12 United States Patent

US009880924B2

(10) Patent No.: US 9.880.924 B2

Peck 45) Date of Patent: Jan. 30, 2018
(54) SOURCE CODE UNIT TESTING USING AN 6,032,159 A * 2/2000 Rivlin GO6F 17/30067
INDEXING TOOL 6,536,036 Bl1* 3/2003 Pavela ... GO6F 11/3676
707/999.104
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 6,694,509 B1* 2/2004 Stoval GOOF 11/3688
S " 707/999.202
: N 6,978,440 B1 12/2005 Pavela
(72) Inventor: William F. Peck, Douglas, MA (US) 7'165.074 B2 5007 Acvart of al
: : : 8,359,189 B2 1/2013 Dalal et al.
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 8561036 Bl 102013 Beans et al.
5 _
(*) Notice: Subject to any disclaimer, the term of this 3,067,456 Bl 32014 Czymontek GOﬁﬁogﬁéég
patent 1s extended or adjusted under 35 8.719.805 B2 5/2014 Zhao
U.S.C. 134(b) by 55 days. 8,745,589 B2 6/2014 Arumugham et al.
Continued
(21) Appl. No.: 14/630,229 (Continued)
(22) Filed: Feb. 24. 2015 FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data I 2015149094 A 8/2013
US 2016/0246709 Al Aug. 25, 2016 OTHER PURIICATIONS
(51) Imt. Cl. Lunix ManPage, “Linux man page” May 2013, pp. 1-15 <ctags__
GO6l’ 9/44 (2006.01) Octl14.pdf>*
5 I(J?()Stﬂ'?C{I/StS (2006.01) (Continued)
CPC GO6F 11/3688 (2013.01); GO6F 11/368 P T Tuan V
(2013.01); GOGF 11/3672 (2013.01); GO6F rimary bxamiper — IUdll VU |
11/3696 (2013.01) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(58) Field of Classification Search
CPC ... GO6F 8/10; GO6F 8/315; GO6F 11/3676; (57) ABSTRACT
. /3;}6(11§FG1016/12618 18/":),%(;61:(}1016/;63 76 /j?;OG(? 66’7F' A processing device indexes source code that include test
’ ’ GOGE 2101 /06 functions that test corresponding functions in the source
Q lieation file f | h b code. The processing device determines a function in the
ce application lile for complete search hustory. source code that contains a change, determines a set of
: nctions 1 the source code that are allecte the change
(56) References Cited functions m th de th flected by the chang

5,673,387 A *

5,778,169 A *

U.S. PATENT DOCUMENTS

9/1997 Chen GOO6F 11/3688

707/999.202
........... GOO6F 11/3696

714/38.1

7/1998 Reinhardt

in the function, identifies one or more test functions in the
set of functions, and creates a list of identified test functions.

The list of 1dentified test functions 1s a subset of the plurality
ol test functions to execute for testing the change.

20 Claims, 3 Drawing Sheets

P

Index source code containing test functions

' A8

Determine one or more funciions in the
source code that contain a change

l 5

Datermine a sat of functions that are
affacted by the ons or more functions

! 7
Identify one or more test functions
in the set of affected functions

Evaluate a
function in the set of
function

¢ 11

Create a ist of the identified test functions

US 9,880,924 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,806,450 B1* §/2014 Maharana GO6F 11/3688
717/133
2005/0166094 Al1* 7/2005 Blackwell GO6F 11/3664
714/38.14
2007/0022407 Al1* 1/2007 Givonl GO6F 11/3414
717/124
2008/0104096 Al1* 5/2008 Doval GO6F 8/10

2013/0047140 Al 2/2013 Shann et al.

OTHER PUBLICATIONS

Stanford Development, “Development Tools™, Oct 2014, pp. 1-3

<ctags CVS_ 1014.pdf>.*

Eder et al. “Selecting Manual Regression Test Cases Automatically
Using Trace Link Recovery and Change Coverage” 2014 [retrieved
from http://dl.acm.org/citation.cfim?1d=2593506].

LDRA Software Technology, “Delivering Software Quality and
Security through Test, Analysis and Requirements Traceability”
2013 [retrieved from http://www.ldra.com/attachments/article/82/
LDRA_TBrun v5.2.pdf].

Diwan et al. “Automatic Test Case Generation 1n Object Oriented
Programming” International Journal of Electronics and Computer

Science Engineering; 2012 [retrieved from http://www.jecse.org/
wp-content/uploads/2012/06/Volume-1Number-3PP-1433-1438.

pdi].

* cited by examiner

US 9,880,924 B2

Sheet 1 of 3

Jan. 30, 2018

U.S. Patent

00}

e T
GS] 8J01S EleQ
<

0cl
JSAJAS [0J]UOY) UOISIBA

|, Ol

cll
suonoun4 1s8|

01 8p0n) 82IN0S

S

/0] a401S ejeg
-

091
uoneliddy [01U0)) UOISISA

0G1 8INpojy Js8L Jun

GOl [00] Buixapul

€0l wsld

U.S. Patent Jan. 30, 2018 Sheet 2 of 3

Index source code containing test functions

v

Determine one or more functions in the
source code that contain a change

A 4

Determine a set of functions that are
affected by the one or more functions

A 4

Identify one or more test functions
in the set of affected functions

209
/

Evaluate a
YES function in the set of
affected functions?

Create a list of the identified test functions

FIG. 2

201
/

203
/

205
/

207

211

US 9,880,924 B2

200
e

U.S. Patent Jan. 30, 2018

Instructions 322

Unit Test Module 150 p

Main Memory 304

Instructions 322

Unit Test Module 150 <

Static Memory

306

Network Interface Device

308

Sheet 3 of 3 US 9.880,924 B2

Processing Device 302 _/ “t

o 300

Video Display
310

).

Alpha-Numeric Input Device

312

Cursor Control Device

314

v

>

Signal Generation Device

316

Bus 330

Data Storage Device 318

Machine-Readable Storage Medium

328

Instructions 322

Unit Test Module 150

FIG. 3

US 9,880,924 B2

1

SOURCE CODE UNIT TESTING USING AN
INDEXING TOOL

TECHNICAL FIELD

The present disclosure relates to source code unit testing,
and more particularly, to source code unit testing using an
indexing tool.

BACKGROUND

Unit testing 1s a software testing method by which indi-
vidual units of source code, sets of one or more computer
program modules having associated control data, usage
procedures, and operating procedures, are tested to deter-
mine whether the units, modules, and procedures meet
design specification and operate as intended. Typically, a
unit of source code 1s an individual function. Unit tests are
short code fragments created by programmers for testing a
corresponding unit of source code. The goal of unit testing
1s to 1solate each part of a program to ensure that the
individual parts are correct. The same unit tests are typically
run against a corresponding function frequently as the
source code for the program 1s developed and changed. It a
unit test fails, generally, there 1s a bug either 1n the changed
code or the tests. Depending on the size of the software
project, the execution of the unit tests can generally take a
significant amount of time. The software development can
be delayed when tests fail, changes are made, and a full set
of tests are then re-executed. Typically, even 1f a small
portion of the source code has changed, all of the unit tests

are run. The repeat execution ol unnecessary tests can
increase the time and resources used to develop a project.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood more tully from
the detailed description given below and from the accom-
panying drawings of various implementations of the disclo-
sure.

FIG. 1 illustrates an example system architecture, in
accordance with various implementations.

FI1G. 2 1s a flow diagram for a method for source code umit
testing using an indexing tool, 1n accordance with one or
more 1implementations of the present disclosure.

FIG. 3 1s a block diagram of an example computer system
that may perform one or more of the operations described
herein.

DETAILED DESCRIPTION

Implementations of the present disclosure describe source
code unit testing using an indexing tool. Unit testing 1s a
method for testing individual units of source code, sets of
one or more computer program modules having associated
control data, usage procedures, and operating procedures, to
determine whether the units, modules, and procedures meet
design specification and operate as intended. A unit of source
code can be an 1individual function or method. A function 1s
used as an example unit throughout this document. A umt
test can test a particular function 1n the source code. Depend-
ing on the amount of source code, there can be a large
number of unit tests, and the execution of the unit tests using,
traditional testing systems can take a signmificant amount of
time. Typically, with conventional solutions, even if a small
portion of the source code has changed, all of the unit tests

10

15

20

25

30

35

40

45

50

55

60

65

2

are run. The repeat execution of unnecessary tests in tradi-
tional unit testing can increase the time and resources used
to develop source code.

Implementations of the present disclosure identily which
function(s) have been changed, which function(s) in the
source code are aflected by the change(s), and the subset of
test units to execute for the changed and affected functions.
Implementations of the present disclosure can reduce the
amount of time and resources used for developing the source
code by executing only the unit tests that pertain to a
changed function and/or function aflected by the change.
Implementations of the present disclosure remove unneces-
sary unit testing and customize unit testing for each changed
function.

FIG. 1 1s an example system architecture 100 for various
implementations. The system architecture 100 can include a
version control system. The version control system can
include a version control server 130 and one or more data
stores 135 coupled to one or more clients 103 via one or
more networks 120. The networks 120 can be public net-
works (e.g., the Internet), private networks (e.g., a local area
network (LAN) or wide area network (WAN)), or a combi-
nation thereof. The version control system can be a distrib-
uted system or a centralized system. In centralized systems,
there 1s a “master” repository, which every developer can
submit source code changes into. In distributed systems,
cach user (e.g., software developer) works with a local
repository (e.g., data store 107) on a client 103 computing
machine. There can be a central repository (e.g., data store
135) coupled to a server (e.g., version control server 130) for
sharing code in a distributed version control system. A
distributed version control system i1s used as an example
version control system throughout this document. An
example distributed version control system can include, and
1s not limited to, Git.

The clients 103 can 1nclude a version control application
160 and one or more local data stores 107 as part of the
distributed version control system. The client 103 can store
one or more files 1n a working directory 1n the data, store
107. The files can store source code (e.g., source code 109).
The source code 109 can include unit test functions test
functions 113). “Unit test function™ 1s heremnafter also
referred to as “test function or unit test”. Unit tests are short
code fragments created by users (e.g., software program-
mers) for testing a unit (e.g., function) of source code.

A file containing source code 109 can be 1n one of several
states, 1n one 1mplementation, there are three states (1)
unmodified or committed, (2) modified, and (3) staged. For
the unmodified or committed state, the file 1s 1n 1ts last
committed state and has no local modifications. For the
modified state, the file has been changed since 1t was last
committed. For the staged state, the file was changed and
added to a staging area for including the changes 1n a next
commit operation. Because a file can be staged partially, a
file can be both staged and modified. The client 103 can store
a file for source code 1n a committed state, and while a user
1s making changes to the source code, the client 103 can
have a file for the source code 1n a modified state.

The client 104 can include a unit test module 150 for
reducing the number of umt test functions that are executed
when testing source code 109 that has changed. The unit test
module 150 can i1dentily one or more functions that have
changed 1n the source code 109, identily one or more other
functions, including test functions, 1n the source code 109
that are aflected by the changed function(s), and determine
which test function(s) are associated with the changed
function(s) and affected function(s). The test function(s) that

US 9,880,924 B2

3

are associated with the changed function and aflected tunc-
tion(s) are a subset of all of the test functions that are
included 1n the source code 109. The unit test module 150

can execute the subset of test functions to reduce the amount
of time for testing the changes made to the source code 109.
The unit test module 150 can use a version control

application 160 to 1identity the changed function(s). The unit
test module 150 can cause the version control application
160 to execute a command (e.g., “git difl-W”’) to generate
differential data that indicates the lines of code that are
different between a file for the source code 1n a committed
state and a file for the source code 1n a modified state. The
unit test module 150 can determine a name for each function
that has changed from the differential data, as described in
greater detail below in conjunction with FIG. 2.

The unit test module 150 can use 1index data produced by
an indexing tool 105 to determine which function(s), includ-
ing test functions, 1 the source code 109 are aflected by the
changed function(s). The indexing tool 105 can index the
source code 109 and determine relationships between func-
tions 1n the source code 109. For example, the indexing tool
105 can determine the functions that call a particular func-
tion and the functions that are being called by the particular
function. Examples of an indexing tool 1035 can include and
are not limited to cscope and ctags. In one implementation,
the index data that 1s used by the unit test module 150 1s a
searchable database for the source code 105 that 1s created
by the indexing tool 105 and any search result sets that are
produced from querying the database. The unit test module
150 can use the name of each changed function as input to
search the database for functions that call the changed
function and for the functions that are being called by the
changed function. In one implementation, the database can
return a search result set that contains the callers and callees
of a changed function. A caller heremafter refers to a
function that 1s calling another function, and a callee here-
iafter refers to a function that is being called by another
function. In one implementation, the index data includes a
look up table, which represents the relationships of callers
and callees of the functions 1n the source code 109, gener-
ated by the indexing tool 105. The unit test module 150 can
use the name of each changed function as input to search the
look up table to determine the callers and callees of the
changed function.

The umt test module 150 can determine which test
function(s) to execute based on the callers and callees of the
changed function(s), as described 1n greater detail below 1n
conjunction with FIG. 2. The unit testimodule 150 can use
the indexing tool 105 recursively to determine which func-
tion(s) of the affected function(s) contain a nested function,
which function(s) of the affected function(s) call other
tfunction(s), and which function(s) of the atlected function(s)
are being called by other functions, as described 1n greater
detaill below in conjunction with FIG. 2. The unit test
module 150 can determine which other function(s) are
allected by a nested function and determine which test
function(s) to execute based on the callers and callees of a
nested function.

The revision control server 130 and client(s) 103 can be
hosted on computing machines. The computing machines
can be can be computing devices, such as server computers,
desktop computers, set-top boxes, gaming consoles, televi-
sions, portable computing devices such as, and not limited
to, mobile telephones, personal digital assistants (PDAs),
portable media players, netbooks, laptop computers, an
electronic book reader, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

4

A data store 107,135 can be a persistent storage that 1s
capable of storing data. A persistent storage can be a local
storage unit or a remote storage unit. Persistent storage can
be a magnetic storage unit, optical storage unit, solid state
storage unit, electronic storage units (main memory), or
similar storage unit. Persistent storage can be a monolithic
device or a distributed set of devices. A “set’, as used herein,
refers to any positive whole number of items.

FIG. 2 15 a flow diagram for a method 200 for source code
unit testing using an indexing tool, 1 accordance with one
or more 1implementations of the present disclosure. Method
200 can be performed by processing logic that can comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (e.g., istructions run on a
processing device), or a combination thereof. In one 1mple-
mentation, method 200 1s performed by a unit test module
(e.g., umt test module 150 of FIG. 1) executing 1n a
computing machine. At least a portion of method 200 can be
performed automatically by the computing machine without
user interaction.

At block 201, the computing machine indexes source
code. The source code contains functions and corresponding
unit test functions for testing the functions in the source
code. The code for the test functions resides 1n the same
version control repository as the source code. In one 1mple-
mentation, the source code 1s 1n C programming language.
In another implementation, the source code 1s m C++
programming language. In one implementation, the source
code 1s indexed prior to the source code being committed to
a version control repository. For example, the indexing can
occur when a request to test the source code 1s received. For
example, the computing machine can receive user (e.g.,
soltware developer) input of a command via user interface
(e.g., command line interface) to execute test functions 1n
the source code, and the computing machine can use an
indexing tool to index the source code and the test code 1n
response to the test command. The indexing tool can gen-
crate index data (e.g., searchable database, search results
sets, look up table) from 1indexing the source code. The index
data can be stored 1n a data store that 1s coupled to the
computing machine.

At block 203, the computing machine determines one or
more functions that include a change 1n the source code. The
computing machine can execute a command (e.g., git difl-
W) that generates differential data indicating what code 1n
the source code has changed. The current version of the
source code can be compared to the most recent commuitted
version of the source code 1n the version control system.

The differential data can 1nclude the lines of source code
that have changed. The computing machine can parse the
differential data to search for function(s) that contain a
change in the respective function code, and search for a
name of the function that includes changed code. There can
be multiple functions that have changed code. The comput-
ing machine can parse the differential data to determine a
name for each changed function and generate a list of the
names of the changed function(s).

At block 205, the computing machine determines a set of
functions that are aflected by the one or more changed
functions. The set of functions that are affected by the
changed function(s) can include test functions and non-test
functions. A test function 1s a function that 1s used to test a
function (non-test function) in the source code. A non-test
function 1s a function that 1s part of the software being
developed by the source code. The computing machine can
use the list of names of the changed function(s) and the
index data (e.g., searchable database, search results sets,

US 9,880,924 B2

S

look up table) to determine the set of functions that are
aflected by the changed function(s). As described above, the
index data indicates which functions call a particular func-
tion and which function(s) are being called by the particular
function. The computing machine can determine the func-
tion(s) that are aflected by each changed function. The
computing machine can determine, for each name 1n the list
of changed function(s), which functions call the changed
function and which functions are being call by the changed
function.

The computing machine can receive a list of aflfected
functions. For example, the computing machine can use the
name of each changed function to search an index database
for affected functions and receive a search result set. The
search result set can be a list of the affected functions. In
another example, the computing machine uses the name of
cach changed function as mput for a look up table to
determine the affected functions and generates a list of the
allected functions. For example, the list of changed
function(s) may include FunctionA and FunctionX. The
computing machine may determine, from the index data,
that FunctionB, FunctionC, Test 1, Test 2, and Test 3 are
the functions that are affected by the changed FunctionA,
and that FunctionY, Test_8, and Test 9 are the functions that
are aflected by the changed FunctionX. The list of affected
functions can include functions for the software program
being developed and test functions that are used to test the
source code. For example, the list of aflected functions can
include FunctionB, FunctionC, Test 1, Test 2, Test 3,
FunctionY, Test_8 and Test_9. For simplicity and brevity, a
list of two changed functions and a list of eight affected
functions are used as examples. The list of changed func-
tions and the list of aflected functions can include any
number of functions.

At block 207, the computing machine identifies one or
more test functions 1n the set of aflected functions. In one
implementation, each unit test function in the source code 1s
marked to indicate that the particular unit test function 1s a
program for testing a corresponding function (non-test func-
tion). An example of marking the unit test functions can
include pre-pending the names of the individual unit test
functions. For example, each name of a unit test function
may be pre-pended with “Test_” to indicate that the corre-
sponding code 1s part of a unit test.

In another implementation, each unit test function in the
source code 1s associated, via user input, with a particular
directory as a means to 1dentify which functions in the
source code are used for testing. The marking (e.g., pre-
pending) of the unit test functions and the associating of unit
test Tunctions with a particular directory can be based on
user mput (e.g., software developer) and/or based on con-
figuration data that 1s stored in the data store. For example,
the configuration data can specily how to mark the unit test
functions and/or which directory to associate with the unit
test functions.

The computing machine can search the set of aflected
functions for function names that are pre-pended and/or
functions that are associated with a particular directory. For
example, the list of affected functions may include Func-
tionB, FunctionC, Test_1, Test 2, Test_3, FunctionY, Test_8
and Test_9, and the computing machine may determine that
Test 1, Test 2, Test 3, Test 8 and Test_9 are test functions.
The list of the set of affected functions can include directory
information for the functions 1n the list.

At block 209, the computing machine determines whether
to evaluate a function 1n the set of aflected functions. One or
more of the affected functions can include a nested function.

10

15

20

25

30

35

40

45

50

55

60

65

6

One or more of the aflected functions can be called by other
functions. One or more of the aflected functions can call
other functions. For example, the list of affected functions
may 1include FunctionB, FunctionC, FunctionY and test
functions Test_1, Test 2, Test 3, Test_ 8 and Test 9. Func-
tionB and FunctionC may call the changed FunctionA, and
FunctionY may call changed FunctionX. The computing
machine can determine that there 1s a function (e.g., Func-
tionB, FunctionC, FunctionY') that 1s a caller or callee of a
changed function (e.g., FunctionA, FunctionX) in the list of
allected tunctions (block 209), and return to block 205 to
determine a set of functions that are affected by the function
that 1s 1n the list of affected function. For example, the
computing machine can return to block 205 and nput the
name “FunctionB” 1n the index database to determine what
functions are aflected by FunctionB. The computing
machine can identify one or more test functions that are
aflected by FunctionB at block 207.

The computing machine can perform at least a portion of
method 200 multiple times depending on the list of affected
functions. For example, after determining which functions
are allected by FunctionB, the computing machine can
determine which functions are aflected by FunctionC, Func-
tionY, etc. The computing machine can include error detec-
tion to help prevent performing a loop of operations per-
taining to method 200.

If there are no more functions to evaluate at block 209, the
computing machine creates a list of the identified test
functions at block 211. The list of 1dentified test functions
includes the test functions that are aflected by the changed
function(s) (e.g., FunctionA, FunctionX), any test functions
that pertain to any of the affected functions (e.g., FunctionB,
FunctionC, FunctionY, etc.), etc. The list of the identified
test function(s) are the unit test functions to execute for
testing the changed function(s). The list of the 1dentified test
functions 1s a subset of all of the test functions 1n the source
code. The computing machine can execute the test
function(s) 1n the list of identified test functions and provide
test results to a user (e.g., software developer).

FIG. 3 illustrates an example machine of a computer
system 300 within which a set of instructions, for causing
the machine to perform any one or more of the methodolo-
gies discussed herein, may be executed. In alternative imple-
mentations, the machine may be connected (e.g., networked)
to other machines 1n a LAN, an intranet, an extranet, and/or
the Internet.

The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, a switch or bridge, or any machine capable of
executing a set of 1nstructions (sequential or otherwise) that
specily actions to be taken by that machine. Further, while
a single machine 1s illustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies
discussed herein.

The example computer system 300 includes a processing,
device 302, a main memory 304 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 306 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data
store device 318, which communicate with each other via a
bus 330.

Processing device 302 represents one or more general-
purpose processing devices such as a microprocessor, a

US 9,880,924 B2

7

central processing unit, or the like. More particularly, the
processing device may be complex imstruction set comput-
ing (CISC) microprocessor, reduced instruction set comput-
ing (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
instruction sets, or processors implementing a combination
of 1nstruction sets. Processing device 302 may also be one
or more special-purpose processing devices such as an
application specific itegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
302 1s configured to execute instructions 322 for performing
the operations and steps discussed herein.

The computer system 300 may further include a network
interface device 308. The computer system 300 also may
include a video display unit 310 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT), an alphanumeric input
device 312 (e.g., a keyboard), a cursor control device 314
(c.g., a mouse), and a signal generation device 316 (e.g.,
speaker).

The data storage device 318 may include a machine-
readable storage medium 328 (also known as a computer-
readable medium) on which 1s stored one or more sets of
instructions or soitware 322 embodying any one or more of
the methodologies or functions described herein. The
instructions 322 may also reside, completely or at least
partially, within the main memory 304 and/or within the
processing device 302 during execution thereof by the
computer system 300, the main memory 304 and the pro-
cessing device 302 also constituting machine-readable stor-
age media.

In one implementation, the instructions 322 include
instructions for a unit test module (e.g., unit test module 150
of FIG. 1), and/or a software library containing methods that
call the umit test module. While the machine-readable stor-
age medium 328 1s shown 1n an example implementation to
be a single medium, the term “machine-readable storage
medium”™ should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable stor-
age medium” shall also be taken to include any medium that
1s capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media and magnetic media.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most eflectively convey the substance of their work to
others skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a seli-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied

5

10

15

20

25

30

35

40

45

50

55

60

65

8

to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it 1s appreciated that
throughout the description, discussions utilizing terms such
as “indexing” or “determining” or “identifying” or “creat-
ing” or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage devices.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the intended purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic mstructions, each coupled to
a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these
systems will appear as set forth 1n the description below. In
addition, the present disclosure 1s not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the disclosure as
described herein.

The present disclosure may be provided as a computer
program product, or soitware, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to the
present disclosure. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). For example, a machine-
readable (e.g., computer-readable) medium includes a
machine (e.g., a computer) readable storage medium such as
a read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, flash memory devices, etc.

In the foregoing specification, implementations of the
disclosure have been described with reference to specific
example 1mplementations thereof. It will be evident that
various modifications may be made thereto without depart-
ing from the broader spirit and scope of implementations of
the disclosure as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded
in an 1llustrative sense rather than a restrictive sense.

What 1s claimed 1s:

1. A computer-implemented method comprising one or
more computing devices having one or more processors
coupled with memory-stored executable mstructions, which
when executed by the one or more processors, cause the
method to be performed, comprising:

indexing, by the one or more processors, source code

comprising a plurality of test functions and a plurality
of non-test functions to create index data, wherein the
plurality of test functions 1n the source code test

US 9,880,924 B2

9

corresponding non-test functions in the source code,
and wherein the index data specifies relationships
between the plurality of non-test functions in the source
code and the plurality of test functions 1n the source
code;

determining, by the one or more processors, one of the

plurality of non-test functions containing a change in
the source code;

querying, by the one or more processors, using the a

function name of the one of the plurality of non-test
functions containing the change, the index data to
determine a set of aflected functions in the source code
that are aflected by the change in the one of the
plurality of non-test functions;

receiving, by the one or more processors, a search result

from the querying, the search result comprising the set
of affected functions from the plurality of test functions
in the source code and the plurality of non-test func-
tions 1n the source code;

identifying, by the one or more processors, one or more

test functions 1n the source code that are part of the set
of affected functions; and

creating, by the one or more processors, a list of 1dentified

test functions 1n the source code, wherein the list of
identified test functions 1s a subset of the plurality of
test functions in the source code to be executed for
testing the change to the one of the plurality of non-test
functions.

2. The method of claim 1, wherein the indexing com-
Prises:

indexing the source code using at least one of a ctags

indexing tool or a cscope mndexing tool.

3. The method of claim 1, wherein the plurality of test
functions are at least one of pre-pended or associated with a
particular directory to indicate that the plurality of test
functions are used to test the source code.

4. The method of claim 1, turther comprising;:

for each non-test function in of the set of aflected func-

tions, determining another set of affected functions that
are alflected by a respective non-test function in the set
ol affected functions.

5. The method of claim 1, wherein the index data com-
prises a list of caller functions and callee functions of the one
of the plurality of non-test functions containing the change.

6. The method of claim 1, wherein the source code
comprises at least one of C source code or C++ source code.

7. The method of claim 1, wherein code for the plurality
of test functions reside 1 a same version control repository
as the source code.

8. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
device, cause the processing device to:

index source code comprising a plurality of test functions

and a plurality of non-test functions to create index
data, wherein the plurality of test functions in the
source code test corresponding non-test functions in the
source code, and wherein the index data specifies
relationships between the plurality of non-test func-
tions 1n the source code and the plurality of test
functions 1n the source code;

determine one of the plurality of non-test functions con-

taining a change in the source code;

query, by the processing device, using a function name of

the one of the plurality of non-test functions containing,
the change, the index data to determine a set of affected
functions 1n the source code that are aflected by the
change 1n the one of the plurality of non-test functions;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

receive a search result from the query, the search result
comprising the set of aflected functions from the plu-
rality of test functions in the source code and the
plurality of non-test functions in the source code;

identily one or more test functions in the source code that
are part of the set of aflected functions; and

create a list of identified test functions in the source code,

wherein the list of 1dentified test functions 1s a subset of
the plurality of test functions in the source code to be
executed for testing the change to the one of the
plurality of non-test functions.

9. The non-transitory computer-readable storage medium
of claim 8, wherein to index the source code, the processing
device 1s to:

index the source code using at least one of a ctags

indexing tool or a cscope indexing tool.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the plurality of test functions
are at least one of pre-pended or associated with a particular
directory to indicate that the plurality of test functions are
used to test the source code.

11. The non-transitory computer-readable storage
medium of claim 8, wherein the processing device 1s further
to:

for each non-test function 1n of the set of aflected func-

tions, determine another set of aflected functions that
are allected by a respective non-test function in the set
of affected functions.

12. The non-transitory computer-readable storage
medium of claim 8, wherein the index data comprises a list
of caller functions and callee functions of the one of the
plurality of non-test functions containing the change.

13. The non-transitory computer-readable storage
medium of claim 8, wherein the source code comprises at
least one of C source code or C++ source code.

14. The non-transitory computer-readable storage
medium of claim 8, wherein code for the plurality of test
functions reside 1 a same version control repository as the
source code.

15. A system comprising:

a memory;

a processing device, operatively coupled to the memory

to:
index source code comprising a plurality of test func-
tions and a plurality of non-test functions to create
index data, wherein the plurality of test functions 1n
the source code test corresponding non-test functions
in the source code, and wherein the index data
specifies relationships between the plurality of non-
test functions in the source code and the plurality of
test functions in the source code;:
determine one of the plurality of non-test functions
containing a change in the source code;
query, using a function name of the one of the plurality
of non-test functions containing the change, the
index data to determine a set of aflected functions 1n
the source code that are atlected by the change in the
one of the plurality of non-test functions;
receive a search result from the querying, the search
result comprising the set of affected functions from
the plurality of test functions 1n the source code and
the plurality of non-test functions 1n the source code;
identily one or more test functions in the source code
that are part of the set of aflected functions; and
create a list of i1dentified test functions in the source

code, wherein the list of 1dentified test functions 1s a

subset of the plurality of test functions 1n the source

e

US 9,880,924 B2
11

code to be executed for testing the change to the one
of the plurality of non-test functions.

16. The system of claim 135, wherein to mndex the source
code, the processing device 1s to:

index the source code using at least one of a ctags 5

indexing tool or a cscope mndexing tool.

17. The system of claim 135, wherein the plurality of test
functions are at least one of pre-pended or associated with a
particular directory to indicate that the plurality of test
functions are used to test the source code. 10

18. The system of claim 15, wherein the processing device
1s further to:

for each non-test function in of the set of aflected func-

tions, determine another set of aflected functions that
are aflected by a respective non-test function 1n the set 15
ol affected functions.

19. The system of claim 18, wherein the mdex data
comprises a list of caller functions and callee functions of
the one of the plurality of non-test functions containing the
change. 20

20. The system of claim 15, wherein the source code

comprises at least one of C source code or C++ source code.

¥ ¥ # ¥ o

12

	Front Page
	Drawings
	Specification
	Claims

