US009898483B2

a2y United States Patent (10) Patent No.: US 9.898.488 B2

Schrum 45) Date of Patent: Feb. 20, 2018
(54) PRESERVING DEPRECATED DATABASE (56) References Cited
COLUMNS

U.S. PATENT DOCUMENTS

(71) Applicant: Oracle International Corporation,

7,117,504 B2* 10/2006 Smithccoonnn.n. GO6F 8/20
Redwood Shores, CA (US) 709/201
8,346,929 B1* 1/2013 Laiccoovvrvvnennnnnnnn, G06Q 10/10
(72) Inventor: Allan George Schrum, Bozeman, MT 709/226
(US) 8,819,068 B1* 82014 Knote GO6F 17/30339
707/790
: 2002/0112058 Al* §2002 Weisman GO6F 9/4411
(73) Assignee: ORACLE INTERNATIONAL CISHan 200/277
CORPORATION, Redwood Shores, 2006/0004686 Al* 1/2006 Molnar GOGF 17/30297
CA (US) 707/E17.005
2006/0085465 Al* 4/2006 Norlceoevvvenee, GO6F 17/30297
(*) Notice: Subject to any disclaimer, the term of this 707/E17.005
: : 2006/0123016 Al* 6/2006 Ashok GO6F 17/30566
patent 15 extended or adjusted under 35 207/E17.014
U.S.C. 154(b) by 425 days. 2006/0213975 Al* 9/2006 Krishnan ... G06Q 20/02
235/380
21) Avpvpl. No.: 14/557.085 2008/0098037 Al* 4/2008 Nell GO6F 17/30297
PP)
707/E17.005
(22) Filed: Dec. 1, 2014 (Continued)
Primary Examiner — Anh Ly
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Kilpatrick Townsend &

Stockton LLP
US 2016/0154829 A1 Jun. 2, 2016 ockion

(37) ABSTRACT
(51) Int. CL A method of preserving deprecated database columns across
GO6F 17/30 (2006.01) application upgrades may include maintaining a database
(52) U.S. CL communicatively coupled to an application. The application

CPC .. GO6F 17/30297 (2013.01); GO6F 17/30371 may 1nclude a first schema. The first schema may indicate a
(2013.01) first column for the database. The method may also include

(58) Field of Classification Search receiving an update for the application. The update may
CPC GO6F 17/30371: GOGF 17/30297: GO6F include a second schema that removes the first column from
--------- 1’7/30294:J GO6_4 1'7/30598:J GO6F the dEltElelSE. The methOd may ElddlthIlally inCh.].de rendainl-

17/30595: GO6F 8/65: GO6F &/71: GO6F lllg the first column by Elppfﬂldillg d pI“SﬁX to a name of the
17/30: 5G06F 9/44436 GOG6F 17/!30345 first column. The pI’EEﬁX may indicate that the first column 1s

GOGF 17/30312: GOGF 17/3089: GOGF deprecated. The method may further include maintaining the

17/30377, GO6C 30/0277, HO4L 41/082 first column 1n the database.
See application file for complete search history. 20 Claims, 10 Drawing Sheets

4 "Ll

H00

J

G2

Maintaiming a database tor an
application with a irst schetna

504 l

Recerving an update with a second
schema that removes at least one
column

206 l

Renaming the columm using a
prefix that denotes deprecation

.

Mainlaining the renamed colummn
m the database

US 9,898,488 B2
Page 2

(56)

2008/0098046

2008/0222616

2009/0037446

2009/0037455

2009/0049065

2009/0150396

2009/0259683

2009/0313608

2010/0077380

2010/0153862

2011/0208785

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

References Cited

4/2008

9/2008

2/2009

2/2009

2/2009

6/2009

10/2009

12/2009

3/2010

6/2010

8/2011

U.S. PATENT DOCUMENTS

Alpern GO6F 17/30306
707/E17.007

Chengooevvvvvnnn, GO6F 8/51
717/137

Tonev GO6F 17/30917
707/E17.005

Doney GO6F 17/30297
707/E17.044

Weilssman GO6F 8/70
707/E17.044

Elisha GO6F 17/3051
707/E17.055

Murty GO6F 17/30607
707/E17.014

Sharma GO6F 8/38
707/E17.005

Bakercocoovvivinnnnnn, GO6F 8/72
717/120

Schreiber GO6F 9/4448
707/802

Burkecoovvviviinnnn, GO6F 8/00
707/803

2012/0036165 Al* 2/2012
2012/0036166 Al* 2/2012
2014/0101644 Al* 4/2014
2015/0169757 Al* 6/2015
2015/0227533 Al* 8/2015
2015/0227589 Al* 8/2015
2016/0055546 Al* 2/2016
2016/0105863 Al* 4/2016
2016/0154829 Al* 6/2016
2016/0179850 Al* 6/2016

2016/0299916 Al* 10/2016

* cited by examiner

Driesen GO6F 17/30286
707/803

Quu .ooooviiiiiinn GO6F 17/30297
707/803

Buzaski GO6F 17/30174
707/609

Kalantzis GO6F 17/30569
707/722

Goldstein GO6F 17/30377
707/661

Chakrabarti GO6F 17/30507
707/748

Chan G06Q 30/0277
705/14.73

Tad o, HO04J 11/00
370/330

Schrum GO6F 17/30371
707/703

Martin GO6F 17/30584
707/634

Prasanna GO6F 17/30162
707/609

US 9,898,488 B2

Sheet 1 of 10

Feb. 20, 2018

U.S. Patent

001

aseqee(]

8Ll

L Ol

Ob

9Lt

EUWIBYOS aseqgeie(

2 A uogesyddy

801

eLIsyog sseqgele(d

LA uoneoyddy

8014

-~ il

chi

14812

\-201

US 9,898,488 B2

Sheet 2 of 10

Feb. 20, 2018

U.S. Patent

vic

abeoed piepuels

e

-

002

07

~ LIOO$INYO

¢ Ol

EI0OSNED

ZIODSNYD

buiddiys

80¢ 90¢

safeyoed 98N

bevespuniees. $ sewweawieenie. $Z0Z0202ohibahaisanieisys 09090 sahiisiasieisniee 0 wielwiaieiuiaieiuieie L o L L L L L . L L L . . . L L . DY . . L L L T . L L L

A4

U.S. Patent Feb. 20, 2018 Sheet 3 of 10 US 9,898.488 B2

300

i "

M

. Beta3Cold 7777

.13
-

-4

122

eee | N

FIG. 3

. F -! . 1"

Deprecated$Col2

o
o o~

M
. é‘@ .r"i

ol 1A .
r:-.!'51-3'&-”"' ‘.|- 1‘_3- o
. -"r}!;rh-

o A

120

i‘ . _'..'
ol

1 ?
{_J?_ -n"_'" .
W
o

118

@
o
©
L3
€0
(0
£

U.S. Patent Feb. 20, 2018 Sheet 4 of 10 US 9,898.488 B2

400

User$Colt

408

406

FIG. 4

Deprecated$Col1

404

Beta$Colf

402

U.S. Patent Feb. 20, 2018 Sheet 5 of 10 US 9,898.488 B2

500

J/

502
Maintaining a database for an
application with a first schema
504
Recetving an update with a second
schema that removes at least one
column
206
Renaming the column using a
prefix that denotes deprecation

508

Maintaimning the renamed column

in the database

FIG. 5

U.S. Patent Feb. 20, 2018 Sheet 6 of 10 US 9,898.488 B2

600

J

a2

Maintainmg a database for an

application with the first schema

604

‘Receiving an update with a second

column

606

Renaming the column using a

prefix that denotes a beta test

608

- Maintaining the renamed column

n the database

U.S. Patent Feb. 20, 2018 Sheet 7 of 10 US 9,898.488 B2

700

J

Recerving a second update for the

apphication

704

columns should be transition to a
different status

708

Keep the
depreciated
columns?

NoO Yes

710 712

Rename the
column with a

Delete the
user-package
prefix

renamed column

FIG. 7

U.S. Patent Feb. 20, 2018 Sheet 8 of 10 US 9,898.488 B2

800

DATABASE

COMPONENT | | COMPONENT
818 I 820

COMPONENT
822

NETWORK(S)

US 9,898,488 B2

Sheet 9 of 10

Feb. 20, 2018

U.S. Patent

006

ctb
SAVAGES QHAVHES TYNGHIN]

0to
SIOUNOSIY FNLINULSVHANY

8C0
INIWIOVNYIN ALLINICE

NOWLVHLSAROHO

INIWIOVMNYIA HICHO

9¢6
ONIMOLINOY GNY

INFNIDYNVIN $3080

¢C6)

Sy

A3AHO

vye
H0IAMES
Q3AIAQ

-

g6 Lsanomy

30INM3S

{SIMHOMLAN

6
FDIAETS

mmaS@m&/

806

INFTD

ADIATC

INFHTO

1N QDQJ_O

I} OO0

206
WILSAS FHAL0NHLSYHANI GNOTYD

Y GNGCTYH

ﬂm 183N03Y
FVAHIS

448
ADIANIAG

QAUIAOQHA

¥06

7t

30IA3Q

1S3IN0INM
FDINMIS

INID

US 9,898,488 B2

8101
WILSASENG IOVHOLS

¢c0lL

YIQ3W FOVHOLS
IEVAVIY
- 0t0i 8204 o masliiaiNog
— SAIVAdN] fsnvaig
= INSAS IN3AT |
— 0C01L
— . RN HI0VIN VIOIN
= SWYHO0HA NOILYDITddyY JOVHOLS
o FEvavIY
7 - reOl ” AHOWIN WILSAS 43LNGNOD
_ I WILSASENG SNOILYIINMNNOD Bbedddoa A Sbssaia
o |
1 ... L o
—
)
~ SG01 FEOL 7E01
. 5001 | LINDY LINDY LIND
w NILSASENS Off NOHLVYHEITIOOY OZ-W@MUGK& ang ONISSHO0O¥A 8NS
= | ONISSIO0N I
0001 7001
X LIND ONISSIDON]

U.S. Patent

US 9,898,488 B2

1

PRESERVING DEPRECATED DATABASE
COLUMNS

BACKGROUND

Many enterprise applications are commumnicatively
coupled to a database for storing and manipulating large
amounts ol data. Throughout the lifecycle of the software
applications, numerous upgrades, patches, and versioning
changes may be applied. With each of these changes to the
applications, the schema structure of the database may
change. This may involve adding or removing columns of
data.

BRIEF SUMMARY

In one embodiment, a method of preserving deprecated
database columns across application upgrades may be pre-
sented. The method may include maintaiming a database
communicatively coupled to an application. The application
may include a first schema. The first schema may indicate a
first column for the database. The method may also 1include
receiving an update for the application. The update may
include a second schema that removes the first column from
the database. The method may additionally include renam-
ing the first column by appending a prefix to a name of the
first column. The prefix may indicate that the first column 1s
deprecated. The method may further include maintaining the
first column 1n the database.

In another embodiment, a non-transitory computer-read-
able medium may be presented. The computer-readable
memory may comprise mnstructions that, when executed by
one or more processors, cause the one or more processors to
perform operations including maintaining a database com-
municatively coupled to an application. The application may
include a first schema. The first schema may indicate a {first
column for the database. The operations may also include
receiving an update for the application. The update may
include a second schema that removes the first column from
the database. The operations may additionally include
renaming the first column by appending a prefix to a name
of the first column. The prefix may indicate that the first
column 1s deprecated. The operations may further include
maintaining the first column 1n the database.

In yet another embodiment, a system may be presented.
The system may include one or more processors and a one
or more memory devices including instructions that, when
executed by the one or more processors, cause the one or
more processors to perform operations 1including maintain-
ing a database communicatively coupled to an application.
The application may include a first schema. The first schema
may indicate a first column for the database. The operations
may also include receiving an update for the application.
The update may include a second schema that removes the
first column from the database. The operations may addi-
tionally include renaming the first column by appending a
prefix to a name of the first column. The prefix may indicate
that the first column 1s deprecated. The operations may
turther include maintaining the first column in the database.

In various implementations of these embodiments, one or
more of the following features may be included without
limitation. The second schema may also add a second
column to the database, and the method/operaionts may
turther include adding the second column to the database by
appending a prefix to a name of the second column, where
the prefix may indicate that the first column 1s a beta version,
and maintaining the second column in the database. The

10

15

20

25

30

35

40

45

50

55

60

65

2

method/operations may also include receiving a second
update for the application, where the second update may
include a third schema that does not remove the second
column from the database, and maintaining the second
column 1n the database by removing the prefix from the
name of the second column. The prefix may not be allowed
to be used by user-defined software packages. The prefix and
the name of the first column may be separated by a “$”
character. The method/operations may additionally include
receiving a command to restore the first schema for the
database, and restoring the first column in the database by
removing the prefix from the name of the first column. The
method/operations may further include receiving a second
update for the application, where the second update does not
restore the first column to the database, and deleting the first
column from the database in response to receiving the
second update. The method/operations may also include
receiving a second update for the application, where the
second update does not restore the first column to the
database, and maintaining the first column 1n the database by
removing the prefix from the name of the first column and
replacing the prefix with a second prefix that refers to a
user-defined software package.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of
the present invention may be realized by reference to the
remaining portions ol the specification and the drawings,
wherein like reference numerals are used throughout the
several drawings to refer to similar components. In some
instances, a sub-label 1s associated with a reference numeral
to denote one of multiple similar components. When refer-
ence 1s made to a reference numeral without specification to
an existing sub-label, it 1s mtended to refer to all such
multiple similar components.

FIG. 1 illustrates a block diagram of an application
coupled to a database receiving an update, according to
some embodiments.

FIG. 2 illustrates one way of renaming columns in a
database with prefixes, according to some embodiments.

FIG. 3 1llustrates an updated database with prefix renam-
ing, according to some embodiments.

FIG. 4 illustrates a block diagram of a column lifecycle
through various schema upgrades, according to some
embodiments.

FIG. 5 1llustrates a method of deprecating a column 1n a
database, according to some embodiments.

FIG. 6 1llustrates a method of adding a column during a
beta test of a database, according to some embodiments.

FIG. 7 illustrates a method of moving a database column
beyond 1its deprecated status, according to some embodi-
ments.

FIG. 8 illustrates a simplified block diagram of a distrib-
uted system for implementing some of the embodiments.

FIG. 9 illustrates a simplified block diagram of compo-
nents of a system environment by which services provided
by the components of an embodiment system may be offered
as cloud services.

FIG. 10 illustrates an exemplary computer system, in
which various embodiments may be implemented.

DETAILED DESCRIPTION

Described herein, are embodiments for adding and/or
subtracting database imnformation between schema changes
associated with application upgrades. Application upgrades

US 9,898,488 B2

3

often change the schema of the database. Data that was used
by a previous version of the application may not be neces-
sary 1n later versions. Likewise, new data fields may be
added as applications continue to evolve. As the software
lifecycle of the application progresses, a schema definition
for data stored 1n an associated database may be changed to
reflect these data changes. The typical result 1s for data
columns in a database to erther be added or removed from
the database when the application 1s upgraded.

When 1t 1s determined that information stored in a data-
base column 1s no longer necessary for the operation of the
product, a new database schema will often eliminate that
column from the database. However, customers often desire
to retain that information or at least have some means to
migrate that data to another storage location without needing
to perform time-consuming backup operations before and/or
alter the application upgrade 1s completed. In the past,
customers had to be aware that data was going to be lost due
to 1impending application updates and had to copy the data
to another location before the update process began. This
presented a number of difliculties because often the level of
detail necessary to determine which data columns would be
removed was not disclosed as part of the upgrade documen-
tation. If a large amount of data was being removed from the
database, creating these temporary backups also required
significant storage space to duplicate database columns.
Because of these and other difficulties, customers often
simply suflered through the loss of data associated with
application upgrades.

In the embodiments described herein, changes to the
schema associated with an application can continue to alter
the way data 1s stored in the database. However, mstead of
simply deleting or adding columns of data, some embodi-
ments may maintain deprecated data columns 1n the data-
base by renaming the database columns 1n such a way that
ensures that data collisions are avoided and eliminates the
costly duplication of data columns in auxiliary backup
locations. Similarly, as columns are added to the database,
they can be renamed using a reserved namespace prefix that
allows them to be easily 1dentified, made permanent, and/or
deleted by the customer and/or the developer. By way of
example, mstead of deleting a data column, a data column
can be renamed with a prefix to the existing column name,
such as “DEPRECATEDS$OIdColName”, and a data column
to be added would be inserted with a prefix and the new
column name, such as “BETA$NewColName”. These pre-
fixes may correspond to reserved namespaces that are not
used by either user packages or existing developer packages.
Over time, columns in the deprecated namespace can be
deleted or permanently migrated to a user-package
namespace, and columns in the beta namespace can be
deleted or migrated into the developer namespace (e.g.,
removing the prefix altogether).

FIG. 1 illustrates a block diagram of an application
coupled to a database receiving an update, according to
some embodiments. A first version of application 102 may
include a first database schema 104 that defines a plurality
of data fields represented as columns 106, 108, 110 in an
assoclated database 118. As used herein, a “schema” refers
to a database schema, or a structure described 1n a formal
language supported by a database management system or an
organizational blueprint of how the database 1s constructed,
divided into tables, and so forth. In some embodiments, the
schema may simply be a formal definition of how data 1s
stored 1n columns 1n tables in the database. Therefore, the
first database schema 104 may include a definition that
dictates data to be stored in column 106, column 108, and/or

10

15

20

25

30

35

40

45

50

55

60

65

4

column 110. Each of these columns may include the same
type of data for various records in the database (e.g. X, vy, Z).
By way of example, column 106 may store a Social Security
number for students 1n a student record database.
Periodically, the application 102 may receive various
updates. As used herein, the term “update” may refer to any
patch, security patch, module replacement, software
upgrade, data upgrade, or any other type of change made to
the application 102. By way of example, a developer of the
application can distribute a patch that addresses known
security 1ssues. In another example, a user may purchase a
new version of the application that 1s installed as replace-
ment to a previous version of the application. In any of these
update scenarios, data within the database 118 may be
changed according to a change in the schema. In FIG. 1, a
second version of the application 112 may result from any
type of update, and may include a second database schema
114. It will be understood that the second database schema
114 may make many changes to the way that data 1s stored
in the database 118. In this simplified example, the second

database schema 114 eliminates column 108 from the data-
base 118 and adds column 116 to the database 118.

Prior to this disclosure, upgrading the schema would
require columns in the database 118 to be removed and
either permanently deleted or stored in another location. In
contrast, the embodiments herein maintain the data that 1s
changed 1n the database 118 by renaming the column names.
Theretfore, column 108 will be maintained 1n the database
118, and column 116 will be added to the database with
prefixes that indicate their status as either deprecated or beta.

Renaming the columns may take many different forms
depending on the embodiments. In one exemplary embodi-
ment, a naming convention compatible with MySQL data-
bases 1s used for illustrative purposes only. To be compatible
with MySQL syntax, a prefix may be placed before a “$”
(dollar sign) 1 order to indicate that the column name
following the “$” is part of the prefix namespace.

FIG. 2 illustrates one way of renaming columns in a
database with prefixes, according to some embodiments. In
these embodiments, prefix names may denote namespaces
corresponding to software packages. Typically, when a
developer distributes an application with the database, col-
umn names within the database will not have prefix. Instead,
columns 214 1n the oniginal software package will simply be
referred to as a column name (e.g., LastName, StudentNo,
Address, etc.). These original columns 214 are part of what
will be referred to herein as a standard package 204.

After a software product with the database has been made
available to a customer, the customer may wish to add
functionality to the software product by creating custom
plug-ins, modules, and/or the like. These customizations
may require additional data fields 1n addition to those
provided by the schema of the standard package 204.
Therefore, some embodiments may allow users to create
user-speciiic software packages. These user packages 202
may 1nclude various namespaces that can be appended as
prefixes to the column names of the newly added data
columns. By way of example, FIG. 2 illustrates a shipping
namespace 206 with new shipping columns 210 in that
namespace. Additionally, FIG. 2 illustrates a CRM
namespace 208 with new CRM columns 212 in that
namespace. Note that the name of each column (e.g. “Coll”,
“Col2”, etc.) 1s the same, however data collisions are
avoided by the use of the namespace prefixes. Theretfore, the
application can interpret “Shipping$Coll” as being a differ-
ent column than “Coll”.

US 9,898,488 B2

S

FIG. 3 1llustrates an updated database with prefix renam-
ing, according to some embodiments. As described in rela-
tion to FIG. 1, new columns can be added to the database
with a prefix that indicates that this column 1s a newly added
column, possibly of a temporary nature, that may need to be
removed and/or made permanent during a subsequent soft-
ware upgrade. Any naming convention may be used so long
as 1t does not conflict with any existing software package
namespace. By way of example, the embodiments described
herein will use the term “BETA” as a namespace reserved
for newly added columns resulting from the software
update.

In similar fashion, data that 1s removed from the database
can be maintained instead of being deleted. The deprecated
status of such columns can be indicated by using a column
prefix that indicates that the column 1s no longer part of the
standard software package of the new software version.
Again, any naming convention may be used so long as 1t
does not conflict with any existing software package
namespace. By way of example, the embodiments described
herein will use the term “DEPRECATED” as a namespace
reserved for columns that have been deleted by a software
update. This prefix can simultaneously allow the software to
ignore the deprecated data column and also easily 1dentily
the deprecated data column to a user wishing to preserve the
data column rather than delete 1t permanently.

FIG. 4 illustrates a block diagram of a column lifecycle
through wvarious schema upgrades, according to some
embodiments. When a column 1s 1nitially added to a schema,
it may be done so on a temporary basis. For example, a beta
version of a certain application feature may be included in
an application upgrade, and the beta version may include
additional data columns that were not previously present 1n
the database. Such columns may be added as a beta column
402, and may be considered a temporary or provisional part
of the database. The data column 402 will exist in the
database the same as any other database column, the excep-

tion being that the name will be prefixed using a prefix that
indicates 1ts beta status.

In order to transition from beta status to regular status, the
beta column 402 can simply have the beta prefix removed.
This transition may take place at different times according to
different embodiments. In some embodiments, the beta
prefix may be removed automatically after a predetermined
amount of time. For example, new columns may be added
with a beta prefix for 60 days, 90 days, or any other trial
interval. At the expiration of the trial interval, the beta status
of the beta column 402 may be removed. In some embodi-
ments, subsequent upgrades to the software and/or database
schema may also trigger removal of a column’s beta status
prefix. For example, a first application upgrade may add the
beta column 402. A subsequent application upgrade may
automatically remove the beta prefix from the existing beta
column 402 1n order to allow new beta columns to be added
without confusion. In some embodiments, a beta version
prefix may also be used that indicates the number of soft-
ware updates since the beta column 402 was added. The beta
version prefix can be incremented with each software update
and finally removed after a predetermined number of soit-
ware updates. For example, beta column 402 could be
renamed as “Betal$Coll” after a second upgrade, and
renamed “Beta2$Col1” after a third upgrade. After these two
subsequent upgrades, a third upgrade could remove the beta
prefix from the beta column 402 altogether. Other embodi-
ments may use different criteria when removing a beta
prefix, such as waiting for the software update to reach a

10

15

20

25

30

35

40

45

50

55

60

65

6

predetermined level of stability that can be measured by a
bug/error reporting rate below a predetermined threshold,
and so forth.

The beta column 402 can transition to a regular column
404 through the process described above. However, the beta
column 402 can also be discarded 11 the beta-portion of the
soltware application 1s not given a more permanent status. In
some embodiments, a second application upgrade may
remove the beta-portion of the software added 1n a previous
soltware upgrade. This may automatically trigger a process
that searches the database for columns with the beta prefix
and remove these columns from the database entirely. Alter-
natively, instead of deleting the beta column 402 when 1t 1s
not given more permanent status, the beta column 402 could
be transitioned to a deprecated column status with a corre-
sponding prefix or a user-package prefix.

The regular column 404 may be transitioned to a depre-
cated column 406 as described above as a result of a
soltware update. In some cases, the deprecated column 406
may be transitioned back to a regular column 404 by simply
removing the deprecated prefix. For example, a subsequent
soltware update may restore a software feature that was
previously removed. Oftentimes, customers object after
popular soitware features have been removed from software
upgrades. By using the deprecated prefix, software devel-
opers can restore previously removed software features
without having to copy data back into the database from
archival backup copies.

In some embodiments, both the deprecated and beta
prefixes can include additional information that ties the
column to a particular software update. This can allow
deprecated/beta columns from different software updates to
coexist 1n the database while remaining distinguishable. For
example, when updating a soitware version from v.1.1 to
v.1.2 and then later to v.2.0, beta columns may be added such
as “Beta.v.1.28Col1” and “Beta.v.2.0$Col1”. Similarly, col-
umns removed when transitioning between software updates
can 1nclude deprecated prefixes, such as “Depricated.
v.1.28Co0l1”. Versioning of beta/deprecated prefixes can
allow future software updates to transition columns between
beta, regular, and deprecated status according to versions.
For example, a software update may indicate to users that a
certain software feature 1s being transitioned out of use and
limited support may be provided during a transition interval.
This first software update can transition columns to a
deprecated status that allows for limited use and/or support.
After three subsequent soitware updates, the process can
determine that software feature can be permanently removed
and the deprecated columns associated with the first soft-
ware update can then be removed while leaving deprecated
columns associated with other software updates intact.

A deprecated column 406 can be restored as a regular
column 404 by removing the deprecated prefix. Alterna-
tively, the deprecated column 406 can transition to being a
user-package column 408 by substituting the deprecated
prefix for a prefix associated with a particular user package.
This allows users to create their own archival backups of
deprecated columns instead of deleting them entirely.

FIG. § 1llustrates a method of deprecating a column 1n a
database, according to some embodiments. The method may
include maintaining a database for an application (502). The
application may be associated with a first schema for the
database. The database may be communicatively coupled to
the application through a database manager. For example,
the application may be a web service that accesses data
stored 1n a central database. The first schema can define a
plurality of columns in various tables stored within the

US 9,898,488 B2

7

database. The method may also include receiving an update
for the application (504). The update may include a second
schema that differs from the first schema. For example, the
second schema may remove a first column from the database
that was part of the first schema. The method may further
include renaming a removed column using a prefix that the
notes deprecation (506). The prefix may simply be added to
an existing column name separated by an identifier that 1s
recognized by the database language as separating prefixes
from column names. In some embodiments, a prefix such as
“deprecated” may be used. Other embodiments may use
application-specific prefixes that indicate to an application
that the column 1s deprecated. The prefix may be restricted
such that user-defined software packages are not allowed to
use the prefix and such that it 1s not confused with the regular
soltware package of the application. Some embodiments
may include versioning information 1n the prefix. The pro-
cess may also include maintaining the renamed column 1n
the database (508). In some embodiments, this means that
the only change to the data column 1s the prefix added to the
name. Some embodiments may also transition deprecated
columns to a special deprecated table for easy 1dentification.

FIG. 6 1llustrates a method of adding a column during a
beta test of a database, according to some embodiments.
This method 1s similar to the method for deprecating a
column described above 1n relation to FIG. 5. The method
may include maintaining the database with the first schema
(602) and receiving an update with a second schema (604).
In this case, the second schema can add at least one column
to the database. The method may include renaming the
added column using a prefix that indicates its beta status
(606). Some embodiments need not rename the column per
se, but can instead 1nclude storing the column with the beta
prefix as provided by the software update. For example, a
soltware update may arrive with the beta prefix already
added to any new columns for the database. As described
above, the method may then include maintaiming the
renamed column in the database (608). In some embodi-
ments, subsequent updates to the software can automatically
transition the beta column to become a regular column by
removing the beta imdicator from the prefix.

FIG. 7 1llustrates a method of moving a database column
beyond its deprecated status, according to some embodi-
ments. The method may include receiving a second update
for the application (702). The second update for the appli-
cation can include an indication that a previously deprecated
column should be removed. In some embodiments, the
second update of the application can specifically indicate
particular deprecated columns that should be removed (e.g.
columns deprecated by a specific previous software update
version). Alternatively or additionally, the second update can
automatically remove deprecated columns that were depre-
cated a predetermined number of versions ago (e.g. columns
deprecated at least two software updates ago). Therefore, the
method may include determining particular deprecated col-
umns to transition to a new status (704).

Deprecated columns can be transitioned back to a regular
column status by removing the prefix, deleting them from
the database (710), and/or transitioning them to a user-
soltware package by changing the prefix (712). The decision
(708) can be made automatically or set by user preference.
For example, part of an update procedure may present users
with the option to maintain the columns’ deprecated status,
and/or transition columns to a user-defined software pack-
age. Users may also establish preferences that can be pro-
vided to the update process. Alternatively or additionally,
some software updates may 1include istructions that instruct

10

15

20

25

30

35

40

45

50

55

60

65

8

the update process to remove columns, deprecate columns,
maintain the deprecated status of columns, and/or transition
columns to user-defined software packages.

It should be appreciated that the specific steps illustrated
in FIGS. 5-7 provide particular methods of adding/removing
database columns 1n response to software upgrades accord-
ing to various embodiments of the present invention. Other
sequences ol steps may also be performed according to
alternative embodiments. For example, alternative embodi-
ments ol the present invention may perform the steps
outlined above 1n a different order. Moreover, the individual
steps 1llustrated 1n FIGS. 5-7 may include multiple sub-steps
that may be performed in various sequences as appropriate
to the individual step. Furthermore, additional steps may be
added or removed depending on the particular applications.
One of ordinary skill in the art would recognize many
variations, modifications, and alternatives.

Each of the methods described herein may be imple-
mented by a computer system, such as computer system.
Each step of these methods may be executed automatically
by the computer system, and/or may be provided with
inputs/outputs mvolving a user. For example, a user may
provide inputs for each step in a method, and each of these
inputs may be 1n response to a specific output requesting
such an input, wherein the output 1s generated by the
computer system. Each mput may be received in response to
a corresponding requesting output. Furthermore, inputs may
be recetved from a user, from another computer system as a
data stream, retrieved from a memory location, retrieved
over a network, requested from a web service, and/or the
like. Likewise, outputs may be provided to a user, to another
computer system as a data stream, saved 1n a memory

location, sent over a network, provided to a web service,
and/or the like. In short, each step of the methods described
herein may be performed by a computer system, and may
involve any number of mputs, outputs, and/or requests to
and from the computer system which may or may not
involve a user. Those steps not involving a user may be said
to be performed automatically by the computer system
without human intervention. Therefore, it will be understood
in light of this disclosure, that each step of each method
described herein may be altered to include an mmput and
output to and from a user, or may be done automatically by
a computer system without human intervention where any
determinations are made by a processor. Furthermore, some
embodiments of each of the methods described herein may
be implemented as a set of 1nstructions stored on a tangible,
non-transitory storage medium to form a tangible software
product.

FIG. 8 depicts a simplified diagram of a distributed
system 800 for implementing one of the embodiments. In the
illustrated embodiment, distributed system 800 includes one
or more client computing devices 802, 804, 806, and 808,
which are configured to execute and operate a client appli-
cation such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 810. Server
812 may be communicatively coupled with remote client
computing devices 802, 804, 806, and 808 via network 810.

In various embodiments, server 812 may be adapted to
run one or more services or soltware applications provided
by one or more of the components of the system. In some
embodiments, these services may be oflered as web-based or
cloud services or under a Software as a Service (SaaS)
model to the users of client computing devices 802, 804,
806, and/or 808. Users operating client computing devices
802, 804, 806, and/or 808 may in turn utilize one or more

US 9,898,488 B2

9

client applications to interact with server 812 to utilize the
services provided by these components.

In the configuration depicted 1n the figure, the software
components 818, 820 and 822 of system 800 are shown as
being implemented on server 812. In other embodiments,
one or more of the components of system 800 and/or the
services provided by these components may also be imple-
mented by one or more of the client computing devices 802,
804, 806, and/or 808. Users operating the client computing
devices may then utilize one or more client applications to
use the services provided by these components. These
components may be implemented in hardware, firmware,
soltware, or combinations thereof. It should be appreciated
that various different system configurations are possible,
which may be different from distributed system 800. The
embodiment shown 1n the figure 1s thus one example of a
distributed system for implementing an embodiment system
and 1s not mtended to be limiting.

Client computing devices 802, 804, 806, and/or 808 may
be portable handheld devices (e.g., an 1Phone®, cellular
telephone, an 1Pad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoit
Windows Mobile®, and/or a variety of mobile operating
systems such as 10S, Windows Phone, Android, BlackBerry
10, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. The client computing devices can
be general purpose personal computers including, by way of
example, personal computers and/or laptop computers run-
ning various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running
any ol a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation
the varniety of GNU/Linux operating systems, such as for
example, Google Chrome OS. Alternatively, or in addition,
client computing devices 802, 804, 806, and 808 may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsoft Xbox
gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of
communicating over network(s) 810.

Although exemplary distributed system 800 1s shown
with four client computing devices, any number of client
computing devices may be supported. Other devices, such as
devices with sensors, etc., may interact with server 812.

Network(s) 810 1n distributed system 800 may be any
type of network familiar to those skilled 1n the art that can
support data communications using any ol a variety of
commercially-available protocols, including without limita-
tion TCP/IP (transmission control protocol/Internet proto-
col), SNA (systems network architecture), IPX (Internet
packet exchange), AppleTalk, and the like. Merely by way of
example, network(s) 810 can be a local area network (LAN),
such as one based on Ethernet, Token-Ring and/or the like.
Network(s) 810 can be a wide-area network and the Internet.
It can 1nclude a virtual network, including without limitation
a virtual private network (VPN), an intranet, an extranet, a
public switched telephone network (PSTN), an infra-red
network, a wireless network (e.g., a network operating under
any of the Institute of Electrical and Electronics (IEEE)
802.11 suite of protocols, Bluetooth®, and/or any other
wireless protocol); and/or any combination of these and/or
other networks.

Server 812 may be composed of one or more general
purpose computers, specialized server computers (including,

10

15

20

25

30

35

40

45

50

55

60

65

10

by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainirame computers,
rack-mounted servers, etc.), server farms, server clusters, or
any other approprate arrangement and/or combination. In
various embodiments, server 812 may be adapted to run one
or more services or software applications described in the
foregoing disclosure. For example, server 812 may corre-
spond to a server for performing processing described above
according to an embodiment of the present disclosure.

Server 812 may run an operating system including any of
those discussed above, as well as any commercially avail-
able server operating system. Server 812 may also run any
ol a variety of additional server applications and/or mid-tier
applications, including HTTP (hypertext transport protocol)
servers, F'TP (file transfer protocol) servers, CGI (common
gateway interface) servers, JAVA® servers, database serv-
ers, and the like. Exemplary database servers include with-
out limitation those commercially available from Oracle,
Microsoit, Sybase, IBM (International Business Machines),
and the like.

In some implementations, server 812 may include one or
more applications to analyze and consolidate data feeds
and/or event updates recerved from users of client comput-
ing devices 802, 804, 806, and 808. As an example, data
teeds and/or event updates may include, but are not limited
to, Twitter® feeds, Facebook® updates or real-time updates
received from one or more third party information sources
and continuous data streams, which may include real-time
events related to sensor data applications, financial tickers,
network performance measuring tools (e.g., network moni-
toring and trathc management applications), clickstream
analysis tools, automobile tratlic monitoring, and the like.
Server 812 may also include one or more applications to
display the data feeds and/or real-time events via one or
more display devices of client computing devices 802, 804,
806, and 808.

Distributed system 800 may also include one or more
databases 814 and 816. Databases 814 and 816 may reside
in a variety of locations. By way of example, one or more of
databases 814 and 816 may reside on a non-transitory
storage medium local to (and/or resident n) server 812.
Alternatively, databases 814 and 816 may be remote from
server 812 and 1n communication with server 812 via a
network-based or dedicated connection. In one set of
embodiments, databases 814 and 816 may reside 1 a
storage-area network (SAN). Similarly, any necessary files
for performing the functions attributed to server 812 may be
stored locally on server 812 and/or remotely, as appropriate.
In one set of embodiments, databases 814 and 816 may
include relational databases, such as databases provided by
Oracle, that are adapted to store, update, and retrieve data 1n
response to SQL-formatted commands.

FIG. 9 1s a simplified block diagram of one or more
components of a system environment 900 by which services
provided by one or more components of an embodiment
system may be oflered as cloud services, 1n accordance with
an embodiment of the present disclosure. In the illustrated
embodiment, system environment 900 1includes one or more
client computing devices 904, 906, and 908 that may be used
by users to interact with a cloud infrastructure system 902
that provides cloud services. The client computing devices
may be configured to operate a client application such as a
web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a
user of the client computing device to interact with cloud
infrastructure system 902 to use services provided by cloud
infrastructure system 902.

US 9,898,488 B2

11

It should be appreciated that cloud infrastructure system
902 depicted in the figure may have other components than
those depicted. Further, the embodiment shown 1n the figure
1s only one example of a cloud mfrastructure system that
may incorporate an embodiment of the mvention. In some
other embodiments, cloud infrastructure system 902 may
have more or fewer components than shown 1n the figure,
may combine two or more components, or may have a
different configuration or arrangement of components.

Client computing devices 904, 906, and 908 may be
devices similar to those described above for 802, 804, 806,
and 808.

Although exemplary system environment 900 1s shown
with three client computing devices, any number of client
computing devices may be supported. Other devices such as
devices with sensors, etc. may interact with cloud infrastruc-
ture system 902.

Network(s) 910 may facilitate communications and
exchange of data between clients 904, 906, and 908 and
cloud infrastructure system 902. Each network may be any
type of network familiar to those skilled 1n the art that can
support data commumnications using any ol a variety of
commercially-available protocols, including those described
above for network(s) 810.

Cloud infrastructure system 902 may comprise one or
more computers and/or servers that may include those
described above for server 812.

In certain embodiments, services provided by the cloud
infrastructure system may include a host of services that are
made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions,
Web-based e-mail services, hosted oflice suites and docu-
ment collaboration services, database processing, managed
technical support services, and the like. Services provided
by the cloud infrastructure system can dynamically scale to
meet the needs of 1ts users. A specific instantiation of a
service provided by cloud infrastructure system 1s referred to
herein as a “service mstance.” In general, any service made
available to a user via a communication network, such as the
Internet, from a cloud service provider’s system 1s referred
to as a “cloud service.” Typically, in a public cloud envi-
ronment, servers and systems that make up the cloud service
provider’s system are different from the customer’s own
on-premises servers and systems. For example, a cloud
service provider’s system may host an application, and a
user may, via a communication network such as the Internet,
on demand, order and use the application.

In some examples, a service 1n a computer network cloud
infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can include a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another
example, a service can include access to an email software
application hosted on a cloud vendor’s web site.

In certain embodiments, cloud infrastructure system 902
may include a suite of applications, middleware, and data-
base service oflerings that are delivered to a customer 1n a
seli-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such a cloud infrastructure system 1s the Oracle Public
Cloud provided by the present assignee.

10

15

20

25

30

35

40

45

50

55

60

65

12

In various embodiments, cloud infrastructure system 902
may be adapted to automatically provision, manage and
track a customer’s subscription to services oflered by cloud
infrastructure system 902. Cloud infrastructure system 902
may provide the cloud services via different deployment
models. For example, services may be provided under a
public cloud model 1n which cloud mirastructure system 902
1s owned by an organization selling cloud services (e.g.,
owned by Oracle) and the services are made available to the
general public or different industry enterprises. As another
example, services may be provided under a private cloud
model 1n which cloud infrastructure system 902 1s operated
solely for a single orgamization and may provide services for
one or more entities within the organization. The cloud
services may also be provided under a community cloud
model 1 which cloud infrastructure system 902 and the
services provided by cloud infrastructure system 902 are
shared by several organizations 1n a related community. The
cloud services may also be provided under a hybrid cloud
model, which 1s a combination of two or more different
models.

In some embodiments, the services provided by cloud
infrastructure system 902 may include one or more services
provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a
Service (laaS) category, or other categories of services
including hybrnid services. A customer, via a subscription
order, may order one or more services provided by cloud
infrastructure system 902. Cloud infrastructure system 902
then performs processing to provide the services in the
customer’s subscription order.

In some embodiments, the services provided by cloud
infrastructure system 902 may include, without limitation,
application services, platform services and infrastructure
services. In some examples, application services may be
provided by the cloud infrastructure system wvia a SaaS
platform. The SaaS platform may be configured to provide
cloud services that fall under the SaaS category. For
example, the SaaS platform may provide capabilities to
build and deliver a suite of on-demand applications on an
integrated development and deployment platform. The SaaS
platiorm may manage and control the underlying software
and 1nfrastructure for providing the SaaS services. By uti-
lizing the services provided by the SaaS platform, customers
can utilize applications executing on the cloud infrastructure
system. Customers can acquire the application services
without the need for customers to purchase separate licenses
and support. Various different SaaS services may be pro-
vided. Examples include, without limitation, services that
provide solutions for sales performance management, enter-
prise integration, and business flexibility for large organi-
zations.

In some embodiments, platform services may be provided
by the cloud infrastructure system via a PaaS platform. The
PaaS platform may be configured to provide cloud services
that fall under the PaaS category. Examples of platform
services may include without limitation services that enable
organizations (such as Oracle) to consolidate existing appli-
cations on a shared, common architecture, as well as the
ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may
manage and control the underlying soitware and infrastruc-
ture for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure
system without the need for customers to purchase separate
licenses and support. Examples of platform services include,

US 9,898,488 B2

13

without limitation, Oracle Java Cloud Service (JCS), Oracle
Database Cloud Service (DBCS), and others.

By utilizing the services provided by the PaaS platform,
customers can employ programming languages and tools
supported by the cloud infrastructure system and also con-
trol the deployed services. In some embodiments, platform
services provided by the cloud infrastructure system may
include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud
services. In one embodiment, database cloud services may
support shared service deployment models that enable orga-
nizations to pool database resources and offer customers a
Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform {for
customers to develop and deploy various business applica-
tions, and Java cloud services may provide a platiorm for
customers to deploy Java applications, i the cloud infra-
structure system.

Various different infrastructure services may be provided
by an IaaS platform 1n the cloud infrastructure system. The
inirastructure services facilitate the management and control
of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for
customers utilizing services provided by the SaaS platform
and the PaaS platform.

In certain embodiments, cloud infrastructure system 902
may also include infrastructure resources 930 for providing
the resources used to provide various services to customers
of the cloud frastructure system. In one embodiment,
inirastructure resources 930 may include pre-integrated and
optimized combinations of hardware, such as servers, stor-
age, and networking resources to execute the services pro-
vided by the PaaS platform and the SaaS platform.

In some embodiments, resources 1n cloud infrastructure
system 902 may be shared by multiple users and dynami-
cally re-allocated per demand. Additionally, resources may
be allocated to users in different time zones. For example,
cloud infrastructure system 930 may enable a first set of
users 1n a first time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and
then enable the re-allocation of the same resources to
another set of users located 1n a different time zone, thereby
maximizing the utilization of resources.

In certain embodiments, a number of internal shared
services 932 may be provided that are shared by different
components or modules of cloud infrastructure system 902
and by the services provided by cloud infrastructure system
902. These mternal shared services may include, without
limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise man-
ager service, a virus scanning and white list service, a high
availability, backup and recovery service, service {for
enabling cloud support, an email service, a notification
service, a file transfer service, and the like.

In certain embodiments, cloud infrastructure system 902
may provide comprehensive management of cloud services
(e.g., SaaS, PaaS, and laaS services) in the cloud infrastruc-
ture system. In one embodiment, cloud management func-
tionality may include capabilities for provisioning, manag-
ing and tracking a customer’s subscription received by cloud
infrastructure system 902, and the like.

In one embodiment, as depicted in the figure, cloud
management functionality may be provided by one or more
modules, such as an order management module 920, an
order orchestration module 922, an order provisioning mod-
ule 924, an order management and monitoring module 926,
and an identity management module 928. These modules

10

15

20

25

30

35

40

45

50

55

60

65

14

may include or be provided using one or more computers
and/or servers, which may be general purpose computers,
specialized server computers, server farms, server clusters,
or any other appropriate arrangement and/or combination.

In exemplary operation 934, a customer using a client
device, such as client device 904, 906 or 908, may interact
with cloud infrastructure system 902 by requesting one or
more services provided by cloud infrastructure system 902
and placing an order for a subscription for one or more
services oflered by cloud infrastructure system 902. In

certain embodiments, the customer may access a cloud User

Interface (UI), cloud UI 912, cloud UI 914 and/or cloud UI
916 and place a subscription order via these Uls. The order
information received by cloud infrastructure system 902 1n
response to the customer placing an order may include
information i1dentifying the customer and one or more ser-
vices ollered by the cloud infrastructure system 902 that the
customer intends to subscribe to.

After an order has been placed by the customer, the order
information 1s received via the cloud Uls, 912, 914 and/or
916.

At operation 936, the order 1s stored in order database
918. Order database 918 can be one of several databases
operated by cloud infrastructure system 918 and operated 1n
conjunction with other system elements.

At operation 938, the order information 1s forwarded to an
order management module 920. In some instances, order
management module 920 may be configured to perform
billing and accounting functions related to the order, such as
verilying the order, and upon vertfication, booking the order.

At operation 940, information regarding the order 1is
communicated to an order orchestration module 922. Order
orchestration module 922 may utilize the order information
to orchestrate the provisioning of services and resources for
the order placed by the customer. In some 1nstances, order
orchestration module 922 may orchestrate the provisioning
of resources to support the subscribed services using the
services of order provisioning module 924.

In certain embodiments, order orchestration module 922
cnables the management of business processes associated
with each order and applies business logic to determine
whether an order should proceed to provisioning. At opera-
tion 942, upon receiving an order for a new subscription,
order orchestration module 922 sends a request to order
provisioning module 924 to allocate resources and configure
those resources needed to fulfill the subscription order.
Order provisioming module 924 enables the allocation of
resources for the services ordered by the customer. Order
provisioning module 924 provides a level of abstraction
between the cloud services provided by cloud infrastructure
system 900 and the physical implementation layer that 1s
used to provision the resources for providing the requested
services. Order orchestration module 922 may thus be
1solated from implementation details, such as whether or not
services and resources are actually provisioned on the tly or
pre-provisioned and only allocated/assigned upon request.

At operation 944, once the services and resources are
provisioned, a notification of the provided service may be
sent to customers on client devices 904, 906 and/or 908 by
order provisioning module 924 of cloud infrastructure sys-
tem 902.

At operation 946, the customer’s subscription order may
be managed and tracked by an order management and
monitoring module 926. In some instances, order manage-
ment and monitoring module 926 may be configured to
collect usage statistics for the services 1n the subscription
order, such as the amount of storage used, the amount data

US 9,898,488 B2

15

transterred, the number of users, and the amount of system
up time and system down time.

In certain embodiments, cloud infrastructure system 900
may include an i1dentity management module 928. Identity
management module 928 may be configured to provide
identity services, such as access management and authori-
zation services 1n cloud infrastructure system 900. In some
embodiments, 1identity management module 928 may con-
trol information about customers who wish to utilize the
services provided by cloud infrastructure system 902. Such
information can include imnformation that authenticates the
identities of such customers and information that describes
which actions those customers are authorized to perform
relative to various system resources (e.g., files, directories,
applications, communication ports, memory segments, etc.)
Identity management module 928 may also include the
management of descriptive information about each customer
and about how and by whom that descriptive information
can be accessed and modified.

FIG. 10 1llustrates an exemplary computer system 1000,
in which various embodiments of the present invention may
be implemented. The system 1000 may be used to imple-
ment any of the computer systems described above. As
shown 1n the figure, computer system 1000 includes a
processing unit 1004 that commumicates with a number of
peripheral subsystems via a bus subsystem 1002. These
peripheral subsystems may include a processing accelera-
tion unit 1006, an I/O subsystem 1008, a storage subsystem
1018 and a communications subsystem 1024. Storage sub-
system 1018 1includes tangible computer-readable storage
media 1022 and a system memory 1010.

Bus subsystem 1002 provides a mechanism for letting the
various components and subsystems of computer system
1000 communicate with each other as itended. Although
bus subsystem 1002 1s shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 1002 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures

may nclude an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard.

Processing unit 1004, which can be implemented as one
or more integrated circuits (e.g., a conventional micropro-
cessor or microcontroller), controls the operation of com-
puter system 1000. One or more processors may be included
in processing unit 1004. These processors may include
single core or multicore processors. In certain embodiments,
processing unit 1004 may be implemented as one or more
independent processing units 1032 and/or 1034 with single
or multicore processors included 1in each processing unit. In
other embodiments, processing unit 1004 may also be
implemented as a quad-core processing unit formed by
integrating two dual-core processors into a single chip.

In various embodiments, processing unit 1004 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident 1n processor(s) 1004
and/or 1n storage subsystem 1018. Through suitable pro-
gramming, processor(s) 1004 can provide various function-
alities described above. Computer system 1000 may addi-
tionally include a processing acceleration unit 1006, which

10

15

20

25

30

35

40

45

50

55

60

65

16

can include a digital signal processor (DSP), a special-
purpose processor, and/or the like.

I/O subsystem 1008 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen incor-
porated into a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio mput devices with voice
command recognition systems, microphones, and other
types of mput devices. User interface imput devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoit Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoit Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface mput devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as mput nto an mput device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g.,
S1r1® navigator), through voice commands.

User interface mput devices may also include, without
limitation, three dimensional (3D) mice, joysticks or point-
ing sticks, gamepads and graphic tablets, and audio/visual
devices such as speakers, digital cameras, digital camcord-
ers, portable media players, webcams, 1mage scanners, {in-
gerprint scanners, barcode reader 3D scanners, 3D printers,
laser rangefinders, and eye gaze tracking devices. Addition-
ally, user interface mput devices may include, for example,
medical imaging mput devices such as computed tomogra-
phy, magnetic resonance 1imaging, position emission tomog-
raphy, medical ultrasonography devices. User interface
input devices may also include, for example, audio mput
devices such as MIDI keyboards, digital musical instru-
ments and the like.

User terface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liqud crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” 1s mtended to include all
possible types of devices and mechanisms for outputting
information from computer system 1000 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Computer system 1000 may comprise a storage subsys-
tem 1018 that comprises software elements, shown as being
currently located within a system memory 1010. System
memory 1010 may store program instructions that are load-
able and executable on processing unit 1004, as well as data
generated during the execution of these programs.

Depending on the configuration and type of computer
system 1000, system memory 1010 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as
read-only memory (ROM), flash memory, etc.) The RAM
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
and executed by processing unit 1004. In some implemen-
tations, system memory 1010 may include multiple different

US 9,898,488 B2

17

types of memory, such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In
some 1mplementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer informa-
tion between elements within computer system 1000, such
as during start-up, may typically be stored in the ROM. By
way ol example, and not limitation, system memory 1010
also 1illustrates application programs 1012, which may
include client applications, Web browsers, mid-tier applica-
tions, relational database management systems (RDBMS),
etc., program data 1014, and an operating system 1016. By
way of example, operating system 1016 may include various
versions of Microsoit Windows®, Apple Macintosh®, and/
or Linux operating systems, a variety of commercially-
available UNIX® or UNIX-like operating systems (includ-
ing without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OS, and the like) and/or
mobile operating systems such as 10S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS oper-
ating systems.

Storage subsystem 1018 may also provide a tangible
computer-readable storage medium for storing the basic
programming and data constructs that provide the function-
ality of some embodiments. Software (programs, code mod-
ules, mstructions) that when executed by a processor pro-
vide the functionality described above may be stored in
storage subsystem 1018. These software modules or instruc-
tions may be executed by processing unmit 1004. Storage
subsystem 1018 may also provide a repository for storing
data used in accordance with the present invention.

Storage subsystem 1000 may also include a computer-
readable storage media reader 1020 that can further be
connected to computer-readable storage media 1022.
Together and, optionally, 1n combination with system
memory 1010, computer-readable storage media 1022 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
1ly and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

Computer-readable storage media 1022 contaiming code,
or portions of code, can also include any appropriate media
known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, elec-
tronically erasable programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 1000.

By way of example, computer-readable storage media
1022 may include a hard disk drive that reads from or writes
to non-removable, nonvolatile magnetic media, a magnetic
disk drive that reads from or writes to a removable, non-
volatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such
as a CD ROM, DVD, and Blu-Ray® disk, or other optical
media. Computer-readable storage media 1022 may include,
but 1s not limited to, Zip® drives, flash memory cards,
universal serial bus (USB) flash drives, secure digital (SD)

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cards, DVD disks, digital video tape, and the like. Com-
puter-readable storage media 1022 may also include, solid-
state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybnd
SSDs that use a combination of DRAM and flash memory
based SSDs. The disk drives and their associated computer-
readable media may provide non-volatile storage of com-
puter-readable instructions, data structures, program mod-
ules, and other data for computer system 1000.

Communications subsystem 1024 provides an interface to
other computer systems and networks. Communications
subsystem 1024 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 1000. For example, communications subsystem
1024 may enable computer system 1000 to connect to one or
more devices via the Internet. In some embodiments com-
munications subsystem 1024 can include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technol-
ogy, advanced data network technology, such as 3G, 4G or
EDGE (enhanced data rates for global evolution), WiFi
(IEEE 802.11 family standards, or other mobile communi-
cation technologies, or any combination thereof), global
positioning system (GPS) recerver components, and/or other
components. In some embodiments communications sub-
system 1024 can provide wired network connectivity (e.g.,
Ethernet) 1n addition to or instead of a wireless interface.

In some embodiments, communications subsystem 1024
may also receive imput communication in the form of
structured and/or unstructured data feeds 1026, event
streams 1028, event updates 1030, and the like on behalf of
one or more users who may use computer system 1000.

By way of example, communications subsystem 1024
may be configured to receirve data feeds 1026 1n real-time
from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
sources.

Additionally, communications subsystem 1024 may also
be configured to receive data 1n the form of continuous data
streams, which may include event streams 1028 of real-time
events and/or event updates 1030, that may be continuous or
unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
traflic management applications), clickstream analysis tools,
automobile traflic monitoring, and the like.

Communications subsystem 1024 may also be configured
to output the structured and/or unstructured data feeds 1026,
event streams 1028, event updates 1030, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 1000.

Computer system 1000 can be one of various types,
including a handheld portable device (e.g., an 1Phone®
cellular phone, an 1Pad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 1000 depicted in
the figure 1s mntended only as a specific example. Many other

US 9,898,488 B2

19

configurations having more or fewer components than the
system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
clements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill 1n the art will appreciate other ways and/or methods to
implement the various embodiments.

In the foregoing description, for the purposes ol expla-
nation, numerous specific details were set forth 1n order to
provide a thorough understanding of various embodiments
of the present invention. It will be apparent, however, to one
skilled 1n the art that embodiments of the present invention
may be practiced without some of these specific details. In
other 1nstances, well-known structures and devices are
shown 1n block diagram form.

The foregoing description provides exemplary embodi-
ments only, and 1s not intended to limit the scope, applica-
bility, or configuration of the disclosure. Rather, the fore-
going description of the exemplary embodiments will
provide those skilled 1n the art with an enabling description
for implementing an exemplary embodiment. It should be
understood that various changes may be made in the func-
tion and arrangement of elements without departing from the
spirit and scope of the invention as set forth 1n the appended
claims.

Specific details are given 1n the foregoing description to
provide a thorough understanding of the embodiments.
However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these
specific details. For example, circuits, systems, networks,
processes, and other components may have been shown as
components 1 block diagram form in order not to obscure
the embodiments 1n unnecessary detail. In other instances,
well-known circuits, processes, algorithms, structures, and
techniques may have been shown without unnecessary detail
in order to avoid obscuring the embodiments.

Also, 1t 1s noted that individual embodiments may have
been described as a process which 1s depicted as a tlowchart,
a flow diagram, a data flow diagram, a structure diagram, or
a block diagram. Although a flowchart may have described
the operations as a sequential process, many of the opera-
tions can be performed 1n parallel or concurrently. In addi-
tion, the order of the operations may be re-arranged. A
process 1s terminated when its operations are completed, but
could have additional steps not included in a figure. A
process may correspond to a method, a function, a proce-
dure, a subroutine, a subprogram, etc. When a process
corresponds to a function, its termination can correspond to

a return of the function to the calling function or the main
function.

The term “computer-readable medium” mcludes, but 1s
not limited to portable or fixed storage devices, optical
storage devices, wireless channels and various other medi-
ums capable of storing, containing, or carrying instruction(s)
and/or data. A code segment or machine-executable mstruc-
tions may represent a procedure, a function, a subprogram,
a program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc., may be passed, forwarded, or trans-

10

15

20

25

30

35

40

45

50

55

60

65

20

mitted via any suitable means including memory sharing,
message passing, token passing, network transmission, etc.

Furthermore, embodiments may be implemented by hard-
ware, software, firmware, middleware, microcode, hardware
description languages, or any combination thereof. When
implemented 1n software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored in a machine readable
medium. A processor(s) may perform the necessary tasks.

In the foregoing specification, aspects of the invention are
described with reference to specific embodiments thereof,
but those skilled 1n the art will recognize that the invention
1s not limited thereto. Various features and aspects of the
above-described invention may be used individually or
jomtly. Further, embodiments can be utilized in any number
of environments and applications beyond those described
herein without departing from the broader spirit and scope of
the specification. The specification and drawings are,
accordingly, to be regarded as illustrative rather than restric-
tive.

Additionally, for the purposes of illustration, methods
were described 1n a particular order. It should be appreciated
that in alternate embodiments, the methods may be per-
formed 1n a different order than that described. It should also
be appreciated that the methods described above may be
performed by hardware components or may be embodied in
sequences of machine-executable instructions, which may
be used to cause a machine, such as a general-purpose or
special-purpose processor or logic circuits programmed with
the instructions to perform the methods. These machine-
executable 1nstructions may be stored on one or more
machine readable mediums, such as CD-ROMs or other type
of optical disks, tloppy diskettes, ROMs, RAMs, EPROMs,
EEPROMSs, magnetic or optical cards, flash memory, or
other types of machine-readable mediums suitable for stor-
ing electronic istructions. Alternatively, the methods may
be performed by a combination of hardware and software.

What 1s claimed 1s:

1. A method of preserving deprecated database columns
across application upgrades, the method comprising:

maintaining a database communicatively coupled to an

application, wherein the application includes a first
schema, the first schema indicating a first column for
the database:

recerving an update for the application, wherein the

update 1includes a second schema that removes the first
column from the database;

renaming the first column by appending a prefix to a name

of the first column, wherein the prefix indicates that the
first column 1s deprecated;

maintaining the first column 1n the database aiter the

second schema has replaced the first schema by recog-
mzing the prefix to the name of the first column; and
writing data from the application with the second schema
to columns 1n the database other than the first column.

2. The method of claim 1 wherein the second schema also
adds a second column to the database, the method further
comprising:

adding the second column to the database by appending a

prefix to a name of the second column, wherein the
prefix mdicates that the first column 1s a beta version;
and

maintaining the second column in the database.

3. The method of claim 2 further comprising:

recerving a second update for the application, wherein the

second update includes a third schema that does not
remove the second column from the database; and

US 9,898,488 B2

21

maintaining the second column in the database by remov-

ing the prefix from the name of the second column.

4. The method of claim 1 wherein the prefix i1s not allowed
to be used by user-defined software packages.

5. The method of claim 1 wherein the prefix and the name
of the first column are separated by a “$” character.

6. The method of claim 1 further comprising:

receiving a command to restore the first schema for the

database: and

restoring the first column 1n the database by removing the

prefix from the name of the first column.

7. The method of claim 1 further comprising:

receiving a second update for the application, wherein the

second update does not restore the first column to the
database:; and

deleting the first column from the database 1n response to

receiving the second update.

8. The method of claim 1 further comprising;:

receiving a second update for the application, wherein the

second update does not restore the first column to the
database:; and

maintaiming the first column 1n the database by removing

the prefix from the name of the first column and
replacing the prefix with a second prefix that refers to
a user-defined software package.

9. A non-transitory, computer-readable medium compris-
ing 1instructions which, when executed by one or more
processors, cause the one or more processors to perform
operations comprising;:

maintaiming a database communicatively coupled to an

application, wherein the application includes a first
schema, the first schema i1ndicating a first column for
the database;

receiving an update for the application, wherein the

update includes a second schema that removes the first
column from the database:

renaming the first column by appending a prefix to a name

of the first column, wherein the prefix indicates that the
first column 1s deprecated;

maintaining the first column in the database after the

second schema has replaced the first schema by recog-
nizing the prefix to the name of the first column; and

writing data from the application with the second schema

to columns in the database other than the first column.

10. The non-transitory computer-readable memory
according to claim 9 wherein the second schema also adds
a second column to the database, and wherein the instruc-
tions further cause the one or more processors to perform
operations comprising;:

adding the second column to the database by appending a

prefix to a name of the second column, wherein the
prefix indicates that the first column 1s a beta version;
and

maintaining the second column 1n the database.

11. The non-transitory computer-readable medium
according to claim 10 wherein the instructions cause the one
or more processors to perform additional operations com-
prising:

receiving a second update for the application, wherein the

second update mcludes a third schema that does not

remove the second column from the database; and
maintaiming the second column in the database by remov-

ing the prefix from the name of the second column.

12. The non-transitory computer-readable memory
according to claim 9 wherein the prefix 1s not allowed to be
used by user-defined software packages.

10

15

20

25

30

35

40

45

50

55

60

65

22

13. The non-transitory computer-readable medium
according to claim 9 wherein the nstructions cause the one
or more processors to perform additional operations com-
prising;:

receiving a command to restore the first schema for the

database:; and

restoring the first column in the database by removing the

prefix from the name of the first column.

14. The non-transitory computer-readable medium
according to claim 9 wherein the nstructions cause the one
or more processors to perform additional operations com-
prising;:

recerving a second update for the application, wherein the

second update does not restore the first column to the
database:; and

deleting the first column from the database 1n response to

receiving the second update.

15. The non-transitory computer-readable medium
according to claim 9 wherein the nstructions cause the one
or more processors to perform additional operations com-
prising:

recerving a second update for the application, wherein the

second update does not restore the first column to the
database: and

maintaining the first column 1n the database by removing

the prefix from the name of the first column and
replacing the prefix with a second prefix that refers to
a user-defined software package.

16. A system comprising;:

one or more processors; and

one or more memory devices comprising instructions

which, when executed by the one or more processors,

cause the one or more processors to perform operations

comprising:

maintaining a database communicatively coupled to an
application, wherein the application includes a first
schema, the first schema indicating a first column for
the database:

receiving an update for the application, wherein the
update 1ncludes a second schema that removes the
first column from the database;

renaming the first column by appending a prefix to a
name of the first column, wherein the prefix indicates
that the first column 1s deprecated;

maintaining the first column in the database aiter the
second schema has replaced the first schema by
recognizing the prefix to the name of the first col-
umn; and

writing data from the application with the second
schema to columns 1n the database other than the first
column.

17. The system of claim 16 wherein the second schema
also adds a second column to the database, and wherein the
instructions further cause the one or more processors to
perform operations comprising:

adding the second column to the database by appending a

prefix to a name of the second column, wherein the
prefix mdicates that the first column 1s a beta version;
and

maintaining the second column in the database.

18. The system of claam 17 wheremn the instructions
turther cause the one or more processors to perform addi-
tional operations comprising;

recerving a second update for the application, wherein the

second update includes a third schema that does not
remove the second column from the database; and

US 9,898,488 B2

23

maintaining the second column in the database by remov-

ing the prefix from the name of the second column.

19. The system of claim 16 wherein the instructions
turther cause the one or more processors to perform addi-
tional operations comprising;

receiving a command to restore the first schema for the

database:; and

restoring the first column 1n the database by removing the

prefix from the name of the first column.

20. The system of claim 16 wheremn the instructions
turther cause the one or more processors to perform addi-
tional operations comprising;

receiving a second update for the application, wherein the

second update does not restore the first column to the
database: and

maintaining the first column 1n the database by removing

the prefix from the name of the first column and
replacing the prefix with a second prefix that refers to
a user-defined software package.

G x e Gx o

10

15

20

24

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,898,488 B2 Page 1 of 1
APPLICATION NO. : 14/557085

DATED : February 20, 2018

INVENTORC(S) : Schrum

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In Column 1, Line 63, delete “method/operaionts” and insert -- methods/operations --, therefor.

In the Claims

In Column 21, Line 46, in Claim 10, delete “memory” and insert -- medium --, therefor.

In Column 21, Line 65, in Claim 12, delete “memory” and insert -- medium --, therefor.

Signed and Sealed this
Twenty-ninth Day of December, 2020

Andrei Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

