12 United States Patent

Armangau et al.

US009864753B1

US 9,864,753 B1
Jan. 9, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(51)

(52)

(58)

DATA STORAGE SYSTEM WITH ADAPTIVE
FILE SYSTEM OVER-PROVISIONING

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Philippe Armangau, Acton, MA (US);
Ahsan Rashid, Edison, NJ (US);
Kumari Bijayalaxmi Nanda, Edison,
NJ (US); Alexander Mathews,
Morganville, NJ (US)

Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 80 days.

Appl. No.: 15/085,276

Filed: Mar. 30, 2016

Int. CL.

GO6F 12/00 (2006.01)

GO6F 17/30 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC ... GO6F 17/30138 (2013.01); GO6F 3/0608

(2013.01); GO6F 3/0652 (2013.01); GO6F
3/0653 (2013.01); GO6F 3/0689 (2013.01)

Field of Classification Search

CPC GO6F 3/0604; GO6F 3/0631; GO6F 11/34
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2014/0372723 Al* 12/2014 Bobroff GOG6F 12/023

711/170

* cited by examiner

Primary Examiner — David X Y1
Assistant Examiner — Arvind Talukdar
(74) Attorney, Agent, or Firm — BainwoodHuang

(57) ABSTRACT

A data storage system tracks liability and insurance for an
internal file system, liability being a number of slices needed
to store file system data, insurance being a number of slices
allowed to be consumed. A reserve of un-provisioned insur-
ance 1s maintained from which slices are provisioned to the
file system for use 1n storing file system data without
immediate requirement for increasing the msurance. Slices
are provisioned to the file system from the reserve of
un-provisioned mmsurance based on a window criteria and a
space criteria, the window criteria being that a number of
free windows 1s less than a free window threshold, the space
criteria being that a number of currently provisioned slices
1s less than a maximum allowed slices, which includes an
overprovisioning factor applied to the primary file size to
allow for growth of the primary file without immediate
requirement for increasing provisioned insurance.

20 Claims, 5 Drawing Sheets

60 —

\ CONTINUALLY TRACK LIABILITY AND INSURANCE

62 —.

!

64 —.

| MAINTAIN RESERVE OF UN-PROVISIONED INSURANCE

PROVISION SLICES TO F/S FROM RESERVE OF UN-
PROVISIONED INSURANCE BASED ON WINDOW
| CRITERIA AND SPACE CRITERIA:
WINDOW — NUMBER OF FREE WINDOWS LESS THAN A
FREE WINDOW THRESHOLD
SPACE — NUMBER OF CURRENTLY PROVISIONED SLICES
LESS THAN A MAXIMUM ALLOWED SLICES WHICH
INCLUDES OVERPROVISIONING FACTOR TO ALLOW FOR
GROWTH WITHOUT IMMEDIATE NEED FOR INCREASING

PROVISIONED INSURANCE

U.S. Patent Jan. 9, 2018 Sheet 1 of 5 US 9.864,753 B1

DSS CLIENT
12 NETWORK 14
INTERFACE
20
NETWORK
14

DATA STORAGE
SYSTEM 10
EMPLOYING
INTERNAL F/S WITH
ADAPTIVE OVER-
PROVISIONING
INTERFACE
26
F
T
DEVICE
28
o
10 —ﬂ/
Fig. 2
PROCESSOR(S) 30 MEMORY 32
36 ﬂ
STORAGE /O INTERFACE NETWORK &

38 CIRCUITRY 34 OTHER /O DEVICES

U.S. Patent Jan. 9, 2018 Sheet 2 of 5 US 9.864,753 B1

DSS CLIENTS 12 ~_ LOG. STG. DEV.
o HOST F/S

INTERNAL
F/S CLIENTS
48

SLICE-BASED POOL
42

POOL LUN 44
RAID CTRLLR
46

’IOJ

DEVICES 28

Fig. 4

U.S. Patent Jan. 9, 2018 Sheet 3 of 5 US 9.864,753 B1

SLICE 50 SLICE 50

WINDOW

LBA: 012

WINDOW
52

WINDOW

52

BLOCK 54

5

v?k w300 a.k‘\-&if \Rz::l't SR ' & ‘il}

l"l" 1 ' l I l"l
r b"b"b"h-"-"-‘h L8 I F-I"i'i‘ H r "h h I' 'a. h '-l'h h
AL, LI -. q.' r. 1-..1- AL N St
-ib"l "a ¥
H&ﬁ“:\:‘}m;?& . ::‘.—é:‘: \ +"h.‘|"t
r -I i T F I

-
+ JF,T,F

Ya
L
-u-u

o

'-l"
+

r . d 'r‘l-r‘.'r‘ll 'I"I‘I‘I l‘l o ‘I - i-'rli -I 1.
o ORI e : e :.‘ OROOE
|‘+ lI."‘I. -I."-I..I' I'lll' 'r+l+l+ll|l+l+-+ + +I+ * = r |"|- - 1“

R EEAEES) k‘ .‘.-'- . ST _.‘ 1 I -, I‘ ... l*'l
hﬁ :'..'hq. "‘l: 1.“!1.'. q\h::}‘% :‘:} .\' ‘E‘?t""ﬁ.‘. I'l- ‘:.':-‘ {:"i 1::'.'5'.. II"':l-ll\" q‘q;a L'_‘t }::' '\1_1‘1-%; .'1-1:' 1"\- -\.1. 1:" :}.:" ... \.D .

HhﬂﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁHHHHH%H*q"'."1h‘t‘u’tﬁ'ﬁh‘t‘t‘ﬂ"t‘t‘u‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ"-i"-i"-i"-i"-i"-i"-i"-i'h"-i"-i"'-"'-"'.*uh‘ﬁh‘t‘t‘u‘t‘u‘t‘t‘u‘u‘u‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ"h"-i"-i"h"t"t"t"-i"h'h'ﬁ"h"-u‘uﬂ%‘t‘ﬁ‘tﬁ‘t‘t‘t‘tﬂ‘t‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘h‘u‘ﬁ"h"h"-i'h"t"t"t"t"h'ﬁ"-i'ﬁ"h‘u‘t‘ﬂt‘t‘t‘u‘t‘t‘t‘t‘t‘ﬁ‘u‘ﬁ‘u‘u‘ﬁ‘ﬁ‘ﬁhﬁ'ﬁ'ﬂ"h"-i"q"q"q"t'q*-u"-i"hﬁ“Hhﬁhkhﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁw T
...n."‘.
1..,1.
- L T
'LHH.-""
.
"" -\\. *nx*t:\..\\"m
‘ I I a2 4 31 4 4 ' ' ' H ‘ mm ﬁummm\% W&Wﬁﬁ%ﬁ% n 'W
bibiiihiiiidddiiui"ili JL.--I..I. ol d bk br b b ndhohhdh Hdod e b ddd iijiﬁlih.ﬂ.lbl F e d o od] idiiiii""iihi b d b kgL iiihhiiiuiiiiiiiii Y b L [N EEREEE e el Ak kAl ol *L’\I
‘p‘p‘l.‘l.‘h‘l.‘l.ihl.l.tl.*l.ll.l'l.b-i- I. "H“ . “L‘L““L‘L‘l‘ il.‘l. ‘.‘i.‘ilihh‘btl.‘b-l.‘b‘ll “-F‘-F ‘l.‘l.“‘il. L‘i i.i.i"b‘l.b‘.b“‘ -‘-F"‘-“‘ ‘L‘L‘L‘L‘L‘l‘h‘h‘l‘l.ihihil.‘hhl.tl.ll.li*l.l*l' | J . L‘L‘L‘l‘h‘h‘t‘l ‘i‘i.‘ihl.‘.‘i"l.‘l.‘b‘ -i*-l'-‘. IIH ll‘p‘p“"““.“.“-\
‘l :L‘L:L‘L:L*L‘b‘*b.ihbb b"l"b‘l'.'.- ‘I.I'I'I‘“ :"I 4 np‘p‘ ‘p“‘h‘h‘h‘h‘h‘h‘h‘b‘##b‘bll.bl.l b -‘ ‘ -.-.-. ‘l :‘ :l.:l.: l"l'iiblj bl l - "‘-p“p‘p.‘p‘p‘h:h‘h:h:h:l.:l.: l“'lb.ihb‘b‘btl-b‘.b‘l.-b-- F‘ ‘L:Ll:ihiii-.‘\.‘ihb-b‘b‘b"l‘.l-l'.b-- "‘F‘l‘l‘l"-‘l‘h:L‘L‘L:LH
'l'l'lll'li‘l"r'r'r‘a.'rll.!.‘ll. LR L L L] "l'l'l'l'l'liii'li*‘l |- l'l t‘ L l.l.l. ll l'l'l'l'l'liilliiii'l*.b‘c.ﬂll'rllll 'I'I-iii i‘lb‘a.\.'rl LR LI LI LI I
L Y - - T4t 3imdid s mwww - = = omom LY » -y R R R R ERERR '|.'l'|.'|. % lI. 'I'I'I'I § = e e dldd 1.1.‘.1.'-1.1."1.'-1111'-'-11 Iqlll.l.....l.l. LR O 1."'.1.1.11.'-1111 LI T L T)
'li'i'l'l‘l'l*‘l.‘l.lll'r'r“‘l‘““‘ LI L] r L] L] lll'l'lﬁ'l'l'l'l'l** “““ll“‘\‘\“‘\ii‘l‘l*‘lb‘l.'l.'rl‘l'r'r L L L) H'I'I'I'l'l'l'l ‘l‘l*b l\.l‘-‘-‘- T % FF RS YECESEEE R R R
LN ' 9 I ERERER] 'l1'l'l'l'l'l'l1'll'lllll.l.l.l.l.l.l.'|.'|. '|.I|'|.'l'l'l-1'l'l'l'l'l'l'l'l'l'lllllll.l.l.'l.l.l. '|.'|.'|. 'l - - RN R R R R R L 9 LY '|.1'l'l"'l'l1'l'l'l'l'l'l'l'l'lllllll.l.l.l.l.l.'l.l.l. L + . 'I'I'I'I'I'I'I'I'I'I'I'Illllll-l-l-l-l-l-l-'p*mk
‘l‘lll'i‘l‘ll-|lI'I'I.'I.'I-'I.++++++tt++iiiii‘l*‘li‘l\lillllli‘l.‘l.'l.‘l.‘l.‘l-'l- + + + + 1 + iiiiii‘lii‘l‘li*i -l ‘M ‘ ++++iiiiiiii‘l‘l‘l*‘l‘l‘l‘lillII'I.-I.-l++++i++++++iiliiiii‘l‘l‘l‘l*‘l‘l‘lll-|‘|.‘|.-|.‘|.‘|.'|.+++ LIE IR SE I L IR IR IR IR DR DR DL UL B O L B O O |
w e Mty e i, e .
I RN SRR R LR R EREEREREREIREIEIREIELENRINIE] l-llllliII'I.II++++++iiiiiiiiiiliilll-llll 'r'r‘-l l l+ +‘+iii++iiiiillllllllllllblI'I.'I.++++'I.+++iii+iliiiiilllllllllll'r'rlIll+++++++ii+iiiiiii*l‘llll -
L T R L., OO0 ... W L R e L L L L
FFFFFY 534444444 +F+41 +++ 4 4441 + + + F + F F [] [} LI BN | 14 4 141+ +++++++++1 +++++F F I'l'l 'l'l'l‘I‘I'r‘l1111+‘|++1+++‘|++++++++I‘I‘ I' I ‘I'I ++++ FFFFFFBEBY Y% 5% 4444 + + ++ ++++F+q4 == ++I‘I‘I‘I‘I‘I"l'l'liiii'r'r‘l‘l‘l++++++++++++ +++I‘I‘I‘I‘I‘
T T P P‘.‘1- T T T T T ERAASSAAN
I‘I"l"l"l'Plﬁliiilil11++1+++l‘++++ | I L] FF I-Fiilll1111+++++++l'+l‘l‘l‘l‘l‘l'l‘l‘ L] - +* FFFFFEFrrrsrrasss bk Fddeddddd 4+ %+ + &+ FFFFrr FFFEFABAd A A DA A b+ b+ FFFF I‘llll‘l'l"rllh:
P L L T T P T P T T L . «t A L T T P A B L T e N
e e - . . T T e e e e e et T T e A T T T T e e e T T T e T e e e e e e e T T T T T T T T e T e e T e T ey
ST PTTALLT L TTIT T TL T, AR AT NI A LT LTI ST, STy
T T T e T T e T e . . e e e e N TSRS T, et T
datatata - 2ae NN R R aalele 2latatety "'h.
U LT Ve B L L L 2t T .
- -

U.S. Patent Jan. 9, 2018 Sheet 4 of 5 US 9.864,753 B1

o

B e P il bl e b T

.I. LI |

2t
L ‘I.'I L ‘I“I “I‘
ql."‘-l.q-r -I.‘ N -I.q-r i 4
-‘l."l.‘b-‘h‘ [b‘h‘h“
gttt " .:i.:i.:i.:_i.:.i::i::'i::l:'
E L]
) t': Y

=l
‘l-l-l‘l'.l‘ltl‘l_‘ E I‘I nn

W ok A L W WMk h kS
n n

al Ly o o L LI] L]
I‘I‘I‘I‘I‘I-‘I‘"ﬁltl'.ltl'tl‘"l"‘l I.I-I‘I‘I 144+ FEE

T kL % FF 8T ETEETRLERERER TR Ry AN R RRR
P et R R PR S - - . = - NN N N e e e S e e NN P] .
E AL L B B I ML N LR B A A I I I I L L B B R R I A A S A I A I A D DL O I I B B I B N N N N L N L L DL I O B B B B B)

TFor s a s s e e s B R T T TR s T T N N NN N RN E N N T N E N N N N Y
A e e e T e e e e e e e e e e e T . s S e i i i
Aot LT LT, ST T . et B T LT T T W T T T T ot ot T T .
N e e e - (g L T T — e e e T
UL I Y aomann LI N NN) o RN N N SR R B N B AW R R N SNSRI RS NG R R N BN N WA

— .
I

o~

7 % = o= RT3 1 "I.'H."I.'L'L"'I."'I."'l."'l_'_'_'_'_'_'_'_‘I.‘I.‘L'L"'I."'I."'I."'I."'l."_'l_'_'_"l_"l_"!.‘L‘L'L'L“L“LH.*L'_'_'__'_'_‘L‘L‘L‘L'L“L“L‘L“L'\.E
Y Ll
e I - aa r
l-.l-‘i-.H'l-l: rll.‘ll. F."F.F.H-FH.H"H"-* N
bk h ko ili b h b b kkkF P
tl-ﬂl.H’.I“H‘_l.'.l". AT R H’ -‘ "l "l H‘ LY ‘_ﬂ 1y ;
a

Lo

N ! S . b o i)

o
"-’H"i"l'ﬂ'ﬂ'i.l.i-b t‘i‘i‘i‘i‘i‘ﬂ'ﬂ W o WA el ko hN HFHFi-'I'd-i i"i.‘i..l-.i-.i‘i‘i"i‘ﬂ'ﬂ"ﬂ'ﬂ'ﬂ“‘i“ﬂ“ﬂ' .'ll
14 FLELEFHAEFEREERSLLWE 4 &4 [A BN EELENREEN S IR SN N N AT N N I T P R I R I R L T L R L I T S L R L R I N N B T R R B R L B B R L B B I I R R R L B
L LR |

1w i i didw b b l.h.'l.'l.'l.'..'l‘l.b‘l = i b ww e 1L 4 1 wmdidi= B ek hoddh sl ddwd hww ok
4 4 1 ¥ r % FF 5§ L N T B N Y L% %% RS LI B L Y LI BN B B U T | l.!-'a!-l‘----
OIS IEMMEREM, LR IR Yt R A I N R N I R N O]

444+ FFFF
s e e A e
" rrE T TTTT
SLSTL T W R, LT T T

T

N X .
e A P Y
T T T T I T .

TTT rrrar rrramsTTT

L i e i e
'

t..
R

. O . N
ER T =" s+ R
' -

' TR -t ity LSRN
e P S

e
e e

et SR .
SRR SR AR 8

- .
4 m a L -%-r:-u
T T - - -

i OO
LEERSE

[N
ERE |

e e

N AR 2

e R LS
& . PR

oty

<+ LABILUTY———

' -.1"1. ‘l-:
= LI
r:'l.) L [
" L] v
I R
R L L T L L L L T T L T T R L L L L L L L e T L T L LT L L T L L R T e T L T L e T T L T L e L L U T T R R T R L L R R R R L R 'ﬁu
4t . |-"i{ T e - P T, o B N W B 1 T P T R R *_‘1‘5'&1‘ aaTd 11 e s q- a'y \-H"- Ml) R 11\. .:i ', .) . NI TR L. %y T ' ™ "li‘. ' ATy 1,:‘-‘ i S - hy
e D o Rl 2 I e al e B RA R e
o ‘ﬁ"_-.., R » : IS i T N oy * "o ; B N AL . e
. SRLAE ML }f B RS e }-”_-‘t%;,-&:bsﬁ_"{..ﬁ_ N R S O 5:75%\5,7,-. W ~':~,"'-3‘t-,,';?~}:~. A R R ML A 7**'-.-:-.-}& NI RN A AT i
B) e e R e T e e e e e e T e e e e e e e e e e e e e e e T e e e e e e e e e e e e e e ey AN
‘n."-,'. q'. - L P
= N -
o O : : . b SO,
it ! ! ! o . A S
e e e e T A AR ON = i %
5 3
jhb'l. I'H HFIHI"-IFH'-H"I"I"I I"I"I'I"qu.l"'l"l L] "l"l"l.'l"I'I.I.I‘qu'.lrl"i'H-I"l"-i"l.nl-'l' "l".l.'l. [] " 'I"lFl'l"i"i'-l'-l"l".l.'I"I"I"I'l‘l"lq-lrl'l"H-IF-I"-HHI.'I-'I'I.I“I'quplpﬂnﬂni'l-I"l"l"l.'l"l-‘!‘l‘I'I.l’l"'lr-lnip-lp-l" kL . ".
- -qhb‘lhn..l-“‘ra‘l‘l l. h-‘h*hqh.h'hnipi L] h"h‘h‘h.h ‘H l.ﬁ LA] h‘h.h‘h"i‘ilinj‘jnl h‘b-‘b-‘h*h‘lqhb..h'hFi""j"j‘h‘h‘h‘b“h‘b‘hq i‘j‘l. h‘hlhpi‘i‘-llinj‘ K Hb'I‘ . |‘-
hkﬂa*i'.i* l‘- i"il*l*l.ll‘llh‘h‘hihihihii.t.t.tph . J‘l-.l.l "a."a.i'a.il.i'-i-i LI I“H.I.l‘ . ih-i'.i*b‘.l'.liﬁih R I-LI L] Wy -ib-l..-l..{Fipil*lil‘a-\.‘h‘k"ri'-i i-l.i-I.bll..-iFi"i"‘a'l“a‘h‘h‘\.‘k‘\.‘h‘i L -I..-I..-i-'-ini"all‘ L AL ‘\.‘h‘{libl.li.i'.h'.il‘al . O
h‘h‘\.‘ﬁi‘h‘t ‘.1. !-. l-.'a LI | L M | *h.h‘h‘i‘i‘t‘ l-.'a.'a L | ‘\. " '."a 'a-_i * L L [" L LY LR .'«.'« - h ‘\.‘h‘h" ok ‘-I.‘ * l-l'a L i | '1..1 ‘-I.* '\'.1 LAY "-i‘ L P L B 'ah'lh'l':a.l'.i'.ﬁil.tl- * . L] L 'lt'l'.‘a:a'.l 1._.!.‘.1. L] l-.'al'a L T] 1‘1_‘.1'.1'. '.l'.l_‘.l_‘.l L] l-.'a |‘-
‘-I.‘-I.‘ 1 l.‘!- L l-‘l.l L M P LI l-‘l- L] l-‘l‘l"a:'lh'lh'lh'l:# -i"- L L W vy LR J 1-"4 LI = P 1-‘*:‘-‘[L i‘l"l"a L ‘.._ﬂa ’ﬁ- "'F -l-‘l-‘l- l-‘l"a"l *Lﬁ"_ 1‘*" l-‘i-‘-ll‘t"l_-ﬁ"i‘i - ¥ 'l.'r [] 'r'.l-‘l-‘l- !-‘!-‘l"a"l 'lh'lhﬁ"'r‘l:'r L] l.‘!-‘l- L l-‘l‘l"l"lh\'ﬁ'lh‘u b LI l.‘!-‘l- L |1-
A T D TS T T e e m -%&mﬁ’)"&\‘%{%ﬂ _ thw.‘}fﬁa*I+:+:+:*:*.‘*:*Z*:-.*.,~,~.+:+3*1*:+:*:*'.*Z*:*.‘*.*.*.*:*:*PE‘-:*?: "
T T T T T e T e e i}
Lo T 1+ FFF & AT T d omomod P T T i e R T T T e T T e T R T T T A
At TeTe e T e T T e e e e T T e T T e e ' "eteTeTeT pes - . Tetelel Tt e T T T T T T e T e e e et e T T e T T e A
T - i A
£ e - " T - LY
T e A
. ' +

e | N S UR AN C B

U.S. Patent Jan. 9, 2018 Sheet 5 of 5 US 9.864,753 B1

60
CONTINUALLY TRACK LIABILITY AND INSURANCE
62 —
MAINTAIN RESERVE OF UN-PROVISIONED INSURANCE
PROVISION SLICES TO F/S FROM RESERVE OF UN-
54 PROVISIONED INSURANCE BASED ON WINDOW

CRITERIA AND SPACE CRITERIA:
WINDOW — NUMBER OF FREE WINDOWS LESS THAN A
FREE WINDOW THRESHOLD
SPACE — NUMBER OF CURRENTLY PROVISIONED SLICES
LESS THAN A MAXIMUM ALLOWED SLICES WHICH
INCLUDES OVERPROVISIONING FACTOR TO ALLOWFOR
GROWTH WITHOUT IMMEDIATE NEED FOR INCREASING
PROVISIONED INSURANCE

US 9,864,753 Bl

1

DATA STORAGE SYSTEM WITH ADAPTIVLE
FILE SYSTEM OVER-PROVISIONING

BACKGROUND

The present invention 1s related to the field of data storage
systems, and 1n particular data storage systems employing
internal file systems for managing the storage of client data.

One important aspect of file system operation 1s space
reservation and provisioning. In one known scheme, space
becomes reserved to a file system when the current reserved
space minus the file system requirement drops below some
predetermined threshold. When this occurs, the file system
1ssues a reservation request to a lower-level manager of
underlying physical storage resources, which reserves the
requested space to the file system if there 1s free space 1n a
storage pool, and otherwise denies the request. Space 1s
provisioned to the file system from the reserved space when
the current free space 1n the file system drops below some
predetermined threshold, and the file system has un-provi-
sioned reserved space from which to draw. In this case, the
file system requests units of storage from the underlying
pool manager, which adds the requested units to the file
system from the un-provisioned reserved space.

Provisioned space i1s reclaimed from the file system 1n a
known technique by periodically checking whether the file
system Iree space has risen above some predetermined
threshold, and if so then returning some number of provi-
sioned units to the pool to reduce the free space back below
the threshold. Reserved space 1s reclaimed in a known
technique by monitoring for the difference between file
system reserved space and file system requirement to go
above some predetermined threshold, and returning excess
reserved space to the pool. In this case the checking may be
done on a regular periodic basis, such as by use of timer, for
example.

SUMMARY

The above known techniques for space reservation and
provisioning, as well as space reclamation, exhibit a par-
ticular drawback with respect to the desire for continuous
free space to maximize eflectiveness ol so-called “stripe
writes™, 1.¢., writes of large sets of contiguous data across a
RAID set of physical storage devices. The known reserva-
tion and provisioning techniques are based on aggregate
number of free blocks, without regard to whether the blocks
are 1n consecutive groups or are more scattered 1n the file
system. Viewed another way, the known techniques do not
account for fragmented space. I a file system has a lot of
free space then new units will not be added to 1t, even 11 the
space 1s Iragmented and there 1s little opportunity for
cilicient stripe writes to be used.

In contrast to the above known techniques, the disclosed
techniques take more account of the pattern of block usage
by the file system, and accordingly increase the usage of
consecutive blocks and improve performance of stripe
writes. Overall, the disclosed techniques work to maintain a
minimum number of consecutive free blocks, which 1s
referred to herein as a “window”. The space consumed by a
file system 1s dynamically limited to be a function of both
pool utilization and the size of a logical storage unit (LUN)
or other storage object stored in the file system. There are
also features for reducing undesirable oscillation or “ping-
pong’ between space provisioning and space reclaim.

More particularly, a method 1s disclosed of operating a
data storage system to manage use of pool storage by a file

10

15

20

25

30

35

40

45

50

55

60

65

2

system of the data storage system, the pool storage provided
by physical data storage devices and organized into slices
cach containing a predetermined number of contiguous
blocks. The blocks of each slice are further organized into
windows of multiple contiguous blocks, and the file system
stores a primary file for a primary storage object and
secondary files for secondary storage objects derived from
the primary storage object.

The method includes continually tracking liability and
insurance of the file system, the liability being a number of
slices needed by the file system to store file system data, the
isurance being a number of slices allowed to be consumed
by the file system. The insurance includes provisioned
insurance and un-provisioned insurance, the provisioned
insurance being a number of slices currently used by the file
system, the un-provisioned insurance being a remainder
portion not currently used by the file system.

A reserve of un-provisioned mnsurance 1s maintained from
which slices are provisioned to the file system for use in
storing file system data without immediate requirement for
increasing the msurance, by increasing the msurance when
a current value of the un-provisioned imsurance drops below
a predetermined non-zero low-insurance threshold.

Slices are provisioned to the file system from the reserve
of un-provisioned insurance, thereby increasing the provi-
sioned insurance, based on both a window criteria and a
space criteria. The window criteria 1s that a number of free
windows 1s less than a predetermined non-zero free window
threshold, a free window being a window whose blocks do
not currently store file system data. The space criteria 1s that
a number of currently provisioned slices 1s less than a
maximum allowed slices, the maximum allowed slices
including an overprovisioning factor applied to the primary
file size to allow for growth of the primary file without
immediate requirement for increasing the provisioned insur-
ance.

The disclosed technique promotes greater availability of
contiguous blocks of storage, increasing efliciency of stripe
writes. It also exhibits greater efliciency 1n managing the use
ol storage resources by the file system.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accom-
panying drawings in which like reference characters refer to
the same parts throughout the different views.

FIG. 1 1s a block diagram of a computer system;

FIG. 2 1s a hardware-oriented block diagram of a data
storage system:

FIG. 3 1s a hardware-oriented block diagram of a storage
Processor;

FIG. 4 1s a functional block diagram of a data storage
system:

FIG. 5 1s a schematic depiction of block, window and slice
data units;

FIGS. 6-9 are schematic depictions of use of pool storage
by a file system;

FIG. 10 1s a flow diagram for a process of space reser-
vation and provisioning.

DETAILED DESCRIPTION

FIG. 1 shows a computer system having a data storage
system 10 coupled to one or more data storage system (IDSS)
clients 12 by a network 14. In a typical case a DSS client 12

US 9,864,753 Bl

3

1s a host computer such as a server computer executing one
or more application programs (applications) for which the
secondary storage (block or file) 1s maintained by the data
storage system 10, with the network 12 conveying data
storage requests and responses, as well as associated data.
For example, a DSS client 12 performs a write operation to
a block-oriented storage device by 1ssuing a write request
that specifies the device, the starting logical address, and the
length, as well as the associated write data. The network 12
conveys the write request and write data to the data storage
system 10, which stores the write data on the identified
device beginning at the specified logical address. A DSS
client 12 performs a read operation to a block-oriented
device by 1ssuing a read request that specifies the device, the
starting logical address, and the length. The network 12
conveys the read request to the data storage system 10,
which obtains the data from the specified device beginning
at the specified logical address and returns the data to the
DSS client 12 via the network 14. As explained more below.
the data storage system 10 may present storage resources to
the DSS clients 12 1n alternative ways, such as 1n the form
ol a network-level or distributed file system, or as virtual
volumes or similar virtualized storage containers that are
understood by DSS clients 12 hosting virtual machines, such
as ESX® hosts (servers) or XEN® hosts (servers).

As indicated at 10, the data storage system 10 employs
one or more internal file systems for managing the use of
storage resources, along with a technique of allocating
underlying physical storage to the file systems referred to as
“adaptive over-provisioning’. This technique provides cer-
tain advantages 1n operation as 1s explained more below.

FIG. 2 1s a block diagram of the data storage system 10
from a hardware perspective. It includes an interface 20 to
the network 14, a pair of storage processors (SPs) 22, shared
memory 24, and an interface 26 to secondary storage devices
(DEVICE) 28, such as magnetic disks, Flash drives, etc. The
interface 20 may include one or more network adapters such
as a FibreChannel adapter, Gigabit Ethernet adapter, etc.,
and the interface 26 may similarly include storage-oriented
adapters such as FibreChannel adapters etc. Each storage
processor 22 executes software causing the storage proces-
sor 22 to present logical or virtualized storage resources to
the network 14 and DSS clients 12, employing the devices
28 for the underlying physical storage. The logical or
virtualized storage resources may include either or both
block-oriented devices (e.g., logical storage units (LUNSs),
virtual volumes (VVOLS), etc.) and/or client-visible file
systems (e.g., NFS, CIFS, etc.) The shared memory 24 may
be used for one or more device caches, also referred to as a
“storage cache”, for caching data of the devices 28. Further
details of the structure and operation of the data storage
system 10 are provided below.

FIG. 3 shows an example configuration of a storage
processor 22 from a computer hardware perspective. The
hardware includes one or more processors 30, memory 32,
and interface circuitry 34 interconnected together by data
interconnections 36 such as one or more high-speed data
buses. The interface circuitry 34 provides a hardware con-
nections to the shared memory 24 and interfaces 20, 26
(FIG. 2) and perhaps other external devices/connections
(EX'T DEVs). The processor(s) 30 with connected memory
32 may also be referred to as “processing circuitry” herein.
A storage processor 22 may also have 1ts own local second-
ary storage 38 such as a Flash memory array. In operation,
the memory 32 stores data and instructions of system
software (e.g., operating system) and one or more applica-
tion programs which are executed by the processor(s) 30 to

10

15

20

25

30

35

40

45

50

55

60

65

4

cause the hardware to function in a software-defined manner.
Thus the computer hardware executing instructions of a data
storage application, such as described below, can be referred
to as a data storage circuit or data storage component, and
it will be understood that a collection of such circuits or
components can all be realized and interact with each other
as one or more sets of computer processing hardware
executing different computer programs as generally known
in the art.

FIG. 4 1s a functional block diagram of the data storage
system 10, the functional blocks generally being realized by
execution of computer program instructions by the storage
processor hardware as shown 1n FIG. 3. This description
focuses on certain aspects of the functional structure and
operation, specifically the use of one or more internal file
systems (F/S) 40 which draw their underlying physical
storage from the devices 28 via a certain organization as
shown. This organization includes a pool 42 of data units
called “slices” that are carved from an internal logical
storage unit called a “pool LUN” 44, which 1 turn 1s
presented by a RAID controller 46 implementing RAID over
sets of the devices 28. Thus in general there may be a
one-to-multiple mapping between the pool LUN 44 and
corresponding devices 28 providing the RAID-protected
underlying physical storage.

The internal file systems 40 are utilized by one or more
internal file system clients 48 that present storage resources
to the DSS clients 12. Examples of such presented resources
include a logical storage device and a host file system as
shown. In one embodiment, a logical storage device 1s
mapped to a file of a file system 40. The data storage system
10 may support point-in-time copying of device data, with
the copies being referred to as “snapshots™ or “snaps™. In
this case, the device being copied may be referred to as the
“primary”” object and 1ts snaps as “secondary” objects, and
a given file system 40 hosts both the primary object as well
as all 1ts snaps, all stored 1n respective distinct files of the
given file system 40.

FIG. 5 illustrates certain data units defined and used
within the data storage system 10, namely slices 50, win-
dows 52 and blocks 54. A block 34 1s the basic addressable
storage unit, and a storage device 28 can be viewed as a
linear array of blocks 54 having respective logical block
addresses (LBAs). In an example embodiment herein, the
s1ize of a block 1s 4 KB, and blocks 54 all start at naturally
aligned oflsets (1.e., at LBAs corresponding to integer mul-
tiples of 4 KB). A logical storage device 1s referred to as
“block-oriented” because 1t 1s accessed by specilying a
range of consecutive LBAs involved 1n an operation such as
a read or write. Typically the range 1s specified with a
starting LBA and a length value indicating the number of
blocks 1n the range. A file system 40 1s “file-oriented”, where
a file 1s a linear array of bytes. A file system 40 relies on a
logical volume or device for underlying physical storage,
and thus 1s involved with block operations on such devices.

Sets of consecutive blocks 34 are allocated as slices 50 out
of the slice pool 42. A slice 50 1s preferably several orders
of magnitude larger than a block 54. In one example herein,
a slice 50 has size 256 MB. Within each slice 50, interme-
diate structures called windows 52 are defined. Generally,
windows 52 are used to manage allocation 1n a way that
prevents undue fragmentation of the storage for a file system
40, and thereby increases efliciency of storage operations. In
particular, by employing windows 52 the data storage sys-
tem 10 makes much more etlicient use of stripe write
operations performed by the RAID controller 46 than would
be obtained in the absence of window structuring. Processes

US 9,864,753 Bl

S

of allocation and reclaiming of blocks can result in frag-
mentation that would tend to reduce the physical-LBA
sequentiality of blocks, reducing the ability to fully utilize
stripe writes and thus reducing etliciency of operation of the
RAID controller 46 and devices 48. In the examples herein,
the window size 1s 512 KB or 128 blocks.

As mdicated above, one general goal of the presently
disclosed techniques 1s to maintain ample consecutive iree
space (1.e., un-fragmented free space) in a file-system 40.
This goal 1s to be balanced against another goal, which 1s to
limit total free space in a file system 40 so that other file
systems 40 in the same pool 42 (see FIG. 4) are not starved
for storage space.

Terminology

Certain useful terms used herein may be understood as
follows:

Slices

Fixed-size units into which the pool free space 1s divided

Slices are added to file systems as writes occur (client data

written to F/S)

Slices are removed from file systems as space 1s freed

(e.g., client data deleted)

Liability

Number of slices needed by a file system

Insurance

Number of slices a file system 1s allowed to consume from

a pool

Provisioned Insurance

Number of slices added to a file system for 1ts exclusive

use

Un-provisioned Insurance

Number of slices of msurance not yet added to a file

system

It 1s useful to consider current techmiques for space
reservation and provisiomng, as a point of departure for the
remaining description herein. In one known scheme, space
becomes reserved to a file system (1.e., 1s added to 1nsurance)
when the current msurance minus the file system liability
drops below some predetermined threshold, such as 1 GB
for example. When this occurs, the file system issues an
insurance request to the lower-level pool manager, which
adds the requested insurance to the file system if there 1s free
space 1n the pool, and otherwise denies the request. Space 1s
provisioned to the file system from the insurance when the
current free space in the file system drops below some
predetermined threshold, such as 850 MB for example, and
the file system has un-provisioned insurance from which to
draw. In this case, the file system requests one or more slices
from the underlying pool manager, which adds the requested
slice(s) from the un-provisioned insurance.

Additionally, provisioned space 1s reclaimed from the file
system 1 a known technique by periodically checking
whether the file system free space has risen above some
predetermined threshold, and 1f so then returning some
number of provisioned slices to the pool to reduce the free
space back below the threshold. The checking can be done
alter certain operations including create, delete, punch-hole,
truncate, and de-duplication operations. Insurance 1s
reclaimed 1n a known technique by monitoring for the
difference between {file system insurance and {file system
liability to go above some predetermined threshold, and
returning excess insurance to the pool. In this case the
checking may be done on a regular periodic basis, such as
by use of timer, for example.

10

15

20

25

30

35

40

45

50

55

60

65

6

The above known techniques for space reservation and
provisioning, as well as space reclamation, exhibit a par-
ticular drawback with respect to the desire for continuous
free space to maximize eflectiveness of stripe writes. The
known techniques are based on aggregate number of free
blocks, without regard to whether the blocks are 1n consecu-
tive groups or are more scattered 1n the file system. Viewed

another way, the known techniques do not account for
fragmented space. If a file system has a lot of free space then
new slices will not be added to 1t, even if the space 1s
fragmented and thus there is little opportunity for eflicient
stripe writes to be used.

In contrast to the above known techniques, the disclosed
techniques take more account of the pattern of block usage
by the file system, and accordingly increase the usage of
consecutive blocks and improve performance of stripe
writes. Overall, the disclosed techniques work to maintain a
minimum number of consecutive free blocks, which 1s
referred to herein as a “window” (e.g., window 52). The
space consumed by a file system 1s dynamically limited to be
a Tunction of both pool utilization and the size of the LUN
or other storage object stored 1n the file system. There are
also features for reducing undesirable oscillation or “ping-
pong”’ between space provisioning and space reclaim.

Space reservation operates as follows:

Keep a “low-insurance-threshold” worth of un-provi-
sioned insurance in the file system. Thus when new
slices are required, msurance already exists for them
and 1t 1s not necessary to request insurance immediately
at that time. Thus new insurance 1s requested when the
un-provisioned insurance drops below this threshold.

When insurance 1s requested that will not be immediately
provisioned, allow the pool to deny the request 11 pool
free space 1s low, 1.e., pool utilization i1s above a
threshold (e.g., 90%)

Space provisioning operates as follows:

Request slices when the number of free windows 1n the
file system falls below a free window threshold. In one
example, this threshold might be 2048 windows, which
represents 1 GB of space assuming a window size of
512 KB. As a secondary factor, the number of provi-
stoned slices should be below a predetermined maxi-
mum number of slices for the file system which 1s a

function of primary file size, space consumed by rep-
licas, and pool free space. In one example the following
formula may be used, which includes a factor “over-
provisioning %’ that represents an allowed amount by
which a file system may be overprovisioned (1.e.,
include provisioned slices beyond its current liability):

‘ primary file size 1n slices X (100 + overprovisioning %)
allowed slices = +

100

slices consumed by replicas,

where

overprovisioning % = 30% X pool_1ree %

The following table provides illustrative examples of
usage of the above critenia:

Pool Over- Primary Max File System

Free % Prov %0 LUN (GB) Data Space (GB)
100 50 100 150.00
75 37.5 100 137.50
50 25 100 125.00

US 9,864,753 Bl

-continued
Pool Over- Primary Max File System
Free %o Prov % LUN (GB) Data Space (GB)
50 25 200 250.00
50 25 300 375.00

Space reclamation 1s performed by a file system reclaim
(FSR) process that periodically performs the following,
which are explained in more detail below:

Read the following property that 1s maintained by the file

system and 1dentifies the number of slices that are free
and thus may be evacuated:

FS_PROPERTY_EVACUATABLE_DATA_SLICES

Choose-and-Mark (CAM) (see below)

Evacuate Slices (move data of selected slices to other

slices)

Remove Slice (return evacuated slices to pool)

The file system 40 employs the following variable for
tracking the number of slices that may be evacuated:

FS_PROPERTY_EVACUATABLE_DATA_SLICES,
and reports a value for this variable such that after removing
these many slices, another slice request will not be triggered
immediately. For this purpose the following formula may be
used (there should be separate checks for underflow and
compliance with a bound on total evacuatable free space):

Max(A-C, B), where:

A=(Iree windows—iree window threshold)/windows
per slice. This 1s so that after reclaim, there are ‘free
window threshold” number of free windows.

B=provisioned slices—max allowed slices. This 1s to
give back overprovisioned slices.

Note that ‘max allowed slices” 1s a function of pool
space.

(C=a small integer, e.g., 1, representing a “hold back™ to
avoild ping pong (1mmediate need for provisioning
another slice).

FIG. 6 1s used to 1llustrate a first example of the above. In
this case, the pool 1s 100% 1iree, the primary LUN has a size
of 100 GB or 400 slices (256 MB each), and the Max
allowed slices 1s 150 GB or 600 slices. The file system 1s not
over-provisioned.

200 slicesx 512 windows per slice —

2048 free window threshold
A= _ , =196
312 windows per slice

£=200-600=-400

MAX(4-C.B)=MAX(196—1,-400)=195

Thus 1n this example the number of evacuatable slices

reported 1s 195.
FI1G. 7 illustrates a second example. In this case, the file

system 1s over-provisioned and there are no free windows.

B 0 — 2048 free window threshold B

312 windows per slice

£=650-600=50

MAX(A-C.B)=MAX(-5,50)=50

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Thus 1 this example, the number of evacuatable slices
reported 1s S0.
Space Reclaim—CAM Slice Selection Policy
When space 1s reclaimed, 1t 1s necessary to identily
particular slices to be evacuated, a process referred to as
“choose and mark™ or CAM.
In known techniques, slices may be chosen according to
a prelerence order as follows:
Empty data slices
Empty metadata slices
Most free data slices
In the disclosed techmque, CAM may 1nstead proceed as
follows:
Re-compute evacuatable data slices per above formula
(Max(A-C, B))
If (A>B), there are excess Ifree windows
Select slices whose removal will cause the least
amount of decrease 1n the number of free windows
(see Tormula below)
If (A<B), the file system 1s beyond the overprovision-
ing limit
Select slices using a policy such as above (empty
data, empty metadata, most free) to avoid moving
blocks around unnecessarily
In all cases, skip slices with that are currently being used
for writes of sequential streams of data
For the case of A>B, slices may be selected by computing
a value X and selecting slices with lower/lowest values of X:

X=Y+7Z, where

Y=Number of {free windows 1n that slice
/=Number of free windows consumed by moving blocks
out of the slice (1.e., blocks allocated 1n slice/blocks per
window)
FIG. 8 1s used to illustrate four examples. Window
boundaries are mdicated by dashed vertical lines.
Example (a) 1s a completely free slice. In this case:

X=512+0=512

This slice 1s not a good candidate, as 1t 1s not desirable to
evacuate completely free windows. The high value of

512 reflects this.
Example (b) 1s a tully allocated slice. In this case:

X=0+512=512

This slice 1s also not a good candidate. It has fully utilized
windows with no Iree space to ofler, and i1t will con-
sume parts of other free windows 11 1ts data 1s moved.
The high value of 312 reflects this.

Example (c¢) 1s a slice with 50% of 1ts windows fully

allocated. In this case:

X=2506+2506=512

This slice 1s also not a good candidate, as reclaiming it
will not create any new free windows.
Example (d) 1s a slice with all windows being 50%
allocated. In this case:

X=0+256

This slice 1s a relatively good candidate, because reclaim-
ing 1t will create free windows. The lower score of 256
reflects thas.

As noted above, one way to reduce ping-pong 1s to hold
back one or more empty slices that might otherwise be
reclaimed. Another mechanism that can be used is to employ
a form of hysteresis, 1.e.,, when a slice 1s removed, no
additional slices are removed for some brief period such as
5 minutes. This time may be fixed or dynamically variable.

US 9,864,753 Bl

9

Space Maker

Another aspect of managing the use of underlying storage
space by a file system 1s a form of de-fragmentation referred
to as “Space Maker”. Space Maker rearranges file system
blocks to create un-fragmented free space. Space Maker may
be run regularly based on certain start conditions, and
terminate based on certain stop conditions. It selects candi-
date slices and candidate windows within the slices, then
evacuates selected windows 1n a manner described below.

The following may be aspects of start triggers for Space
Maker:

File System Reclaim (FSR) 1s not running

Avoid contention with slice evacuation
File system has more than some minimum number (e.g.,
20) of provisioned data slices

Avoid running on a new file system that has just started
to take I/O
Free window count drops below a predetermined thresh-
old that 1s greater than the free window threshold used
for provisioning
Start runming before slice over-provisioning kicks 1n. In
one example, if the provisioning threshold 1s 2K as
mentioned above, then the Space Maker threshold
might be 3K for example.
There are partial windows and they can be evacuated to
create free windows such that the final free window
count can go above some threshold, e.g., 6K windows

number of free blocks _
(_ > number of {free WlﬂdDWS]
number of blocks per window

AND

(number of free blocks

Threshold
number of blocks per window g e]

The following may be stop triggers for Space Maker,
which might be checked upon completion of processing of
cach slice:

Free window count goes above the above threshold (e.g.,

6K windows)

There are no partial windows left, or partial windows

cannot be evacuated to create free windows such that
final free window count can go above the threshold:

(number of free blocks

number of blocks per window < mumber of free wmdc:ws]

OR

(number of free blocks

number of blocks per window

< Threshc:ld]

Space Maker may use the following slice selection criteria
for selecting slices to evacuate windows:
The slice 1s not currently receiving 1/0O of sequential data
writes (to avoid contention with production 1/O)
Net number of free windows that can be created 1s above

a threshold

(number of free blocks 1n slice

— ber of { 1nd 1n slice| =
number of blocks per window HHRDEROF JEE WHHEDWS 1 2 ICE]

threshold,

10

15

20

25

30

35

40

45

50

55

60

65

10

where there may be a default value for the threshold
(e.g., 32 windows), and its value may range from 1 up
to one less than the number of windows 1n a slice (e.g.,
511). Smaller value means more aggressive processing.
The threshold may be adjusted dynamically as
explained below.
Space Maker may use the following window selection
criteria for selecting specific windows to be evacuated:
Number of free blocks 1n a window 1s above a threshold,
where there may be a default value for the threshold
(e.g., 20 blocks), and its value may range from 1 up to
one less than the number of blocks 1n a window (e.g.,
12°7). Smaller value means more aggressive processing.
Space Maker may dynamically adjust the slice selection
threshold and window selection threshold using an approach
such as the following (specific values are examples only):
If number of slices processed 1s less than 20% of total
slices, be more aggressive 1.e.,
Decrease slice selection threshold by 5
Else, be less aggressive 1.¢.,
Increase slice selection threshold by 5
If number of slices processed 1s less than 20% of total
slices
If number of windows evacuated 1s less than 20% of
total windows, be more aggressive 1.e.,
Decrease window selection threshold by 1
Else, be less aggressive 1.¢.,
Increase window selection threshold by 1
Another aspect of Space Maker 1s managing its use of
processor resources, specifically 1ts use of execution threads
and tasks. The number of Space Maker threads to be used,
and file system reclaim (FSR) tasks to be used, are based on:
LUN overprovisioning
Historical data ingestion rate
The following bounds may be used:

Max threads 8 (1 thread per slice)

Max tasks 64 (8 tasks per thread)

The number of tasks permitted at a given time may be as
follows:

Max Tasksx(Overprovisioning %-+Throttling Factor),
where

Overprovisioning % 1s the number of slices currently
overprovisioned as percent of slices allowed to be
overprovisioned, and

Throttling Factor 1s a positive or negative factor based on
how busy the system was 1n a recent analogous period,
e.g., at exactly one week back in time.

The following formula may be used for Overprovisioning,
%o:

P provisioned slices — fun size 1n slices

max allowed slices — lursr s1ze 1n slices

FIG. 9 illustrates the following example, in which the
values are the same as for FIGS. 6 and 7 but the file system
1s overprovisioned by 50 slices:

450 — 400

P=o—am - "

The following approach may be used for calculating the
Throttling Factor:

1. Maintain a BusyNessTrackTable[7][24]
Tracks hourly ingest of data as percent of day’s ingest

r

Iracks this for a full week per storage processor

US 9,864,753 Bl

11

Example:

BusyNessTrackTable[0]|11] =

Amount ingested on Sunday from 11 am to 12 pm 100

Total amount ingested on Sunday

2. Lookup busyness B as BusyNessTrackTable[Current
Day|[Current Hour]

3. Maintain a BusyNessThrottlingTable[20]

1 entry per 5% range, could be + or —, and define the

throttling factor to apply in each range

4. Lookup throttling factor T as BusyNessThrottlingTable
|B+5]

Another aspect of managing threads and tasks 1s their
distribution depending on workload. It may be more eflicient
to process fewer slices at a time but work harder on those
slices because they are ofl limits for block allocation. For
example, 1if 20 tasks are currently allowed, the tasks may be
distributed as follows:

Thread 1-8 tasks

Thread 2-8 tasks

Thread 3-4 tasks

FIG. 10 outlines provisioning-related operation at a high
level.

At 60, lability and insurance of the file system are
continually tracked, where the liability 1s a number of slices
needed by the file system to store file system data, and the
isurance 1s a number of slices allowed to be consumed by
the file system. The mnsurance includes provisioned insur-
ance and un-provisioned insurance, the provisioned insur-
ance being a number of slices currently used by the file
system, the un-provisioned insurance being a remainder
portion not currently used by the file system.

At 62, a reserve of un-provisioned nsurance 1s main-
tained from which slices are provisioned to the file system
for use 1n storing file system data without immediate
requirement for increasing the insurance. The reserve of
un-provisioned insurance 1s maintained by increasing the
insurance when a current value of the un-provisioned 1nsur-
ance drops below a predetermined non-zero low-insurance
threshold.

At 64, slices are provisioned to the file system from the
reserve of un-provisioned insurance, thereby increasing the
provisioned insurance, based on both a window criteria and
a space criteria. The window criteria 1s that a number of free
windows 1s less than a predetermined non-zero free window
threshold, a free window being a window whose blocks do
not currently store file system data. The space criteria 1s that
a number of currently provisioned slices 1s less than a
maximum allowed slices, where the maximum allowed
slices 1ncludes an overprovisioning factor applied to the
primary file size to allow for growth of the primary file
without immediate requirement for increasing the provi-
sioned 1nsurance.

While various embodiments of the mvention have been
particularly shown and described, it will be understood by
those skilled 1n the art that various changes in form and
details may be made therein without departing from the
spirit and scope of the invention as defined by the appended
claims.

What 1s claimed 1s:

1. A method of operating a data storage system to manage
use ol pool storage by a file system of the data storage
system, the pool storage provided by physical data storage
devices and organized into slices each containing a prede-
termined number of contiguous blocks, the blocks of each
slice further organized into windows of multiple contiguous
blocks, the file system storing a primary file for a primary

10

15

20

25

30

35

40

45

50

55

60

65

12

storage object and secondary files for secondary storage

objects dertved from the primary storage object, comprising:

continually tracking liability and insurance of the file

system, the liability being a number of slices needed by

the file system to store file system data, the msurance

being a number of slices allowed to be consumed by the

file system, the msurance including provisioned insur-

ance and un-provisioned insurance, the provisioned

isurance being a number of slices currently used by

the file system, the un-provisioned insurance being a

remainder portion not currently used by the file system:;

maintaining a reserve ol un-provisioned insurance from

which slices are provisioned to the file system for use

in storing file system data without immediate require-

ment for increasing the insurance, the reserve of un-

provisioned msurance being maintained by increasing

the surance when a current value of the un-provi-

sioned insurance drops below a predetermined non-
zero low-insurance threshold; and

provisioning slices to the file system from the reserve of

un-provisioned insurance, thereby increasing the pro-
visioned insurance, based on both a window criteria
and a space criteria, the window criteria being that a
number of free windows 1s less than a predetermined
non-zero iree window threshold, a free window being
a window whose blocks do not currently store file
system data, the space criteria being that a number of
currently provisioned slices i1s less than a maximum
allowed slices, the maximum allowed slices including
an overprovisioning factor applied to the primary file
size to allow for growth of the primary file without
immediate requirement for increasing the provisioned
insurance.

2. The method of claim 1, wherein the overprovisioning
factor 1s a predetermined fraction of a current amount of free
space 1n the pool storage, and wherein the maximum
allowed slices turther includes a factor for space consumed
by the secondary storage objects as replicas of the primary
storage object.

3. The method of claim 1, wherein the pool storage 1s
shared with one or more other file systems, and wherein
increasing the insurance 1s conditioned on there being at
least a predetermined minimum amount of {ree space in the
pool to reduce the likelihood of starvation of the other file
systems for storage space.

4. The method of claim 1, further including;:

tracking a number of evacuatable slices as a maximum of

first and second values, the first value including a
window value reflecting a current number of {iree
windows beyond the free window threshold, the second
value including an overprovisioning value retlecting a
current amount ol overprovisioning of slices to the file
system; and

periodically performing a slice reclaim process to remove

the number of evacuatable slices from the file system.

5. The method of claim 4, wherein the first value further
includes a hold-back value causing the number to be corre-
spondingly smaller when the first value 1s greater than the
second value, the smaller number resulting 1n retention of a
corresponding number of slices 1n the file system that would
otherwise be evacuatable, the retention avoiding an 1imme-
diate need for returning slices to the file system upon
completion of the slice reclaim process.

6. The method of claim 4, wherein the slice reclaim

process includes 1dentitying particular slices to be evacuated
using a selected one of two predetermined slice selection
criteria, a first slice selection criteria being to select slices
whose removal will cause the least amount of decrease 1n the
number of free windows and being used when the first value
1s greater than the second value, a second slice selection

US 9,864,753 Bl

13

criteria being to select slices 1n a decreasing-preference
order and being used when the second value 1s greater than
the first value, the decreasing-preference order including (1)
empty data slices, (2) empty metadata slices, and (3) slices
having the most free data.

7. The method of claim 6, wherein selecting slices whose
removal will cause the least amount of decrease in the
number of free windows includes (1) computing a value X
for each of a set of candidate slices, X being the sum of the
number of free windows 1n a candidate slice and the number
of free windows consumed by moving blocks out of the
slice, and (2) preferentially selecting slices having lower
values of X.

8. The method of claim 4, further including, after the slice
reclaim process has been performed, preventing removal of
any additional slices from the file system for a predeter-
mined timeout period.

9. The method of claim 1, further including;:

tracking conditions that establish start and stop triggers
for a space maker process used to create un-fragmented
free space 1n the file system;

beginning the space maker process upon satisfaction of
conditions of a start trigger, execution of the space
maker process mcluding (1) selecting slices with win-
dows to be evacuated, and (2) selecting windows
within selected slices for evacuation, and (3) evacuat-
ing the selected windows of the selected slices; and

terminating the space maker process upon satistaction of
a stop trigger.

10. The method of claim 9, wherein the start triggers

include:

(1) a file system reclaim process 1s not executing, to avoid
contention therewith;

(2) the file system has more than a predetermined number
of provisioned data slices, to avoid executing the space
maker process i1f the file system has just started to
accept 1/0O;

(3) the free window count has dropped below a predeter-
mined threshold that 1s greater than the free window
threshold used for provisioning, to begin the space
maker process before slices are over-provisioned to the
file system; and

(4) there are suflicient partial windows whose evacuation

will create suflicient free windows to bring a final free
window count above a predetermined desired thresh-
old.

11. The method of claim 9, wherein the stop triggers are
checked upon completion of processing of each slice and
include:

(1) a free window count goes above the predetermined

desired threshold; or

(2) there are insuilicient partial windows remaining whose
evacuation will create suflicient free windows to being
the final free window count above the predetermined
desired threshold.

12. The method of claim 9, wherein the space maker
process uses a slice selection critenia for selecting slices and
a window selection criteria for selecting windows, the slice
selection criteria including:

(1) the slice 1s not currently receiving I/O of sequential
data writes, to avoid contention with production 1/O;
and

(2) a net number of free windows that can be created by
evacuating the windows of the slice 1s above a created-
windows threshold,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

and the window selection criteria including that a number
of free blocks in a window 1s above a freed-blocks
threshold.

13. The method of claim 12, further including dynami-
cally varying the created-windows threshold during opera-
tion by:

11 the number of slices selected for evacuation of windows
1s less than a predetermined fraction of total slices, then
decreasing the created-windows threshold to increase
aggressiveness of the slice selection; and

otherwise increasing the created-windows threshold to
decrease the aggressiveness of the slice selection.

14. The method of claim 12, further including dynami-

cally varying the freed-blocks threshold during operation by:
if the number of windows evacuated 1s less than a
predetermined fraction of total windows, then decreas-
ing the freed-blocks threshold to increase the aggres-
siveness of the window selection; and
otherwise i1ncreasing the Ireed-blocks threshold to
decrease the aggressiveness of the window selection.
15. The method of claim 9, further including managing
the use of execution threads and tasks of a storage processor
for the space maker process based on storage device over-
provisioning and historical data ingestion rate.
16. The method of claim 15, wherein managing the use of
tasks includes 1mposing a limit on a number of tasks
permitted to be executed concurrently according to both an
overprovisioning percentage and a throttling factor, the
overprovisioning percentage being a number of slices cur-
rently overprovisioned as a percent of slices allowed to be
overprovisioned, the throttling factor reflecting how busy
the data storage system was 1n a recent analogous period.
17. The method of claim 16, further including maintaining
a busyness tracking table that tracks data ingestion 1n each
of regular periods of a day over multiple days including the
recent analogous period, and looking up the throttling factor
from an entry for the recent analogous period 1n the busyness
tracking table.
18. The method of claim 16, further including distributing
tasks to threads in a manner tending to process fewer slices
at a time but permitting more processing to be performed.
19. A data storage system, comprising:
physical storage devices; and
processing circuitry executing computer program instruc-
tions to cause the data storage system to operate to
manage use of pool storage by a file system of the data
storage system, the pool storage provided by the physi-
cal data storage devices and organized into slices each
containing a predetermined number of contiguous
blocks, the blocks of each slice further organized into
windows ol multiple contiguous blocks, the file system
storing a primary file for a primary storage object and
secondary files for secondary storage objects derived
from the primary storage object, including:
continually tracking liability and insurance of the file
system, the liability being a number of slices needed
by the file system to store file system data, the
insurance being a number of slices allowed to be
consumed by the file system, the msurance including
provisioned isurance and un-provisioned insurance,
the provisioned insurance being a number of slices
currently used by the file system, the un-provisioned
insurance being a remainder portion not currently
used by the file system;

maintaining a reserve of un-provisioned insurance from
which slices are provisioned to the file system for use
in storing file system data without i1mmediate

US 9,864,753 Bl

15

requirement for increasing the insurance, the reserve
of un-provisioned insurance being maintained by
increasing the insurance when a current value of the
un-provisioned insurance drops below a predeter-
mined non-zero low-insurance threshold; and
provisioning slices to the file system from the reserve
of un-provisioned insurance, thereby increasing the
provisioned nsurance, based on both a window
criterita and a space criteria, the window criteria
being that a number of free windows 1s less than a
predetermined non-zero free window threshold, a
free window being a window whose blocks do not
currently store file system data, the space criteria
being that a number of currently provisioned slices 1s
less than a maximum allowed slices, the maximum
allowed slices including an overprovisionming factor
applied to the primary file size to allow for growth of
the primary file without immediate requirement for

increasing the provisioned insurance.

20. A non-transitory computer-readable medium storing
computer program instructions executable by processing
circuitry ol a data storage system to cause the data storage
system to operate to manage use ol pool storage by a {ile
system of the data storage system, the pool storage provided
by physical data storage devices of the data storage system
and orgamized ito slices each containing a predetermined
number of contiguous blocks, the blocks of each slice further
organized into windows of multiple contiguous blocks, the
file system storing a primary {ile for a primary storage object
and secondary files for secondary storage objects derived
from the primary storage object, including:

10

15

20

25

30

16

continually tracking hability and insurance of the file

system, the liability being a number of slices needed by
the file system to store file system data, the msurance
being a number of slices allowed to be consumed by the
file system, the msurance including provisioned insur-
ance and un-provisioned insurance, the provisioned
insurance being a number of slices currently used by
the file system, the un-provisioned insurance being a
remainder portion not currently used by the file system:;

maintaining a reserve of un-provisioned insurance from

which slices are provisioned to the file system for use
in storing file system data without immediate require-
ment for increasing the insurance, the reserve of un-
provisioned msurance being maintained by increasing
the surance when a current value of the un-provi-
stoned insurance drops below a predetermined non-
zero low-1nsurance threshold; and

provisioning slices to the file system from the reserve of

un-provisioned insurance, thereby increasing the pro-
visioned insurance, based on both a window criteria
and a space criteria, the window criteria being that a
number of {free windows 1s less than a predetermined
non-zero iree window threshold, a free window being
a window whose blocks do not currently store file
system data, the space criteria being that a number of
currently provisioned slices i1s less than a maximum
allowed slices, the maximum allowed slices including
an overprovisioning factor applied to the primary file
size to allow for growth of the primary file without
immediate requirement for increasing the provisioned
isurance.

	Front Page
	Drawings
	Specification
	Claims

