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LIGHTING SYSTEM USING SENSORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent document 1s a divisional and claims benefit of
the earlier filing date of U.S. patent application Ser. No.
14/555,381, filed Nov. 26, 2014, now U.S. Pat. No. 9,345,
117, which claims benefit of the earlier filing date of U.S.
patent application Ser. No. 13/046,578, filed Mar. 11, 2011,

now U.S. Pat. No. 8,922,570, both of which are hereby
incorporated by reference 1n their enftirety.

BACKGROUND

Lighting systems for research, entertainment, commer-
cial, and residential use are desired that can control the time
variation of the spectrum and spatial distribution of light in
an 1lluminated environment. U.S. Pat. App. Pub. No. US
2009/0323321 Al, entitled *“Authoring, Recording, and Rep-
lication of Lighting,” which 1s hereby incorporated by
reference, describes some examples of the use of lighting
systems 1ncluding one or more luminaires where each lumi-
naire 1s capable of producing light with an adjustable
spectral distribution. In one configuration, a luminaire con-
tains multiple types of light sources, e.g., multiple types of
light emitting diodes, with each type producing a different
spectral distribution, and the relative intensities of the dif-
ferent types of light sources 1n the luminaire are adjustable
to control the spectrum of the combined output from the
luminaire. U.S. Pat. App. Pub. No. US 2009/0323321 Al
turther describes that the combined output spectrum from a
lighting system can mimic recorded or authored lighting
scenarios that may include time or spatial variations in the
spectrum or intensity of lighting. To provide complex light-
ing scenarios, luminaire systems and control methods are
desired that enable a luminaire to reproduce a desired time
variation in intensity or spectrum of lighting output from
that luminaire and that enable multiple luminaires to operate
in a coordinated fashion to control time or spatial variations
in the intensity and spectrum 1n an 1lluminated environment.

SUMMARY

In accordance with an aspect of the invention, a lighting
apparatus or luminaire has multiple light channels that
produce different spectral distributions of light. A drive
circuit 1n the luminaire 1s coupled to the light channels and
1s programmable to control relative intensities of the light
output from the light channels. The lighting apparatus also
includes an interpreter module that processes scripts to
generate operating parameters for the drive circuit. In par-
ticular, when processing a script, the interpreter generates
the operating parameters that cause the light channels to
collectively reproduce a lighting scenario represented by the
script.

In accordance with another aspect of the invention, a
lighting apparatus or luminaire includes multiple light chan-
nels, a drive circuit, a processor, and a timing circuit. The
light channels operate to produce diflerent spectral distribu-
tions of light, and the drive circuit 1s coupled to the light
channels and 1s programmable to control relative intensities
of light output from the light channels. The timing circuit
provides the processor with a frame clock signal and a
channel clock signal. The processor then outputs a partial set
of parameters for programming of the drive circuit (e.g.,
parameters for one light channel) 1n synchronization with
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the channel clock signal and provides a complete set of the
parameters for programming the drive circuit in synchroni-
zation with the frame clock signal. A frame rate as high as
1000 Hz or higher can be achieved to reproduce rapid
lighting eflects such as flashes or lighting strikes, while still
allowing reproduction of lighting scenarios that may evolve
over time periods of a day or more.

In accordance with yet another aspect of the mvention, a
lighting system includes one or more luminaires that are
connected through a network to a computing system. Some
or all of the luminaires may be capable of producing lighting
having a programmable spectral distribution. The computing
system, which may include one or more computers, can
execute one or more applications that are adapted for
operation of the luminaires and an application interface that
intervenes between the applications and the luminaires. In
particular, the interface may implement a standard for opera-
tion of luminaires that can differ in physical capability,
receive and forward commands for the luminaires, or pro-
cess descriptions or scripts of lighting scenarios from the
applications and generate scripts that are executable by the
specific luminaires 1n the system. For example, processing
of a description can convert or compile the description from
an application 1nto a format that at least one of the lumi-
naires can interpret to produce lighting according to the
lighting scenario represented by the description processed.

In accordance with still another aspect of the invention, a
media can contain a descriptor adapted for a luminaire to
process 1n order to produce lighting represented by the
descriptor. In one specific embodiment, the descriptor
includes data representing a spectral distribution for light-
ing, a time parameter indicating a duration of the lighting
represented by the descriptor; and a call parameter 1denti-
tying a procedure for the luminaire to execute during the
duration of the lighting represented by the descriptor. Typi-
cally, execution of the procedure alters the lighting produced
by the luminaire. The media may further contain multiple
descriptors of this type and instruction code that the lumi-
naire can execute to produce lighting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a top level schematic view of a lighting
system 1n accordance with an embodiment of the imnvention
in which one or more luminaires are connected to a network
and one or more application computers.

FIG. 2 shows a schematic view of a lighting system 1n
accordance with an embodiment of the invention 1n which a
computer employs an application interface enabling one or
more applications to operate one or more luminaires.

FIG. 3 1s a block diagram illustrating functional units of
an application interface used in controlling luminaires 1n one
embodiment of the invention.

FIG. 4 1s a block diagram of a luminaire in accordance
with an embodiment of the invention.

FIG. 5 1s a block diagram 1llustrating components used 1n
timing the updates of the operating parameters of a lumi-
naire in accordance with an embodiment of the invention.

FIG. 6 shows a data structure that a lighting system 1n
accordance with an embodiment of the invention can pro-
cess to produce lighting for a parameter-defined period of
time.

FIG. 7 1s a block diagram of a compiled script for a
lighting system in accordance with an embodiment of the
invention.
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FIG. 8 1s a flow diagram of a process for interpreting the
script of FIG. 7 and operating a luminaire in accordance with

an embodiment of the invention.

FIG. 9 1s a block diagram 1llustrating an architecture of a
co-processor for a luminaire in accordance with an embodi-
ment of the invention.

FIG. 10 1s a flow diagram of a process for producing a
desired lighting scenario and illustrates processes where
device-independent data corresponding to the lighting sce-
nario can be transformed to device-dependent data.

Use of the same reference symbols in different figures
indicates similar or identical items.

DETAILED DESCRIPTION

In accordance with an aspect of the invention, a lighting,
system can 1nclude a luminaire or light fixture including
multiple light channels with different emission spectra and a
processor able to interpret a script representing a lighting
scenar1o and produce operating parameters that cause the
light channels to collectively reproduce the lighting scenario
that the script represents. Representations ol the scripts
include user-editable script that may be authored using a
scripting language, custom software tools that support script
development, or even an integrated development environ-
ment (IDE) and compiled scripts that can be uploaded into
the luminaire. The lighting scripts can be device-indepen-
dent and portable for use in different luminaires. Some
embodiments of the lighting system can further include one
or more application computers on which scripts can be
authored and compiled, an application program interface
providing services to the applications, and a network
through which the applications computers can communicate
with one or more luminaires and with each other.

FIG. 1 shows a lighting system 100 1n accordance with an
embodiment of the invention including one or more appli-
cation computers 110-1 to 110-», a communication link or
links represented by a network 120, and one or more
luminaires 130-1 to 130-m. Application computers 110-1 to
110-» are sometimes generically referred to herein as appli-
cation computers 110, and luminaires 130-1 to 130-m are
sometimes generically referred to herein as luminaires 130.
In general, the number n of application computers 110 may
be the same or diflerent from the number m of luminaires.
For example, a single application computer 110 may be used
to operate multiple luminaires 130, but 1n general numbers
n and m can be any positive integers. The presence of
multiple application computers 110 can allow control of
luminaires 130 from multiple locations. The presence of
multiple luminaires 130 facilitates creation of spatial vara-
tion 1 lighting and combined lighting eflects that may be
difficult or impossible to achieve using a single luminaire.

Each application computer 110 runs software, firmware,
or hardwired applications that enable users to control lumi-
naires 130. Each application computer 110 may be a com-
puting device such as a general-purpose or custom-made
dedicated computer, a smart phone, or a device such as a
remote control specifically constructed or designed for con-
trol of luminaires 130. An application computer 110 may
additionally be equipped with or attached to specialized
hardware such as spectral sensors or recorders that measure
light 1n an environment, light produced by one or more
luminaires 130, light reflected from an object illuminated by
one or more luminaires 130, or light from another light
source. Some examples of applications that may be run by
an application computer 110 include a graphical interface
that enables a user to design or record a lighting scenario and
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a programming environment for development of scripts for
lighting scenarios. Each application computer 110 may also
communicate with any or all luminaires 130 through an
application itertace as described turther below.

Communication system 120 transports messages between
application computers 110 and luminaires 130. Communi-
cation system 120 can employ any desired communications
technique such as defined by the well known Ethernet wired
communication standards or Wi-F1 and Bluetooth wireless
communication standards for local area networks and may
turther employ wide area network commumnications such as
provided through the Internet. More generally, any commu-
nication system that can transport information between any
application computer 110 and any luminaire 130 1n system
100 could be employed. For example, a network for com-
munication system 120 may be implemented using any
topology, including point-to-point, bus, star, or ring topolo-
gies, and communication links for system 120 may be
implemented using copper, wireless, optical, RFE, or another
physical-layer technology.

System 100 shows remote controls 140 that send com-
mands to luminaires 130. Remote controls 140 can either
communicate using communication system 120 or using
direct links that are separate or of types different from the
communication links used by application computers 110.
For example, in one embodiment, a remote control 140 can
be a simple application computer that 1s able to control
functions of a luminaire 130 such as whether the luminaire
1s on or ofl, the maximum intensity of light from the
luminaire, or activation of presets or lighting scripts previ-
ously stored in the luminaire. In an exemplary embodiment,
remote control 140 1s a conventional inira-red remote con-
trol that communicates with and controls luminaires 130
using a free-space optical link, as 1s commonly employed for
current home entertainment equipment.

Each luminaire 130 receives commands over communi-
cation system 120 or otherwise, executes the commands, and
may communicate success or failure for each operation over
communication system 120, e.g., back to an application
computer 110 that 1ssued the command. In accordance with
one embodiment of the invention, each luminaire 130 con-
tains logic or a processor with suitable processing power to
convert a script that defines a light scenario into actual light
output from the luminaire 130. In a lighting system con-
taining multiple luminaires 130, the luminaires 130 may all
be substantially the same except for their positions or
orientations 1n a lighting environment, or luminaires 130
may differ from each other 1n features such as size, maxi-
mum 1ntensity, and the number and type of light sources
within the different luminaires 130. In particular, one or
more luminaires 130 may not provide an adjustable spectral
output.

At any given time, each application computer 110 1n a
lighting system 100 can run zero, one, or more luminaire
applications, and each luminaire application can control any
number of luminaires 130. The luminaire applications can
present a user with some depiction of the light network and
its status and may allow the user to change the state of the
lighting system, e.g., through a graphical user interface. As
described further below, an application may generate scripts
or may simply send commands to luminaires 130, and may
permit the user to visualize the current state of the lighting
system according to different relevant critiera. In accordance
with an aspect of the mvention, each of the applications
computers 110 further includes an application interface that
provides a standard software interface between the applica-
tions and the luminaires 130 and also provides system-wide
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traflic control. The traflic control can be used to prevent
multiple applications from sending luminaires 130 com-
mands that are conflicting, inconsistent, not 1 a required
order, or 1n a sequence resulting in an ambiguous final
luminaire state.

FI1G. 2 illustrates a relatively simple example of a lighting
system 200 that includes a single application computer 110
running p applications 210-1 to 210-p that may communi-
cate with luminaires 130. As noted above, an application
program 1interface (API) 215 can provide a standardized
interface to applications 210-1 to 210-p, so that applications
210-1 to 210-p communicate with luminaires 130 only
through API 215. API 215 can adapt or be adapted to the
specific configurations of communication system 120 and
luminaires 130 so that applications 210 do not required
detailed information regarding luminaires 130. In particular,
the number m and the types of luminaire(s) 130 may be
different 1n different embodiments of lighting system 200,
and API 215 may be configured to send messages to and
receive replies from the particular luminaires 130 in the
particular lighting system 200.

FIG. 3 shows a block diagram of an API 300 that provides
an interface between applications and luminaires. On the
application side, API 300 presents a set of function calls to
accomplish light control operations, such as turning a lumi-
naire on or oil, dimming intensity, uploading or playing of
scripts, or applying user-defined mathematical transforms to
light data to vary lighting. API 300 also allows application
software to read a sensor on a luminaire to determine
operational characteristics such as temperature, voltage,
current consumption, light levels, spectral power distribu-
tion, sound pressure level, and other operating parameters of
the luminaire 1f a suitable sensor i1s accessible 1n the lumi-
naire.

API 300 including its component modules 310, 320, 330,
and 340 will be generally implemented or executed 1n a
computing device such as an application computer described
above. API 300 can also be embodied in a computer-
readable media, e.g., a non-transient media such as an
optical or magnetic disk or a memory card, containing
instructions that a computing device can execute to perform
specific processes that are further described herein. Such
media embodying API 300 may further be a server or other
device connected to a network such as the Internet that
provides for the downloading of data and computer execut-
able 1nstructions.

A decoder/driver module 310 in API 300 acts as the
“control logic” for driving the internal operation of other
internal components, e.g., a File I/O component 320, an
event handler module 330, and a communications module
340 of API 300. Decoder module 310 in particular interprets
and controls the function call or calls from applications and
activates the other modules to produce the action defined for
cach function call.

File I/O module 320 provides support for reading and
writing files to and from storage that may be available 1n or
connected to the application computer. File I/O module 320
1s also i1nvolved 1n transferring files to and from a lumi-
naire’s file system via communications module 340.

A script compiler 322 uses file I/O module 320 to read
high-level script source files that the application software
produces and then encodes or compiles the source files 1n a
format suitable for use 1n the available luminaire(s). The
source liles can be constructed using a standardized syntax
or programming language and are sometimes referred to
herein as scripts. The scripts may be independent of the
particular implementation of the available luminaire(s) 1n a
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lighting system, so that the scripts are usable in different
lighting systems which may have different numbers, types,
and arrangements of luminaires. The compiled script files
will be 1n formats that can be efliciently handled or run in
specific luminaires and may differ for diflerent luminaires
and particularly may depend on luminaire hardware. Alter-
natively, the compiled scripts may be independent of lumi-
naire hardware and interpreted differently in different lumi-
naires to produce or approximate the lighting scenario
represented by the script. A compiled script output from
script compiler 322 can be distinguished using a file type or
file types that differ from the file type used for source scripts.
The complied scripts can be written back to storage in the
application computer or sent through communication mod-
ule 340 to one or more target luminaires or to a network
accessible storage device.

Script compiler 322 can detect and report syntax errors in
a script when the script 1s compiled. However, API 300 1n
the embodiment of FIG. 3 also includes a trace module 324
that provides the ability to troubleshoot unexpected failures
when running scripts in luminaires. Trace module 324
reports an error condition 1f a script encounters an error
condition when running. For example, trace module 324
may report a communication failed when a luminaire 1s off
or unplugged unexpectedly. Trace module 324 may also
keep track of system state details to help a user 1dentify the
probable reason for the failure to help troubleshoot a prob-
lem.

Communications module 340 supports communication
links between API 300 and the available luminaires, e.g.,
luminaires 130 of FIG. 1 or 2. In the specific implementation
of FIG. 3, a discovery module 342 1s associated with
communication module 340 and operates to search for and
find luminaires 1n a lighting system, ¢.g., connected to API
300 through the links supported by communication module
340. Discovery module 342 can particularly provide a
unique address for each luminaire to allow for unambiguous
identification of each luminaire. Discovery module 342 can
further communicate with the available luminaires to deter-
mine the types, locations, or abilities of the luminaires.
Information concerning the types ol luminaires may be
necessary for script compiler 322 to create compiled files for
uses 1n the luminaires. An associated tracking module 344
looks for changes i1n a lighting system, such as when a
luminaire 1s switched off or removed, or when a new
luminaire 1s added or switched on, and keeps these changes
current for discovery module 342.

Access control module 346, which may communicate
with an external database, keeps track of users or application
soltware to control which user or application has use of each
luminaire at any given time. In particular, access control
module 346 acts to prevent conflicts between multiple
applications or application computers that might otherwise
try to control the same luminaire unit at the same time.

Event handler 330 serves to receive sensor data and
messages from the luminaires indicating trouble or excep-
tional conditions of importance, such as abnormally high
temperature or luminaire “disk full” conditions. These
events can be communicated back to the applications to alert
a user of trouble.

FIG. 4 shows an embodiment of a luminaire 400 1n
accordance with an embodiment of the invention. Luminaire
400 includes q different types of light channels 410-1 to
410-g (sometimes generically referred to herein as light
channels 410) and associated driver circuits 420 that are
programmable to independently control the respective inten-
sities of light output from light channels 410-1 to 410-¢g. In
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an exemplary embodiment, each light channel 410 includes
one or more light emitting diodes (LEDs), where the number
of light emitting diodes 1n a particular light channel 410 may
be selected according to the required range of intensity
output from that light channel 410. Light channels 410 are
generally different 1in construction to provide different fre-
quencies of light output. For example, light channel 410-1
may contain one or more LEDs emitting light with a
spectrum peaked at wavelength of about 393 nm (purple),
423 nm (violet), 438 nm (violet-blue), 462 nm (blue), 482
nm (blue), 496 nm (turquoise), 511 nm (green), 521 nm
(green), 540 nm (yellow-green), 577 nm (yellow), 587 nm
(orange), 593 nm (orange-red), 629 nm (red), 655 nm (deep
red), 694 nm (deeper red), or 733 nm (very deep red). One
specific embodiment of luminaire 400 has eight or sixteen
light channels 410 selected according to a desired spectral
range and resolution of luminaire 400. More generally, a
luminaire may have as few as a single light channel (1f
spectral variation 1s not required) or as many light channels
as desired. In one embodiment, the number of light channels
may be limited to a maximum of thirty-two 1 order to
provide the possibility for relatively fine resolution control
of spectral content of lighting while also providing reason-
able sizes for instructions and data structures for source
scripts and compiled scripts.

A central processing unit 430, which may include at least
one microcontroller or microprocessor such as an ARM
processor, controls driver circuits 420 to control the light
output from luminaire 400. In particular, CPU 430 can
change operating parameters ol programmable driver cir-
cuits 420 to set, at intervals, the magnitude, frequency, or
duty cycle of drive signals respectively applied to light
channels 410. Changing the dnive parameters (e.g., the
magnitude and the duty cycle of an analog drive signal) can
change light output from light channels 410. The number q
of light channels and the interval between updates of drive
parameters for light channels 410 may depend on the
particular luminaire 400 or on user configuration of lumi-
naire 400. However, the interval between light changes in
lighting will typically be selected according to the subject of
the lighting, for example, at a frequency high enough to
provide a human observer with light that appears to change
smoothly. In one embodiment, lighting frames are presented
at a rate of 1000 Hz, which 1s fast enough to reproduce high
speed lighting events such as flashes or lightning strikes,
although the same lighting frame may be presented repeat-
edly to maintain a constant light output for as long as
desired. The frequency of a drive signal applied to a light
channel 410 1s generally one or more order of magnitude
higher that the frame rate. However, vanation in the fre-
quencies of the drive signals can be used for other purposes,
such as optical communication of information, while varia-
tion 1n the duty cycle and amplitude of the drive signals are
used for change the light output 1n a manner detectable by
human vision and perception.

CPU 430 1s further attached to hardware devices includ-
ing a communications itertace 440, sensors 450, internal
storage 460, and an interface 470 for access ol external
storage. Communications interface 440 provides hardware
for communications with application computers or other
luminaires over a network such as network 120 of FIG. 1 or
2. Communication interface 440 may, for example, 1include
hardware suitable for connection to an Ethernet network or
a Wi-F1 network.

Sensors 450 may include an infrared (IR) sensor, voltage
and current sensors, a light intensity sensor, color sensors, a
spectral power distribution sensor (e.g. spectrometer), a
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sound-pressure-level sensor, or other devices that CPU 430
may access. An IR sensor may, for example, be used to
receive remote-control commands from handheld remote
units. (Remote control devices may alternatively communi-
cate with luminaire 400 through communications interface
440 and may, for example, be a simple example of an
application computer.) Voltage and current sensors can
evaluate power consumption in luminaire 400 and might, for
example, provide input data to a script or firmware process
intended to optimize energy efliciency of luminaire 400
under particular lighting conditions. A process defined by a
script or a firmware component could similarly access light
intensity sensors, color sensors, and spectral power distri-
bution sensors to monitor performance of luminaire 400 and
determine whether a desired lighting scenario has been
achieved. Sound sensors could be employed, for example, 1n
implementing voice or sound command of luminaire 400 or
to synchronize lighting processes with sound cues. As will
be understood, these examples of sensors 450 and uses of
sensors 450 can vary according to the particular embodiment
of luminaire 400 and the lighting scenarios to be produced.

Internal storage 460 and external storage coupled to
interface 470 can store information such as script files that
CPU 430 processes to control the illumination from lumi-
naire 400. Internal storage 460 can include both volatile
memory (e.g., RAM) and non-volatile memory (e.g. flash
memory) that 1s external to CPU 430 and memory (volatile
or non-volatile) that 1s built into CPU 430. External storage
interface 470 1s optional and may enable CPU 430 to access
external devices such as hard drives, disk drives, and
memory sticks. For both internal and external storage,
luminaire 400 can employ a file system for internal storage
460 and external storage that persists until deliberately
erased. Thus, scripts can remain in luminaire 400 once the
scripts are loaded. Also, parameter settings can be set to take
eflect and remain 1n eflect until overwritten with new values,
even 1 power goes out. In particular, a “default” script,
which executes at power-up of luminaire 400, can be stored
in non-volatile internal storage 260 and be present at power
up but can be changed 1f overwritten. Calibration data may
also need to be periodically updated, but then remain fixed
until changed.

Some examples of files stored in internal storage 460
might include calibration data, presets, and user files. Cali-
bration data can be used to correlate drive signal parameters
with light output and to indicate spectral characteristics of
cach light channel 410. Such data may be stored 1n non-
volatile memory that 1s part of internal storage 460. Presets,
which may also be stored 1in non-volatile memory, may
implement a default lumen script for operation of luminaire
400 at power-up and some lighting scenarios that are
believed to be of wide interest such as optimal energy
elliciency for output of light for human vision, lighting that
preserves human night vision, or lighting that simulates
some well known light sources such as the sun, candles, or
incandescent light bulbs. User files representing lighting
scenar1os that a user chooses for the lighting system 1nclud-
ing luminaire 400 may also be stored in non-volatile or
volatile memory of internal storage 460 or of external
storage. Internal storage 460 (particularly a volatile portion
of internal storage 460) can also be used for program
variables, temporary light output values, and many other
parameters that CPU 430 uses.

The embodiment of FIG. 4 also shows program compo-
nents 480, which would typically reside in non-volatile
memory in CPU 430 or other internal storage 460. In an
exemplary embodiment, program components 480 are firm-
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ware components that support each other and provide pro-
gram logic that implements functionality of luminaire 400.
FIG. 4 shows an example with some specific firmware
modules or components 481 to 494 that may be included 1n
an exemplary embodiment of luminaire 400. For example, 1n
the 1llustrated embodiment, CPU 430 executes a communi-
cations module 481 to accept mmcoming messages from
communication interface 440 and “feeds” the incoming
messages to a command interpreter 482. Communication
module 481 also produces outgoing messages that are trans-
mitted through communications interface 440, for example,
to convey channels status data back to an API 1n an appli-
cation computer.

A remote control decoder 482 can be similarly employed
to recerve commands. For example, remote control decoder
482 may interpret signals received through sensors 450 to
extract commands for luminaire 400. Although 1n general,
commands received through decoder 482 and communica-
tions module 481 could be of the same type. Decoder 482
may be limited to some particular or simple commands such
as commands to turn a luminaire on or off, to alter 1n a global
tashion the intensity of light from luminaire 400, or to select
among a set of user or preset scripts that may be stored 1n
luminaire 400. In contrast, communications module 481
may be capable of higher data rate communications through
communication interface 440 and thus be able to handle
more complex messages such as downloading of new scripts
for lighting or activation of programmed lighting functions.

Command interpreter 483 1n general decodes each incom-
ing message (from communication module 481 or decoder
482) to determine actions to be undertaken by luminaire 400.
For example, command interpreter 483 may use a firmware
updater 484 to update program components 480, use a
dimmer controller 485 to change the maximum intensity of
illumination from luminaire 400 1n a manner separate from
any script, drive individual light channels 410 to particular
output levels via a channel mapper 486 and/or a light driver
module 487, begin a download of a compiled script, or call
a file system and file mput/output (I/0O) module 488.

File I/O module 488 write files to internal storage 460 or
external storage accessible through interface 470 and
retrieves such files for execution by CPU 430. File /O
module 488 may employ turther firmware components such
as a Flash interface 489 to access and control specific types
of memory devices such as Flash memory. A primary use of
file I/O module 488 is to write scripts to storage for future
use and retrieve data and instructions from compiled scripts
for real time execution 1n luminaire 400. If a compiled script
has a file type or 1s otherwise determined to be a high-level
language script, a high level language (HLL) interpreter 490
reads and interprets the script and feeds frame or channel
data to a binary interpreter 491, which directly computes the
drive parameters for each light channel 410. HLL interpreter
490 can further employ a virtual machine 492, sometimes
referred to herein as propeller virtual machine (PVM) 492,
which behaves as a co-processor and implements specific
mathematical or high level script functions as described
turther below. It the compiled script 1s already 1n a low-level
binary file format, then binary interpreter 491 can read and
process data from the script directly without being fed data
from high-level interpreter 490. In either case, binary inter-
preter 491 can control the light output from luminaire 400 by
loading 1llumination or channel data into channel mapper
486 or light driver 487, which controls programmable driv-
ers 420.

A configuration of programmable drivers 420 can be
described by frame data that represents the i1llumination
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desired from luminaire 400, and event monitor 492 and
firmware timers 493 can be employed to control timing for
change the 1llumination of luminaire 400 1n a manner similar
to the changing of frames on a video display. In particular,
timers 493 can be used for synchronization and frame output
logic, to sequence and pace frame output, and to keep track
of how many frames have been output since a script started.

Channel mapper 486 1n the exemplary embodiment oper-
ates to map logical channel numbers, which may be speci-
fied 1n scripts, to the physical channels of luminaire 400. Use
of channel mapper 486 1n luminaires can allow luminaires
that have different internal wiring or different sets of light
channels 410 to run the same binary files. For example, a
data structure defining a frame of 1llumination as described
further below may contain channel data indicating the
intensity of light 1n a set of wavelength channels, and a script
compiler (e.g., script compiler 322 of FIG. 3), a high level
language interpreter 490, and even binary interpreter 491
may employ a data structure that assigns channel numbers in
an order of increasing wavelength. However, the phy51cal
light channels 410 actually 1n luminaire 400 may differ from
the logical channels. For example, the physical light chan-
nels 410 may be in a different order from the logical
arrangement. Channel mapper 486 can map channel data
that 1s 1n a luminaire-independent logical order into channel
data arranged for the available physical light channels 1n
luminaire 410.

Light driver module 487 communicates luminaire-spe-
cific channel data to driver circuits 420. In an exemplary
embodiment, some or all of light channels 410 implemented
using LEDs and drivers 420 are programmable LED drivers.
For LEDs, the output of each light channel 410 can be
controlled using two parameters respectively controlling or
modulating the pulse width and the amplitude of the drive
signal for the light channel. A benefit of pulse width modu-
lation (PWM) 1s that light output 1s approximately propor-
tional to the duty cycle of the signal, so that making a duty
cycle change causes a proportional change 1n light intensity.
A benefit of further allowing for user-programmable ampli-
tude modulation 1s an enhancement of the dynamic range of
light output. In particular, light intensity resolution at the
low end of the intensity range can be provided without
sacrificing the high end of the intensity range. However, the
dependence of light intensity from a channel on the AM
parameter for the channel 1s typically not linear.

Non-linearities associated with current flow, temperature,
and to a lesser extent PWM complicate determination of
PWM and AM parameters that produce a precise level of
light from a light channel 410. In luminaire 400, the per-
formance of each light channel 410 can be measured or
characterized at a variety of different current levels and duty
cycles, and such measurements or characterizations can be
stored 1n internal storage 460 as calibration data. Light
driver module 487 can use linear or other interpolation over
the relatively small ranges between values of the calibration
data to derive the correct drive parameters for each light
channel 410. This calibration mechanism provides empirical
corrections for differences, for example, between LEDs due
to chemistry, manufacturing variations, and other hard-to-
model and hard-to-control varnations from luminaire to
luminaire and from channel to channel. Alternatively, deter-
mination ol luminaire-specific drive parameters could be
determined at a higher level in the processing hierarchy, e.g.,
by a script compiler in an application computer.

Luminaire 400 as described above produces continuous
light that 1s structured as a series of consecutive frames
played back rapidly. In an exemplary embodiment, each
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frame has the same duration, which 1s 0.001 sec, so that CPU
430 may need to update the operating parameters of drivers
at a rate of 1 kHz. FIG. 5 1llustrates 1n more detail a system
500 for connections of CPU 430 and driver circuits 420
through a timing logic 510 that generates precise timing
signals that are used to keep the frame rate constant and
synchronized with the operation of CPU 430. Timing logic
510 may be implemented using known circuit technology
including but not limited to a circuit board with discrete
components, a field programmable gate array (FPGA), a
complex programmable logic device (CPLD), or a custom
integrated circuit. In thus particular embodiment, CPU 430
executes firmware that gathers script data and must be ready
to program logic 510 i synchronmization with the 1 kHz
frame rate. (The 1 kHz frame rate 1s a reasonable rate that
can avoild noticeable flicker 1n the 1llumination from lumi-
naire 400 and reproduce fast lighting effects, but other frame
rates could be employed.) Logic 510 produces three timing,
signals, a base clock signal, the frame clock signal, and the
channel clock signal, that control the timing of data flow
from CPU 430 to drivers 420. The base clock signal operates
at 65.536 MHz and forms the basis for the other timing
signals. An accurate quartz crystal oscillator circuit 3520,
which remains stable over time and temperature, can gen-
erate the base clock signal.

A divider 522 divides the 65,536-kHz base clock signal by
2048 to generate a 32-kHz channel clock signal. Because 1n
the exemplary embodiment each frame includes up to 32
channels of data, the 32 kHz frequency of the channel clock
precisely matches the rate at which new channel data must
be “fed” to logic 510 1n order to provide new frame data at
a rate of 1,000 frames per second. This channel clock signal
connects to an interrupt pin PBOO of CPU 430, which 1n the
exemplary embodiment 1s programmed to interrupt on the
falling edge of the channel clock signal. A divider 524
divides the 32-kHz channel clock signal by 32 to create the
frame clock signal. The frame clock signal i1s thus a 1 kHz
signal, which corresponds to the frame output rate for the
exemplary embodiment of luminaire 400. The frame clock
signal 1s output to another mterrupt pin PBO1 of CPU 430
that 1s programmed to interrupt on the rising edge of the
frame clock signal.

The frame and channel clock signals work together as
follows 1n the exemplary embodiment of the invention.
Every time the frame pulse interrupts CPU 430, CPU 430
resets a channel count (CH#) to 0. Every time the channel
pulse arrives, CPU 430 reads current data for the channel
identified by the channel count CH# and “feeds” that chan-
nel data to logic 510, then CPU 430 increments the channel
count CH# 1n preparation for the next channel interrupt.
When the channel count CH# hits 31, the last channel’s data
for a frame 1s output, and the channel count CH# can be set
to either 32 or 0, which does not matter because the next
rising edge of the frame clock signal will happen before the
next falling edge of the channel clock signal, ensuring that
the channel count 1s properly returned to zero and avoiding
race conditions.

Each channel mterrupt also causes CPU 430 to assert a
signal LATCH to data channels 530, and data channels 530

latch the channel data from CPU 430 when signal LATCH
1s asserted, e.g., goes from low to high state. Assertion of
signal LATCH tells logic 510 that signals PWM and AM
accurately retlect the duty cycle and amplitude for the drive
signal corresponding to the channel number represented by

signal CH#. Other data or auxiliary information may be
transierred between CPU 430 and logic 510 at the same
time. Signal LATCH starting unasserted (e.g., low) allows
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CPU 430 to set up all the data on the bus and make sure the
data pins are stable prior to telling logic 510 to accept the
data for the next channel. An output circuit 340 of logic 51
maintains control signals that cause drivers 420 to produce
analog drive signals with the pulse width modulation and the
amplitude modulation indicated by the digital operating
parameters PWM and AM from CPU 430.

CPU 430 can reset logic 510 at any time by asserting and
then deasserting a signal RESET. Logic 510 may addition-
ally have a latching low-voltage “brownout” detector. 11 the
supply voltage of CPU 430 falls below specification, a bit 1s
set 1 logic 310, and a signal PWRGGG goes low and stays
low, even after power returns to normal. To ensure safe
operation, the only way CPU 430 can clear this bit and
remove signal PWRGGG 1s to reset logic 510 using signal
RESET for logic 510.

Substantial firmware inirastructure may be needed to
maintain and access script files and ensure that the right data
arrives at logic 510 at precisely the correct time. Also,
lighting that varies over a period of time lasting hours, a day,
or even longer, may required a significant amount of frame
data when frames are played back at a rate of about 1000
frames per second. Accordingly, methods for reducing the
amount of data, e.g., the length of a script required to
represent a lighting scenario are desired. FIG. 6 shows a
frame descriptor 600, which 1s a data structure that describes
lighting over a programmable period of time. Frame descrip-
tor 600 begins with channel data 610-1 to 610-g that
represent a particular spectral power distribution. In the
illustrated embodiment, there are K pieces of channel data
610-1 to 610-K, generically referred to herein as channel
data 610. The number K may be equal to the number q of
light channels 1n a specific luminaire or may be fixed by a
protocol for defining a luminaire-independent description of
a spectral distribution. In an exemplary embodiment, K 1s
equal to thirty-two.

Each piece 610 of channel data specifies a channel
number CH# i1dentifying a light channel and parameters
PWM and AM respectively specitying a pulse width duty
cycle and amplitude for a drive signal of the light channel
corresponding to the channel number CH#. This data format
1s convenient for description of a spectral distribution 1n a
luminaire that uses both pulse width modulation and ampli-
tude modulation to control the intensity of light emitted from
light channels. However, channel data 610 could use other
formats to represent the desired intensity of light from
respective light channels. For example, each pair of param-
cters PWM and AM could be replaced with a single number
representing an output intensity for the corresponding light
channel.

Channel numbers CH# in channel data 610 can be rep-
resented using an integer, and 1in an exemplary embodiment
of the invention, each channel number CH# 1s a 5-bit value
to 1dentily up to 32 separate channels. When frame descrip-
tor 600 1s a fixed s1zed data structure, channel numbers CH#
could be eliminated, and the position of parameters PWM
and AM 1n frame descriptor 600 could identity the corre-
sponding light channels. However, use of channel numbers
CH# can simplily implementation of a frame data output
device by including the channel number to which this block
of data belongs. In particular, 1n the exemplary system of
FIG. 5, channel numbers CH# 1s a parameter passed to
timing circuit 510 to reduce the amount of circuitry required
in logic 510 and having channel numbers CH# available 1n
frame descriptor 600 simplifies generation of output data.

Parameter PWM controls the duty cycle or the ratio of the
“on”” time to the period of the drive signal. In the exemplary
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embodiment, parameter PWM 1s an integer variable 1n a
range from O to (2-1), where the duty cycle is the ratio of
the PWM parameter to a fixed integer 2". The value of
exponent N can be anything, but in the exemplary embodi-
ment, N 1s sixteen, so parameter PWM 1s a 16-bit value

representing a fraction in a range from 0/65,536 to 65,335/
65,536 or from O to about 99.998% on-time.

Parameter AM controls the amplitude of a drive signal for
a light channel when the light channel 1s “on.” Parameter
AM can represent a percentage ol a maximum drive current
or voltage and can similarly be represented as an integer 1n
a range from 0 to 2*—1 where the amplitude fraction is the
ratio of parameter AM and a fixed integer (e.g., 2°-1). The
value of K can be anything, but in the exemplary embodi-

ment, K 1s six so that each AM parameter 1s a 6-bit value.

Channel data 610-1 to 610-K defines a spectral distribu-
tion. For example, to define/create a spectral distribution
corresponding to black body radiation at a 2700° K, param-
cters PWM and AM for each light channel are selected to
produce an output intensity from that light channel that
approximates the relative power from a 2700° K black body
that falls 1 a spectral band corresponding to the light
channel. A playback operation using channel data 610 1n
luminaire 400 of FIG. 4 can employ CPU 430 (if necessary)
to convert channel data 610-1 to 610-K to parameters
appropriate for the available light channels 410-1 to 410-¢
then send the converted channel data to logic 510, which
operates light channels 410-1 to 410-g to produce respective
intensities that collectively approximate radiation from a
black body at 2700° K. For example, 11 channel data 610-1
to 610-K does not correspond one-to-one with light channels
410-1 to 410-¢g, channel mapper 486 and light driver module
487 can convert parameters PWM and AM from channel
data 610 into parameters appropriate for light channels
410-1 to 410-g before drivers 420 are programmed. IT all or
a subset channel data 610-1 to 610-K corresponds one-to-
one with light channels 410-1 to 410-¢, parameters PWM
and AM may be used directly for programming of drivers
420 or may be calibrated by light driver module 487 before
being used to program drivers 420.

Data structure 600 further includes a repeat parameter 630
and a call parameter 620 that allows data structure 600 to
define multiple frames of illumination. In particular, repeat
parameter 630 indicates the number of frames represented
by frame descriptor 600. For example, if repeat parameter
630 1s 1, then frame descriptor 600 describes a single frame

and that frame 1s played back once. If repeat parameter 630
1s a 32-bit value, the maximum number of frames described
is 2°32-1=4,294,967,295, which covers a time span of over
8 years with 1 millisecond per frame period. Accordingly,
any duration from 1 millisecond to 8 years 1n 1 millisecond
intervals 1s possible with reasonably sized parameters. Addi-
tionally, a repeat parameter with the value O can be inter-
preted as encoding of infinity, so that the frames based on the
frame descriptor 600 are played back for an indefinite time.

Call parameter 620 1dentifies a procedure to be called for
cach frame 1s played. Call parameter 620 can, for example,
be a four byte value for a 32-bit call address where the value
“0” indicates that the frame 1s static and no procedure is
called. For example, to create a constant light output for a
desired time period of time, repeat parameter 630 1s set to the
number of frames corresponding to the desired time, and call
parameter 620 1s set to zero to indicate no procedure 1s
called. The luminaire would then repeatedly play a frame
having a constant spectral distribution represented by the
channel data 610 of the frame descriptor 600.
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Call parameter 620 can be used to play back dynamically
changing spectral distributions. In particular, call parameter
620 can identily a software procedure that modifies channel
data 610. For example, to dim the illumination from a
luminaire, call parameter 620 can 1dentity a procedure that
reduces at least one parameter PWM or AM 1n the channel
data 610. Other procedures could analyze the desired spec-
trum at each frame point and encode the best approximation
of the desired spectrum for the next frame.

FIG. 7 illustrates a format of a compiled script 700 that
HLL iterpreter 490 of FIG. 4 can interpret to produce
lighting from luminaire 400. Compiled script 700 includes a
header 710, a set of frame descriptors 600-1 to 600-», and a
subroutine block 720. Header 710 can include information
identifving and describing script 700. For example, header
710 can include a script name parameter, the number n of
frame descriptors, and the size of subroutine block 720.
Header 710 can be selected to be one block (e.g., 512 bytes)
in size for convenient storage standard storage devices such
as an SD cards or hard drives. In one specific embodiment,
the information 1n header 710 1s as follows: bytes 0-3: total
file size, byte 4-7: end of frame data, 8-11: electronic
signature indicating that this 1s a binary script 0x65021802,
12-311: reserved for future use. The first parameter in header
710 tells the total size of the file 1s 1n bytes. The second
parameter 1s the same as the first 1 there 1s no subroutine
block 720. If there 1s a subroutine block 720, the second
parameter tells us where the first section ends (and therefore
where the subroutine block begins one byte later. The
signature 1s a speciiic pattern of 4 bytes that helps confirm
that a file 1s a binary format script, rather than some other
kind of file.

Each of frame descriptors 600-1 to 600-» following
header 710 can be of the same format as frame descriptor
600, which 1s described above with reference to FIG. 6.
Subroutine block 720 contains a set of subroutines 1mple-
mented using 1nstructions for PVM 492 of FIG. 4, and each
frame descriptors 600-1 to 600-» can include a call param-
cter that provides an oflset to a subroutine in block 720
cither from that frame descriptor 600 or from the starting
address of script 700. In the case of a non-zero subroutine
address 1n a frame descriptor 600, the subroutine 1s “called”
at the end of each frame playback. Each subroutine may alter
duty cycle parameters PWM or drive amplitudes AM from
a frame descriptor. For example, subroutines can support
dynamic eflects such as fading or morphing between one
spectral distribution and another. In principle, any math-
ematical transformation on the output can be performed
between each frame playback, though in practice the amount
of computation that may be performed “between” frame
playbacks 1s limited by the available processing power. For
example, when PVM 492 1s implemented in firmware 1n
luminaire 400 of FIG. 4, the processes that may be 1mple-
mented to change every frame are limited by the speed of
CPU 430 and the etliciency of the virtual machine support-
ing the math processes. Further, the available processing
time between frames may be somewhat less than the frame
clock period 1n order to have the data ready for loading data
into the driver circuits for playback and 1n order to access a
script.

Compiled script 700 or a source script containing similar
information describing lighting from a luminaire can be a
commercial product similar to music or video. In some
embodiments, compiled or uncompiled scripts can be stored
and sold 1n a computer-readable media, e.g., a non-transient
media, such as an optical or magnetic disk, a memory card,
or other solid state storage that a luminaire, an application,
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or another portion of the lighting system can interpret or
process to reproduce a lighting scenario. Such media may
turther be or be contained 1 a server or other device
connected to a network such as the Internet that provides for
the downloading of data and executable instructions.

A playback process 800 for script 700 1s 1llustrated by the
flow diagram of FIG. 8. The playback process 800 begins 1n
step 810 with HLL interpreter 490 selecting a frame descrip-
tor 600, e¢.g., identifying the first frame descriptor 600-1 in
script 700. In an exemplary embodiment, HLL interpreter
490 plays back frame descriptors 600-1 to 600-z in a
sequential order, and each frame descriptor 600-1 to 600-7
can either contain frame data that 1s fixed or frame data that
a subroutine call changes. For each frame period, HLL
interpreter 490 activates binary interpreter 491 1n step 820 to
read, convert, and output the next frame data to the driver
circuits of the light channels. For example, as described
above with reference to FIG. 5, the output of frame data can
occur one channel at a time with the timing for data transiers
controlled by a channel clock. In step 830, HLL interpreter
490 then determines whether the selected frame descriptor
600 should be repeated. If not, for example, 11 the last
iteration ol the selected frame descriptor 600 has been
executed, the playback process 800 branches to step 860 and
determines whether there 1s another frame descriptor to play
back. If playback of the selected frame descriptor 1s to be
repeated, HLL interpreter 490 1n step 840 checks the call
parameter of the frame descriptor to determine whether a
procedure needs to be performed before the next output of
frame data. For a static frame descriptor, no procedure 1s
called, and the same frame data can be output in step 820
according to the frame timing requirements. IT the call
parameter of the current frame descriptor 600 1dentifies a
subroutine, process 800 branches from step 840 to step 850,
and HLL 490 activates PVM 492 to execute the subroutine
identified by the call parameter of the current frame descrip-
tor 600. In alternative play back processes, the procedure
call (steps 849 and 850) can be before output of frame data
n step 820 or between step 820 and checking the repeat
count 1n step 830. Each subroutine must be sutliciently short
that PVM 492 can complete the subroutine and potentially
change the frame data within a period of the frame clock. If
the call parameter of the current frame descriptor 600 does
not identily a subroutine, the frame data remains unchanged.
Accordingly, the next frame displayed can use the same
frame data as did the previous frame or can use new frame
data produced by a procedure call. When HLL interpreter
determines 1n step 830 that the repeat count for a frame
descriptor 600 1s exhausted, the luminaire loads the next
frame descriptor 600 from a script 700 and repeats the
playback process for as many frames as the new Irame
descriptor 600 describes.

Use of repeat and call parameters 630 and 620 in frame
descriptor 600 as described above can significantly reduce
the amount of data and the script length required for a
playback process. For example, with two bytes for PWM
data, one byte for AM data, one byte to specily the target
channel, and 32 channels per frame, each frame requires 128
bytes of data or 136 bytes per frame 1f eight additional
overhead bytes are added per frame. Since frames repeat
1000 times per second, the net data rate 1s about 1.36
Mb/sec, which 1s similar to the payload data rate of a
compact disc (CD). Accordingly, play back of lighting 1n an
exemplary embodiment takes about the same amount of data
per second as does play back of high fidelity stereo audio.
This data rate may be different 1n other embodiments of the
invention that use on-the-tly data compression to reduce data
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throughput or that differ in the number of light channels, the
frame playback rate, or the number of bits representing the
emitted light intensity from each channel.

PVM 492 in an exemplary embodiment of luminaire 400
of FIG. 4 1s a firmware implementation of a stack-oriented,
floating-point math capable co-processor. Alternatively,
PVM 492 could be implemented as a specialized hardware
co-processor. In either case, PVM 492 can, for example,
compute transforms from the current frame data to the next
frame data 1n real time, or near-real time, allowing for
programmable lighting eflects based on arbitrary algorithms.

FIG. 9 illustrates an exemplary architecture of a stack-

based co-processor 900 capable of executing compiled
scripts. Co-processor 900 specifically runs a machine lan-
guage that can be used to define procedures embedded
within a script. As shown i FIG. 9, co-processor 900
includes a floating point stack 910, channel registers 920,
frame registers 930, a memory file 950, and a program stack
960. The architecture of co-processor 900 can be 1mple-
mented as a virtual machine or in hardware. In particular,
PVM 492 of FIG. 4 1s an example of a virtual machine
implemented 1n firmware or other program code executed by
CPU 430. In the case of a virtual machine implementation,
registers 910, 920, 930, 940, 950, and 960 correspond to
locations 1n the memory space of the general purpose CPU,
and the general purpose CPU executes program code to
interpret the instruction set of co-processor 900 and particu-
larly to manipulate the content of registers 910, 920, 930,
940, 950, and 960 1n accordance with those instructions.
Alternatively, co-processor 900 can be implemented in hard-
ware including registers 910, 920, 930, 940, 950, and 960
and processing circuits that implement the desired instruc-
tion set.
The script language of co-processor 900 can provide
major tloating point and trigonometric operations, as well as
conditional branching, counting, looping, and other standard
programming constructs. The instruction set can further be
optimized for reaching 1into frames to read, modity, and write
data into running frames 1n real time, and to support arbi-
trary calculations which might be useful in controlling
frames to implement complex eflects. In an exemplary
embodiment, co-processor 900 includes two major compo-
nents. One component 1s a general-purpose processor opti-
mized for floating point math including operations such as
add, subtract, multiply, divide, logarithms, exponents, trigo-
nometry functions, and pseudo-random number generation.
Another component 1s a frame processing unit. The frame
processing functions can 1include providing interfaces
between the frame currently in play and the main CPU,
supplying information of computational value on the current
frame (e.g., a count of the times that the current frame has
played back and the number of times the current frame will
repeat before advancing to the next frame) to the script
programmer.

Co-processor 900 1s stack-oriented, and floating point
stack 910 consists of registers X, Y, Z, and T on which
floating point operations can be performed. Table 1 lists an
exemplary set of floating point operations that co-processor
900 can perform on floating point stack 910. In the tables
below, the code represents an instruction 1 a syntax
intended for a source script that a user or an application may
write, and the hex values indicate the instruction code 1n the
compiled script. The operation and operation description for
an 1nstruction indicate the action that co-processor 900 takes
in response to the mstruction 1n a compiled script. In Table
1, unitary operations (e.g., SIN, COS, SQRT, LOG) take the
value 1n register X and return a new value back to register
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X. Binary operators (e.g., ADD, SUB, MUL, DIV, YAX,
etc.) take the values 1n registers X and Y, compute a result,
drop the stack, and return the result back to register X. These
operations are similar to operations performed by well-

known calculators that use Reverse Polish Notation (RPN). >

TABLE 1

Math Operations
Code Op Description Hex Operation
ADD Add CO w<=Y + X; DROP; X <=w
SUB Subtract Cl w <=Y — X; DROP; X <=w
MUL Multiply C2 w<=Y * X; DROP; X <=w
DIV Divide C3 w<=Y/X; DROP; X <=w
POW Y to X power C4 w <=Y X; DROP; X <=w
CHS Change sign DO X <= —-(X)
INT integer part D1 X <= integer(X)
FRAC fractional part D2 X <= fraction(X)
RECIP Reciprocal D3 X <= 1/X
SQRT Square root D4 X <= SQRT(X)
SIN Sine D3 X <= SIN(X) (X in radians)
COS Cosine D6 X <= COS(X) (X 1n radians)
TAN Tangent D7 X <= TAN(X) (X in radians)
ASIN Arcsine D8 X <= SIN-1(X)
ACOS Arccosine D9 X <= COS-1(X)
ATAN Arctangent DA X <= TAN-1(X)
LOG Logarithm base 10 DB X <= LOG10(X)
EXP Antilog base 10 DC X <= 10 X
RND Random DD X <= RANDOM(X)
RTD Radians to degrees DE X <= 360 * (X/2 * PI)
DTR Degrees to radians  DF X <=2% Pl *(X)/360

Table 2 shows a set of stack operations that can be
implemented 1n co-processor 900 to perform some useful
manipulations of tloating point stack 910 without perform-
ing a floating point mathematical operation.

TABLE 2

Stack Operations

Code Op Description Hex  Operation
DUP Lift stack; retain X FO T<=7;7 <=Y;
Y <= X; X unchanged

DROP  Drop stack F1 w<=X; X<=Y;Y <=7Z;

(Roll down) Z<=T,T<=w
SWAP Swap XandyY F2 w<=X; X<=Y;,Y <=w
INDX  Indirect by X F3 X <= MEM({ABS(INT(X)))
INDY  Indirect by Y F4 X <= MEM({ABS(INT(Y)))

In addition to floating point stack registers 910, co-
processor 900 1ncludes 100 floating point storage locations

numbered MEM 00 to MEM 99 1n memory file 930. A

luminaire can use memory file 950 to store values until the
luminaire 1s switched off or the wvalues are deliberately
over-written. Table 3 shows operations that can be 1mple-
mented 1n co-processor 900 to move data between floating
point stack 910 and memory file 950 or control registers 940
or to push a constant floating point number (FP#) onto
floating point stack 910.

TABLE 3
Storage Operations
Code Op Description Hex Operation
STO nn Store X to memory 10 nn MEM|nn] <= X;
(0 <= nn <= 99)
STO R Store X to R register 10 80 R<=X
STO 1 Store X to I register 10 81 [ <=X
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TABLE 3-continued

Storage Operations

Code Op Description Hex Operation

STO C Store X to C register 10 82 C<=X

STOIND nn Store X indirectly 12 nn MEM[MEM[nn]] <= X
(0 <= nn <= 99)

RCL nn Get X from memory 18 nn DUP; X <= MEM|nn]|
(0 <= nn <= 99)

RCL R Get X from R register 18 80  DUP; X <= R

RCL I Get X from I register 18 81 DUP; X <=1

RCL C Get X from C register 18 82  DUP; X <= C

RCLIND nn Get X indirectly l1Ann DUP; X <=
MEM[MEMI[X]]

PUSH FP#  Get X from FP# 60 FP# DUP; X <= double
(1716151413121110)

Control registers 940 include a Program Control (PC)
register that points to the next mstruction to be executed by
co-processor 900, an instruction register (IR) that holds the
instruction being executed, and an stack pointer (SP) register
that points to a current return address 1n program stack 960.
The IR register 1n the exemplary embodiment can store the
entire 1nstructions (including parameters) for enhanced
debugging ability and for convenience of implementation.
Tables 4 and 5 respectively illustrate unconditional and
conditional branch operations in an exemplary instruction
set for co-processor 900. The unconditional branch opera-
tions change register PC and accordingly the next instruction
loaded mto register IR. The conditional branch operations
evaluate a condition and change register PC and the next
instruction loaded into register IR 11 the condition 1s satis-
fied. A CALL operation adds a return address to program
stack 460 and updates register SP to point to the added return
address before branching to the called label. As a result,
program stack 460 holds return addresses for CALL opera-
tions to enable corresponding returns, and register SP points

to a return address 1n program stack 460 to enable a return
from the last CALL operation.

TABLE 4
Unconditional Branch Operations

Code Op Description Hex Operation

CALL label Call subroutines 20 BB AA

IMP label Jump to address 22 BB AA

TABLE 5
Conditional Branch Operations

Code Hex Operation
IXZ label 40 BB AA if (X == 0) jump to AABB
JXNZ label 41 BB AAif (X !'=0) jump to AABB
JXPL label 42 BB AAif (X >= 0) jump to AABB
JXMI label 43 BB AA if (X <0) jump to AABB
IXEY label 44 BB AA1I (X ==7Y) jump to AABB
JXNEY label 45 BB AA 1 (X !=Y) jump to AABB
IXGTY label 46 BB AA 1T (X >Y) jump to AABB
JIXLTY label 47 BB AA U (X <Y) jump to AABB
JRZ label 50 BB AAif (R ==0) jump to AABB
JRNZ label 51 BB AAif (R !=0) jump to AABB
I1Z label 54 BB AAif (I==0)jump to AABB
JINZ label 55 BB AAif (I!'=0)jump to AABB
JCZ label 583 BB AAif (C == 0) jump to AABB
JCNZ label 59 BB AAif (C !=0) jump to AABB
ICINZ label 5A BBAAC<=C+ 1;1f (C!=0) jump to AABB
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TABLE 5-continued

Conditional Branch Operations

Code Hex Operation

SCZDAJ label 5B BBAAIf(C !=0) {C<=C - 1; jump to

AABB!

Frame registers 930, which 1n the illustrated embodiment
are registers R, I, and C, are primanly for the frame
processing component of co-processor 900. Register R 1s
nominally used for the repeat count of the current frame
descriptor. In particular, upon subroutine entry 1n the com-
piled lumen script of FIG. 7, HLL interpreter 490 stores the
“repeat count” parameter 630 for the calling frame descrip-
tor 600 1n the register R. For example, 11 the frame descriptor

currently being displayed has a repeat parameter with value
1000 times, then the high level interpreter will store the
value 1000 1n register R every time the subroutine for that
frame descriptor i1s called. The subroutine may overwrite
register R and use register R for other purposes so long as
the repeat parameter 1sn’t needed, but the next time the
subroutine 1s called for the frame descriptor, register R 1s
overwritten again.

The HLL interpreter when calling a subroutine from a
frame descriptor stores an iteration count in register 1. For
example, 11 a frame descriptor has a repeat parameter with
value 1000 (R=1000) then the value 1n register I will range
from O (when the subroutine 1s first called) to 999 (when the
subroutine 1s last called betfore the HLL interpreter advances
to the next frame descriptor). Register 1 can be used upon
initial entry of the subroutine, e.g., when I==0, as a flag for
conducting one-time 1nitialization tasks for the subroutines.
If I 1s not O, then the one-time 1nitialization 1s skipped. An
instruction, JINZ, enables this. Register 1 also serves as a
progress indicator. IT register R 1s not 0, then the value in
register I will range from O to R-1, and the display of a
frame descriptor will be about ((I+1)/R)*100% complete
when a subroutine 1s being executed. If R 1s zero to designate
unlimited repetitions, then a percentage completion has no
meaning, but register I will indicate the number of times the
subroutine has been called so far for the current frame
descriptor.

Register C 1s nominally for channel numbers and 1n the
exemplary embodiment of the invention holds values of 0 to
31 only and *“‘wraps around” back to O if incremented past
31. Operations to store or recall channel data (e.g., PWM
and AM data from the current frame) will operate on the
channel specified by the “C” register. Some further opera-
tions, which are illustrated in Table 6, can be included 1n an
exemplary istruction set for co-processor 900 to increment
or decrement channel register C.
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TABLE 6

Channel Operations

Code Hex Operation
INC C 70 C <= C + 1; use ICINZ for loop instead
DEC C 72 C <=C - 1; use DCZDAI for loop instead

Each routine (e.g., 1n subroutine block 720 of a compiled
script 700) ends with either a return (RET) instruction or a
halt (HALT) instruction. A RET operation uses the return
address temporarily stored on the top (to which register SP
points) ol program stack 460 to “find” the correct return
address for a pending CALL operation and then updates
register SP to point to the next return address 1n program
stack 469. A RET operation returns to the high-level script
when there are no further pending subroutine returns. The
HALT operation forces an immediate return to abort the
low-level program in progress and return to the high-level
script operation. Note that each umimplemented 1nstruction
value can be treated as a HALT operation in case co-
processor 900 starts to execute random memory content as
program code.

TABLE 7

Return Operations

Code Op Description Hex
RET Return from subroutine 24
HALT Quit immediately 73

A script compiler, e.g., script compiler 322 of FIG. 3, may
be used to generate compiled script 700 from a source file.
The source script file may have a simple format such as a
comma separated variable file or .CSV. Such files can be
created using commonly available applications such as
Microsoit Excel, Open Office, or a simple program like
Notepad. A simple source script file can define a series of
frame descriptors, wherein each frame descriptor includes
channel data defining the color or spectral distribution of
lighting and repeat count defining the playback timing. A
more advanced source script file may identily or contain
prefabricated or custom modules or subroutines, which may
be re-used 1n different locations and contexts 1n a script and
re-used 1n different scripts. The syntax for the source script
file can be defined to permit a unique definition of compiled
script 700. Table 8 shows an example of a source script that
defines channel data and includes a subroutine using the

instruction set described above. Comments 1n Table 8 are on
lines beginning with the symbol “#.”

TABLE 8

Script Source Code

# This starts a frame descriptor and defines the initial channel data (the initial frame).
# An application with a GUI for selection of a spectral distribution may generate this data.

1,18724,16, 2,17873,13, 3,11915,22, 4,20426,14

5,18724,35, 6,23831,47, 7,22980,52, 8,16171,52

0,11915,52, 10,5958,52, 11,11064,52, 12,65535,52

13,65535,52, 14,65535,52, 15,65535,52, 16,65535,52

17,55322,52, 18,65535,52, 19,65535,52, 20,65535,52

21,65535,52, 22,65535,52, 23,49364,52, 24,53620,52

25,24000,52, 26,24000,52, 27,24000,52, 28,24000,52

29,24000,52, 30,0,0, 31,0,0, 32,0,0

# The “CALL” instruction is right before the repeat count, IF there 1s a
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TABLE 8-continued

Script Source Code

# subroutine to call. Otherwise, it can be omitted.

# The compiled script will includes an address or offset for the FADEUP routine

CALL.FADEUP,

# The repeat count corresponds to 1500 frames or 1.5 seconds in this example
REPEAT,1500,

# “END” indicates no more frame descriptors in this script

END,,

# This example illustrates defining a LABEL and
# that the same location can have more than one label.

.LABEL,FADEUP,
LABEL . RATIO,

# The following routine will increase the brightness in a square-law manner,

# from the starting point as specified by the first and only frame in the script.

PUSH,1
RCL.I
ADD,
RCLR
DIV,

DUP,
MUL,
PUSH,1.1
MUL,
PWMALL,

# Every subroutine must end with a ,RET,
RET,

The above description of co-processor 900, the specific
instruction set for co-processor 900, and a source script 1s
only an illustrative example one possible embodiment. In
particular, some of the above instructions may not be 1mple-

mented or used 1n alternative embodiments of co-processor
900. Further, the instructions set has substantial room {for
expansion and inclusion of customized operations like “read
power consumption 1n watts” or “read temperature,” which
may be useful at the low level of a script.

A desired lighting scenario including time vaniation of the
spectral distribution of lighting can be scripted, compiled,
and played as described above. In general, descriptions of
desired lighting scenarios can be independent of the lumi-
naire on which they may be played, but at some point in the
scripting, compiling, or playback processes the luminaire-
independent descriptions are converted to operating param-
cters that are appropriate for the luminaire actually perform-
ing the playback. In accordance with an aspect of the current
invention, the transition from luminaire-independent and
luminaire-dependent descriptions of lighting can occur at
different processing points. FIG. 10 1s a flow diagram of a
process 1000 for producing a desired lighting scenario and
illustrates some of the diflerent ways to transition from
luminaire-independent and luminaire-dependent descrip-
tions.

Process 1000 starts i step 1010 with determining a
desired sequence of spectral distributions (SPDs), e.g., (SPD
(t=0), SPD(t=1), SPD(t=2), . .., SPD(t=M-1)) to be played
over time. For example, a spectrometer or other light mea-
suring device can take a series of periodic measurements of
the spectral power distribution 1n a lighting environment
being recorded, or an author may compose a series of colors
for lighting over a range of time. The result of step 1010 1s
a sequence of spectral distributions (SPDs), e.g., (SPD(t=0),
SPD(t=1), SPD(t=2), . . ., SPD(t=M-1)). Each SPD may
provide intensity data for a range of light wavelengths, for
example, from about 3350 to 750 nanometers. In step 1020,
cach spectral distribution SPD is characterized by a set of
channel data. For example, each SPD may be represented by
K intensity values, where each intensity value corresponds
to a particular wavelength band or light channel. (However,
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for efliciency, a single set of intensity values can be used to
represent a set or range ol different time intervals.) In
general, the number K may be the same or different from the
number light channels available in a luminaire, and 1n the

exemplary embodiment, K 1s 32 even though a typical
luminaire may have fewer physical light channels. For
example, a computer program can perform step 1020 by

converting each SPD into channel data (e.g., channel data
610-1 to 610-K of FIG. 6) including K pairs of parameters

PWM and AM. Parameters PWM and AM can be luminaire-
independent drive parameters that would be appropriate for
a hypothetical average luminaire having K light channels.
Alternatively, the calculation of parameters PWM and AM
may depend on the operating parameters of the playback
luminaire.

In general, there may not be one “best” solution for
conversion of a SPD 1nto channel data or specific parameters
PWM and AM because spectra of light channels in a
luminaire generally overlap and because more than one
combination of parameters PWM and AM can be used to
represent the same intensity. As a result, a process that
converts a spectral power distribution at time t to a (PWM,
AM) pair for each of 32 light channels may be non-trivial
and may be a possible “choke-point” 1n producing a desired
lighting scenario. For example, when more than one (PWM,
AM) combination creates essentially 1dentical output spec-
tra, 1t 1s likely that one of the solutions will be superior in
terms ol power consumption or temperature. In the case
where a certain amount of error can be tolerated, one slightly
less accurate solution might be dramatically more power
eilicient, 1n which case a small amount of accuracy can be
sacrificed for increased power elliciency, or a degree of
power elliciency can be sacrificed for higher accuracy. An
exemplary 1implementation may permit a user to create
solutions weighted differently for different goals.

Step 1030 15 the process of producing a script in the form
of a source {ile using a syntax that may be relatively easy for
a user to read or modily. In particular, the M SPDs deter-
mined 1n step 1010 may be represented using M sections of
script text representing M frame descriptors. The channel
data for each frame descriptor may be parameters PWM and
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AM that are lumen-independent or lumen-dependent,
depending on whether the transformation of the SPDs 1s to
a lumen-independent or lumen-dependent representation.
The repeat count for each frame descriptor would generally
correspond to the time between the SPDs. The script could
turther include a subroutine written using the instruction set
described above. For example, a subroutine could over a
series ol 1terations corresponding to the repeat count morph
the channel data from one frame descriptor to the channel
data of the next frame descriptor, and the representations of
the frame descriptors can include calls to that subroutine.

Step 1040 compiles the source script generated in step
1030 to produce a compiled script, e.g., having the format
described above with reference to FIG. 7. The compiling
process can either use the channel data represented i1n the
source script of step 1030 or convert the channel data from
the source script to channel data that 1s appropnate for the
specific luminaire that 1s to playback the script. An advan-
tage of converting from luminaire-independent channel data
to luminaire-dependent channel data during compiling step
1040 1s that the source scripts can be luminaire-independent
and may be a commodity that 1s marketable to owners of a
variety of types of luminaires. Alternatively, the compiled
scripts can be luminaire-independent and be marketable to
owners ol a variety of types of luminaires.

Step 1050 1nterprets the compiled script to produce light-
ing from the luminaire. The interpretation process will
generally need to convert the channel data to approprate
operating parameters of the luminaire, particularly 1f the
compiled script 1s luminaire-independent. However, it may
be beneficial for the compiler of the script to perform at least
part of the conversion to luminaire-dependent data since the
luminaire may have limited processing power.

Although the invention has been described with reference
to particular embodiments, the description 1s only an
example of the mvention’s application and should not be
taken as a limitation. Various adaptations and combinations
of features of the embodiments disclosed are within the
scope of the mvention as defined by the following claims.

What 1s claimed 1s:

1. A lighting system comprising:

a sensor; and

a processor executing an nterpreter module that accesses
the sensor and processes a script to generate operating
parameters for a plurality of light channels that operate
to produce different spectral distributions of light, the
interpreter module processing the script based on read-
ing data from the sensor to cause the light channels to
collectively produce a lighting scenario represented by
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the script, the script comprising one or more elements,
cach of the eclements being selected from a group
consisting of:

a frame of 1llumination data representing a spectral dis-

tribution; and

a subroutine including program instructions that are

executable by the interpreter module.

2. The system of claim 1, wherein the processor that
executes the interpreter module provides the operating
parameters to the drive circuit to thereby control time
variation of the relative intensities of the light output from
the light channels.

3. The system of claim 1, wherein the sensor 1s selected
from a group consisting of an infrared (IR) sensor, a tem-
perature sensor, a voltage sensor, a current sensor, a light
intensity sensor, a color sensor, a spectral power distribution
sensor, a spectrometer, a timer, and a sound sensor.

4. The system of claim 1, wherein the sensor evaluates
power consumption in the lighting system and provides
input data that the interpreter module uses to optimize
energy elliciency of the lighting system.

5. The system of claim 1, wherein a process defined by the
script accesses the sensor to monitor performance of the
hghtmg system and determine whether a desired lighting
scenar1io has been achieved.

6. The system of claim 1, wherein the sensor comprises a
sound sensor that senses sound cues.

7. The system of claim 6, wherein the script accesses the
sound sensor to implement a voice or sound command.

8. The system of claim 6, wherein processing the script
includes accessing the sound sensor to synchronize the
lighting scenario with the sound cues.

9. The system of claim 1, wherein processing the script
includes accessing the sensor to receive remote-control
commands from a remote unit.

10. The system of claim 1, wherein the lighting system
further comprises communication interface that allows a
remote system to read the sensor.

11. The system of claim 1, wherein the lighting system 1s
a luminaire.

12. The system of claim 1, wherein the processor further
executes a remote control decoder to interpret signals
received through the sensor and thereby extract commands
for lighting system.

13. The system of claim 1, further comprising:

the plurality of light channels that operate to produce

different spectral distributions of light; and

a drive circuit coupled to the light channels and program-

mable to control relative intensities of light output from
the light channels.
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