12 United States Patent

Chen et al.

US009880769B2

US 9,880,769 B2
Jan. 30, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

STREAMING JOINS IN CONSTRAINED
MEMORY ENVIRONMENTS

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Zhong Chen, Medina, WA (US); Lev
Novik, Bellevue, WA (US); Boris
Shulman, Bellevue, WA (US); Clemens
A. Szyperski, Sammamish, WA (US)

Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC., Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 38 days.

Appl. No.: 14/732,374
Filed: Jun. 5, 2015

Prior Publication Data

US 2016/0357476 Al Dec. 8, 2016

Int. CI.

GO6F 3/06 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 3/0638 (2013.01); GO6Il’ 3/0604

(2013.01); GO6GF 3/0653 (2013.01); GO6F
3/0673 (2013.01); GO6F 17/30289 (2013.01)

Field of Classification Search
CPC GO6F 3/0638; GO6F 3/0604; GO6F 3/0653;
GO6F 3/0673

USPC e e 711/154
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,625,788 A 4/1997 Boggs et al.
5,721,855 A 2/1998 Hinton et al.
5,889,982 A 3/1999 Rodgers et al.
6,449,618 Bl 9/2002 Blott et al.
6,516,310 B2 2/2003 Paulley
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2014052917 Al 4/2014
WO 2015070232 Al 5/2015

OTHER PUBLICATTIONS

“Azure Stream Analytics Developer Guide”, Retrieved on: Apr. 8,
2015 Available at: http://azure microsoft.com/en-in/documentation/
articles/stream-analytics-developer-guide/, 9 pages.

(Continued)

Primary Examiner — Gary Portka
(37) ABSTRACT

Large amounts of memory can be consumed 1n streaming
joins because events from one stream are held in memory
while waiting for matching events from a second stream.
Memory needs can be reduced by analyzing the join con-
dition to determine the bounds on the time discrepancy
between events 1n the two streams. When 1t 1s determined
that an event from one stream must occur prior to the
matching event from the other stream, the later-arnving
stream data can be 1ngested with an intentional delay. When
it 1s determined that regardless of input recerved from a first
stream, no output will be produced when there 1s no 1nput
from the second stream, pulling data from the first stream
can cease. A multi-stage join plan can be employed so that
a less busy stream can be scanned with increasing amounts
ol intentional delay. Only unmatched data 1s stored.

20 Claims, 6 Drawing Sheets

COMPUTING DEVICE 102

[—|PROCESSOR 162 [¢—] MEMORY 144

|]

. ‘/‘ JOIN CONDITION
STREAMING JOIN 110

OUTPUT STREAM 11

MODULE 106

DATA STREAM 1
112

I

DATA STREAM 2 | . 116
114 L,/

DATA SOURCE 1
118

DATA SQURCE 2 .
120 |
L

<

US 9,880,769 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,625,150 B 9/2003 Yu

6,820,121 B1 11/2004 Callis et al.

7,010,538 B1* 3/2006 Black GO6F 17/30516
707/636

7,251,747 Bl 7/2007 Bean et al.

7,603,488 B. 10/2009 Gravenstein et al.

7,680,830 B 3/2010 Ohr et al.

B

7,738,380 Bl 6/2010 Dubrovsky et al.
8,001,309 B2 8/2011 Patzelt et al.
8,219,848 B2 7/2012 Branson et al.
8,392,381 B2 3/2013 Al-Kateb et al.
8,417,690 B2 4/2013 Poppe et al.
8,797,867 Bl 8/2014 Chen et al.
8,812,487 B2 8/2014 Krishnamurthy et al.
8,949,194 Bl 2/2015 Mehlum et al.
8,949,801 B2 2/2015 Andrade et al.

2002/0010804 Al 1/2002 Sanghvi et al.

2005/0281279 A1 12/2005 Dennison et al.

2006/0143170 Al 6/2006 Ganguly et al.

2006/0195309 Al 8/2006 Stokkan et al.

2006/0004597 A1 12/2006 Charters

2008/0005391 Al 1/2008 Gedik et al.

2008/0270640 A1 10/2008 Gedik et al.

2009/0157895 Al* 6/2009 Van Den Berghe . HO4N 21/222
709/231

2010/0254462 A1 10/2010 Friedrich et al.

2012/0005564 Al 1/2012 Tsubaki

2013/0132978 Al 5/2013 Opbher et al.

2013/0166617 Al 6/2013 Branson et al.

2014/0016501 Al 1/2014 Kamath et al.

2014/0201225 Al 7/2014 Deshmukh et al.

2014/0215184 Al 7/2014 Branson et al.

2014/0226469 Al 8/2014 Chen et al.

2015/0134796 A1 12/2015 Theimer et al.

OTHER PUBLICATIONS

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2016/035610, Mailed Date: Sep. 5, 2016,

13 Pages.

Gedik, et al.,, “GrubJoin: An Adaptive, Multi-Way, Windowed
Stream Join with Time Correlation-Aware CPU Load Shedding”, In
Proceedings of IEEE Transactions on Knowledge and Data Engi-

neering, vol. 19, Issue 10, Oct. 2, 2007, pp. 1363-1380.

Xie, et al., “A Survey of Join Processing in Data Streams.”, In
Proceedings of Springer Data Streams, vol. 31, Apr. 2, 2007, pp.
209-236.

Babu, et al., “Exploiting k-Constraints to Reduce Memory Over-
head in Continuous Queries over Data Streams”, In Proceedings of
ACM Transactions on Database Systems (TODS), vol. 29 Issue 3,
Sep. 2004, 28 pages.

Ding, et al., “MJoin: A Metadata®* Aware Stream Join Operator”, In
Proceedings of the 2nd International Workshop on Distributed
Event-Based Systems, Jun. 8, 2003, 8 pages.

Dash, et al., “Delivering QOS in Xml Data Stream Processing Using
Load Shedding”, In Proceedings of International Journal of Data-
base Management Systems, vol. 4, Issue.3, Jun. 2012, 23 pages.
Gu, et al., “Adaptive Load Diffusion for Stream Joins”, In Proceed-
ings of the ACM/IFIP/USENIX International Conference on
Middleware, Nov. 2005, 10 pages.

Ananthanarayanan, et al., “Photon: Fault-tolerant and Scalable
Joining of Continuous Data Streams”, In Proceedings of ACM
SIGMOD International Conference on Management of Data, Jun.
22, 2013, 12 pages.

Asha, et al., “Adaptive Join Operators for Result Rate Optimization
on Streaming Inputs”, In Proceedings of International Journal of
Engineering Trends and Technology, May 2011, 5 pages.

“SAS® Event Stream Processing Engine”, Published on: Nov. 12,
2014 Awvailable at: http://www.sas.com/content/dam/SAS/en_ us/

doc/factsheet/event-stream-processing-engine-106151.pdf, 4 pages.

L1, et al.,, “Event Stream Processing with Out-of-Order Data
Arrival”, In Proceedings of the 27th International Conference on
Distributed Computing Systems Workshops, Jun. 22, 2007, 8 pages.
Keckler, et al., “Concurrent Event Handling Through Multithread-
ing”’, In Proceedings of IEEE Transactions on Computers, vol. 48,
Issue 9, Sep. 1999, 14 pages.

Heinze, et al., “Latency-Aware Elastic Scaling for Distributed Data

Stream Processing Systems™, In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, May
26, 2014, 10 pages.

Francisci Morales, Glanmarco De, “Distributed Stream Processing
Showdown: S4 vs Storm”, Published on: Jan. 2, 2013 Available at:
http://gdtm.me/2013/01/02/distributed-stream-processing-show-
down-s4-vs-storm/, 5 pages.

Akidau, et al., “MillWheel: Fault-Tolerant Stream Processing at
Internet Scale”, In Proceedings of the VLDB Endowment, vol. 6,
Issue 11, Aug. 26, 2013, 12 pages.

Hwang, et al., “High-Availability Algorithms for Distributed Stream
Processing™, In Proceedings of the 21st International Conference on
Data Engineering, Apr. 5, 2005, 12 pages.

Hu, et al., “ELF: Efficient Lightweight Fast Stream Processing at
Scale”, In Proceedings of USENIX ATC Annual Technical Confer-
ence, Jun. 19, 2014, 13 pages.

Brito, et al., “Scalable and Low-Latency Data Processing with
Stream MapReduce”, In Proc IEEE Third International Conference
on Cloud Computing Technology and Science, Nov. 29, 2011, 15
pages, 11 pages.

Hwang, et al., “A Comparison of Stream-Oriented High-Availabil-
ity Algorithms”, In Technical Report, Jun. 5, 2003, 13 pages.
Kamburugamuve, Supun, “Survey of Distributed Stream Processing
for Large Stream Sources”, In Technical Report, Dec. 14, 2013, 16
pages.

“Samza”, Retrieved on: Jun. 5, 2015, Available at: http://samza.
apache.org/learn/documentation/0.7.0/container/checkpointing.
html, 4 pages.

Bockermann, Christian, “A Survey of the Stream Processing
Landscap”, In Technical Report, May 16, 2014, 47 pages.
Branson, et al., “CLASP: Collaborating, Autonomous Stream Pro-
cessing Systems”, In Proceedings of ACM/IFIP/USENIX 8th Inter-
national Middleware Conference, Nov. 26, 2007, 20 pages.

Liu, et al.,, “SAND: A Fault-Tolerant Streaming Architecture for
Network Traflic Analytics”, In Proceedings of 44th Annual IEEE/
IFIP International Conference on Dependable Systems and Net-
works, Jun. 23, 2014, 8 pages.

Srivastava, et al., “Memory-Limited Execution of Windowed
Stream Joins”, In Proceedings of the Thirtieth International Con-
ference on Very Large Databases, vol. 30, Aug. 31, 2004, pp.
324-335.

Das, et al., “Approximate Join Processing Over Data Streams”, In
Proceedings of the ACM SIGMOD International conference on
Management of Data, Jun. 9, 2003, pp. 40-51.

“International Preliminary Report on Patentability Issued in PCT
Application No. PCT/US2016/035610”, dated May 29, 2017, 7
Pages.

“USPTO Final Oflice Action”, dated Jul. 7, 2017, U.S. Appl. No.
14/732,398, filed Jun. 5, 2015, pp. 37.

“USPTO Non-Final Office Action”, dated Jan. 25, 2017, U.S. Appl.
No. 14/732,398, filed Jun. 5, 2015, pp. 30.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2016/035611”, dated Sep. 14, 2016, 15
Pages.

“USPTO Non-Final Office Action”, dated Apr. 7, 2017, U.S. Appl.
No. 14/732,416, filed Jun. 5, 2015, pp. 8.

Mumian, et al., “Introduction to Azure Stream Analytics”, http://
azure.microsoft.com/en-us/documentation/articles/stream-analyt-
ics-introduction/, Retrieved on: Mar. 1, 2016, 4 Pages.

Sattler, et al., ““Towards FElastic Stream Processing: Patterns and
Infrastructure”, In Proceedings of the First International Workshop
on Big Dynamic Distributed Data, Aug. 30, 2013, 6 Pages.

* cited by examiner

U.S. Patent Jan. 30, 2018 Sheet 1 of 6 US 9,880,769 B2

COMPUTING DEVICE 102

[— | PROCESSOR 142 MEMORY 144

JOIN CONDITION
STREAMING JOIN 108 OUTPUT STREAM 110

DATA STREAM 1 DATA STREAM 2
112 114 L/

DATA SOURCE 1 DATA SOURCE 2
118 120

100

FIG. 1

U.S. Patent Jan. 30, 2018 Sheet 2 of 6 US 9,880,769 B2

ANALYZE JOIN CONDITION
212

DETERMINE WHICH DATA
STREAM TO PULL FROM NEXT
213

PULL FROM SELECTED
STREAM
274

PROCESS PULLED EVENTS
AND GENERATE OUTPUT
275

251

FIG. 2a

U.S. Patent Jan. 30, 2018 Sheet 3 of 6 US 9,880,769 B2

ANALYZE JOIN CONDITION
202
GENERATE MINIMAL TIME
VARIANCE (d) 203
PULL DATA FROM FIRST DATA
STREAM 204 RECORD TIME (t) 205

PULL DATA FROM SECOND
DATA STREAM, DETERMINE T
206

IF MATCH GENERATE OUPUT
207

NO

T< t-d?
208

200

FIG. 2b

U.S. Patent

Jan. 30, 2018 Sheet 4 of 6

ANALYZE JOIN CONDITION
222

(BUT FROM D
GENERATE QUTPUT?
224

NO

YES

PULL FROM STREAM 1 226

NO {PUT FROM D>z

GENERATE OUTPUT?
228

PULL FROM STREAM 2 230

FIG. 2c

220

US 9,880,769 B2

U.S. Patent Jan. 30, 2018 Sheet 5 of 6 US 9,880,769 B2

READ STREAM 1 232

YES

READ STREAM 1
READ STREAM 2 233 WITH DELAY 242

IATCH WITHIN FIR
INTERVAL?
234

NO

HOLD NON-MATCHES FROM
DATA STREAM 2 235

ATCH WITHIN
SECOND INTERVAL?

236 NO

YES
DISCARD 240
OUTPUT 238

—

231

FIG. 2d

U.S. Patent Jan. 30, 2018 Sheet 6 of 6 US 9,880,769 B2

OPERATING SYSTEM 528

APPLICATIONS 530

MODULES 532

DATA 334

-
|
|
|
|
|
|
—_— e — =

PROCESSING
UNIT 514 OUTPUT [OUTPUT
ADAPTER(S) 542 DEVICE(S) 540
INPUT DEVICE(S)
536

SYSTEM INTERFACE

|
|
|
|
|
|
|
|
|
|
|
|
|
i MEMORY 516 PORT(S) 538 —
|

|

|

|

|

|

|

|

|

|

|

|

|

|

VOLATILE 520

NON VOLATILE
922

INTERFACE 526

< SYSTEMBUS 518

COMMUNICATION NETWORK
CONNECTION(S) |— INTERFACE 548
550 _

DISK STORAGE
224

MEMORY
STORAGE
246

COMPUTER 51

REMOTE

COMPUTER(S)
MNA 544

FIG. 3

US 9,880,769 B2

1

STREAMING JOINS IN CONSTRAINED
MEMORY ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The application 1s related 1n subject matter to co-pending
U.S. patent application Ser. No. 14/732,398 entitled “HAN-

DLING OUT OF ORDER EVENTS™, filed on Jun. 5, 2015.
The application 1s related in subject matter to co-pending
U.S. patent application Ser. No. 14/732,416 entitled
“USING ANCHORS FOR RELIABLE STREAM PRO-
CESSING™, filed on Jun. 5, 2015.

BACKGROUND

In traditional computing a single central processing unit
(CPU) sequentially executes a single mstruction on a single
piece of data 1n a single stream, executing one operation at
a time. As the data processing demands of the world
increased, the amount of data to be operated upon exploded.

In stream processing multiple data streams from poten-
tially multiple sources can be processed in real time.
“Streaming” or stream processing means receiving streams
of data, processing the data and streaming 1t back out as a
single flow of data. Large amounts of memory and/or other
resources can be consumed when joining multiple data
streams because data from one data stream typically 1s held
in memory or on a storage medium while waiting for
matching events from another data stream to arrive.

SUMMARY

The one or more join conditions specifying allowable
joins (matching data) of data from two or more data streams
can be analyzed to determine a time period for allowable
joins (a time discrepancy between times associated with the
joinable data). Increasing the time period for which data
matches can result 1n the reduction of the amount of memory
or storage needed for joining because stream data does not
have to be stored. If analysis of the allowable bounds
determines that, in order to match up, an event from one
stream must occur prior to the matching event from another
stream, the later-arriving stream data can be ingested with an
intentional delay.

When analysis of the join conditions at run-time 1ndicates
that regardless of mput received through one of the data
streams (e.g., a {irst data stream), no output will be produced
unless and until more put 1s received from the other data
stream, (e.g., a second data stream) pulling data from the
first stream can cease until more 1nput 1s recerved from the
second data stream. A multi-stage join plan having multiple
allowable join time periods can be employed. One (e.g.,
typically less busy) stream can be scanned with increasing
amounts of intentional delay (e.g. at time 0, and time O plus
1 minute, at time O plus 5 minutes, at time 0 plus 10 minutes
and so on). Rather than holding the entire contents of the
other (e.g., typically busier) data stream for the match
interval, the events that were not matched within a specified
time period can be re-pulled from the first data stream during,
a second stage.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentify key features or essential features of the

10

15

20

25

30

35

40

45

50

55

60

65

2

claimed subject matter, nor 1s 1t intended to be used to limat
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 1llustrates a system 100 comprising an example of
a system that performs streaming joins in accordance with
aspects of the subject matter described herein;

FIG. 2a illustrates an example of a method 251 for
performing streaming joins 1n accordance with aspects of the
subject matter disclosed herein;

FIG. 26 1illustrates an example of a another method 200
for performing streaming joins 1n accordance with aspects of
the subject matter disclosed herein;

FIG. 2¢ illustrates an example of another method 220 for
performing streaming joins 1n accordance with aspects of the
subject matter disclosed herein;

FIG. 2d 1llustrates an example of another method 231 for
performing streaming joins 1n accordance with aspects of the
subject matter disclosed herein; and

FIG. 3 1s a block diagram of an example of a computing
environment 1 accordance with aspects of the subject
matter disclosed herein.

DETAILED DESCRIPTION

Overview

A common scenario 1n stream processing 1s “joining”’ two
or more streams. For example a join of two data streams
typically generates a data stream of pairs: data from the first
data stream, and data from the second data stream, where the
pair satisiies the conditions specified 1n the join. Conserving
resources such as memory or storage when computing joins
1s helpiul 1n traditional database processing and can be even
more helpiul 1n stream processing.

Three strategies for joins in stream processing that can
dramatically reduce memory and/or storage requirements
are described. One reason that large amounts of memory
and/or storage are often consumed in streaming joins 1S
because data from one data stream 1s held 1n memory or
storage while waiting for matching events from a second
data stream to arrive. To alleviate this condition, 1n accor-
dance with aspects of the first strategy, the join condition can
be analyzed to determine an allowable time range for
joinable data, or in other words, the time discrepancy
between data 1n the two data streams that “match” (e.g.,
satisly the join condition). For example, if ascertaining the
lower boundary of the allowable time range determines that,
in order to match, data from one data stream must occur
prior to matching data from the other data stream, the
later-arriving stream data can be imngested with an intentional
delay. An intentional delay means that data associated with
a time X 1s not ingested from the second stream until data
with time X+T 1s ingested from the first stream, where T 1s
the lower boundary of the allowable time range. Typically in
traditional stream processing systems, ingestion occurs as
fast as possible. The memory and/or storage requirements
for the joining process can be reduced by not holding the
data from the earlier-arriving stream in memory and/or
storage. Interestingly, this techmique does not increase
latency.

A second strategy analyzes the join condition to determine
when the internal state of the join operator 1s such that no
matter how much additional input 1s received through one of
the streams (e.g., a second data stream), no output will be

US 9,880,769 B2

3

produced. This condition will typically but not always occur
when the bufler for the first input data stream 1s empty. In
such cases, 1n accordance with some aspects of the subject
matter, no additional 1input 1s sought from the second input
data stream, as it would only serve to increase the memory
and/or storage consumption.

In a third strategy a multi-stage join plan can be
employed. A first data stream can be scanned with typically
one or more increasing amounts of intentional delay (e.g. at
time O, and time O plus 1 minute, at time O plus 5 minutes,
at ttme O plus 10 minutes and so on). In accordance with
aspects of the subject matter described herein, rather than
holding the entire contents of either data stream for the
match interval in memory (as would be required 1n some
known state-of-the-art join plans), only the events that were
not matched within a specified time period are held. This
strategy works particularly well when the maximum time
differences between matching events 1s much larger than the
average time diflerence between matching events—a very
common situation 1n stream joins. The strategies described
herein can be combined 1n any combination.

Streaming Joins in Constrained Memory Environments

FIG. 1 illustrates an example of a system 100 that
performs streaming joins 1n accordance with aspects of the
subject matter described herein. All or portions of system
100 may reside on one or more computers or computing
devices such as the computers described below with respect
to FIG. 3. System 100 or portions thereof may be provided
as a stand-alone system or as a plug-in or add-in.

System 100 or portions thereof may include information
obtained from a service (e.g., 1 the cloud) or may operate
in a cloud computing environment. A cloud computing
environment can be an environment 1 which computing
services are not owned but are provided on demand. For
example, information may reside on multiple devices 1n a
networked cloud and/or data can be stored on multiple
devices withun the cloud.

System 100 can include one or more computing devices
such as, for example, computing device 102. Contemplated
computing devices include but are not limited to desktop
computers, tablet computers, laptop computers, notebook
computers, personal digital assistants, smart phones, cellular
telephones, mobile telephones, sensors and so on. A com-
puting device such as computing device 102 can include one
or more processors such as processor 142, etc., and a
memory such as memory 144 that communicates with the
one or more processors. The computing device may be a
device that operates in a constrained memory environment.
A constrained memory environment 1s an environment in
which the available memory 1s not suflicient to handle the
processing demands with which 1t 1s faced using more
traditional techniques of processing streaming joins.

System 100 may include any one or more program
modules that when loaded into the memory cause the at least
one processor to perform the processing attributed to the one
or more program modules. System 100 may include any one
or more program modules comprising: one or more program
modules that perform streaming joins such as streaming join
module 106. System 100 may include one or more join
conditions that describe the conditions under which data can
be allowably joined, represented 1n FIG. 1 as join condition
108. A join condition may be a query. A join condition may
be a portion of a query. The query may be a database query.
The query may be a non-database query. Streaming join
module 106 may receive two or more data streams such as
a first data stream (e.g., data stream 1 112) and a second data
stream (e.g., data stream 2 114). One or more additional data

10

15

20

25

30

35

40

45

50

55

60

65

4

streams may also be received and joined, represented 1n FIG.
1 by data stream 116. Data 1n the data streams may be event
data, complex event data, data from databases or any type of
data. Streaming data can be structured data, security data,
sensor data, measurement data, (e.g., data from a tempera-
ture sensing device), log data and so on.

Streaming join module 106 may join data from two or
more data streams to produce an output stream such as
output stream 110. Data from data streams can be real time
data received 1n real time. Data from data streams can be
recorded real time data. Data from the first data stream may
originate from a first data source (e.g., data source 1 118).
Data from a second data stream may originate from a second
data source (e.g., data source 1 120) and so on. Data sources
may reside on the same computing device as streaming join
module 106 or on a different computing device. Siumilarly, a
first data source and a second data source of more than two
data streams may reside on the same computing device, on
different computing devices and so on. Data from the two or
more data streams can be joined 1n accordance with join
conditions as determined by conditions set forth in a join
conditions data store (not shown). Streaming join module
106 may process one or more of the streaming join strategies
described below.

One streaming join strategy applies to temporal joins.
Data from two or more data streams can be joined 1n
accordance with a time associated with the data. The time
associated with the data can be a time at which the data was
generated. The time associated with the data can be a time
at which the data was recetved. The time associated with the
data can be a time at which the data was sent. The time
associated with the data can be any other time. In the
examples below data 1s joined 1n relation to when the data
was generated. In accordance with some aspects of the
subject matter described herein, an assumption 1s made that
the data 1s received 1n order by time. For example, an event
may be time stamped to reflect the time at which the event
was generated.

Streaming join module 106 can acquire data from the data
streams by acquiring, accessing, reading or pulling data. In
accordance with some aspects of the subject matter, stream-
ing join module 106 can pull data for the streaming joins so
that data 1s not received until requested by the streaming join
module. The streaming join module 106 can pull data from
the first data stream at one time. The streaming join module
106 can pull data from the second data stream another time
that 1s earlier or later than the time the data 1s pulled from
the first data stream. If there are more than two data streams,
the other data streams can be pulled from at still different
times. The streaming join module 106 can generate an order
(sequence) 1n which pull requests are sent to the data streams
based on the times associated with the data from the data
streams, thereby determining which data stream will be
pulled from next. The streaming join module 106 can make
a determination of which data stream to pull from next using
the following methodology. If the time associated with the
first unit of data, record or event 1n the first data stream 1s
greater than the time associated with the second unit of data,
record or event 1n the second data stream, the streaming join
module 106 can stop pulling data from the first data stream
until the time associated with the data of the first data stream
1s equal to or greater than the data being processed in the
second data stream and vice versa.

For example, suppose the streaming join module 106 1s
grven a join with the condition that only matches events with
identical timestamps. The streaming join module can pull
data from data stream 1. Suppose the first event 1n data

US 9,880,769 B2

S

stream 1 has a timestamp of time (t)+8. The streaming join
module can then request data from data stream 2. Suppose
the first event in data stream 2 has a timestamp of t+0. The
streaming join module 106 can store the timestamp (t+8) of
the event of the first data stream 1 (data stream 1) having the
later associated time and stop pulling data from data stream
1 until the timestamp of the event being processed from data
stream 2 reaches or exceeds the stored timestamp (t+8).
Thus, 1 this example, 1nstead of storing eight events from
data stream 1 until the event in data stream 2 with a
timestamp ol t+8 or greater 1s reached, only one value 1s
stored 1n memory.

In the example above, the assumption was made that data
with timestamp equivalence were joined. That 1s, data from
data stream 1 with a timestamp of t+1 was joined with data
from data stream 2 with a timestamp of t+1. However, such
1s not always the case. A join condition may specily that data
with an associated time that falls within a specified range or
time period can be joined. The join condition can be
analyzed to determine what the time range for allowably
joimng data 1s. For example, the join condition may specily
that data from data stream 1 and data from data stream 2 can
be joined as long as the time associated with the data from
data stream 2 exceeds the time associated with the data from
data stream 1 by a time range generated from the join
condition, such as, for example, between 10 and 20 seconds.
In this case, the streaming join module can introduce an
intentional delay into the pulling of data from data stream 1
by the lower bound of the time range (e.g., 10 seconds),
because no event from data stream 1 can successiully match
an event from data stream 2 until the time associated with
the data from data stream 2 1s at least the lower bound (10
seconds) ahead of the time associated with the data from
data stream 1. When the imput stream 1s a recorded data
stream, “delay” can mean skipping to the data having an
associated time that satisfies the join condition rather than
actually waitting 10 seconds. Delay can also mean a suspen-
sion of pulling data.

Time ranges can be extracted from the join condition
using methods that depend on the language used to specily
those conditions. In accordance with some aspects of the
subject matter described herein, the join conditions are
specified using binary logic over binary Boolean expres-
sions. In such a system, the range can be extracted by the
following sequence of steps, performed recursively:

1) Convert the join condition to 1its Disjunctive Normal
Form.

2) If the top-most operator in the condition 1s an AND,
extract the ranges from its two arguments, and intersect
them.

3) I1 the top-most operator in the condition 1s an OR, extract
the ranges from 1ts two arguments, and union them, taking
the convex hull of the result.

4) If the top-most operator 1n the condition 1s a NOT, extract
the range of 1ts argument and take its complement, taking the
convex hull of the result.

5) It the top-most operator in the condition 1s a comparison
operator, then:

a. Check 11 all of the arguments on the left-hand side
reference the first stream’s associated time or are constants,
and 11 all of the arguments on the right-hand side reference
the second stream’s associated time or are constants, extract
the bound on the difference between the assocm’[ed times
implied by this expression.

b. Otherwise, return a completely open range.

The second streaming join strategy applies to joins in
which output data 1s only produced when data from one data

5

10

15

20

25

30

35

40

45

50

55

60

65

6

source 1s only generated when a particular condition exists
or a partlcular threshold 1s reached. In some circumstances,

the join condition can be analyzed at runtime. In response to
determining that regardless of the input generated by a first
data source, no mnput 1s being generated from the second data
source, no input from the first data source 1s sought. For
example, the join condition may specily that data from data
stream 1 can only match data from data stream 2 11 both their
associated times and their user names match. When a large
number of records with a given time are ingested from one
data stream (e.g., data stream 1), while only a small number
of records with the matching time are ingested from another
data stream (e.g., data stream 2), the ingestion of data from
one data stream (e.g., data stream 1) can be suspended until
cither (a) the other data stream (e.g., data stream 2) moves
beyond the aforementioned matching time or (b) the number
of units of data ingested from the other data stream (e.g.,
data stream 2) for the time reaches the number of units of
data ingested from the one data stream (e.g., data stream 1).

The third streaming join strategy 1s a multiple-stage
approach i which at least two time periods are applied to
joins. In one (e.g., typically a shorter) time period, data from
the first data stream and data from the second data stream are
matched within the first time period. In accordance with
some aspects of the subject matter described herein, any data
from the second data stream that did not match data from the
first data stream within the first (shorter) time period 1is
retained or held (e.g., 1n memory), and 1s matched as the first
stream 1s re-read (e.g., re-pulled) with one or more increas-
ing delays reaching the second (larger) time period. It will be
appreciated that the examples provided are meant to be
illustrative, not limiting.

FIG. 2a illustrates an example of a method 251 for
performing streaming joins 1n accordance with aspects of the
subject matter described herein. The method described 1n
FIG. 2a can be practiced by a system such as but not limited
to the one described with respect to FIG. 1. While method
251 describes a series of operations that are performed 1n a
sequence, 1t 15 to be understood that method 2351 is not
limited by the order of the sequence depicted. For instance,
some operations may occur 1n a different order than that
described. In addition, one operation may occur concur-
rently with another operation. In some instances, not all
operations described are performed. In some instances, not
all operations performed are illustrated.

At operation 272 one or more join conditions can be
analyzed. At operation 273 which data stream to pull from
next can be determined. At operation 274 the selected data
stream can be pulled from. At operation 273 the pulled data
can be processed. Output can be generated.

FIG. 2b 1llustrates an example of a method 200 for
performing streaming joins 1n accordance with aspects of the
subject matter described herein. The method described 1n
FIG. 2b can be practiced by a system such as but not limited
to the one described with respect to FIG. 1. While method
200 describes a series of operations that are performed 1n a
sequence, 1t 1s to be understood that method 200 1s not
limited by the order of the sequence depicted. For instance,
some operations may occur in a different order than that
described. In addition, one operation may occur concur-
rently with another operation. In some 1nstances, not all
operations described are performed. In some nstances, not
all operations performed are illustrated.

At operation 202 one or more join conditions can be
analyzed. Analysis of the at least one join condition can
provide information from which an allowable time discrep-
ancy for matching data can be generated. At operation 203

US 9,880,769 B2

7

a minimal time variance (e.g., time variance d) between
matching (joinable) data (e.g., events) can be generated.
That 1s, as described above, a join condition may specily that
data associated with a time that falls within a specified range
or time period can be jomned. The join condition can be
analyzed to determine what the time range for joiming data
1s at operation 203. For example, the join condition may
specily that data from data stream 1 and data from data
stream 2 can be joined as long as the time associated with
data pulled from data stream 2 exceeds the time associated
with the data pulled from data stream 1 by between 3 and 3
seconds. The minimal time variance d 1s the lower end of the
range: 1n this example, the minimal time variance d 1s 3
seconds, the lower end of the time period. Data associated
with a time that 1s less than 3 minutes after the time
associated with the data pulled from the first stream of data
will not match because that data does not fall within the
range of 3 and 5 minutes after the time associated with data
pulled from the first stream of data and thus will not be
joined. Data associated with a time that 1s greater than 3
minutes after the time associated with the data pulled from
the first stream of data will not match because that data does
not fall within the range of 3 and 5 minutes after the time
associated with data pulled from the first stream of data and
thus will not be joined.

At operation 204, data from a first data stream can be
acquired, accessed, read or pulled from a first data source. At
operation 2035 the time associated with the pulled data t can
be recorded. At operation 206 data from another (a second
data stream) can be acquired, accessed, read or pulled from
another data source (a second data source). The associated
time of the data from the other data stream T can be
determined. If the data meets the match criteria output can
be produced at operation 207, output can be displayed,
reported, sent to a requestor, etc. and processing can con-
tinue at operation 208. If the data does not meet the match
criteria output will not be produced and operation can
continue at operation 208. The results of determining
whether the times associated with the data attempting to be
matched fall within or outside of the joinable time range at
operation 208 determines whether the next data stream read
1s data stream 1 or data stream 2. Results can be determined
by evaluation of the expression T<t-d. If T<t-d 1s true, the
data 1s joinable and more data from the second data stream
can be pulled next. If T<t-d 1s false, the data 1s not joinable
and more data from the first data stream can be pulled next.
That 1s, 1f the time associated with the data from the second
stream 1s less than a difference of the recorded time and the
mimmal time variance, data can be pulled from the second
data stream. Processing can resume at operation 206 at
which point additional data from the second data stream can
be acquired, accessed, read or pulled. In response to deter-
mimng that the times associated with the data attempting to
be matched and jomned fall outside of the joinable time
period at operation 208, additional data can be acquired,
accessed, read or pulled from the first data stream and
processing can resume at operation 204. Operations 204
through 208 can continue until the stream processing 1s
terminated.

Suppose, for example, that data from data stream 2
comprises data about when a computer 1s booted and data
from data stream 1 comprises data about logging into the
computer. Suppose a join condition i1s written to find all
users that logged into a computer within 5 and 10 minutes
alter the computer was booted. Suppose the last login was
1:11. Suppose the last boot was at 1:05. If the last reboot
occurred at T=1:05, 1:05 can be compared to 1:06, that 1s,

10

15

20

25

30

35

40

45

50

55

60

65

8

1:11-5 (recorded time of data t from data stream 1 minus the
minimal variance time d generated from the analysis of the
j01n condition) to determine which of the data streams to pull
from next. Because 1:05 1s less than 1:06 additional data can
be accessed, read or pulled from the second data stream.
Logins that match a recorded time of 1:11 are logins that
occurred between 1:11 and 1:16. Therefore i1 the last login
was 1:11 the latest reboot that could match would be 1:06.
Thus there would be no need to read any more boots until
another login was received.

FIG. 2¢ illustrates an example of a method 220 for
performing streaming joins 1n accordance with aspects of the
subject matter described herein. The method described 1n
FIG. 2¢ can be practiced by a system such as but not limited
to the one described with respect to FIG. 1. While method
220 describes a series of operations that are performed 1n a
sequence, 1t 15 to be understood that method 220 i1s not
limited by the order of the sequence depicted. For instance,
some operations may occur in a different order than that
described. In addition, one operation may occur concur-
rently with another operation. In some 1nstances, not all
operations described are performed. In some 1nstances, not
all operations performed are illustrated,

At operation 222 one or more join conditions can be
analyzed. In response to determining at operation 224 that,
regardless of additional input received through one of the
data streams (e.g., a first data stream), no output can be
produced unless and until more 1nput 1s received from the
another data stream, (e.g., a second data stream) acquiring,
accessing, reading, or pulling data from the first stream can
cease until more mput 1s recerved from the other (second)
data stream. That 1s, 1n response to determining at operation
224 that no more potentially joinable mput data from data
stream 1 can be acquired until data from the second data
stream 1s recerved, processing can continue at operation 228.
Data that 1s potentially joinable data 1s data that has at least
some chance of matching. IT mstead at operation 224 1t 1s
determined that additional still potentially joinable data 1s
available from the first data stream (e.g., data stream 1)
additional data can be acquired, accessed, read or pulled
from the first data stream (e.g., data stream 1) at operation
226. Processing can return to operation 224. In response to
determining at operation 228 that additional mput from a
second data stream (e.g., data stream 2) 1s still potentially
joinable and thus can still potentially generate output, addi-
tional data can be pulled from data stream 2 at operation 230.
Processing can return to operation 228. In response to
determining at operation 228 that regardless of what addi-
tional 1nput 1s recerved from data stream 2, output cannot be
generated until additional data from the first data stream 1s
received, processing can return to operation 224. This pro-
cessing can continue until the stream processing process 1s
terminated.

A real-world example of method 220 1s described. Sup-
pose a computer reboot occurring within 5 minutes before or
5> minutes after a temperature reading of 100 degrees Fahr-
enheit 1s detected. Typically a lot more temperature readings
are generated then there are reboots. However, there 1s no
point acquiring the temperature readings unless there 1s a
reboot within the previous 5 minutes. Instead of acquiring
and storing all the data, the data i1s not pulled 1n until the
reboot occurs. For example, suppose the first data stream
(data stream 1) represents temperature and the second data
stream (data stream 2) represents reboots. At operation 224
a temperature reading 1s acquired but so far, no reboots have
been recerved so no output can be generated. Additional
temperature readings will not generate output, so no more

US 9,880,769 B2

9

temperature readings are pulled. Instead, data 1s attempted to
be pulled from the second data stream (data stream 2). If data
1s acquired and 1f the match conditions are satisfied, output
can be produced and more data can be pulled from data
stream 2. As long as output can be generated, this loop
continues. When output can no longer be generated (there
are no reboots within the previous 5 minutes), processing
returns to operation 224. This process can be repeated.

FIG. 2d illustrates an example of a method 231 for
performing streaming joins 1n accordance with aspects of the
subject matter described herein. The method described 1n
FIG. 2d can be practiced by a system such as but not limited
to the one described with respect to FIG. 1. While method
231 describes a series of operations that are performed 1n a
sequence, 1t 1s to be understood that method 231 1s not
limited by the order of the sequence depicted. For instance,
some operations may occur 1n a different order than that
described. In addition, one operation may occur concur-
rently with another operation. In some instances, not all
operations described are performed. In some 1nstances, not
all operations performed are illustrated.

At least one join condition for joining data from a first
stream and data from a second stream can be analyzed to
generate at least a first time interval and a second time
interval. In accordance with some aspects of the subject
matter described herein, the first time interval 1s the shorter
time 1nterval of the two time intervals and the second time
interval 1s the longer time interval of the two time intervals.
In the first stage of a multiple stage joining process, data
from the first data stream can be acquired (e.g., accessed,
read, pulled, etc.) at operation 232. At operation 233 data
from the second data stream can be acquired (e.g., accessed,
read, pulled, etc.).

At operation 234 data from the first data stream and data
from the second data stream can be evaluated to determine
if the data matches using a first time period. For example,
data matches if the time associated with the data being
matched falls within a first time interval of multiple time
periods. In accordance with some aspects of the subject
matter described herein the first interval 1s a shorter interval.
In response to determining that data from the first stream and

the join) can be generated at operation 238. In response to
determining that data from the first stream and data from the
second stream do not match, that i1s, for example, their
assoclated times fall outside of the first interval, the non-
matching data from data stream 2 can be held at operation
235.

In the second stage of the joiming process, unmatched data
from the first data stream and unmatched data from the
second data stream can be matched using the second (e.g.,
possibly longer) time period. Data from stream 1 can be
re-read (re-pulled) with an intentional delay at operation
242. At operation 236 data re-read from the first data stream
and data that was held at operation 235 from the second data
stream can be evaluated to determine 1f the data matches
using a second time period. For example, data matches 11 the
associated times of the data being matched falls within the
second, specified interval of the multiple time periods. In
accordance with some aspects of the subject matter
described herein the second interval 1s a longer interval.

In response to determining that data re-read from the first
stream and data held from the second stream match, output
data (the result of the join) can be generated at operation
238. Processing can continue at operations 232 and 233. In
response to determining that data from the first stream and
data from the second stream do not match, that is, for

data from the second stream match, output data (the result of

10

15

20

25

30

35

40

45

50

55

60

65

10

example, their timestamps fall outside of the second interval,
the non-matching data from data stream 2 can be discarded
at operation 240. Processing can continue at operations 232
and 233. It will be appreciated that although only two stages
are depicted 1n FIG. 2¢, the contemplated subject matter 1s
not so limited. This process or portions thereol can be
repeated for any number of stages.

A real-world example 1s now described. Suppose data
from the first data stream represents ads displayed to users.
Suppose data from the second data stream represents click
events (1.e., the user clicks on the ad). Suppose the first time
period selected 1s five minutes. The ad data 1s acquired. The
click data i1s acquired. The data 1s evaluated to see 1f 1t
matches. Any click event that matches up with an ad display
in the first five minutes can result 1n an output being
produced. To do so, 5 minutes worth of ads can be held. IT
there are any matches, output 1s produced. There will 1n all
likelihood be data that does not match. In particular, 1t 1s
likely that some clicks will not match. The reason that a click
does not match an ad 1s because the ad occurred more than
5 minutes before. The unmatched clicks are clicks that
occurred more than 5 minutes after the ad was displayed.
The number of unmatched clicks would be expected to be
very small.

The unmatched clicks can be matched against the ads
where the ads are re-acquired from the data stream 1 with a
delay (e.g, a one hour delay). The ads and the clicks may still
not match. For example, the ads and the clicks may not
match because the click occurred more than one hour after
the ad was displayed or because the corresponding click was
not held (e.g., because the click occurred less than 5 minutes
alter the ad was displayed). If the ad was clicked on before
5> minutes operation 234 would have handled it. Operation
236 will only pick up the clicks that occurred between 5
minutes and one hour. The amount of data held 1n memory
or in storage 1s very small (5 minutes worth of ads and
non-matching clicks). A traditional system would hold an
hour’s worth of ads. Suppose the second time period
selected 1s three hours. Unmatched data (clicks and ads) can
be re-mngested with a 3 hour delay and joined to produce
output.

In conclusion, described herein includes a system com-
prising at least one processor, a memory connected to the at
least one processor and at least one program module loaded
into the memory, the at least one program module compris-
ing a streaming join module that analyzes at least one join
condition for joining data pulled from a first data stream and
data pulled from a second data stream and generates, based
on analysis of the at least one join condition, an order or
sequence 1n which pull requests are sent to the first and
second data streams based on a time associated with the data
from the first data stream and a time associated with the data
from the second data stream. The system may comprise at
least one program module that generates an allowable time
range for joinable data from the analysis of the at least one
jom condition. The system may comprise at least one
program module that generates a lower boundary of the
allowable time range, the lower boundary comprising a
minimal time variance for the joinable data, pulls data from
the first data stream, and/or records in the memory or
clsewhere the time associated with the data from the first
data stream and then pulls data from the second data stream.

The system may comprise at least one program module
that determines that the pulled data from the second data
stream 1s potentially joinable with the pulled data from the
first data stream by determiming that the time associated with
the data from the second stream 1s less than a difference of

US 9,880,769 B2

11

the recorded time and the minimal time variance. The
system may comprise at least one program module that pulls
additional data from the first data stream 1n response to
determining that the pulled data from the second data stream
1s not joinable with the pulled data from the first data stream,
and/or determines that the pulled data from the second data
stream 1s not joinable with the pulled data from the first data
stream by determining that the time associated with the data
from the second stream 1s not less than a difference of the
recorded time and the minimal time variance. The system
may comprise at least one program module that determines
from the analysis of the at least one join condition that to
produce output, data from the first data stream and data from
the second data stream 1s required. The system may com-
prise at least one program module that, in response to
determining that no output can be produced because no
potentially joinable data from the second data stream has
been pulled, stops pulling data from the first data stream and
starts pulling data from the second data stream. The system
may comprise at least one program module that, 1n response
to determining that no output can be produced because no
potentially joinable data from the first data stream has been
pulled, stops pulling data from the second data stream and
starts pulling data from the first data stream.

The system of claim 1 may comprise at least one program
module that determines from the analysis of the at least one
101n condition, a first time 1nterval and a second time interval
and 1n response to determining that the time associated with
the data from the first data stream and the time associated
with the data from the second data stream does fall within
the first time interval, retains non-matching data from the
second data stream. The system may comprise at least one
program module that determines from the analysis of the at
least one join condition a first time interval and a second
time interval and 1n response to determiming that the time
associated with the data from the first data stream and the
time associated with recorded data from the second data
stream fall within the second time interval, discards non-
matching data from the second data stream.

Disclosed 1s a method comprising analyzing by a proces-
sor of a computing device at least one join condition for
joimng data pulled from a first data stream and data pulled
from a second data stream 1n a stream processing system and
generating, based on analysis of the at least one join con-
dition, an order in which pull requests are sent to the first and
second data streams based on a time associated with the data
from the first data stream and a time associated with the data
from the second data stream. The method may generate an
allowable time range for joinable data from the analysis of
the at least one join condition, generate a lower boundary of
the allowable time range, the lower boundary comprising a
mimmal time variance for the joinable data, pull data from
the first data stream, record in the memory or elsewhere the
time associated with the data from the first data stream and
pull data from the second data stream. The method may
determine that the pulled data from the second data stream
1s potentially joinable with the pulled data from the first data
stream by determining that the time associated with the data
from the second stream 1s less than a difference of the
recorded time and the mimimal time variance.

The method may pull additional data from the first data
stream 1n response to determining that the pulled data from
the second data stream 1s not joinable with the pulled data
from the first data stream and determine that the data pulled
from the second data stream 1s not joinable with the pulled
data from the first data stream by determining that the time
associated with the data from the second stream 1s not less

10

15

20

25

30

35

40

45

50

55

60

65

12

than a difference of the recorded time and the minimal time
variance. The method may determine from the analysis of
the at least one join condition that to produce output, data
from the first data stream and data from the second data
stream 1s required. The method may, 1n response to deter-
mining that no output can be produced because no poten-
tially joinable data from the second data stream has been
pulled, cease to pull data from the first data stream and start
to pulls data from the second data stream with an intentional
delay. The method may, 1n response to determining that no
output can be produced because no potentially joinable data
from the first data stream has been pulled, cease pulling data
from the second data stream and pull data from the first data
stream. The method may determine from the analysis of the
at least one join condition, a first time 1nterval and a second
time interval and in response to determining that a time
associated with the data from the first data stream and the
time associated with the data from the second data stream
fall within the first time 1nterval, retain non-matching data
from the second data stream. The method may determine
from the analysis of the at least one join condition a first time
interval and a second time interval and may 1n response to
determining that a time associated with the data from the
first data stream and the time associated with recorded data
from the second data stream fall within the second time
interval, discard non-matching data from the second data
stream.

Disclosed 1s a computer-readable storage medium com-
prising computer-readable instructions which when
executed cause at least one processor of a computing device
to analyze at least one join condition for joining data pulled
from a first data stream and data pulled from a second data
stream. Further instructions may generate, based on analysis
of the at least one join condition, an order 1n which pull
requests are sent to the first and second data streams based
on a time associated with the data from the first data stream
and a time associated with the data from the second data
stream. Further istructions may determine from the analy-
s1s of the at least one join condition, a first time 1nterval and
a second time interval. Further instructions may 1n response
to determining that the time associated with the data from
the first data stream and the time associated with the data
from the second data stream fall within the first time
interval, retain non-matching data from the second data
stream. Further instructions may 1n response to determining
that the time associated with the data from the first data
stream and the time associated with recorded data from the
second data stream fall within the second time interval,
discard non-matching data from the second data stream.
Example of a Suitable Computing Environment

In order to provide context for various aspects of the
subject matter disclosed herein, FIG. 3 and the following
discussion are imntended to provide a brief general description
of a suitable computing environment 510 1n which various
embodiments of the subject matter disclosed herein may be
implemented. While the subject matter disclosed herein 1s
described 1n the general context of computer-executable
instructions, such as program modules, executed by one or
more computers or other computing devices, those skilled in
the art will recognize that portions of the subject matter
disclosed herein can also be implemented 1n combination
with other program modules and/or a combination of hard-
ware and software. Generally, program modules include
routines, programs, objects, physical artifacts, data struc-
tures, etc. that perform particular tasks or implement par-
ticular data types. Typically, the functionality of the program
modules may be combined or distributed as desired in

US 9,880,769 B2

13

vartous embodiments. The computing environment 510 1s
only one example of a suitable operating environment and 1s
not intended to limit the scope of use or functionality of the
subject matter disclosed herein.

With reference to FIG. 3, a computing device in the form
of a computer 512 1s described. Computer 512 may include
at least one processing unit 314, a system memory 316, and
a system bus 518. The at least one processing unmt 514 can
execute instructions that are stored in a memory such as but
not limited to system memory 516. The processing unmt 514
can be any of various available processors. For example, the
processing unmit 514 can be a graphics processing unit
(GPU). The instructions can be instructions for implement-
ing functionality carried out by one or more components or
modules discussed above or instructions for implementing
one or more of the methods described above. Dual micro-
processors and other multiprocessor architectures also can
be employed as the processing unit 514. The computer 512
may be used 1n a system that supports rendering graphics on
a display screen. In another example, at least a portion of the
computing device can be used 1n a system that comprises a
graphical processing unit. The system memory 316 may
include volatile memory 520 and nonvolatile memory 522.
Nonvolatile memory 522 can include read only memory
(ROM), programmable ROM (PROM), electrically pro-
grammable ROM (EPROM) or flash memory. Volatile
memory 520 may include random access memory (RAM)
which may act as external cache memory. The system bus
518 couples system physical artifacts including the system
memory 516 to the processing unit 514. The system bus 518
can be any of several types including a memory bus,
memory controller, peripheral bus, external bus, or local bus
and may use any variety of available bus architectures.
Computer 512 may include a data store accessible by the
processing unit 514 by way of the system bus 518. The data
store may include executable 1nstructions, 3D models, mate-
rials, textures and so on for graphics rendering.

Computer 512 typically includes a variety of computer
readable media such as volatile and nonvolatile media,
removable and non-removable media. Computer readable
media may be implemented 1n any method or technology for
storage of mformation such as computer readable 1nstruc-
tions, data structures, program modules or other data. Com-
puter readable media include computer-readable storage
media (also referred to as computer storage media) and
communications media. Computer storage media includes
physical (tangible) media, such as but not limited to, RAM,
ROM, EEPROM, flash memory or other memory technol-
ogy, CDROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices that can store
the desired data and which can be accessed by computer
512. Communications media include media such as, but not
limited to, communications signals, modulated carrier
waves or any other itangible media which can be used to
communicate the desired information and which can be
accessed by computer 512.

It will be appreciated that FIG. 3 describes software that
can act as an mtermediary between users and computer
resources. This software may include an operating system
528 which can be stored on disk storage 524, and which can
allocate resources of the computer 512. Disk storage 524
may be a hard disk drive connected to the system bus 518
through a non-removable memory 1nterface such as interface
526. System applications 530 take advantage of the man-
agement of resources by operating system 528 through
program modules 532 and program data 334 stored either in

10

15

20

25

30

35

40

45

50

55

60

65

14

system memory 516 or on disk storage 524. It will be
appreciated that computers can be implemented with various
operating systems or combinations of operating systems.

A user can enter commands or information into the
computer 512 through an 1nput device(s) 336. Input devices
536 include but are not limited to a pointing device such as
a mouse, trackball, stylus, touch pad, keyboard, microphone,
volice recognition and gesture recognition systems and the
like. These and other input devices connect to the processing
unmit 514 through the system bus 518 via interface port(s)
538. An terface port(s) 538 may represent a serial port,
parallel port, universal serial bus (USB) and the like. Output
devices(s) 340 may use the same type of ports as do the input
devices. Output adapter 542 1s provided to illustrate that
there are some output devices 540 like monitors, speakers
and printers that require particular adapters. Output adapters
542 include but are not limited to video and sound cards that
provide a connection between the output device 540 and the
system bus 518. Other devices and/or systems or devices
such as remote computer(s) 544 may provide both mnput and
output capabilities.

Computer 512 can operate 1 a networked environment
using logical connections to one or more remote computers,
such as a remote computer(s) 544. The remote computer 544
can be a personal computer, a server, a router, a network PC,
a peer device or other common network node, and typically
includes many or all of the elements described above
relative to the computer 512, although only a memory
storage device 546 has been illustrated 1n FIG. 3. Remote
computer(s) 544 can be logically connected via communi-
cation connection(s) 3550. Network interface 548 encom-
passes communication networks such as local area networks
(LANs) and wide area networks (WANs) but may also
include other networks. Communication connection(s) 550
refers to the hardware/software employed to connect the
network interface 548 to the bus 518. Commumnication
connection(s) 550 may be internal to or external to computer
512 and include nternal and external technologies such as
modems (telephone, cable, DSL and wireless) and ISDN
adapters, Ethernet cards and so on.

It will be appreciated that the network connections shown
are examples only and other means of establishing a com-
munications link between the computers may be used. One
of ordinary skill 1n the art can appreciate that a computer 512
or other client device can be deployed as part of a computer
network. In this regard, the subject matter disclosed herein
may pertain to any computer system having any number of
memory or storage units, and any number of applications
and processes occurring across any number of storage units
or volumes. Aspects of the subject matter disclosed herein
may apply to an environment with server computers and
client computers deployed in a network environment, having
remote or local storage. Aspects of the subject matter
disclosed herein may also apply to a standalone computing
device, having programming language functionality, inter-
pretation and execution capabilities.

The various techniques described herein may be imple-
mented 1n connection with hardware or software or, where
appropriate, with a combination of both. Thus, the methods
and apparatus described herein, or certain aspects or portions
thereof, may take the form of program code (1.e., mstruc-
tions) embodied 1n tangible media, such as floppy diskettes,
CD-ROMs, hard dnives, or any other machine-readable
storage medium, wherein, when the program code 1s loaded
into and executed by a machine, such as a computer, the
machine becomes an apparatus for practicing aspects of the
subject matter disclosed herein. As used herein, the term

US 9,880,769 B2

15

“machine-readable storage medium” shall be taken to
exclude any mechanism that provides (1.e., stores and/or
transmits) any form of propagated signals. In the case of
program code execution on programmable computers, the
computing device will generally include a processor, a
storage medium readable by the processor (including vola-
tile and non-volatile memory and/or storage elements), at
least one 1nput device, and at least one output device. One
or more programs that may utilize the creation and/or
implementation of domain-specific programming models
aspects, e.g., through the use of a data processing API or the
like, may be implemented in a high level procedural or
object oriented programming language to communicate with
a computer system. However, the program(s) can be imple-
mented 1n assembly or machine language, 11 desired. In any
case, the language may be a compiled or interpreted lan-
guage, and combined with hardware implementations.
Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features

and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed:
1. A system comprising;:
at least one processor; and
a memory connected to the at least one processor;
the at least one processor configured to perform actions
that:
analyzes at least one join condition for joining data pulled
from a first data stream and data pulled from a second
data stream, the at least one join condition indicates
how the data in the first data stream and the data in the
second data stream are to be joined;
based on the analysis of the at least one join condition,
determines an allowable time range 1n which to per-
form the join where data from the first data stream and
the second data stream satisty the join condition; and
generates an order in which pull requests are sent to the
first data stream and second data streams so that data
from the first data stream and the second data stream
are joined within the allowable time range, the order
based on a time associated with the data from the first
data stream and a time associated with the data from the
second data stream.
2. The system of claim 1, wherein the at least one
processor 1s further configured to perform actions that:
generates a lower boundary of the allowable time range,
the lower boundary comprising a minimal time vari-
ance for the joinable data;
pulls data from the first data stream:;
records in the memory the time associated with the data
from the first data stream:; and
pulls data from the second data stream.
3. The system of claim 2, wherein the at least one
processor 1s further configured to perform actions that:
determines that the pulled data from the second data
stream 1s potentially joinable with the pulled data from
the first data stream by determining that the time
associated with the data from the second data stream 1s
less than a difference of the recorded time and the
minimal time variance.
4. The system of claim 2, wherein the at least one
processor 1s further configured to perform actions that:

10

15

20

25

30

35

40

45

50

55

60

65

16

pulls additional data from the first data stream 1n response
to determining that the pulled data from the second data
stream 1s not joinable with the pulled data from the first
data stream; and

determines that the pulled data from the second data
stream 1s not joinable with the pulled data from the first

data stream by determining that the time associated
with the data from the second data stream 1s not less
than a difference of the recorded time and the minimal
time variance.
5. The system of claim 1, wherein the at least one
processor 1s further configured to perform actions that:
determines from the analysis of the at least one join
condition that to produce output, data from the first data
stream and data from the second data stream 1s
required.
6. The system of claim 5, wherein the at least one
processor 1s further configured to perform actions that:
in response to determining that no output can be produced
because no potentially joinable data from the second
data stream has been pulled, stops pulling data from the
first data stream and starts pulling data from the second
data stream.
7. The system of claim 5, wherein the at least one
processor 1s further configured to perform actions that:
in response to determining that no output can be produced
because no potentially joinable data from the first data
stream has been pulled, stops pulling data from the
second data stream and starts pulling data from the first
data stream.
8. The system of claim 1, wherein the at least one
processor 1s further configured to perform actions that:
determines from the analysis of the at least one join
condition, a first time interval and a second time
interval; and
in response to determining that the time associated with
the data from the first data stream and the time asso-
ciated with the data from the second data stream does
fall within the first time interval, retains non-matching,
data from the second data stream.
9. The system of claim 1, wherein the at least one
processor 1s further configured to perform actions that:
determines from the analysis of the at least one join
condition a {irst time interval and a second time inter-
val; and
in response to determining that the time associated with
the data from the first data stream and the time asso-
ciated with recorded data from the second data stream
fall within the second time interval, discards non-
matching data from the second data stream.
10. A method comprising:
analyzing by a processor of a computing device at least
one join condition for joining data pulled from a first
data stream and data pulled from a second data stream
in a stream processing system, the at least one join
condition indicates how the data in the first data stream
and the data in the second data stream are to be joined;
based on the analysis of the at least one join condition,
determines an allowable time range 1 which to per-
form the join where data from the first data stream and
the second data stream satisty the join condition; and
generating, based on analysis of the at least one join
condition, an order in which pull requests are sent to the
first data stream and second data streams so that data
from the first data stream and the second data stream
are joimned within the allowable time range, the order

US 9,880,769 B2

17

based on a time associated with the data from the first
data stream and a time associated with the data from the
second data stream.

11. The method of claim 10, further comprising:

generating a lower boundary of the allowable time range,
the lower boundary comprising a minimal time vari-
ance for the joinable data;

pulling data from the first data stream;

recording 1n the memory the time associated with the data
from the first data stream:; and

pulling data from the second data stream.

12. The method of claim 11, further comprising:

determining that the pulled data from the second data
stream 1s potentially joinable with the pulled data from
the first data stream by determining that the time
associated with the data from the second data stream 1s
less than a difference of the recorded time and the
minimal time variance.

13. The method of claim 11, further comprising:

pulling additional data from the first data stream 1n
response to determining that the pulled data from the
second data stream 1s not joinable with the pulled data
from the first data stream: and

determining that the data pulled from the second data
stream 1s not joinable with the pulled data from the first
data stream by determining that the time associated
with the data from the second data stream 1s not less
than a difference of the recorded time and the minimal
time variance.

14. The method of claim 10, further comprising:

determining from the analysis of the at least one join
condition that to produce output, data from the first data
stream and data from the second data stream 1is
required.

15. The method of claim 14, further comprising:

in response to determining that no output can be produced
because no potentially joinable data from the second
data stream has been pulled, ceasing to pull data from
the first data stream and starting to pulls data from the
second data stream with an intentional delay.

16. The method of claim 14, further comprising;

in response to determining that no output can be produced
because no potentially joinable data from the first data
stream has been pulled, ceasing to pulling data from the
second data stream and pulling data from the first data
stream.

17. The method of claim 10, further comprising:

determining from the analysis of the at least one join
condition, a first time interval and a second time
interval; and

10

15

20

25

30

35

40

45

18

in response to determining that a time associated with the
data from the first data stream and the time associated
with the data from the second data stream fall within
the first time interval, retain non-matching data from
the second data stream.

18. The method of claim 17, further comprising:

determining from the analysis of the at least one join
condition a first time interval and a second time inter-
val; and

in response to determining that a time associated with the
data from the first data stream and the time associated
with recorded data from the second data stream {fall
within the second time interval, discarding non-match-
ing data from the second data stream.

19. A device, comprising:

at least one processor and a memory;

the at least one processor configured to:

analyze at least one join condition for joining data pulled
from a first data stream and data pulled from a second
data stream, the at least one join condition indicates
how the data i the first data stream and the data in the
second data stream are to be joined;

based on the analysis of the at least one join condition,
determines an allowable time range 1n which to per-
form the join where data from the first data stream and
the second data stream satisty the join condition; and

generate an order in which pull requests are sent to the
first and second data stream so that data from the first
data stream and the second data stream are joined
within the allowable time range, the order based on a
time associated with the data from the first data stream
and a time associated with the data from the second
data stream.

20. The device of claim 19, wherein the at least one

processor 1s further configured to:

determine from the analysis of the at least one join
condition, a first time interval and a second time
interval;

in response to determining that the time associated with
the data from the first data stream and the time asso-
clated with the data from the second data stream {fall
within the first time 1nterval, retain non-matching data
from the second data stream; and

in response to determining that the time associated with
the data from the first data stream and the time asso-
clated with recorded data from the second data stream
fall within the second time interval, discard non-match-
ing data from the second data stream.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

