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1
LOW-LATENCY GESTURE DETECTION

BACKGROUND

Gesture detection systems are increasingly used 1n natural
user 1nterfaces to interact with computing devices without
the need for physical input devices such as keyboards, mice,
stylus pens and the like and without the need to touch a
screen. For example, game systems are available where a
player 1s able to stand 1n front of a depth and color camera
system which captures 1mages of the player making gestures
such as golf swings, dance moves, and hand gestures such as
hand waving, pushing motions and pulling motions. Com-
plex analysis of the captured 1images 1s computed to detect
and recognize the gestures and the results are used to
influence game play.

There 1s an ongoing need to improve the accuracy of
gesture detection systems. There 1s also an ongoing need to
develop gesture detection systems which have low obser-
vational latency. Here latency means the number of frames
that a gesture detection system consumes before recognizing,
an underlying gesture depicted in those frames. Existing
gesture detection systems typically have a relatively high
observational latency which makes the natural user interface
harder to use by the game player or other end user. Where
observational latency 1s high errors may result in use of the
natural user interface. For example, conflicting inputs may
be made to a game or other system where gesture recogni-
tion iput 1s delayed and becomes conflicted with other
forms of user iput made without delay. Where natural user
interface technology 1s used for medical applications, for
example, to control robotic equipment for surgery or other
applications requiring fine grained control, 1t 1s especially
important to reduce observational latency with regard to
gesture detection.

The embodiments described below are not limited to
implementations which solve any or all of the disadvantages
of known gesture detection systems.

SUMMARY

The following presents a simplified summary of the
disclosure 1n order to provide a basic understanding to the
reader. This summary 1s not an extensive overview of the
disclosure and 1t does not 1dentity key/critical elements or
delineate the scope of the specification. Its sole purpose 1s to
present a selection of concepts disclosed herein 1 a simpli-
fied form as a prelude to the more detailed description that
1s presented later.

Low-latency gesture detection 1s described, for example,
to compute a gesture class from a live stream of image
frames of a user making a gesture, for example, as part of a
natural user interface controlling a game system or other
system. In examples, machine learning components are
trained to learn gesture primitives and at test time, are able
to detect gestures using the learned primitives, in a fast,
accurate manner. For example, a gesture primitive 1s a latent
(unobserved) varniable describing features of a subset of
frames from a sequence of frames depicting a gesture. For
example, the subset of frames has many fewer frames than
a sequence ol frames depicting a complete gesture. In
various examples gesture primitives are learnt from instance
level features computed by aggregating frame level features
to capture temporal structure. In examples frame level
teatures comprise body position and body part articulation
state features.
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Many of the attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read 1n light of the accompa-
nying drawings, wherein:

FIG. 1 illustrates an example camera-based control sys-
tem for controlling a computer game;

FIG. 2 1s a schematic diagram of an 1mage capture device;

FIG. 3 1s a schematic diagram of the gesture recognition
engine ol FIG. 2 1n more detail;

FIG. 4 1s a schematic diagram of the instance level
representation engine of FIG. 3 1n more detail;

FIG. 5 1s a flow diagram of process at the filter banks and
sparse coder of FIG. 3;

FIG. 6 1s a schematic diagram of positive and negative
bags of sequences of frames;

FIG. 7 1s a schematic diagram of a training engine
accessing training data to produce a trained classifier for
classitying sequences of frames 1nto gesture classes depicted
in the sequences of frames;

FIG. 8 1s a flow diagram of a method used by the training
engine ol FIG. 7;

FIG. 9 15 a schematic diagram of computing a temporally
pooled representation of a sequence ol frames;

FIG. 10 1s a schematic diagram of a graph comprising a
sequence ol frames;

FIG. 11 1s a schematic diagram of a dynamic program-
ming process for labeling a graph such as the graph of FIG.
10;

FIG. 12 1llustrates an exemplary computing-based device
in which embodiments of a gesture detection system may be
implemented.

Like reference numerals are used to designate like parts 1n
the accompanying drawings.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings i1s intended as a description of
the present examples and 1s not intended to represent the
only forms 1n which the present example may be constructed
or utilized. The description sets forth the functions of the
example and the sequence of steps for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

Although the present examples are described and 1llus-
trated herein as being implemented 1n a computer game
system, the system described is provided as an example and
not a limitation. As those skilled in the art will appreciate,
the present examples are suitable for application 1n a variety
of different types of computing and 1mage processing Sys-
tems.

In various examples a practical online (real time) gesture
detector with high accuracy and low observational latency 1s
described. Here latency means the number of frames that the
gesture recognition system needs to consume before recog-
nizing the underlying gesture. It’s generally important to
provide users instant feedback for any natural user interac-
tion application. For example, 1n a typical fighting gaming
scenar1o, the avatar needs to detect the potential users’
punch or kick gestures as early as possible so as to provide
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according reactions. Similarly, for natural user interface
controls such as drag and drop and window resizing, latency
and accuracy are the important factors that measure the
interactive performance.

As mentioned above, gesture primitives are learnt by a
machine learning component and these learnt gesture primi-
tives enable gestures to be recogmzed more quickly than
previously possible, and also with good accuracy. This 1s
because previous approaches have learnt complete gesture
sequences rather than trying to learn sub-patterns within
those long gesture sequences. The gesture primitives of the
examples described herein are sub-patterns of gestures and
so may be detected without using data observed from a
complete sequence of frames depicting a whole gesture. In
the examples described below the sub-patterns are unob-
served variables which are learnt during a traiming phase.
During a test phase, when the trained machine learning
system 1s used to recognize gestures, 1t 1s possible to
recognize gestures from a relatively small number of frames,
as compared with the number of Iframes depicting the
complete gesture. In this way latency 1s reduced.

Some previous approaches have attempted to learn global
level discriminative gesture patterns without taking into
account localized gesture sub-patterns. The examples
described herein have been found to give a better tradeoil
between accuracy and latency than previous approaches.
This 1s especially the case when the gestures contain rela-
tively large intra-class variability (for example, golf swings
and sign language gestures).

FIG. 1 shows an example camera-based control system
100 for controlling a computer game. FIG. 1 shows a user
102 playing, in this illustrative example, a boxing game. In
some examples, camera-based control system 100 can be
used to, among other things, determine body pose, bind,
recognize, analyze, track, associate to a human target, pro-
vide feedback, interpret gestures, and/or adapt to aspects of
a human target such as the user 102.

The camera-based control system 100 comprises a com-
puting device 104. The computing device 104 can be a
general purpose computer, gaming system or console, or
dedicated 1image processing device. The computing device
104 can include hardware components and/or software com-
ponents such that the computing device 104 can be used to
execute applications such as gaming applications and/or

non-gaming applications. The structure of the computing
device 104 1s discussed hereinafter with reference to FIG.
12.

The camera-based control system 100 further comprises a
capture device 106. The capture device 106 can be, for
example, an 1mage sensor or detector that can be used to
visually monitor one or more users (such user 102) such that
gestures performed by the one or more users can be cap-
tured, analyzed, processed, and tracked to perform one or
more controls or actions within a game or application, as
described 1n more detail below.

The camera-based control system 100 can further com-
prise a display device 108 connected to the computing
device 104. The computing device can be a television, a
monitor, a high-definition television (HDTV), or the like that
can provide game or application visuals (and optionally
audio) to the user 102.

In operation, the user 102 can be tracked using the capture
device 106 such that the joint positions, movements and size
of user 102 can be mterpreted by the computing device 104
(and/or the capture device 106) as controls that can be used
to affect the application being executed by computing device
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104. As a result, the user 102 can move his or her body to
control an executed game or application.

In the illustrative example of FIG. 1, the application
executing on the computing device 104 1s a boxing game
that the user 102 1s playing. In this example, the computing
device 104 controls the display device 108 to provide a
visual representation of a boxing opponent to the user 102.
The computing device 104 also controls the display device
108 to provide a visual representation of a user avatar that
the user 102 can control with his or her movements. For
example, the user 102 can throw a punch 1n physical space
to cause the user avatar to throw a punch 1n game space.
Thus, according to this example, the computing device 104
and the capture device 106 of the camera-based control
system 100 can be used to recognize and analyze the punch
of the user 102 in physical space such that the punch may be
interpreted as a game control of the user avatar 1n game
space.

Furthermore, some movements can be interpreted as
controls that correspond to actions other than controlling the
avatar. For example, the user can use movements to enter,
exit, turn system on or ofl, pause, save a game, select a level,
profile or menu, view high scores, communicate with a
friend, etc. Additionally, movement of the user 102 can be
used and analyzed 1n any suitable manner to interact with
applications other than games, for example to enter text,
select 1cons or menu 1tems, control media playback, browse
websites or operate any other controllable aspect of an
operating system or application.

In the example of FIG. 1 the capture device 106 1s
mounted on top of a display screen. However, it 1s also
possible for the capture device 106 to be worn by the user.
For example, as a wrist mounted device, head mounted
device or other wearable device.

Reference 1s now made to FIG. 2, which illustrates a
schematic diagram of the capture device 106 that can be
used 1n the camera-based control system 100 of FIG. 1. In
the example of FIG. 2 the capture device 106 1s configured
to capture video mmages with depth information. Such a
capture device can be referred to as a depth camera. The
depth 1information can be 1n the form of a depth image that
includes depth values, 1.e. a value associated with each
image element of the depth image that 1s related to the
distance between the depth camera and an item or object
located at that image element.

The depth information can be obtained using any suitable
technique including, for example, time-oi-tflight, structured
light, stereo 1mage, or the like. In some examples, the
capture device 106 can organize the depth information into
“Z layers,” or layers that may be perpendicular to a Z-axis
extending from the depth camera along its line of sight.

As shown 1 FIG. 2, the capture device 106 comprises at
least one imaging sensor 200. In the example shown 1n FIG.
2, the imaging sensor 200 comprises a depth camera 202
arranged to capture a depth 1image of a scene. The captured
depth 1mage can include a two-dimensional (2-D) area of the
captured scene where each image element in the 2-D area
represents a depth value such as a length or distance of an
object 1n the captured scene from the depth camera 202.

The capture device can also include an emitter 204
arranged to 1lluminate the scene in such a manner that depth
information can be ascertained by the depth camera 202. For
example, 1n the case that the depth camera 202 1s an infra-red
(IR) time-of-tlight camera, the emitter 204 emits IR light
onto the scene, and the depth camera 202 is arranged to
detect backscattered light from the surface of one or more
targets and objects 1n the scene. In some examples, pulsed
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infrared light can be emitted from the emitter 204 such that
the time between an outgoing light pulse and a correspond-
ing incoming light pulse can be detected by the depth camera
and measured and used to determine a physical distance
from the capture device 106 to a position on the targets or
objects 1n the scene. Additionally, in some examples, the
phase of the outgoing light wave from the emitter 204 can
be compared to the phase of the incoming light wave at the
depth camera 202 to determine a phase shift. The phase shait
can then be used to determine a physical distance from the
capture device 106 to a position on the targets or objects. In
a further example, time-of-flight analysis can be used to
indirectly determine a physical distance from the capture
device 106 to a position on the targets or objects by
analysing the intensity of the reflected beam of light over
time via various techniques including, for example, shut-
tered light pulse 1maging.

In another example, the capture device 106 can use
structured light to capture depth information. In such a
technique, patterned light (e.g., light displayed as a known
pattern such as grid pattern or a stripe pattern) can be
projected onto the scene using the emitter 204. Upon striking,
the surface of one or more targets or objects 1n the scene, the
pattern becomes deformed. Such a deformation of the pat-
tern can be captured by the depth camera 202 and then be
analysed to determine a physical distance from the capture
device 106 to a position on the targets or objects in the scene.

In another example, the depth camera 202 can be 1n the
form of two or more physically separated cameras that view
a scene from different angles, such that visual stereo data 1s
obtained that can be resolved to generate depth information.
In this case the emitter 204 can be used to illuminate the
scene or can be omitted.

In some examples, 1 addition to the depth camera 202,
the capture device 106 can comprise a regular video camera,
which 1s referred to as an RGB camera 206. The RGB
camera 206 1s arranged to capture sequences ol 1mages of
the scene at visible light frequencies, and can hence provide
images that can be used to augment the depth images. In
alternative examples, the RGB camera 206 can be used
instead of the depth camera 202.

The capture device 106 shown 1n FIG. 2 further comprises
at least one processor 208, which 1s 1n communication with
the 1maging sensor 200 (i.e. depth camera 202 and RGB
camera 206 1n the example of FIG. 2) and the emitter 204.
The processor 208 can be a general purpose microprocessor,
or a specialized signal/image processor. The processor 208
1s arranged to execute instructions to control the imaging
sensor 200 and emitter 204 to capture depth images and/or
RGB images. The processor 208 can also optionally be
arranged to perform processing on these images, as outlined
in more detail hereinafter.

In some examples the imaging sensor 1s used to provide
silhouette 1mages which are two dimensional binary images
identifying foreground and background regions of the depth
and/or RGB 1mages captured by the imaging sensor. The
silhouette 1mages may be formed at the imaging sensor
and/or processor 208 from the captured depth and RGB
images. The silhouette 1mages may be processed using the
methods described herein to predict two dimensional joint
positions. In this case the silhouette 1mages can be thought
of as depth 1mages flattened to a fixed depth. The captured
depth 1mages may be used to predict three dimensional joint
positions as described in more detail below.

The capture device 106 shown 1n FIG. 2 further includes
a memory 210 arranged to store the instructions that for
execution by the processor 208, images or frames of 1images
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captured by the depth camera 202 or RGB camera 206, or
any other suitable information, 1mages, or the like. In some
examples, the memory 210 can include random access
memory (RAM), read only memory (ROM), cache, Flash
memory, a hard disk, or any other suitable storage compo-
nent. The memory 210 can be a separate component in
communication with the processor 208 or integrated into the
processor 208.

The capture device 106 also comprises an output interface
212 1n commumnication with the processor 208 and 1is
arranged to provide data to the computing device 104 via a
communication link. The communication link can be, for
example, a wired connection (such as USB, Firewire™,
Ethernet™ or similar) and/or a wireless connection (such as
WiF1, Bluetooth™ or similar). In other examples, the output
interface 212 can interface with one or more communication
networks (such as the internet) and provide data to the
computing device 104 via these networks. The computer
device 104 comprises a gesture recognition engine 214
which 1s described 1n more detail below with reference to
FIG. 3.

The gesture recognition engine 214 receives mput from
capture device 106 comprising a depth image stream 300
and an optional RGB 1mage stream 302. The gesture rec-
ognition engine 214 may also receive as iput optional state
data about the state of the game 304 and optional sensor data
306 such as from environmental sensors measuring tems-
perature, light levels, noise levels, or other sensed data.

The gesture recognition engine comprises a body position
engine 308, a body part articulation state detector 310, filter
banks 312, a sparse coder 314, an instance level represen-
tation engine 318 and a trained classifier 322. These com-
ponents are computer implemented using solftware and/or
hardware. That 1s, the functionality of the gesture recogni-
tion engine described herein can be performed, at least in
part, by one or more hardware logic components. For
example, and without limitation, illustrative types of hard-
ware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard
Products (ASSPs), System-on-a-chip systems (SOCs), Com-
plex Programmable Logic Devices (CPLDs), Graphics Pro-
cessing Units (GPUs).

The body position engine 308 computes, body position
data (with associated uncertainty) such as joint position data,
body part centroid position data, or other 3D position data
associated with an articulated entity depicted in the depth
image stream and/or the RGB 1mage stream. The articulated
entity may be for example, a human, an animal, part of a
human, part of an animal, or a robotic or other articulated
entity. In some examples the 3D position data comprises 6
degree of freedom position data. In some examples the 3D
position data comprises 6 degree of freedom position data
and the direction of a surface normal of a surface of the
ammated entity associated with the position.

In an example the body position engine comprises a joint
position detection system as described 1 U.S. patent appli-
cation Ser. No. 13/050,858 entitled “Predicting joint posi-
tions” filed on 17 Mar. 2011 and published on 20 Sep. 2012
with publication number 20120239174, However, this 1s an
example only. The body position engine may use a body part
centroids position detection system or other system for
calculating position of parts or joints of an animated entity.

In some examples the body position engine comprises a
finger tip position detector. For example, the capture device
may be worn on a wrist of a user and may detect finger and
thumb tip positions. In some examples the body position
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engine comprises a finger tip position detector comprising a
stereo camera mounted so as to capture images of an
interaction space.

The body part articulation state detector computes a state
label from a plurality of possible state labels. The state label
may have associated uncertainty information. For example,
the body part articulation state detector may be a hand state
detector which computes a label for a hand depicted 1n one
or more 1image frames. Example labels may be open palm
up, open palm down, closed, vertical palm away. In other
examples the body part articulation state detector 1s a head
state detector which computes a state for a head depicted 1n
one or more 1mage frames. Example labels may be head
down, head up, head turned left. The body part articulation
state detector may be a facial expression detector 1n some
examples.

Data computed by either or both of the body position
engine 308 and the body part articulation state detector 310
are optionally processed by filter banks 312 and a sparse
coder 314. This produces frame level features 316. That 1s,
a plurality of features are computed for individual ones of
the stream of 1mage frames.

The filter banks act to remove noise and outlier values
from the outputs of the body position engine and body part
state detector. This may improve robustness of the gesture
recognition engine. The sparse coder 314 acts to transform
the original filter bank output vector into another vector in
a new but higher dimensional feature space through code-
book learning and coding optimization. This may reduce the
negative eflect of the noisy data and build a robust feature
representation.

The frame level features are mput to the instance level
representation engine 318. An instance 1s a plurality of
frames from a sequence of frames that may depict, some-
where within the sequence, an example of a gesture. A
sequence of frames that are known to depict an example of
a gesture 1s called a positive bag in this document. A
sequence of frames that are known not to depict an example
of a gesture of a particular class (or known not to depict any
gesture) 1s called a negative bag in this document. An
instance has fewer frames than a sequence of frames depict-
ing a complete gesture.

For example, a positive bag comprising a sequence ol 50
frames may contain a depiction of a golf swing gesture.
Instances may be computed from the positive bag by select-
ing ordered frames from the bag. For example, an instance
may be computed by selecting every other frame. In another
example, an instance may be computed by selecting the
middle 20 frames. In another example, an nstance may be
computed by selecting frames 3, 4, 5, 22, 39, 40, 41 from the
sequence of 50 frames. There are a large number of over-
lapping 1nstances 1n each positive bag. There are also a large
number of overlapping instances in each negative bag.
Ideally such negative instances could be any combination of
frames within the negative bag.

Instances which are likely to occur only 1n positive bags
and which are unlikely to occur 1n negative bags are called
gesture primitives 1n this document. A gesture primitive 1s a
plurality of frames from a sequence of frames, or features
computed from the plurality of frames, which may be used
to indicate whether the sequence of frames depicts a gesture
or not. A gesture primitive 1s a latent (unobserved) variable
to be learnt by the classifier 322 of the gesture recognition
engine during a training phase. That 1s, a gesture primitive
cannot be labeled by a human being analyzing a sequence of
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frames. A gesture primitive describes characteristics of
fewer frames than the total number of frames depicting a
complete gesture.

As explained above an instance 1s a plurality of frames
from a sequence of frames that may depict an example
gesture. The instance level representation engine computes
instance features 320 which are characteristics of individual
instances. Thus an instance feature comprises mnformation
agoregated from a plurality of frames selected from a
sequence ol frames.

In an example, the aggregation comprises temporal aggre-
gation. This 1s referred to as temporal pooling and 1is
described 1n more detail below with reference to FIG. 9.
Various different types of temporal pooling may be used
such as max pooling and average pooling. In general,
temporal pooling has been found to be very eflective espe-
cially for short gestures with simple underlying patterns
such as using your hand to push away from you.

In another example, the aggregation comprises computing,
a graphical representation to depict temporal structure of an
individual instance. For example, by computing a hidden
conditional random field. The graphical representation may
be adaptive 1n that inference 1s carried out to infer hidden
variables of the conditional random field using dynamic
programming at both training time (when the classifier 322
1s trained) and at test time (when the trained classifier 1s used
to detect gestures). In general, graphical representations of
temporal structure have been found to be very eflective
especially for long complex gestures such as golf swings.

The 1nstance features 320 computed by the mnstance level
representation engine are input to a tramned classifier 322
which outputs a gesture label 324 and associated uncertainty
information. Any suitable trained classifier may be used. For
example, a linear classifier. In an example, a multiple
decision boundary classifier 1s used. A multiple decision
boundary classifier acts to divide a feature space into regions
using two or more boundaries. Examples are then classified
into regions according to which region they fall into 1n the
feature space. A multiple decision boundary classifier has
been found to be particularly effective as the instance level
features capture dramatic diflerences 1n appearance, motion,
and shape.

During online operation of the gesture recognition engine
live streams of input images are processed to calculate
gesture labels 324 1n real time. For example, the streams of
input 1mages are received at a frame rate of a video camera
and are processed to calculate gesture labels at the same rate.
The stream of frames 1s analyzed as it 1s received and the
gesture recognition engine fires a gesture as soon as it
receives 1nstance level features with high confidence of
being a gesture primitive. The instance level features may
result from only a few frames of a gesture. In this way, the
operation at test time 1s particularly fast and low latency
because not all frames depicting a gesture need to be
received and analyzed. The speed of the gesture detection
device may consume 0.19 MS per frame.

As 1llustrated i FI1G. 3 the gesture recognition engine 214
uses a novel pipeline. That 1s, the trained classifier takes as
input high level temporal features computed from body
position features and body part state features. Raw 1mage
data from the 1image streams 1s not input to the classifier. The
body position features and body part state features are
already semantically meaningiul and very compact and
discriminative. Computing instance level features from a
combination of both body position features and body part
sate features has been found to give accurate, fast, gesture
recognition results.
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FIG. 4 1s a schematic diagram of the instance level
representation engine of FIG. 3 1n more detail. The instance
level representation engine 318 takes as mput a stream of
frame level features 316. The frame level features comprise
body position features and body part articulation state fea-
tures as described above. The stream comprises features
computed from 1ndividual frames of a stream of frames as
described above.

The instance level representation engine 318 optionally
checks 400 whether a complex gesture 1s expected or not.
For example, the instance level representation engine 318
may use system state data in the case that the gesture
recognition system 1s used as part of a game system or other
system. The game state data may indicate that a player of a
golf game 1s expected to make a golf swing for example. The
game state data may indicate that a player 1s about to make
a complex dance gesture, for example, 1n response to a state
of an avatar 1n the game. It 1s also possible for the nstance
level representation engine to cache a batch of frame level
teatures and use rules or other criteria to check whether a
complex gesture 1s likely or not.

If a complex gesture 1s expected the instance level rep-
resentation engine 318 uses a graphical representation of
temporal structure of a sequence of frame level features. For
example, the graphical representation may comprise a hid-
den conditional random field. The mstance level represen-
tation engine may learn 404 labels 408 of nodes of a hidden
conditional random field as explained 1n more detail below.

If a simple gesture 1s expected the nstance level repre-
sentation engine 318 uses a temporal pooling 402 process to
compute temporally pooled instance level body position and
hand state features 406.

The arrangement of FIG. 4 may be modified such that
both the temporal pooling 402 and graphical representations
are computed in parallel for the stream of frame level
teatures 316. The arrangement of FIG. 4 may be modified
such that temporal pooling 1s computed and the graphical
representation 1s not computed (or vice versa).

FIG. 5 1s a flow diagram of process at the filter banks and
sparse coder of FIG. 3. To achieve robustness, instead of
directly using the raw features extracted from the input
signals, a sparse coding 512 1s computed which produces
coellicients that serve as the final frame-level representation.

The filter banks may comprise both a shape filter 502 and
a motion filter 504. The shape filter 502 may be defined as
the concatenated joint displacement vectors obtained by
subtracting each joint position with the average position of
all the joints at each frame. The motion filter 504 may be
defined as the speed of each joint along the timing sequence
(mimicking the optical flow).

Shape features 506 and motion features 508 output by the
respective filters are further separately sent to sparse coding,
components 510, 512. The resulting coding coellicients may
be concatenated 514 to form a final frame level representa-
tion.

FIG. 6 1s a schematic diagram of positive and negative
bags of sequences of frames. An individual frame 1s depicted
using a circle 606 in FIG. 6 and the position of the circles
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In this example, the first sequence of frames 600 has been
found to contain two gesture primitives as indicated. Each
gesture primitive comprises two frames in this example (one
marked with a + and one marked with a —) as indicated by
the dotted lines. The third sequence of frames 602 also
comprises a primitive comprising two frames as indicated.

FIG. 7 1s a schematic diagram of a training engine 704
accessing tramning data 700 to produce a trained classifier
706 for classiiying sequences of frames 1nto gesture classes
depicted 1n the sequences of frames. The trained classifier
706 may be a binary classifier which classifies an instance
level representation computed from a sequence of frames, as
being an example of a particular type of gesture or not (1.¢.
falling into the positive bag or the negative bag). Many of
the trained classifiers 706 may be used, one for each type of
gesture to be detected.

The tramming data 700 comprises sequences ol frames
labeled as positive or negative bags by human judges. The
training data 700 1s used to compute labeled 1nstance-level
teatures 702 using the process of FIG. 4 described above. A
training engine uses the labeled training data to train a
classifier such as a multiple decision boundary classifier to
produce trained classifier 706. The training engine may use
the supervised training process of FIG. 8.

With reference to FIG. 8 the training engine 1nitializes 800
a plurality of decision boundaries W 1n a multi-dimensional
feature space of the instance level features. For example, the
decision boundaries are set using preconfigured default
decision boundaries or are selected at random. The decision
boundaries divide the feature space imto a plurality of
regions, each region associated with a gesture primitive or a
negative bag. The instance level features are plotted 1n the
feature space and assigned estimated region labels 802 based
on relative position of the instance level features and the
decision boundaries. The most discriminative instance level
features from the positive bag are selected 804 and used to
update a training set of 1nstance level features. The updated
training set 1s used to update the decision boundaries W 806.
It convergence 1s reached 808 the training process ends 810;
otherwise the process repeats from step 802.

FIG. 9 1s a schematic diagram of computing a temporally
pooled representation of a sequence of frames using a
pyramid process. A pyramid process 1s one which computes
values at a plurality of scales or resolutions. Individual
frames are depicted as circles as 1 FIG. 6. In this example,
features from two frames 902 are aggregated to give first
level features. Features from a second two Iframes 904 are
aggregated to give first level features. The first level features
are then aggregated 900 to give second level features. The
aggregation may comprise taking a maximum of the feature
values or taking an average of the feature values. Other
aggregation processes may be used. By using a temporal
pyramid pooling process some degree of speed 1nvariance 1s
achieved. That 1s, a gesture of type 1 carried out slowly 1s
detected as a gesture of type 1, as 1s a gesture of type 1
carried out 1n a fast manner. By using a temporal pyramid
pooling process robustness to local noise 1s achieved.

FIG. 10 1s a schematic diagram of a graph comprising a
sequence of frames. As 1 FIG. 6 and FIG. 9 individual
frames are depicted as circles. Fach cross hatched circle
1004 depicts a node of a conditional random field. Edges
between nodes 1n the conditional random field graph 1000
are depicted as curved lines 1002. Each node of the graph
1000 1s assigned a hidden variable to form the conditional
random field graph 1000 with the aim of representing a
gesture primitive. A conditional random field (CRF) 1s a
statistical model for predicting a label of a frame by taking
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into account the proceeding several frames of the current
frame by connecting consecutive pairwise frames. The CRF
1s used to build the feature representation of the instance that
ends with the current frame. The label values do not have
semantic meamng and are latent (unobserved) variables
learnt during the dynamic programming process described
with respect to FIG. 11.

To find the labels of the conditional random field graph
dynamic programming 1s used. A cost matrix 1s formed as
illustrated schematically in FIG. 11 as a grnid of rows and
columns. Columns of the graph represent time intervals of
an input stream of frame level features. In this example a
frame 1100 at time T 1s preceded by frames at times T-1,
T-2 and T-3. Rows of the graph represent possible label
values 1102 of nodes of the conditional random field graph.
In this example there are four possible label values 1, 2, 3,
4. A minimum-cost path through the cost matrix 500 1is
computed to find the label value to assign to each time
interval (1.e. frame). In the example of FIG. 11 the minimum

cost path begins at column T-3 row 2 and moves to column
T-2 row 2. It then moves to column T-1 row 3 and then to
column T row 3. The size of the cost matrix 500 1s deter-
mined by the number of hidden states of each node. By way
of example, 1f there are 4 diflerent hidden nodes, then the
matrix would be 4x4, and each cell stores the minimum
accumulated cost of an optimal path from (0, O) to (1, 7). The
path may start at cell (0; 0) by the procedure of standard
dynamic programming, and end at cell (IPl, 1QI), so that a
mapping for all frames may be used. Three exemplary
moves may be used to construct a path: a diagonal 45° move
that indicates a label of the same type as the previous label
1s to be used, as well as horizontal and vertical moves that
represent the CRF labeling.

In order to calculate the cost function of finding the
optimal labeling the machine learning component may use
the following equation: h’=argmax, w'qp(X, y, h) where the
learned classifier model 1s denoted as w, and @(x, y, h)
denotes the joint feature representation of the CRF, whereby
h(h,h;h, . .. ) represents the hidden labeling for the graphs.

FIG. 12 1llustrates various components of an exemplary
computing-based device 104 which may be implemented as
any form of a computing and/or electronic device, and 1n
which embodiments of gesture recognition systems may be
implemented.

Computing-based device 104 comprises one or more
processors 1200 which may be microprocessors, controllers,
graphics processing units, parallel processing units, or any
other suitable type of processors for processing computing
executable instructions to control the operation of the device
in order to recognize gestures in streams of live input
images. In some examples, for example where a system on
a chip architecture 1s used, the processors 1700 may include
one or more fixed function blocks (also referred to as
accelerators) which implement a part of the method of joint
positions prediction in hardware (rather than software or
firmware).

The computing-based device 104 comprises one or more
input interfaces 1202 arranged to recerve and process input
from one or more devices, such as user mput devices (e.g.
capture device 106, a game controller 1204, a keyboard
1206 and/or a mouse 1208). This user input may be used to
control software applications or games executed on the
computing device 104.

The computing-based device 104 also comprises an out-
put interface 1210 arranged to output display information to
a display device 108 which can be separate from or integral
to the computing device 104. The display information may
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provide a graphical user interface. In an example, the display
device 108 may also act as the user input device 11 1t 1s a
touch sensitive display device. The output interface may also
output data to devices other than the display device, e.g. a
locally connected printing device.

The computer executable instructions may be provided
using any computer-readable media that 1s accessible by
computing based device 104. Computer-readable media may
include, for example, computer storage media 1212 such as
memory and communications media. Computer storage
media 1212, such as memory, includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable 1nstructions, data structures, program

modules or other data. Computer storage media includes, but
1s not limited to, RAM, ROM, EPROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other non-transmission
medium that can be used to store information for access by
a computing device. In contrast, communication media may
embody computer readable instructions, data structures,
program modules, or other data 1n a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Although the computer storage
media 1212 (memory) 1s shown within the computing-based
device 104 1t will be appreciated that the storage may be
distributed or located remotely and accessed via a network
or other communication link (e.g. using communication
interface 1213).

Platform software comprising an operating system 1214
or any other suitable platform software may be provided at
the computing device 104 to enable application software
1216 to be executed on the device. Other software that can
be executed on the computing device 104 includes: gesture
recognition engine 1218. A data store 1222 1s provided to
store data such as previously received depth images, frame
level features, instance level features, classification param-
eters, and other data.

The term ‘computer’ or ‘computing-based device’ 1s used
herein to refer to any device with processing capability such
that 1t can execute instructions. Those skilled 1n the art will
realize that such processing capabilities are incorporated
into many different devices and therefore the terms ‘com-
puter’ and ‘computing-based device’ each include PCs,
servers, mobile telephones (including smart phones), tablet
computers, set-top boxes, media players, games consoles,
personal digital assistants and many other devices.

The methods described herein may be performed by
software 1n machine readable form on a tangible storage
medium e.g. 1n the form of a computer program comprising
computer program code means adapted to perform all the
steps of any of the methods described herein when the
program 1s run on a computer and where the computer
program may be embodied on a computer readable medium.
Examples of tangible storage media include computer stor-
age devices comprising computer-readable media such as
disks, thumb drives, memory etc. and do not include propa-
gated signals. Propagated signals may be present i a
tangible storage media, but propagated signals per se are not
examples of tangible storage media. The software can be
suitable for execution on a parallel processor or a serial
processor such that the method steps may be carried out in
any suitable order, or simultaneously.
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This acknowledges that software can be a valuable, sepa-
rately tradable commodity. It 1s intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It 1s also
intended to encompass soiftware which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as 1s used for designing,
silicon chips, or for configuring unmiversal programmable
chips, to carry out desired functions.

Those skilled 1n the art will realize that storage devices
utilized to store program instructions can be distributed
across a network. For example, a remote computer may store
an example of the process described as software. A local or
terminal computer may access the remote computer and
download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of
the software as needed, or execute some software instruc-
tions at the local terminal and some at the remote computer
(or computer network). Those skilled 1n the art will also
realize that by utilizing conventional techniques known to
those skilled 1n the art that all, or a portion of the software
istructions may be carried out by a dedicated circuit, such
as a DSP, programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the eflect sought, as will be
apparent to the skilled person.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages. It will
turther be understood that reference to ‘an’ item refers to one
or more of those items.

The steps of the methods described herein may be carried
out 1in any suitable order, or simultancously where appro-
priate. Additionally, individual blocks may be deleted from
any of the methods without departing from the spirit and
scope of the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
turther examples without losing the effect sought.

The term ‘comprising’ 1s used herein to mean including
the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and a
method or apparatus may contain additional blocks or ele-
ments.

It will be understood that the above description 1s given by
way ol example only and that various modifications may be
made by those skilled 1n the art. The above specification,
examples and data provide a complete description of the
structure and use of exemplary embodiments. Although
various embodiments have been described above with a
certain degree ol particularity, or with reference to one or

more 1individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the spirit or scope of this specifica-
tion.
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The mnvention claimed 1s:

1. A gesture recognition method comprising;:

recerving, at a processor, an input stream of 1mage frames

depicting an articulating entity;

computing instance level features from individual ones of

the 1mage frames and sending the computed features to
a trained machine learming system; and

recerving in response at least one gesture class from a

plurality of possible gesture classes;

wherein the trained machine learning system comprises at

least one multiple decision boundary classifier com-
prising a plurality of decision boundaries arranged to
divide an instance level feature space into a plurality of
regions, at least one region being associated with a
gesture primitive; and

wherein the instance level features are calculated from

one or more istances where the istances are tempo-
rally non-sequential subsets of frames depicting a com-
plete gesture of the gesture class made by the articu-
lated entity.

2. The method of claim 1 where the mstance level features
computed from the individual ones of the frames comprise
at least one gesture primitive of the gesture class.

3. The method of claim 1 comprising training the machine
learning component to learn gesture primitives.

4. The method of claim 3 comprising learning the gesture
primitives as latent variables of the machine learning com-
ponent.

5. The method of claim 1 wherein computing the instance
level features comprises receiving frame level features and
computing the instance level features by aggregating the
frame level features.

6. The method of claim 1 wherein computing the instance
level features comprises receiving frame level features com-
prising one or more of: body part centroid position features,
joint position features, surface normal directions associated
with joint positions, body part articulation state features.

7. The method of claim 5 where the aggregation com-
prises a temporal pyramid pooling process being a hierar-
chical aggregation process.

8. The method of claim 5 where the aggregation com-
prises computing a graphical representation of temporal
structure 1n the plurality of the frames.

9. The method of claim 5 where the aggregation com-
prises computing labels of a hidden conditional random

field.

10. The method of claim 9 where the labels of the hidden
conditional random field are computed by finding a least
cost path through a cost matrix using dynamic program-
ming.

11. The method of claam 1 where the trained machine
learning component comprises a plurality of binary classi-
fiers one for each of a plurality of gesture classes.

12. A gesture recognition method comprising:

receiving, at a processor, an mnput stream of 1mage frames

depicting an articulating entity;

computing instance level features from individual ones of

the 1mage frames by computing frame level features
and aggregating at least some of the frame level fea-
tures;

sending the computed instance level features to a trained

machine learning system; and

recerving in response at least one gesture class from a

plurality of possible gesture classes;

wherein the trained machine learning system comprises at

least one multiple decision boundary classifier com-
prising a plurality of decision boundaries arranged to
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divide an instance level feature space into a plurality of
regions, at least one region being associated with a
gesture primitive; and

wherein the instance level features are calculated from
one or more instances where the instances include
temporally non-sequential subsets of frames depicting
a complete gesture of the gesture class made by the
articulated entity.

13. A gesture recognition engine comprising:

a processor arranged to receive an input stream of 1image
frames depicting an articulating entity;

an 1nstance level representation engine arranged to com-
pute mstance level features from individual ones of the
image frames and to send the computed features to a
trained machine learning system; and

the processor arranged to receive 1n response at least one
gesture class from a plurality of possible gesture
classes:

wherein the trained machine learning system comprises at
least one multiple decision boundary classifier com-
prising a plurality of decision boundaries arranged to
divide an instance level feature space into a plurality of
regions, at least one region being associated with a
gesture primitive; and

wherein the instance level features are calculated from
one or more 1nstances where each instance 1s a tempo-
rally non-sequential subset of frames depicting a com-
plete gesture of the gesture class made by the articu-
lated entity.

14. The gesture recognition engine of claim 13 where the

trained machine learning component i1s integral with the
gesture recognition engine.
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15. The gesture recognition engine of claim 13 compris-
ing a body position engine arranged to compute body
position features and a body part articulation state detector
arranged to compute body part articulation state features.

16. The gesture recognition engine of claim 15 the
instance level representation engine arranged to take at least
some of the body position features and body part articulation
state features as 1nput.

17. The gesture recognition engine of claim 13 compris-
ing an input recerving state data from a system controlled by
a natural user interface of which the gesture recognition
engine 1s a part.

18. The gesture recognition engine of claam 13 the
instance level representation engine being at least partially
implemented using hardware logic selected from any one or
more of: a field-programmable gate array, a program-spe-
cific integrated circuit, a program-specific standard product,
a system-on-a-chip, a complex programmable logic device,
graphics processing unit.

19. The gesture recognition engine of claam 13 being at
least partially implemented using hardware logic selected
from any one or more of: a field-programmable gate array,
a program-specific mntegrated circuit, a program-speciiic
standard product, a system-on-a-chip, a complex program-
mable logic device, graphics processing unit.

20. The method of claim 1 wherein the trained machine
learning system and the processor are integral with a gesture
recognition engine.
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