3INNVHD S3v T ¢
M — | B
LINSNYL TANNYHO ¥ad o S
NOILISOd
14VSN S
1YVYSN MaN
\ 90¢
o 1SI7 ALIMOIMd
701 AN X1 VYIN
> VING
00¢

U.S. Patent

U.S. Patent Mar. 6, 2018

302

304

306

300

R

Sheet 3 of 3 US 9.910.812 B2

RECEIVING INFORMATION
FROM PERIPHERALS
REQUESTING TRANSACTIONS

DETERMINING TRANSACTION
PRIORITY AND QOS BASED ON
RECEIVED INFORMATION

INITIATING TRANSACTIONS AND

QoS FOR PERIPHERALS BASED

ON DETERMINED TRANSACTION
PRIORITY AND QoS

FI1G. 3

400

DETERMINING STATE 402
OF TRANSACTION
QUEUE OF PERIPHERAL

GENERATING INFORMATION
INDICATING STATE OF
TRANSACTION QUEUE

404

TRANSMITTING INFORMATION TO

CONTROLLER OVER INDEPENDENT 406
COMMUNICATION LINK

RECEIVING ACCESS TO SYSTEM
BUS AND QoS ACCORDING TO
STATE OF TRANSACTION QUEUE 408

AND STATES OF TRANSACTION
QUEUES OF OTHER PERIPHERALS

FI1G. 4

US 9,910,812 B2

1

INITIATING MULTIPLE DATA
TRANSACTIONS ON A SYSTEM BUS

TECHNICAL FIELD

This disclosure relates generally to data transaction ini-
tiation on a system bus.

BACKGROUND

In example scenario, certain microcontrollers can be
configured to communicate with a variety of peripherals
using a variety of communication protocols. The peripherals
can compete for access to a system bus for communicating
with the microcontroller and may be capable of operating
with respect to diflerent levels of quality-of-service (QoS).
If multiple peripherals are simultaneously operating it may
be usetul to perform a specific peripheral transaction (e.g.,
a memory read transaction) before performing another
peripheral transaction. Indeed, 1n an embodiment, a ranking,
or priority algorithm may be implemented to accurately
determine the appropriate ranking or priornty level for each
transaction.

In one example scenario, a “round robin™ strategy may be
implemented that provides each bus channel an equal part of
the system bus bandwidth and ensures that no single channel
1s denied access for a relatively long period of time. In
accordance with an example implementation, however, the
system bus bandwidth may be granted to relatively low

priority or non-critical bus channels when high-priority or
critical bus channels are requesting data transier.

SUMMARY

In some 1implementations, a method comprises: receiving,
by a controller, first information from a first peripheral
requesting a first data transaction, the first information
received over a first communication link between the con-
troller and the first peripheral; receiving, by the controller,
second information from a second peripheral requesting a
second data transaction, the second information received
over a second communication link between the controller
and the first peripheral; determining, by the controller, first
and second ranks for the first and second data transactions,
respectively, based on the first and second iformation; and
initiating, based on the first and second ranks, the first and
second data transactions on a system bus.

In some 1implementations, a method comprises: determin-
ing, by a peripheral requesting access to a system bus, a state
of the peripheral; generating information indicating the state
of the peripheral; transmitting the imnformation over a com-
munication link to a controller; and receiving, from the
controller, access to the system bus according to the state of
the peripheral and states of other peripherals requesting
access to the system bus.

In some implementations, a system comprises: a system
bus; a first peripheral coupled to the system bus; a second
peripheral coupled to the system bus; a controller coupled to
the system bus, the controller configured to receive over a
first communication link first information from the first
peripheral requesting a {irst transaction, and to receive over
a second communication link second information from the
second peripheral requesting a second data transaction;
determine first and second ranks for the first and second data
transactions, respectively, based on the first and second
information; and initiate, based on the first and second ranks,
the first and second data transactions on the system bus.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other implementations are directed to methods, circuits,
systems and computer-readable mediums.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example microcontroller
system for autonomous handling of transactions and QoS
between a controller and peripherals 1n an embodiment.

FIG. 2 1illustrates an example implementation of autono-
mous handling of transfer and QoS between a controller and
peripherals 1n an embodiment.

FIG. 3 1s a flow diagram of an example process imple-
mented by a controller for autonomous handling of trans-
actions and QoS between a controller and peripherals 1n an
embodiment.

FIG. 4 1s a flow diagram of an example process imple-
mented by a peripheral for autonomous handling of trans-

actions and QoS between a controller and peripherals 1n an
embodiment.

DETAILED DESCRIPTION

Autonomous handling of transactions and QoS between a
controller and peripherals are disclosed. In some implemen-
tations, communication links between the peripherals and
the controller allow the peripherals to send advance infor-
mation to the controller that can be used by the controller to
optimize system bus access in terms of bandwidth, transac-
tion priority and QoS.

FIG. 1 1s a block diagram of an example microcontroller
system 100 for autonomous handling of transactions and
QoS between a controller and peripherals. In some 1mple-
mentations, microcontroller system 100 can include central
processing unit 102 (CPU), controller 104, peripheral bus
bridge 106, memory controller 108, display controller 110,
and peripheral interfaces 112, 114, 116. In practice, system
100 can include more or fewer components or subsystems
than 1s shown in FIG. 1.

Controller 104 can be, for example, a direct memory
access (DMA) controller or peripheral DMA controller
(PDC). A DMA controller transfers data between memories
and peripherals with minimal CPU intervention. While the
CPU spends time 1n low-power sleep modes or periorms
other tasks, the DMA controller offloads the CPU by taking
care of data copying from one area to another. A complete
DMA read and write operation between memories and/or
peripherals 1s called a DMA transaction. A transaction 1s
done 1n data blocks and the size of the transaction (number
of bytes to transier) 1s selectable from software and con-
trolled by the block size and repeat counter settings.

A PDC transters data between on-chip serial peripherals
and on and/or ofl-chip memories. Using the PDC removes
processor overhead by reducing its intervention during the
transfer. This significantly reduces the number of clock
cycles required for a data transfer, which improves micro-
controller performance. To launch a transier, the peripheral
triggers 1ts associated PDC channels by using transmit and
receive signals. When the programmed data is transierred,
an end of transier interrupt 1s generated by the peripheral
itsellf.

Peripheral bridge 106 can be, for example, an advanced
microcontroller bus architecture (AMBA) peripheral bus
(APB). Memory controller 108 can be, for example, a
double data rate (DDR) memory controller used to drive
DDR memory (e.g., SDRAM), where data 1s transferred on
both rising and falling edges of the system’s memory clock.

US 9,910,812 B2

3

Display controller 110 can be, for example a liquid crystal
display (LLCD) controller for running a segment of an LCD
display. Peripheral interfaces 112, 116 can be, for example,
a serial peripheral interface (SPI) or two-wire interface
(TWI). Pernipheral interface 114 can be, for example, a
universal asynchronous recerver/transmitter (USART).
Peripheral mterfaces 112, 114, 116 can be coupled to system
bus 118 through peripheral bridge 106 and peripheral bus
120. System bus 118 can be, for example, an AMBA
high-performance bus (AHB) or bus matrix (AXI). Periph-
eral bus 120 can be, for example, an APB bus matrix.

In some implementations, peripherals 112, 114, 116 each
have a physically separate commumnication link 122aq-122¢
(each physically separate and independent of the system bus
channels) to controller 104 that allows each of peripherals
112, 114, 116 to communicate directly with controller 104.
In some implementations, one or more peripherals 112, 114,
116 can include a transaction queue for storing read/write
transaction data for the peripheral. For example, peripheral
114 (e.g., a USART) can include a First-In-First-Out (FIFO)
transaction queue 126 that stores transaction data in the
order the transaction data are received, as described 1in
reference to FIG. 2. Likewise, peripheral 112 (e.g., an SPI)
can include FIFO 124 for storing read/write transaction data.

In some implementations, communication links 122a-
122¢ are configured to send advance (before data transier)
information to controller 104 that includes peripheral state
information, activity reports, QoS estimates and/or any other
information that can be used by controller 104 to optimize
accesses to system bus 118 in terms of bandwidth, data
transier priority and QoS. In some implementations, one or
more of communication links 122a-122¢ can be a fixed-
width bus. The advance information can be encoded and sent
on the bus using a predefined protocol. Controller 104 can
use the advance information received on communication
links 122a-122¢ to perform a number ol optimizations,
including but not limited to grouping transactions and
dynamically assigning transier priority levels or ranks to the
transactions and appropriate QoS information to active data
channels. For example, controller 104 can determine the
data transfer size and length of a bus access or change a
channel arbitration strategy to give a data channel more or

tull bandwidth for a period of time to avoid an application
crash or system failure. In some implementations, controller
104 includes transmit (1TX) prionty list 202 and QoS table
204, respectively, for managing transmit priority and QoS
for active data channels, as described 1n reference to FIG. 2.

FIG. 2 illustrates autonomous handling of transactions
and QoS between a controller and peripherals. The figure
includes numerical designations 1-4 to highlight for the user
the steps of data transfer. In the example shown, at step 1,
peripheral 114 (e.g., USART peripheral) sends information
on communication link 122¢ to controller 104 (e.g., a DMA
controller). Network data that 1s received by peripheral 114
1s stored 1n FIFO 126, which has a finite depth. When FIFO
126 reaches an “almost empty” state (e.g., two full queue
slots), peripheral 114 sends a threshold signal directly to
controller 104 over communication link 122¢ to indicate the
“almost empty” state of FIFO 126. Controller 104 uses the
threshold signal to group and optimize data transactions for
peripheral 114. Because USART protocol 1s byte oriented,
data 1s transmitted byte by byte. Accordingly, 1t 1s more
eilicient 1n terms of number of system bus accesses for
controller 104 to wait until peripheral 114 has 4 free queue
slots 1n FIFO 126 and then 1ssue a single word size (4 bytes)

10

15

20

25

30

35

40

45

50

55

60

65

4

data transier, rather than issuing a single byte transier each
time a byte 1s transmitted by peripheral 114 from the
network.

At steps 2 and 3, controller 104 uses the threshold signal
received on communication link 122¢ to modily TX priority
list 202, which 1s used to manage data transaction order for
active data channels (e.g., DDR channel, AES channel,
USART channel, SHA channel). In the example shown, the
threshold signal causes DMA channel priority module 206 to
move the position of the USART data channel from the third
position (the old USART position) to the first position or top
of transaction priority list 202 (the new USART position), so
that the USART transaction can be executed next by con-
troller 104. In some 1mplementations, TX priority list 202
can be modified 1n other ways. For example, an active data
channel can be inserted anywhere 1n TX priority list 202
including the top, bottom or middle of TX priority list 202.
In some 1mplementations, DMA channel priority module
206 can include arbitration logic based on the protocol of the
active data channel and threshold signals received from

peripherals 112, 114, 116.

Some example logic that could be applied to peripherals
112 (e.g., an SPI peripheral), 114 (e.g., a USART periph-
eral), 116 (e.g., a TWI peripheral) could be: If T1 or T3>0
and 12>0, then move the peripheral 114 transaction to the
top of TX priority list 202 and increment the QoS value n
DMA QoS table 204, where T1, T2, T3 are binary threshold
signals for peripherals 112, 114, 116, respectively, and T1,
12, T3="1” indicates an “almost empty” or “almost full”
state of the internal FIFOs of the peripherals 112, 114, 116,
respectively.

Referring to FIGS. 1 and 2, DMA channel priority module
206 arbitrates between active data channels based on the
threshold signals received from peripherals 112, 114, 116.
Controller 104 can decide which data transaction to issue
first when two or more peripherals 112, 114, 116 have
provided threshold signals indicating their respective inter-
nal transaction FIFOs are “almost empty.” The arbitration
can be based on the protocols used by the peripherals. For
example, peripheral 112 may use network protocol (e.g., 12C
protocol) that uses clock stretching and wait states. If FIFO
124 of peripheral 112 1s full and there 1s still data to be
received from the network, peripheral 112 can put the
network 1nto a wait state while FIFO 124 1s full. On the other
hand, peripheral 114 can use a protocol (e.g., USART
protocol) that does not allow wait states, making critical the
need to read data on peripheral 114 1f FIFO 126 1s full. By
knowing the FIFO states of peripherals 112, 114, 116 and
whether peripherals 112, 114, 116 can place their network
media 1n a wait state, controller 104 can decide to read
peripheral 114 first (because the USART protocol does not
allow wait states) to reduce the risk of data loss or applica-
tion or system failure.

Referring again to steps 2 and 3 1n FIG. 2, DMA QoS
handling module 208 uses threshold signals from peripherals
112, 114, 116 to assign a QoS value to the data channel of
the USART (QOS+1) that 1s higher than the QoS values
assigned to the other active data channels included in DMA
QoS table 204. In this example, the QoS value for the
USART data channel 1s higher that the QoS values for the
other active data channels because of the high latency of a
USART data transfer resulting from, for example, bus arbi-
tration on a heavily loaded system bus and/or the iability of
the USART protocol to place the USART network media
into a wait state. The QoS value can be represented in DMA
QoS table 204 1n any desired format including a number
system. For example, QoS numbers can range from 1 to 3
with 1 being the lowest QoS and 5 being the highest QoS.

US 9,910,812 B2

S

In some 1mplementations, QoS value can have a base value
(e.g., 0), which can be incremented by 1 to increase the QoS
for the corresponding active data channel.

An example system and process for determining a QoS
value for a data transfer request that could be implemented
by DMA QoS handling module 208 1s described in co-
pending U.S. patent application Ser. No. 14/100,225, for
“System Bus Transaction Queue Reallocation,” filed Dec. 9,
2013, which patent application 1s 1incorporated by reference
herein 1n 1ts entirety.

In some 1implementations, peripherals 112, 114, 116 can
calculate a local estimate of the QoS value that represents
the urgency for controller 104 to serve the peripheral. This
QoS value 1s based on the internal state of the peripheral
(e.g., FIFO state, Fimite State Machine (FSM) state, protocol
information) and the estimation of the ongoing traflic on the
network. Controller 104 will use the QoS value to modify
the QoS of any pending data transaction (including ones not
dedicated to the peripheral) to serve the requesting periph-
cral faster and prevent data loss. In some 1mplementations,
controller 104 can dynamically change the strategy that
applies to each active data channel and anticipate potential
1ssues based on the information recerved by peripherals 112,
114, 116.

At step 4, controller 104 imitiates a data transaction on the
system bus according to the TX priority list 202 and DMA
QoS table 204 using the appropnate protocol for peripheral
114. In some 1mplementations, the data transier request at
the bottom of FIFO 126 1s placed on system bus 118 by
transaction shifter 208 (e.g., one or more shifter registers).

In some 1implementations, the implementations described
above can be implemented 1n a system-on-chip (SoC) that
includes a microcontroller system 100 to allow the SoC to
autonomously optimize the number of bus transactions
issued to transier data from/to peripherals. The SoC can
select the best order and time for the data transfer. The SoC
can adapt DMA/PDC channel arbitration strategy when
needed and associate the appropriate QoS mformation for
cach active data channel. Implementing microcontroller
system 100 1 SoC can simplify application development
using the SoC because optimized DMA/PDC transactions
are guaranteed and handled autonomously by the SoC. The
SoC will be more reliable and less impacted by latency
1ssues because the DMA/PDC data transactions are opti-
mized and prioritized when needed.

FIG. 3 1s a flow diagram of an example process 300
implemented by a controller for autonomous handling of
transactions and QoS between a controller and peripherals.
Process 300 can be performed by microcontroller system
100, as described 1n reference to FIGS. 1-2. Process 300 can
be implemented by software instructions stored on a non-
transitory, computer-readable medium, 1n hardware or by a
combination of software and hardware.

In some implementations, process 300 can begin by
receiving information from peripherals requesting transac-
tions that require access to a system bus (302). The infor-
mation 1s sent directly to a DMA controller or PDC over a
dedicated communication link that 1s independent of the
system bus. The communication link can be a fixed-width
bus. The information can be encoded using a predefined
protocol that 1s known to the DMA/PDC controller and the
peripherals. The information can include any information
that 1s usetul to a controller to determine transaction priority
and QoS for the data channel, mncluding but not limited to
transaction queue (FIFO) state, FSM state, protocol infor-
mation (whether wait states or clock stretching i1s available)
and network activity reports (e.g., mndicating a busy net-

10

15

20

25

30

35

40

45

50

55

60

65

6

work). In one example implementation, the information
includes a threshold signal (e.g., a binary signal) that 1ndi-
cates that an 1internal transaction queue (FIFO) 1n the periph-
eral 1s almost full.

Process 300 can continue by determining ranks and QoS
for the active data channels based on the received informa-
tion (304). For example, the received imnformation can be
used to modily a TX priority list and/or QoS table stored in
the controller.

Process 300 can continue by initiating transactions and
QoS for the peripherals according to the determined ranks
and QoS (306). For example, the modified TX priority list
and QoS table can be consulted by a DMA channel priority
module and DMA QoS handling module, respectively, to
determine which active data channel will receive access to
the system bus to perform the transaction (e.g., a memory
read or write transaction) and the QoS the active data
channel will receive for the transaction.

FIG. 4 1s a flow diagram of an example process 400
implemented by a peripheral for autonomous handling of
transactions and QoS between a controller and peripherals.
Process 400 can be performed by peripheral 114 as
described in reference to FIGS. 1-2.

In some implementations, process 400 can begin by
determining a state of a transaction queue of a peripheral
(402). For example, a processor or logic 1n the peripheral can
determine that a state of a transaction queue (FIFO) of the
peripheral 1s almost full or almost empty.

Process 400 can continue by generating information 1ndi-
cating the state of the peripheral (404). For example, a
binary threshold signal can be generated to indicate the
almost full state or almost empty state of the transaction
queue (FIFO).

Process 400 can continue by transmitting the information
over a communication link to a controller (406). For
example, the threshold signal can be sent over a communi-
cation link with the controller.

Process 400 can continue by receiving access to a system
bus according to the state of the transaction queue and the
states ol other transaction queues of peripherals requesting
access to the system bus (408). For example, the peripheral
can receive access to the system bus from the controller to
carry out a transaction (e.g., a read or write transaction).

The autonomous handling of ftransactions and QoS
between a controller and peripherals described herein pro-
vides one or more of the following advantages. System bus
bandwidth can be freed up by grouping transaction requests

from peripherals based on information provided by the
peripherals over separate communication links (independent
of system bus channels) with the DMA/PDC controller. The
information allows the controller to prioritize peripheral
transactions and QoS to improve overall system reliability
and stability without increasing software development cost
or complexity. In some implementations, a system on chip
(SoC) that includes autonomous handling of transactions
between a controller and peripherals can autonomously
optimize the number of system bus accesses i1ssued for
peripheral transactions and to select an appropriate transac-
tion order and time for the transaction. The SoC can adopt
an appropriate data channel arbitration strategy when needed
and select an appropriate QoS for the data channel.

While this document contains many specific implemen-
tation details, these should not be construed as limitations on
the scope what may be claimed, but rather as descriptions of
features that may be specific to particular embodiments.

US 9,910,812 B2

7

Certain features that are described 1n this specification in the
context of separate embodiments can also be implemented 1n
combination 1n a single embodiment. Conversely, various
features that are described 1n the context of a single embodi-
ment can also be implemented in multiple embodiments
separately or 1 any suitable sub combination. Moreover,
although features may be described above as acting 1n
certain combinations and even mitially claimed as such, one
or more features from a claimed combination can, 1n some

cases, be excised from the combination, and the claimed
combination may be directed to a sub combination or
variation of a sub combination.

What 1s claimed 1s:

1. A method comprising;

receiving, by a controller, first information from a first

peripheral requesting a first data transaction, the first
information received over a first communication link
between the controller and the first peripheral;

receiving, by the controller, second information from a

second peripheral requesting a second data transaction,
the second information received over a second com-
munication link between the controller and the second
peripheral;

determining, by the controller, quality of service (QoS)

values for the first and second transactions based on the
first and second information;

determining, by the controller, first and second ranks for

the first and second data transactions based on the first
and second information; and

initiating, based on the first and second ranks and the QoS

values, the first or second data transaction on a system
bus.

2. The method of claim 1, wherein the controller 1s a direct
memory access (DMA) controller and the first and second
communication links provide direct communication paths
from the first and second peripherals to the DMA controller.

3. The method of claiam 1, where determining, by the
controller, first and second ranks for the first and second data
transactions further comprises:

using the first information to determine a state of a first

transaction queue of the first peripheral;
using the second information to determine a state of a
second transaction queue of the second peripheral; and

determining the first and second ranks of the first and
second data transactions based on the determined states
of the first and second transaction queues.
4. The method of claim 3, where the state of the first or
second transaction queue 1s an almost full state or almost
empty state.
5. The method of claim 1, where the first or second
communication link 1s a fixed-width bus and the first or
second 1nformation 1s encoded with a protocol.
6. A system comprising;:
a system bus;
a first peripheral coupled to the system bus;
a second peripheral coupled to the system bus;
a controller coupled to the system bus, the controller
configured to receive over a first communication link
first information from the first peripheral requesting a
first data transaction, and to receive over a second
communication link second information from the sec-
ond peripheral requesting a second data transaction;

determining, by the controller, quality of service (QoS)
values for the first and second transactions based on the
first and second information:

10

15

20

25

30

35

40

45

50

55

60

65

8

determine first and second ranks for the first and second
data transactions based on the first and second infor-
mation; and

imitiate, based on the first and second ranks and the QoS

values, the first or second data transaction on the
system bus.

7. The system of claim 6, wherein the controller 1s a direct
memory access (DMA) controller and the first and second
communication links provide direct communication paths
from the first and second peripherals to the DMA controller.

8. The system of claim 6, where using, by the controller,
the first and second information to determine first and
second ranks for the first and second data transactions
turther comprises:

using the first information to determine a state of a first

transaction queue of the first peripheral;
using the second information to determine a state of a
second transaction queue of the second peripheral; and

determiming the first and second ranks of the first and
second data transactions based on the determined states
of the first and second transaction queues.

9. The system of claim 8, where the state of the first or
second transaction queue 1s an almost full state or almost
empty state.

10. The system of claim 6, where the first or second
communication link 1s a fixed-width bus and the first or
second 1nformation 1s encoded with a protocol.

11. A non-transitory, computer-readable medium storing
instructions, which, when executed by one or more proces-
sors, causes the one or more processors to perform opera-
tions comprising:

recerving lirst information from a first peripheral request-

ing a {irst data transaction, the first information
recerved over a first communication link;
recerving second information from a second peripheral
requesting a second data transaction, the second 1nfor-
mation received over a second communication link;

determiming quality of service (QoS) values for the first
and second transactions based on the first and second
information;

determiming first and second ranks for the first and second

data transactions based on the first and second infor-
mation; and

imitiating, based on the first and second ranks and the QoS

values, the first or second data transaction on a system
bus.

12. The computer-readable medium of claim 11, wherein
the controller 1s a direct memory access (DMA) controller
and the first and second communication links provide direct
communication paths from the first and second peripherals
to the DMA controller.

13. The computer-readable medium of claim 11, where
using the first and second information to determine ranks for
the first and second data transactions further comprises:

using the first information to determine a state of a first

transaction queue of the first peripheral;

using the second information to determine a state of a

second transaction queue of the second peripheral; and
determiming the first and second ranks of the first and
second data transactions based on the determined states

of the first and second transaction queues.
14. The computer-readable medium of claim 13, where
the state of the first or second transaction queue 1s an almost
tull state or almost empty state.

US 9,910,812 B2

9

15. The computer-readable medium of claim 11, where
the first or second communication link 1s a fixed-width bus
and the first or second information 1s encoded with a
protocol.

16. A system comprising:

an terface configured to couple to a direct communica-

tion link with a direct memory access (DMA) control-
ler;

memory;

a processor operable to:

implement a transaction queue in the memory;

determine a state of the transaction queue;

generate quality of service (QoS) information indicat-
ing the state of the transaction queue;

transmit the QoS information using the interface; and

receive, from the DMA controller using the interface,
access 1o a system bus according to the state of the
transaction queue.

17. The system of claim 16, where the nformation

10

15

indicates a number of slots available 1n the transaction 20

queue.

10

	Front Page
	Drawings
	Specification
	Claims

