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(57) ABSTRACT

A processor determines that processing of a thread 1s sus-
pended due to limited availability of a processing resource.
The processor supports execution of the plurality of threads
in parallel. The processor obtains a lock on a second
processing resource that 1s substitutable as a resource during
processing of the first thread. The second processing
resource 1s 1ncluded as part of a component that 1s external
to the processor. The component supports a number of
threads that 1s less than the plurality of threads. The pro-
cessing of the thread i1s suspended until the lock 1s available.
The processor processes the first thread using the second
processing resource. The processor includes a shared regis-
ter to support mapping a portion of the plurality of threads
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to the component. The portion of the plurality of threads 1s
equal to, at most, the number of threads supported by
component.

6 Claims, 6 Drawing Sheets
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RESOURCE MAPPING IN
MULTI-THREADED CENTRAL PROCESSOR
UNITS

BACKGROUND OF THE INVENTION

The present mvention relates generally to the field of
computer thread processing, and more particularly to thread
processing by multi-threaded central processing units.

Multiple-threaded central processing units (CPUs) have
hardware support to execute multiple threads concurrently.
Multiple-threaded CPUs are distinguished from multi-pro-
cessing systems (such as multiple-core systems) in that the
threads of a multiple-threaded CPU have to share the
resources ol a single core, such as the computing units, the
CPU caches and the translation look-aside bufler (TLB), etc.
In contrast, multiple-processing systems include multiple
complete processing units with their own respective sets of
resources, each of which processes a thread. Where mul-
tiple-processing systems include multiple complete process-
ing units, multiple-threading aims to increase utilization of
a single core by using thread-level as well as istruction-
level parallelism. As the two techniques are complementary,
they are often combined in systems with two or more

multiple-threading CPUs and 1n CPUs with two or more
multiple-threading cores.

SUMMARY

Embodiments of the present invention provide a method,
system, and program product for a processor to support
multiple execution of threads in parallel. A processor deter-
mines that processing of a first thread of a plurality of
threads 1s suspended due to limited availability of a first
processing resource. The processor supports execution of
the plurality of threads in parallel. The processor obtains a
first lock on a second processing resource that 1s substitut-
able for the first processing resource during processing of
the first thread. The second processing resource 1s mcluded
as part ol a component that 1s external to the processor. The
component supports a number of threads that is less than the
plurality of threads. The processing of the first thread 1s
halted until the first lock 1s available. The processor pro-
cesses the first thread using the second processing resource.
The processor includes a shared register to support mapping
of a portion of the plurality of threads to the component. The
portion of the plurality of threads 1s equal to, at most, the
number of threads that are supported by component.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a functional block diagram illustrating a com-
puter-instruction processing environment, i accordance
with an exemplary embodiment of the present invention.

FIG. 2 depicts a block diagram of an exemplary logically
partitioned platiorm in which the illustrative embodiments
may be implemented.

FIG. 3 illustrates a workilow diagram, 300, showing the
phases for multithread processing as implemented by a
hardware component of FIG. 1, 1n accordance with one
embodiment of the present invention.

FIG. 4 1illustrates a component diagram showing an
example of multiple thread processing as implemented by a
hardware component of FIG. 1, 1n accordance with one
embodiment of the present invention.
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FIG. 5 1illustrates a flow diagram of the operational
processes of a thread-mapping program, executing on a
computing device within the environment of FIG. 1, 1n
accordance with an exemplary embodiment of the present
invention.

FIG. 6 depicts a block diagram of components of the
computing device that 1s executing the thread-mapping
program, 1n accordance with an exemplary embodiment of
the present invention.

DETAILED DESCRIPTION

While known solutions to utilize coprocessors and other
like subcomponents are known for use by multithreaded
central processing units, they include hardware and logic
resources for each thread. Embodiments of the present
ivention recognize that the dedication of hardware and
logic resources for use by each individual thread requires a
large chip area. Embodiments of the present invention
recognize that chip area 1s a valued resource during chip
design. As such, embodiments of the present invention
recognize that eflicient usage of chip area i1s highly sought
aiter. Embodiments of the present invention provide reduced
hardware and logic resources to process threads using exter-
nal components (such as subcomponents) that are statisti-
cally unlikely to be needed for the processing of all the
threads that are concurrently being processed by a given
multithreaded central processing unit at a given time. Some
embodiments recognize matching the number of threads that
are likely to need a given component to the amount of
hardware and logic resources that are made available for the
mapping of those threads to the component. Some embodi-
ments recognize using components that support a number of
threads equal to the number of threads that are statistically
likely to need the resources of that component at a given
time.

The present invention will now be described in detail with
reference to the Figures.

FIG. 1 1s a functional block diagram illustrating a com-
puter instruction processing environment, generally desig-
nated 100, in accordance with one embodiment of the
present invention. Computer instruction processing environ-
ment 100 includes computing device 110 connected to
network 130. Computing device 110 includes central pro-
cessing unit 111 (which further includes load store umnit
(LSU) 113, thread-mapping program 115, and resource data
120) and hardware component 125. Note that central pro-
cessing unit 111 1s depicted as being connected to hardware
component 125 via LSU 113. In general, LSU 113 manages
the load and store operations of CPU 111. In general,
resource data 120 1s a data file that includes information
about hardware component 125. For example, the process-
ing limitations of hardware component 1235, etc. In certain
embodiments described herein, central processing unit 111
utilizes the resources of hardware component 125 (via LSU
113, thread-mapping program 115, and resource data 120) to
process sequences of programmed instructions (1.e.,
threads). In this embodiment, hardware component 125 1s a
hardware component that 1s external to CPU 111, but 1s still
accessible by CPU 111.

In general, 1n the case that CPU 111 does not have enough
of a particular computing resource to process a particular
thread, hardware component 125 includes a computing
resource that can be substituted for that computing resource
of CPU 111. For example, thread B requires resource B.
CPU 111 has resource B but all of resource B 1s currently
being utilized to process thread A. However, hardware
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component 125 includes resource C, which 1s of the same
type as resource B, and therefore can be substituted for
resource B during the processing of thread B. As such,
thread-mapping program 115 causes thread B to be pro-
cessed using resource C. In some cases, CPU 111 does not
include the resource needed to process a thread at all. In such

cases, a substitutable resource simply is the resource (both
type and quantity thereof) that would allow CPU 111 to
process the thread, but i1s unavailable to CPU 111 {for the
processing of the thread.

In various embodiments of the present invention, com-
puting device 110 1s a computing device that 1s one of a
standalone device, a server, a laptop computer, a tablet
computer, a netbook computer, a personal computer (PC), or
a desktop computer. In another embodiment, computing
device 110 represents a computing system utilizing clustered
computers and components to act as a single pool of
seamless resources. In general, computing device 110 1s any
computing device or a combination of devices that include
central processing unit 111, LSU 113, thread-mapping pro-
gram 115, resource data 120, and hardware component 125,
and 1s capable of executing thread-mapping program 115. In
one embodiment, computing device 110 includes internal
and external hardware components, as depicted and
described 1n further detail with respect to FIG. 6.

In this exemplary embodiment, thread-mapping program
115 and resource data 120 are stored on computing device
110. However, 1n other embodiments, thread-mapping pro-
gram 115 and resource data 120 may be stored, at least 1n
part, externally and accessed through a communication
network, such as network 130. Network 130 can be, for
example, a local area network (LAN), a wide area network
(WAN) such as the Internet, or a combination of the two, and
may include wired, wireless, fiber optic or any other con-
nection known 1n the art. In general, network 130 can be any
combination of connections and protocols that will support
communications between computing device 110, hardware
component 1235, thread-mapping program 113, and resource
data 120, 1n accordance with a desired embodiment of the
present invention.

In an embodiment, the goal of multiple-threading hard-
ware support 1s, 1 general, to allow quick switching
between a blocked thread and another thread that 1s ready to
process. To achieve this goal, the hardware cost 1s to
replicate the program visible registers as well as some
processor control registers (such as the program counter).
Switching from one thread to another thread means the
hardware switches from using one register set to another.
However, 1n some cases, there are insutlicient resources on
a multiple-threaded central processing unit (CPU), such as
central processing unit 111, to process a given thread at a
given time. For example, a first thread 1s utilizing all of
resource A, which 1s included as part of the multiple-
threaded CPU. As such, thread B has to wait for resource A
to become available 1n order to be processed since thread B
also requires the use of resource A to be processed.

In one embodiment, thread-mapping program 115 1den-
tifies whether there are suflicient resources available in
central processing unit 111 to process a given thread. I1 there
are 1nsullicient resources available, then thread-mapping
program 115 identifies an external (sometimes ofl-chip)
component, such as hardware component 125, which has the
resources needed to process the thread. Thread-mapping
program 115 locks those resources and maps the thread to
the component such that the component processes the thread
and returns the result to central processing unit 111.
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In general, such a processing of a given thread follows the
following processing pattern: 1) write a lock command for
the resource; 2) determine 11 the lock was obtained; 3) 11 no
lock was obtained, then return to 1); 4) if the lock was
obtained, then write to control registers; 5) copy source
information for the thread from a memory (such as an mput
bufler); 6) read/poll the status register and determine
whether the component engines have finished processing the
thread; 7) if they have not finished processing the thread,
then return to 6); if they have finished processing the thread,
then read/poll the status register and determine whether data
store processes are complete; 8) if the data store processes
are not complete, then return to 7); and 9) 1f the data store
processes are complete, then write an un-lock command for
the resource.

A multiple-threaded computing system, such as comput-
ing device 110, includes a multiple-threaded CPU that 1s
configured to mimmize the resources (which take up chip
area) that are delegated for use for the processing of threads
that require the use of certain resources. These resources are
statistically unlikely to be used by all of the threads sup-
ported by the multiple-threaded CPU at any given time. By
using only what hardware 1s required under most circum-
stances, a more eflicient and eflective usage of chip area 1s
achieved.

For example, in computing device 110, a component
attached to a multiple-threaded CPU supports two threads. It
1s statistically known that, on average, the resources pro-
vided by that component are used five percent of the time by
any given thread. The multiple-threaded CPU supports four
threads. Instead of each thread having respective registers
and hardware to utilize resources of the component, the
multiple-threaded CPU 1includes a central (shared or com-
mon) register for mapping two of those threads to the
component. In one embodiment, if the resources of the
multiple-threaded CPU are unavailable or insuflicient to
process a thread (as determined by thread-mapping program
115), then thread-mapping program 1135 maps that thread to
the component for processing. For example, thread-mapping
program 115 determines that the multiple-threaded CPU
includes a resource that 1s configured to handle one thread,
1.€., the resource 1s configured to process only one thread at
a time. As such, 1f thread-mapping program 115 determines
that a thread 1s already utilizing the resource, then thread-
mapping program 115 maps other threads that call for that
type of resource to a component that has that type of
resource. In certain embodiments, no determination 1s made
by thread-mapping program 115 as to whether the called for
type of resource 1s included as part of the multiple-threaded
CPU. In such embodiment, thread-mapping program 115
simply maps threads to one or more components if the thread
calls for a type of resource that i1s icluded as part of that
component.

In another embodiment, thread-mapping program 115
actively assesses the average usage ol a given resource by
the threads that are processed by the multiple-threaded CPU.
In such embodiments, thread-mapping program 115 pro-
grammatically configures the number (and/or type) of hard-
ware resources that are available such that the usage of
on-chip hardware (e.g., logic and registers) 1s further opti-
mized or improved. For example, in one embodiment,
thread-mapping program 115 assesses the average usage of
a given resource. Thread-mapping program 115 determines
that on average, two threads need to use the resources of a
component (in this case a field-programmable gate array
(FPGA)). Based on the results of the assessment, to maxi-
mize the usage of those resources by the threads of a
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multiple-threaded CPU, thread-mapping program 1135 uses
an atomic update to block an mput bufler of the FGPA and
maps the mput for that bufler to threads if those threads
require the use of the resource. As such, thread-mapping
program 115 increases the number of threads that utilize that
resource.

FIG. 2 depicts a block diagram of an exemplary logically
partitioned platform, 200, in which the illustrative embodi-
ments may be implemented. The hardware in logically
partitioned platform 200 may be implemented, for example,
using the hardware of computing device 110 of FIG. 1.

Logically partitioned platform 200 includes partitioned
hardware 230, operating systems 202, 204, 206, 208, and
virtual machine monitor 210. Operating systems 202, 204,
206, and 208 may be multiple copies of a single operating
system or multiple heterogeneous operating systems simul-
taneously run on logically partitioned platform 200. These
operating systems may be implemented, for example, using
an operating system that 1s designed to interface with a
virtualization mechanism, such as partition management
firmware, e.g., a hypervisor. Of course, other types of
operating systems may be used depending on the particular
implementation. Operating systems 202, 204, 206, and 208
are located in logical partitions 203, 205, 207, and 209,
respectively.

Hypervisor software 1s an example of software that may
be used to implement platiorm (in this example, virtual
machine monitor 210). Firmware 1s “‘soitware” stored in a
memory chip that holds its content without electrical power,
such as, for example, a read-only memory (ROM), a pro-
grammable ROM (PROM), an erasable programmable
ROM (EPROM), and an electrically erasable programmable
ROM (EEPROM).

Logically partitioned platform 200 may also make use of
advanced memory virtualization technology that provides
system memory virtualization capabilities that allow mul-
tiple logical partitions to share a common pool of physical
memory. The physical memory of logically partitioned plat-
form 200 may be assigned to multiple logical partitions
either 1n a dedicated or shared mode. A system administrator
has the capability to assign some physical memory to a
logical partition and some physical memory to a pool that 1s
shared by other logical partitions. A single partition may
have either dedicated or shared memory. Active Memory
Sharing may be exploited to increase memory utilization on
the system either by decreasing the system memory require-
ment or by allowing the creation of additional logical
partitions on an existing system.

Logical partitions 203, 205, 207, and 209 also include
partition firmware loaders 211, 213, 215, and 217. Partition
firmware loaders 211, 213, 215, and 217 may each be
implemented using, for example, IPL or initial boot strap
code, and runtime abstraction software (RTAS).

When logical partitions 203, 205, 207, and 209 are
instantiated, a copy of the boot strap code 1s loaded nto
logical partitions 203, 205, 207, and 209 by virtual machine
monitor 210. Thereafter, control i1s transferred to the boot
strap code with the boot strap code then loading the open
firmware and RTAS. The processors associated or assigned
to logical partitions 203, 205, 207, and 209 are then dis-
patched to the logical partition’s memory to execute the
logical partition firmware.

Partitioned hardware 230 includes a plurality of proces-
sors 232-238, a plurality of system memory units 240-246,
a plurality of input/output (I/O) adapters 248-262, and
storage unit 270, service processor 290, and NVRAM 298.

In various embodiments, processors 232-238 may each be,
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for example, microprocessors, network processors, etc. Each
of processors 232-238, memory units 240-246, NVRAM
storage 298, and I/O adapters 248-262 may be assigned to
one of multiple logical partitions 203, 205, 207, and 209
within logically partitioned platform 200, each of which
corresponds to one of operating systems 202, 204, 206, and
208.

Virtual machine monitor 210 performs a number of func-
tions and services for logical partitions 203, 205, 207, and
209 to generate and enforce the partitioning of logically
partitioned plattorm 200. Virtual machine monitor 210 1s a
firmware 1mplemented virtual machine identical to the
underlying hardware. Thus, virtual machine monitor 210
allows the simultancous execution of independent OS
images 202, 204, 206, and 208 by virtualizing all the
hardware resources of logically partitioned platiorm 200.

Service processor 290 may be used to provide various
services, such as processing of platform errors in logical
partitions 203, 205, 207, and 209. Service processor 290
may also act as a service agent to report errors back to a
vendor, such as International Business Machines Corpora-
tion. Operations of the different logical partitions may be
controlled through a hardware system console 280. Hard-
ware system console 280 1s a separate data processing
system from which a system administrator may perform
vartous functions including reallocation of resources to
different logical partitions.

The 1llustrative embodiments provide for a device driver
to monitor dynamic reconfiguration kernel services of an
operating system (OS). In response to a dynamic CPU
reconiiguration, the device driver determines whether a CPU
has been added or removed from the environment. If the
dynamic CPU reconfiguration adds a CPU, the device driver
dynamically allocates a queue pair (QP) (1.e., a transmit/
receive pair). If the dynamic CPU reconfiguration removes
a CPU, the kernel thread quiesces a QP and removes the QP.
As used herein, a quiesce 1s a halt or interrupt of an operation
of a processor. In an embodiment, the kernel thread quiesces
a QP by waiting until the workload of the QP completes.

FIG. 3 illustrates a worktlow diagram, 300, showing the
phases for multithread processing as implemented by hard-
ware component 125 of FIG. 1, in accordance with one
embodiment of the present invention.

In FIG. 3, in one embodiment, thread-mapping program
115 utilizes millicode to process threads using the resources
of a component (e.g., a co-processor). In this embodiment,
there are three types of phases for thus process namely:
millicode only phases, millicode and component-hardware
interactions, and hardware-engine phases. FIG. 3 includes
arrows that indicate the starting point and ending point for
various processes of each phase. In addition, the number of
threads supported during a given phase 1s indicated.

In general, millicode 1s a higher level of microcode that 1s
often used to implement the instruction set of a computer.
Millicode runs on top of the micro-coded mstructions and
uses those instructions to implement more complex instruc-
tions that are visible to the user of that system. Microcode
1s a layer of hardware-level instructions or data structures
involved in the implementation of higher level machine code
instructions in central processing units, and 1n the 1mple-
mentation of the internal logic of many channel controllers,
disk controllers, network interface controllers, network pro-
cessors, graphics processing units, and other hardware.
Microcode resides 1n special high-speed memory and trans-
lates machine instructions into sequences of detailed circuit-
level operations. Microcode helps separate the machine
instructions from the underlying electronics such that
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instructions are, 1n some cases, designed and altered more
freely. Microcode also makes 1t feasible to build complex
multi-step 1nstructions while still reducing the complexity of
the electronic circuitry compared to other methods. Writing
microcode 1s often called micro-programming and the
microcode 1n a particular processor implementation 1s some-
times called a micro-program.

As shown 1n FIG. 3, both phases 31A and 31B support
four threads. In one embodiment, during millicode only
phases, shown as phase 31A and phase 31B 1n FIG. 3, the
component-hardware 1s not used. Instead, the computing
system uses millicode to perform one or more functions such
as: preparing, pre-checking, and mitializing to prepare for
the processing of the thread commands (phase 31A), and
conducting post-processing of the results of the processed
thread (phase 31B). For example, millicode pre-checks
accessibility of storage operands in phase 31A, and updates
general-purpose registers (GPRs) of the mstruction and sets
ending condition code in phase 31B. In certain embodi-
ments, the hardware of the component 1s unaware of milli-
code. As such, in some embodiments, millicode often con-
verts status-indicating signals received from the component
to different status-indicating signals, which, 1n some cases,
changes the indication represented by the signal. For
example, millicode receives a “good status, done” or “not
enough space” status-indicating signal from the component
after the thread has been processed. The millicode converts
that signal to an architected condition code of the mnstruc-
tion.

As shown 1n FIG. 3, both phases 32A and 32B support
two threads. In one embodiment, during millicode and
component-hardware interactions phases, shown as phase
32 A and phase 32B 1n FIG. 3, the hardware resources of the
component (e.g. address registers, control registers, status
registers) are utilized by millicode. For example, betfore the
hread 1s processed by the component, millicode 1nitializes
ne component 1n phase 32A. In another example, as the
aread 1s processed by the component, millicode commands
ne hardware of the component to extract information from
e state registers of the component 1n phase 32B. In many
cases, the regular component registers (for addresses, length,
status, etc.) are virtualized such that they appear to millicode
as thread specific, but the hardware (such as hardware from
a request/response logic unit (RU), component, and load
store unit (LSU)), use the thread-ID to obtain mapping info
that 1s needed to select the correct set of resources of the
component. The LSU manages all load and store operations.
The load-store pipeline decouples loads and stores from the
MAC and ALU pipelines. When the processor 1ssues load
multiple (LDM) and store multiple (STM) instructions to the
load-store pipeline, other mstructions run concurrently, sub-
ject to the requirements ol supporting precise exceptions.

In one embodiment, during hardware-engine phases,
shown as phase 33A and phase 33B 1n FIG. 3, millicode
feeds instructions to an mput bufler of the component. This
phase 1s the main utilization phase, where specialized com-
ponent engines are processing the mput data and commands
of the thread that 1s mapped to the component. In this
process, millicode source operand (SRC) data 1s copied and
written to input bufler. In addition, a hardware engine,
included as part of the component, processes mstructions to
prepare data to be stored as a result. For example, compres-
sion call structions (CMPSC), cryptographic conversions
and Unicode® (UTF) conversions are executed on the
results before the hardware stores the results.
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In this embodiment, a design point for multi-thread pro-
cessing by a component 1s based on one or more of the
following attributes:

Startup/Ending-Overhead:

For instructions calls with relatively short block size (e.g.
CMPSC call for 80 byte records) a large portion of the
latency 1s spent in the millicode-only-phase and register-
setup/checking (millicode and component-hardware interac-
tions phases). In other words, the hardware-latency for small
blocks of code 1s relatively short compared to the time spent
during setup and checking.

No Parallel Engine Execution:

If a component supports parallel execution of multiple
threads 1n the hardware-engine phases, then multiple store
streams for calculated data are required. Note that, 1n many
cases, the likelihood that such parallel execution will be
needed 1s not statistically high enough to justily support for
parallel engine execution 1n hardware. As such, in this
embodiment, the component does not support parallel
execution of multiple threads 1n the hardware-engine phases.
Fast-switch-over:

For a significant amount of component utilization pat-
terns, statistically, overall throughput for the component
improves through the implementation of iput data prepa-
ration. In this embodiment, mnput data preparation includes
control register preparation for a second thread while a first
thread 1s executing. Once the first thread finishes with the
engine-execution phase, then the component executes an
immediate switch over to the second thread.

In some embodiments, the device driver monitors the
dynamic reconfiguration kernel services of the OS by reg-
istering a handle with the dynamic reconfiguration kernel
services, such that the OS invokes the handle 1n response to
a dynamic reconfiguration CPU operation. The device driver
also creates a kernel thread, which sleeps until woken by the
handle. The handle wakes the kernel thread in response to
the OS invoking the handle. In response to waking, the
kernel thread determines whether a CPU has been added or
removed from the environment. If a CPU has been added,
the kernel thread dynamically allocates a queue pair (QP)
(1.e., a transmit/receive pair) and returns to sleep. If a CPU
has been removed, the kernel thread quiesces the QP of the
CPU and/or redirects the queued workload to another CPU,
removes the QP, and returns to sleep.

FIG. 4 1llustrates a component diagram, 400, showing an
example of multiple thread processing as implemented by
hardware component 1235 of FIG. 1, 1n accordance with one
embodiment of the present invention.

With reference to FIG. 4, the following 1s an example
embodiment and scenario described to provide further
understanding of the concepts and implementation details of
various embodiments described herein.

As used herein, a “CoP-facility” stands for the compo-
nent-hardware resources (e.g., two sets of registers and two
input builers). As used 1n the discussion of FIG. 4, a thread
1s always 1n the context of one thread out of four total
threads.

The component specific implementation concept of sup-
porting two facilities 1s supported by the hardware-units of
the component, LSU and RU. A set of interface signals exists
once per CoP-facility. However, millicode has a thread view
(4 threads). The two CoP facilities are presented to millicode
on a per thread view. The RU provides a mapping mecha-
nism from CoP-facilities to core-threads.

Based on previously mentioned considerations, as
described at least during the discussion of FIG. 3, the
component supports multiple thread processing as follows:
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a) the component (and LSU-component exclave) provide
two sets of control registers (not shown); b) the component
provides two sets of status registers (not shown) and two
input butlers 410 and 420; ¢) the component and LSU each
support one result data store stream included in output
controller-MUX/LAT (multiplex/latch) engine 450 (includ-
ing output bufler and transfer unit (TU)-load/store (L/S)
signals; and d) component hardware-engine utilization 1s
serialized.

As shown 1n FIG. 4, hardware component 125 includes a
number of program processing engines including: AES/DES
(advanced encryption standard/data encryption standard)
engine 425, CMPSC (compression call instruction) engine
430, UTF (Unicode® engine) engine 440, SHA (secure hash
engine) engine 445, and output controller-MUX/LAT engine
450. Hardware component 125 uses these engines to process
the program 1nstructions of the threads that are loaded 1nto
input bufllers 410 and 420.

With reference to elements included 1n FI1G. 4, an example
of such a two CoP-1facility exploitation 1s described herein-
after, which 1s herein used to 1illustrate a flow of threads
using component hardware.

As a setup for this example, assume that there are four
threads (A), (B), (C) and (D) 1n various stages of processing.
In this example, the oldest thread (D) utilized the hardware
of hardware component 125 in the past. As such, some
millicode post-processing remains to be executed 1n the core
outside of the hardware of hardware component 125. The
current thread (C) 1s loaded into input bufier 410 and 1s 1n
the main hardware-execution phase (e.g. CMPSC-expan-
sion). Therefore, hardware component 125 assigns one set of
control registers and status registers to thread (C). Thread
(B) has already passed the startup phase as has been loaded
into mput butler 420, this includes being setup by millicode
using the second set of control registers and status registers.
As such, the millicode has filled mput builer 420 to enable
a fast switchover by the hardware-engines of the component,
once thread (C) finishes with execution. A future thread, (A),
1s already in the millicode-only phase of preparing/pre-
checking using core resources outside of hardware compo-
nent 123.

With the above-described concept of two CoP-facilities
supporting four multithreading (SMT) threads, and the
above described setup for this example, the following hard-
ware—millicode interaction are described.

The millicode uses general purpose RU-logic to provide
atomic update instructions to perform a CoP-facility selec-
tion and a mapping to a thread-identification (thread-ID).
The millicode of thread-mapping program 113 ensures that
no more than two threads have access to the hardware of the
component at a given time. As such, the millicode of
thread-mapping program 115 manages a thread-identifica-
tion-to-CoP-facility mapping program. The millicode
ensures that only two of four possible threads have access to
the hardware of the component, 1.e., only the two threads
that have a currently enabled and valid thread-to-facility
mapping have access to the hardware of the component.

The thread-ID-to-CoP-facility translation 1s provided by
RU-logic and shadowed via a component bus (CBUS) to
L.SU 113 and hardware component 125. Layout: two times
three bits, per group one valid bit and two bits for thread-1D,
first group for CoP-facility A, second group for CoP-facility
B. Thread-mapping program 115 writes this mapping to a
core register (a central register, not thread specific).

A nibble as used herein refers to a four-bit aggregation, or
half an octet. As a nibble contains four bits, there are sixteen
possible values, as such a nibble corresponds to a single
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hexadecimal digit (thus, 1t 1s sometimes referred to as a “hex
digit” or “hexit”). In one embodiment, two nibbles are used
by thread-mapping program 115. For example, mm one
embodiment, the two nibbles include the following bits: bit
0 1s used for CoP-facility A and 1s currently unused; bit 1 1s
used for CoP-facility A and 1s a valid bit since the thread-1D
mapping 1s valid; bits two and three are used for CoP-facility
A and indicate the thread-ID; bit 4 1s used for CoP-facility
B and 1s currently unused; bit five 1s used for CoP-facility B
and 1s a valid bit since the thread-ID mapping 1s valid; bits
s1x and seven are used for CoP-facility B and indicate the
thread-ID. Note that, in this embodiment, LSU 113 and

hardware component 125 keep shadows of such bits.

The regular registers of hardware component 125 (facil-
ity-mapping-registers (MCRs) and regular special purpose
registers (RSPRs) for addresses, length, status, . . . ) are
“virtualized” such, that they appear to millicode as thread
specific, but the hardware (such as RU-logic, hardware
component 125 and LSU 113) use the thread-ID to retrieve
mapping imnformation to select the correct CoP-facility, 1.e.,
millicode access 1s a thread specific access. The registers
appear, as if they exist four times, all register accesses
include two-bit thread-ID (on RU-TU interface and CBUS).
Hardware component 125 uses the thread-to-facility trans-
lation table to select the correct CoP-facility for the
requested thread-ID (same 1s used 1n a hardware component
125-exclave in LSU 113). For accesses with a thread-1D not
mapped to a CoP-facility, hardware component 125 1ssues
an error checker (pointing out a millicode bug).

Note that the register layout of computing device 110
defines two categories of registers, namely core-regs (C) and
thread-regs (T). In reference to the embodiments described
in the discussion of at least FIGS. 3 and 4, all registers of
hardware component 125 fall mto the thread-reg (1) cat-
cgory (with the exception for the single core-reg providing
the thread-facility-translation).

In this embodiment, hardware component 125 further
includes progress indicators reported to the millicode of
thread-mapping program 115 (e.g., indicators for length,
counts etc.). Hardware component 125 also includes the
functionality to write partial data writes 1nto output butlers;
and a “ready pointer” points to the last ready byte to be
stored out by LSU. If the ready pointer 1s pointing into the
middle of a data write, then the LSU will not process that
data write, unless the last indication has been sent by
hardware component 125 to indicate that the ready pointer
1s now pointing to the last byte of the entire operation being
executed by hardware component 125 to process the thread.

In this embodiment, LSU 113 1s configured to take a
“snapshot™ of the ready pointer of the current facility when
hardware component 125 indicates “last” byte. Based on
such an indication, LSU 113 knows where the facility
switch-over 1s 1in the output bufler (OB), and also how many
bytes of the last data write to store. This also allows
hardware component 125 to move the ready pointer forward
into the new facility while LSU 113 1s still writing back
stores from the prior facility. Hardware component 125
indicates ready entries for at most, two facilities. LSU 113
will indicate “done” to hardware component 125 when one
facility 1s completely written back, at which time hardware
component 125 starts moving the ready pointer for that
facility (provided the prior usage of the same facility had
yielded a “last” byte indication). In some embodiments, 1t 1s
permissible for hardware component 125 to write data into

the OB for a third facility while LSU 113 1s still storing on
a first and then second facility. This 1s permissible, at least
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in part, only because LSU 113 does not depend on data
writes into the OB. However, LSU 113 does depend, at least
in part, on a ready-interface.

FIG. 5 illustrates a tflow diagram, 500, of the operational
processes ol thread-mapping program 115, executing on
computing device 110 within the environment of FIG. 1, 1n
accordance with an exemplary embodiment of the present
invention.

In process 305, thread-mapping program 115 identifies
the resources required to process a given thread. Then in
decision process 310, thread-mapping program 1135 deter-
mines whether there 1s an on-chip resource available that
matches the type of resource that 1s required to process the
thread. I there 1s an on-chip resource available that matches
the type of resource that 1s required to process the thread
(decision process 310, YES branch), then thread-mapping
program 115 proceeds to process 315. In process 515
thread-mapping program 115 processes the thread using the
on-chip resource that was determined to be available and
proceeds to decision process 535. In general, the existence
of a type of resource 1s not suflicient 1n and of itself to
determine whether there 1s an on-chip resource available that
matches the type of resource that 1s required to process the
thread. The resource must also be available 1n suflicient
quantity to process the thread. In addition, certain resources
are configured to support the processing of a preset number
of threads. If the maximum number of threads are already
being processed, then thread-mapping program 1135 deter-
mines that the resource 1s not available.

If there 1s not an on-chip resource available that matches
the type of resource that 1s required to process the thread
(decision process 510, NO branch), then thread-mapping
program 115 proceeds to decision process 520. In decision
process 520, thread-mapping program 115 determines
whether a component (i.e., a hardware component) 1s avail-
able for the processing of the thread. Such a component
includes a resource that matches the type of resource that 1s
required to process the thread. In this embodiment, such a
component 1s determined to be available 11 the number of
threads being processed by the component 1s less than the
maximum number of threads that can be processed by the
component. For example, i the component 1s configured to
process a maximum of three threads and 1s only processing
two threads, then thread-mapping program 115 determines
that the component 1s available since the component 1s
capable of supporting the processing of one more thread. If
a component 1s available for the processing of the thread
(decision process 520, YES branch), then thread-mapping
program 115 proceeds to process 325. In process 525
thread-mapping program 115 processes the thread using the
resource of the component that was determined to be avail-
able. In general, such a processing follows the processes
described in the discussions of FIGS. 1-4 for the processing
of a thread using the resources of a component, e.g., a
CoP-facility. Thread-mapping program 1135 then proceeds to
decision process 535.

If thread-mapping program 115 determines that a com-
ponent 1s not available for the processing of the thread
(decision process 520, NO branch), then thread-mapping
program 115 monitors the component for a predetermined
period of time (1n process 530), e.g., four cycles, after which
thread-mapping program 115 returns to decision process
520. In general, such a delay allows the processing of one or
more threads by the component to reach a point that allows
the component to begin the processing of another thread,
1.e., to reach a point at which the component becomes
available.
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In decision process 335, thread-mapping program 115
determines whether to modity the processing criteria that are
applied during the execution of the processes of thread-
mapping program 115. If thread-mapping program 115
determines to modily the processing criteria (decision pro-
cess 335, YES branch), then thread-mapping program 115
proceeds to process 340. In process 340 thread-mapping
program 1135 determines what the new criteria are and
applies them to future execution of the processes of thread-
mapping program 115. If thread-mapping program 1135
determines not to modily any of the processing criteria
(decision process 335, NO branch), then thread-mapping
program 115 proceeds to process other threads using the
previous criteria.

In general, such a modification to the processing criteria
(which include thresholds, periods of time, efc.) increases
the efliciency that threads are processed. For example, 11 the
processing ol threads 1s stalling at process 520 due to
repeated delays in the processing of other threads, then
thread-mapping program 115 determines to modily the
processing criteria of process 530 and increases the delay
from four cycles to eight cycles. While this does not directly
increase the rate at which the threads are processed, the total
numbers ol commands processed by thread-mapping pro-
gram 115 are decreased since fewer total processes (deter-
mination process 520 and process 530) are being executed.
In another embodiment, if thread-mapping program 115
determines that the processing of threads 1s stalling at
process 520, then thread-mapping program 115 returns to
determination process 510 after a number of wait cycles
have been completed (1.e., after determination process 520
and process 530 have executed the number of times). This
allows the processing of the threads to be completed 1n the
case where an on-chip resource becomes available.

FIG. 6 depicts a block diagram, 600, of components of
computing device 110 that i1s executing thread-mapping
program 1135, 1n accordance with an exemplary embodiment
of the present invention. It should be appreciated that FIG.
6 provides only an 1illustration of one implementation and
does not 1imply any limitations with regard to the environ-
ments 1n which different embodiments may be implemented.
Many modifications to the depicted environment may be
made.

Computing device 110 includes communications fabric
602, which provides communications between computer
processor(s) 604, memory 606, persistent storage 608, com-
munications unit 610, and put/output (I/0) interface(s)
612. Communications fabric 602 can be implemented with
any architecture designed for passing data and/or control
information between processors (such as microprocessors,
communications, and network processors, etc.), system
memory, peripheral devices, and any other hardware com-
ponents within a system. For example, communications
fabric 602 can be implemented with one or more buses.

Memory 606 and persistent storage 608 are computer-
readable storage media. In this embodiment, memory 606
includes random access memory (RAM) 614 and cache
memory 616. In general, memory 606 can include any
suitable volatile or non-volatile computer-readable storage
media.

Thread-mapping program 1135 and resource data 120 are
stored 1n persistent storage 608 for execution and/or access
by one or more of the respective computer processors 604
via one or more memories of memory 606. In this embodi-
ment, persistent storage 608 includes a magnetic hard disk
drive. Alternatively, or 1n addition to a magnetic hard disk
drive, persistent storage 608 can include a solid state hard
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drive, a semiconductor storage device, read-only memory
(ROM), erasable programmable read-only memory
(EPROM), flash memory, or any other computer-readable
storage media that 1s capable of storing program instructions
or digital information.

In some embodiments, the media used by persistent
storage 608 1s also removable. For example, a removable
hard drive may be used for persistent storage 608. Other
examples 1nclude optical and magnetic disks, thumb drives,
and smart cards that are inserted into a drive for transier onto
another computer-readable storage medium that 1s also part
ol persistent storage 608.

Communications unit 610, 1n these examples, provides
for communications with other data processing systems or
devices, 1ncluding resources of network 130. In these
examples, communications unit 610 includes one or more
network interface cards. Communications unit 610 may
provide communications through the use of either or both
physical and wireless communications links. In some
embodiments, thread-mapping program 115 and resource
data 120 are downloaded to persistent storage 608 through
communications unit 610.

I/O mterface(s) 612 allows for mput and output of data
with other devices that may be connected to computing
device 110. For example, I/O mterface 612 may provide a
connection to external devices 618 such as a keyboard,
keypad, a touch screen, and/or some other suitable input
device. External devices 618 can also include portable
computer-readable storage media such as, for example,
thumb drnives, portable optical or magnetic disks, and
memory cards. In some embodiments, software and data
used to practice embodiments of the present invention, e.g.,
thread-mapping program 115 and resource data 120, are
stored on such portable computer-readable storage media
and can be loaded onto persistent storage 608 via 1/O
interface(s) 612. I/O interface(s) 612 also connect to a
display 620.

Display 620 provides a mechanism to display data to a
user and may be, for example, a computer monitor, or a
television screen.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
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waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
mstructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
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stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the imnvention. However, 1t should be appre-
ciated that any particular program nomenclature herein 1s
used merely for convenience, and thus the imvention should
not be lmmited to use solely in any specific application
identified and/or implied by such nomenclature.

It 1s to be noted that the term(s) “Smalltalk” and the like
may be subject to trademark rights 1n various jurisdictions
throughout the world and are used here only 1n reference to
the products or services properly denominated by the marks
to the extent that such trademark rights may exist.

What 1s claimed 1s:

1. A method of a processor supporting multiple execution
of threads 1n parallel, the method comprising:

determining, by a processor, that processing of a first

thread of a plurality of threads i1s suspended due to
limited availability of a first processing resource,
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wherein the processor supports execution of the plu-
rality of threads in parallel;

obtaining, by the processor, a first lock on a second
processing resource that 1s a substitutable substitute for
the first processing resource during processing of the
first thread, wherein the second processing resource 1s
included as part of a component that 1s external to the
processor, wherein the component supports a number
of threads that 1s less than the plurality of threads, and
wherein the processing of the first thread 1s suspended
until the first lock 1s available;

processing, by the processor, the first thread using the
second processing resource, wherein the processor
includes a shared register to support mapping of a
portion of the plurality of threads to the component, and
wherein that portion of the plurality of threads 1s equal
to, at most, the number of threads that are supported by
component:

determining, by the processor, whether the first thread has
been processed; and

responsive to a determination that the first thread has been
processed, releasing, by the processor, the first lock on
the second processing resource.

2. The method of claim 1, the method further comprising:

determining, by the processor, that processing of a second
thread of the plurality of threads i1s suspended due to
limited availability of the first processing resource;

determining, by the processor, whether the first lock on
the second processing resource has been released; and

responsive to a determination that the first lock on the
second processing resource has been released, obtain-
ing, by the processor, a second lock on the second
processing resource such that the second thread 1s
processed using the second processing resource.

3. The method of claim 1, wherein the second processing,
resource 1s mncluded as part of a component that operates in
parallel with the processor.

4. The method of claim 3, wherein the second resource 1s
statistically unlikely to be needed for the processing of more
than the number of threads that are supported by the com-
ponent.

5. The method of claim 1, wherein the second processing,
resource 1s a hardware resource.

6. The method of claim 1, wherein the component 1s a
coprocessor that 1s configured to process one or more of:
mathematical calculations, mput operations, output opera-
tions, and graphics operations.
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