12 United States Patent

US009858107B2

(10) Patent No.: US 9.858.107 B2

Arndt et al. 45) Date of Patent: Jan. 2, 2018
(54) METHOD AND APPARATUS FOR (56) References Cited
RESOLVING CONTENTION AT THE U.S. PATENT DOCUMENTS
HYPERVISOR LEVEL T -
o _ _ _ 6,721,775 Bl 4/2004 Fagen
(71) Applicant: International Business Machines 8,689.230 B2 4/2014 Dyck
Corporation, Armonk, NY (US) (Continued)
(72) Inventors: Karla K. Arndt, Rochester, MN (US); FOREIGN PATENT DOCUMENTS
Joseph W, Gentile, New Paltz, NY
(US); Nicholas R. Jones, Poughkeepsie, P 2015038757 A 2/2015
NY (US); Nicholas C. Matsakis,
Poughkeepsie, NY (US); David H. OTHER PUBLICATIONS
Surman, Marlboro, NY' (US) Appendix P, List of IBM Patents or Patent Applications Treated as
(73) Assignee: INTERNATIONAL BUSINESS Related dated. Jun. 8, 2016. Contimed
MACHINES CORPORATION, (Continued)
Armonk, NY (US) Primary Examiner — Charlie Sun
(*) Notice: Subject‘ to any disclaimer,i the term of this %?l)li;nrf (jfzég"i ni‘ii?;nf; f‘xrm — Cantor Colburn LLP;
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 160 days. (57) ABSTRACT
(21) Appl. No- 14/995,264 mented method for resolving abormal contention on the
22) Fiet . 14, 2016 computer sysem. The metod incdes dlecing, win
65 Prior Publication Dat abnormal contention of a serially reusable resource caused
(65) rior Lublication 1atd by a first virtual machine. The abnormal contention includes
S 2017/0206103 Al Jul. 20, 2017 the first virtual machine experiencing resource §tawati0n of
computer system resources used for processing the first
(51) Int. CL virtual machine, causing the first virtual machine to block
GOGF 9/50 (2006.01) the serially reusable resource from a second virtual machine
that 1s waiting to use the serially reusable resource. The
GOG6F 9/455 2006.01 S J
(52) U.S. Cl () method also includes adjusting resource allocation at the
IS | hypervisor level of the computer system resources for the
CPC s, G06Fz 3{4258'158 gg;;,%%fbgf 65;) f fgiw first virtual machine, processing the first virtual machine
('_); (01); based on the resource allocation, and releasing the serially
(Continued) reusable resource by the first virtual machine in response to
(58) Field of Classification Search the first virtual machine processing.
CPC e, GO6F 9/3077

See application file for complete search history.

20 Claims, 7 Drawing Sheets

30::1\

detecting, using a processor and at &

310

. hypervisor level of the computer system,

abnormal contention of a seriallty reusable
resource causea by a first virtual machine

320

adjusting resource allocatian at the hypervisor
level of the computer system resources for the
first virtual machine

v

330 -~ . _ . .
processing the first virtual machine based on
the resource aliocation

340

releasing the serially reusable resource by the
first virtual machine in response 1o the first
virtual machine processing

US 9,858,107 B2

(52) U.S. CL

CPC ...

(56)

9,491,112
2002/0107854
2004/0139142
2006/0161417
2006/0161738
2007/0124545
2007/0233450
2008/0229031

2010/0005465

2013/0080641
2015/0172205

References Cited

U.S. PATENT DOCUMENTS

8/2002 Hua
7/2004 Arwe
7/2006 Hardwick
7/2006 Saha
5/2007 Blanchard
10/2007 Papaefstathiou
1* 9/2008 Villarreal

A A AN A

>

Al 3/2013 Lw

Al* 6/2015 Anderson

GO6E 2009/4557 (2013.01); GO6F
2009/45595 (2013.01)

1* 11/2016 Patel

iiiiiiiiiiiiii

1* 1/2010 Kawatooevnnn..

Page 2
2015/0229582 Al 8/2015 Zhu
2016/0019074 Al1* 12016 Nahir GO6F 9/5077
718/1
2017/0031698 Al* 2/2017 Mathews GOO6F 9/45558

OTHER PUBLICATIONS

JP2015038157—Machine Translation (61 pages).

HOAL 47/70 Karla K. Arndt et al., “Method and Apparatus for Detecting Abnor-
mal Contention on a Computer System™ U.S. Appl. No. 14/995248,
filed Jan. 14, 2016.
Karla K. Arndt et al.,, “Method and Apparatus for Resolving
Contention 1n a Computer System” U.S. Appl. No. 14/995266, filed
Jan. 14, 2016.

GOOF 575088 Munoz-Esco, F. D., et al. “Managing Transaction Conflicts In
GO 6?‘}??312:; Middleware-based Database Replication Architectures” hittp://
718/1 citeseerx.ist.psu.edu/viewdoc/download?doi1=10.1.1.80.2353

&rep=repl&type=pdf (2006) 10 Pages.
GO6F 9/5077
709/224 * cited by examiner

U.S. Patent Jan. 2, 2018 Sheet 1 of 7 US 9.858.107 B2

100

Operating
| System
110

O

Communicati
Adapter
103

ons Adapter
10

Sensor -

Graphics '
119

Interface
Adapter - 112

Processing
Unit -118

Keybgard ___________________ speaker
109 |] 113

US 9,858,107 B2

Sheet 2 of 7

Jan. 2, 2018

U.S. Patent

1

l

L b & & & & & & & & & & ks A s s h koSS E
dr b oS b b b b b S b e b b A b A S

b & & b & & b & & & kb s ks s AN A AN
Jr b b h b h o h bk s s h o ks S
E I I T D R R I R IO R RO A DO R DO RO T I R R 1 LI I T RO R RO T R R T RO N I R
dr o br o dr Jr B o dr br o Br o Jr o br o dr b o 0r o dr 0 o 0r 0 0 0 b 0
4 & & & & & & & & & & &k b b kS Sk kS Ao
b bk b h bk bk ok o h khoh
b & & & & & & & & & b b & ko s AN A E N
dr b b o A b o S kb i ki i
F I I T D R T R RO R R RO N DOF RN DO R T R R I 1
A b & bk bk bk ok o h rh bk i d N
4 & & & & & & & & & & &k b b ks s kS A
b b b b b b b S b b b b A b S S
b & & b & & & & & & & b & ks s AN A E N
b bk b h s bk s ks h o Fh s S
F I I T D R R R RO RO R RO U DO R DO R T R R R 1
dr o dr o dr Jr B o dr br o Br o Jr o 0r Jr e 0r B 0 o 0r 0 0 0 b 0
4 & & & & & & & & & & &k b b ks s kS Ao
b b b b h b h bk ok o h kh o h
b & & & & & & & b & ko s ks s A E AN
dr b b o A b o S kb i ki i
F I I T D R R R RO R R RO B DOF RN DO R T R R I 1
A b & bk bk bk ok o h rh bk i d
4 & & & & & & & & & & & & & ks s kS AN
b b b b b b b S b b b b b S A
b & & & & & & & & & & b & & s AN A AN
b bk b h s bk s ks h o Fh s S
F I I T D R R R RO R R RO N DO R DO RO T R R R 1
dr o dr o dr Jr B o dr br o Br Jr o 0r Jr e 0r B b o 0r 0 0 0 b 0
4 & & & & & & & & & & & & & ks s kS AN
b bk b h b bk ok ok h khoh
b & & & & & & & & & & b & & s AN A AN
dr b b o A b o S kb i ki i
F I I T D R R R RO R R RO B DOF RN DO R T R R I 1
A b & bk bk bk ok o h rh bk i d
4 & & & & & & & & & & & & & ks s kS AN

b b b b b b b S b b b b b S A
b & & & & & & & & & & & s A A s E N E A A A

LI DA R RO R RO T R R I R
.T.r.T.T.T.T.T.T.T.T.T.T

L]
Jr
& 4 & & & & & & & & & & &S A AN

&
.r.r.r b & & & & & b A s s AL
b & & & & b & & & Ak AN

b & & b bk bk bk kA ok

&
b b & & b b kb kS
A & & b & & b k&

LI B T RO R R R R)
E I T B B R I

i)
b & & & & k&

dr o dr o dr o Jr o dr dr b o dr b b e i o0
b & & b & & b & kb h ks oA
b h Sk ok o h h h
& & & & & b & & b & & & Aok
drodr b b W b S W S b b A
b b bk b b b b b b ks A LA
b bk bk bk bk o h Nrh
b & & b & & b b ks A ks A
e de b b b b odr b Ao b A o A
A & & & & b & & bk kA Aok
b b bk bk o h s N h S

b & & b b b b bk b b bbb h A E S E S

b & & & & & b & & b & E b s ks kA S

4 & & & & & b & & & & & & A s A AN
b & & b bk b b bk b bbb s h Ak
b & & & & & b & kb s ks kA S

b & & b & & b & & & & & & koA
b & & b b bk bk kb bk k ks Aok
L b & & b & & s ks kS

4 & & & & b b & & & & &

LI DA R RO R RO T R R I R
b & & b & E b koA
& & & b & & b k&

LI B T RO R R R R)
E I T B B R I
A & & b & &

LI I T R I)
b & ko
i & &

b b &
ar
L
Jr
&

dr & bk ok ok o h rh Sk
4 & & & & & & & & b & koA oA
dr b b bbb b o o N
& & & & & b b & & & & & S oA
o h b h bk s kh koA
A & & b & b b b bk ks Aok
dr b o dr Jr b dr br B Jr o 0r dr o0 O
4 & & & & & & & & b & koA oA
b h b h bk ko ko h h
A & & & & b & & & & & & S oA
r b b o A b oS M b o W o N
F N I T R R R R DO RN RO RN R R
dr h bk ok ok o h rh Sk
4 & & & & & & & & b & koA oA
dr b oS o b b b ko N
A & & & & b & & & & & & S oA
o h b h bk s kh koA

b & & b b & & & & & & bAoA
b b b S s bk s h S h oA
b & & b & & b & b b &k ks Aok
drodr Jr o dr o br o Br o Jr 0 Jr 0 0 o 0r 0o Jr
b b & & b & kb &k s s kA oA
b b b bk b h ko ok ok h h
.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r

E I I T R R R R RO RN RO R R R
b b &k br b ko ko h rd Sk
b b & & b &k sk kA bk kA&
dr b b b b b o b b b o ok
b & & b b & & & b ok s A S kA
b b h W b bk s ks S h N
LI B R R R R T RO RN I R R R]
.T.r.T.T.T.T.T.T.T.T.T.T.T.T

dr b b b S b oS W b S b S S N
b b bk b b b b & & b b AL
o b bk bk bk ok h Nk
b & & b & & b bk b A ks S
e ode b b b b b A b b A A
b & & & b &k sk ks s kS
b b b h kb h s h S
b & & b b &k b & b kb &SN
dr o dr o dr b dr o dr b B b b 0 b o0
b & & b & & b bk b A ks S
b h kb ok o h h ok
& & & & & b & & b & & A oAk

dr b b b S b oS W b S b S S N
b b bk b b b b & & b b AL
o b bk bk bk ok h Nk

e ode b b b b b A b b A A
& & & & & b & & b & & A oAk

r b b s bk s ks kA
E I B DO BN DA ROF DA RNF RS RN BN R RN
e b b b b b b S o A
4 & & b & & & & b & & &SN
r h bk bk h ks S
b b & b bk bk b b b Ak s A h
dr o dr Br o dr o br o Jr o Jr 0 dr 0 0 o 0r 0o Jr
E I DA DA A B DS DN RN R RN BN R RN
b bk ok ok ok h h oSk
& & & b & b & & & s & A S oK
A b b b b S M oS W ok
LI T T D R RO B DO R A R R R]
dr b b b bk b h brh ok o
E I D" - RO DA ROF DN RNF R R BN R RN
ol dr ol i
4 & & & & & & & & b b kA oA
dr b bk s h ko h N

&
dr o Jr Or Jr br b br b Jr i 0 o 0r i

dr o dr Br o dr br o Jr o Jr o 0r o dr 0 0 o 0r 0o Jr
E N DA DO RO B ROF DN REF R RN RN R RN
b b h bk ks ok oFh N
4 & & & & & & & & & & & & oA
dr b A b b A koS M o N
b & & b & b b &k b b & s oS oh
b b kb h s ks S N
E N DA DO RO B ROF DN REF R RN RN R RN
e b b b b b b S b o A
& & & & & & & & & & & &SN
A b h b bk s s S h N
b b & b b bk b bk b s ks A oh
dr o dr Br o dr br o Jr o Jr o 0r o dr 0 0 o 0r 0o Jr
E N DA DO RO B ROF DN REF R RN RN R RN
b b b bk b h ok ok h N
4 & & & & & & & b & & &SN
dr b A b b A koS M o N
b & & b & b b &k b b & s oS oh

b b kb h s ks S N
E N I N N B R N R N R B R R

4 & & & & & & & & & & & & & ks s kS AN
de B b b b b e b b b b b b S b b b b S N
A b h bk bk s ks h N ks koA N
dr o dr o dr Jr B o dr br o Br Jr o 0r Jr e 0r B b o 0r 0 0 0 b 0
b b b ok ko ko h ok oh oh h S
dr o br Jr b b o dr b o S h o ik i i
dr & bk ok ok h brh b h b d N d s N
e B O b b b e b b b b b b S b b b S S N
.r.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'
drodr Br o dr br Or Jr o br dr o br 0 o dr b 0r O 0 0 b 0 0 b 0
" .T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.r

dr o br Jr b b o dr b o S h o ik i i
Jr o h b b bk b h brh o brh b d b h A Nk
.r.T
.r.'.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'.r.T.r
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.f.r.T.r.T.r
E.T
Jr o h b b bk b h brh o brh b d b h A Nk
.r.T
.r.'.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'.r.T.r
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.f.r.T.r.T.r
E.T
Jr o h b b bk b h brh o brh b d b h A Nk
.r.T
.r.'.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'.r.T.r
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.f.r.T.r.T.r
E.T
r b b & bk ok ok b h brh o h i d N
b b b b b b b S b b b b b S A
Jr b b h b h s bk s s ko ks S

A & & b & &
b b & bk kk ok
b & & b & & koA
& & & b & & b k&
F I I T R R R R R R]
b & & b & & s A ks &
4 & & & & b b & & & & &
b & & b & b b bk bk b & s
b & & b & & s Ak ok
A & & & & & & & & &

b b b ok h kL N
& & & & & b & & b & & A oAk
b b b o A b o M ko M
a b h b b b b & & b & & h s E Ak
or & b &b bk bk ok h rh o h N

b & & & & & & & & kA b b ks s kA Ao
b b b b b b b S b b b b b S A
b & & & & & & & & & & & s A A S E N A S A A

b & & b & bk b bk bk kb ks E S E S
.r
b & & b & & & & & & & & s AN A AN

& b & & b bk b b bk b bbb s E A h S

&
E I L

b & & & & & b & kb s ks kA S

i & & 4 & & & & & b & & & & & & koA

LI I) b & & b b bk bk kb bk ks Aok
b & & b & b & & b & & s ks kS
A & & b & & .r.r.r.r.r.r.r.r.r.r.r.r.r.r
b b b bk kk ok b & & b bk bk bk kA ok

&
b & & b & & koA b b & & b b kb kS

& & & b & & b k& A & & b & & b k&

F I I IO R R R R R R LI B T RO R R R I)

b & & b & & s A ks & E I T B B R I

4 & & & & & b & & & & & A & & b & &

b b & b & b b bk bk s &L LI I R R I)

b & & b & & b bk b A ks S b & ko

b & & b & & & & & & & & & koA i & &

b & & b b b b bk b b kb AL b b &

4 & & & & & & & & b b ks A ks S L]
b & & & & & b & & & b & b A A AN .r.r
F I DA TOF RO R DO R R R TN DO RN DO T AN R T T 1
4 & & & & & b & & b & & b h s s h koSS
b & & & & & & & & & & b & & s AN A AN

b & & b b b b bk b b kb s h S S h S E S L
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
b & & & & & & & & & & & &k s b ks s kA Ao
- b b b ok ok b h kh o o rd d s h
b & & & & & & & & & & & s A A s h N A A A A

b & & b b b b bk b b bbb h A E S E S
b & & & & & b & & b & E b s ks kA S
4 & & & & & b & & & & & & A s A AN

isor layer

AY

hype

b b h b h bk s ks h o ks h oA N
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
.r.f.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.f.r.T
dr o br Jr b b o dr b o S h o ik i i
dr & bk ok ok h brh b h b d N d s N
e B O b b b e b b b b b b S b b b S S N
.r.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
" b b b ok ko ko h ok oh oh h S
dr o br Jr b b o dr b o S h o ik i i
dr & bk ok ok h brh b h b d N d s N
e B O b b b e b b b b b b S b b b S S N
.r.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'
A dr B o dr o br o Br o Jr o br o dr o br O dr b o dr B b o dr b 0 0 b 0
.r.r.f.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.f.r.T
E.T
b b &k b ok bk bk o h brd b h b d s N
.r.T
.r.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
.r.f.r.T.r.T.r.T.r.T.r.T.r.T.r.T.r.r.r.T.r.f.r.T

dr o br Jr b b o dr b o S h o ik i i
Jr o h b b bk b h brh o brh b d b h A Nk
.r.T
.r.'.r.T.r.T.r.T.r.T.r.T.r.'.r.T.r.T.r.'.r.T.r

&

E I

i & &
LI I I)
b & & b &
A & & b & &
b b & bk kk ok
b & & b & & koA

& & & b & & b k&
F I I T R R R R R R]
b & & b & & s A ks &
4 & & & & b b & & & & &
b & & b & b b bk bk b & s
b & & b & & b bk b A ks S
b & & b & & b & & & & & & koA
b & & b b b b bk b b kb AL
4 & & & & & & & & b b ks A ks S
4 & & & & & b & & & & & & A s A AN
F I B T RO N DO T RO R T DO R DO T T R T R)
4 & & & & & b & & b & & b h s s h koSS

b a b b ok ok ok ok
b b &k b ok bk bk o h brd b h b d s N
b & & & & & & & & & & & &k s b ks s kA Ao
e B O b b b e b b b b b b S b b b S S N
b & & & & & & & & & & & s A A S E N A S A A
b b h b h bk s ks h o ks h oA N
b & & b b b b bk b b kb s h S S h S E S L
drodr Br o dr br Or Jr o 0r dr o 0r O o dr b Jr 0 0 o 0r b 0 0 B 0
b & & & & & & & & & & & &k s b ks s kA Ao
b b b bk b ko ko h bh oAb o S N
b & & & & & & & & & & & s A A s h N A A A A
dr o br Jr b b o dr b o S h o ik i i
b & & b b b b bk b b kb h S h S E S L
b b &k b ok bk bk o h brd b h b d s N
b & & & & & & & & & & & &k s b ks s kA Ao
de B b b b b e b b b b b b S b b b b S N
4 & & & & & & & & & & & s A A S h N A S A A
A b h bk bk s ks h N ks koA N

&
E I

i & &

ayer

Hardware |

U.S. Patent Jan. 2, 2018 Sheet 3 of 7 US 9.858,107 B2

100C

141

Hosted virtualization

Virtual

Virtual
Machine 2

Virtual

Machine 1 Machine 2

Virtual Machine Monitor (VMM) - hypervisor layer

145

Shared host operation system

Shared host hardware

144 _ 143

142

FIG. 1C

U.S. Patent Jan. 2, 2018 Sheet 4 of 7 US 9.858.107 B2

3 S

Virtual

Serially reusable
resource

Machine

M Machine

(waiter)

First Virtual

Machine
(blocker)

Virtual
Machine 3

Computer

Virtual

system :
resources | \

Machine N

Resource
output

U.S. Patent Jan. 2, 2018 Sheet 5 of 7 US 9.858,107 B2

Serially reusable
resource

Second
Virtual

| Virtual
| Machine

M Machine

(waiter)

First Virtual
Machine
(blocker)

Virtual

Virtual
Machine N

Computer

system

resources | \

Resource
output

. -

U.S. Patent Jan. 2, 2018 Sheet 6 of 7 US 9.858,107 B2

300

detecting, using a processor and at a
hypervisor level of the computer system,
abnormal contention of a serially reusable
resource caused by a first virtual machine

310 .

adjusting resource allocation at the hypervisor
level of the computer system resources for the |
first virtual machine :

3 30 et NN
'i processing the first virtual machine based on

the resource allocation

releasing the serially reusable resource by the |
first virtual machine in response to the first |
virfual machine processing

340

U.S. Patent Jan. 2, 2018 Sheet 7 of 7 US 9.858,107 B2

420 \ ____________ \;L ____________
: 1

' . C

I adjusting resource allocation at the hypervisor !evel of |

| the computer system resources for the first virtual

: machine :

. |

| Collecting contention data :

422 |_ :
| |

: selecting a resource allocation scheme based :

' on the contention data ,-

424 — i _ ’
' 1

I :

- ’
06— |
_ | !
! l

US 9,858,107 B2

1

METHOD AND APPARATUS FOR
RESOLVING CONTENTION AT THE
HYPERVISOR LEVEL

BACKGROUND

The present disclosure relates generally to resolving
abnormal contention and, more specifically, to a method and
apparatus for resolving abnormal contention at a hypervisor
level on a computer system for a serially reusable resource.

In computer system workloads there are often a number of
transactions that make up jobs, and a number of jobs that
make up a program, which are all vying for some of the same
limited resources, some of which are serially reusable
resources such as memory, processors, and soltware
istances. In such computer system workloads, there may be
many relationships between jobs, transactions, and pro-
grams that are increasingly dynamic creating complex
resource dependency scenarios that can cause delay. For
example, when a thread or umt of work involved 1n a
workload blocks a serially reusable resource, it slows 1tself
down and other jobs and/or transactions going on concur-
rently across the system, the entire system complex, or
cluster of systems, which are waiting for the resource. In
mission critical workloads, such delays may not be accept-
able to the system and a user.

Further, a system may include Logical Partitioning
(LPAR) which can include a notion of a computing weight.
The computing weight can be defined as a maximum com-
puting power allowed for a single system 1mage running on
top of LPAR. This may hamper a system 1image’s CPU time
when the computer system 1s run at full capacity. LPAR also
has a notion of soft capping, where an artificial computing,
limit can be imposed upon an 1mage, 1 order to control the
amount of processing work a computer can perform, for
example, 1 one hour which can be measured using a
measurement such as million service umits (MSU) con-
sumed. This can take eflect before the 1image reaches poten-
t1al capacity, and can become a bottleneck. Another cause for
hypervisor level resource bottlenecks can be system 1mages
configured with only a single processor which can be called
a uni-processor arrangement.

Additional delays may be caused by human factors. For
example, one such factor that can lead to delays in a
reduction of I'T stafl 1n an I'T shop or department as well as
the 1nexperience of the IT stall below a threshold for
providing suflicient support thereby causing delays. Some
automation may be utilized to help alleviate delay, however,
automation may not have enough intrinsic knowledge of the
system to detect or make decisions regarding delays or the
causes ol the blocking jobs.

An operating system of the future 1s envisioned that can
monitor such workloads and automatically resolve abnormal
contention (with greater accuracy) to help recover from
delays 1 order to provide increased availability and
throughput of resources for users. These types of analytics
and cluster-wide features may help keep valuable systems

operating competitively at or above desired operating
thresholds.

SUMMARY

In accordance with an embodiment, a method for resolv-
ing abnormal contention 1s provided. The method includes
detecting, using a processor and at a hypervisor level of the
computer system, abnormal contention of a serially reusable
resource caused by a first virtual machine. The abnormal

10

15

20

25

30

35

40

45

50

55

60

65

2

contention includes the first virtual machine experiencing
resource starvation of computer system resources used for
processing the first virtual machine, causing the first virtual
machine to block the serially reusable resource from a
second virtual machine that 1s waiting to use the serially
reusable resource. The method also includes adjusting
resource allocation at the hypervisor level of the computer
system resources for the first virtual machine, processing the
first virtual machine based on the resource allocation, and
releasing the serially reusable resource by the first virtual
machine in response to the first virtual machine processing.

In accordance with another embodiment, a computer
system for resolving abnormal contention 1s provided. The
computer system includes a memory having computer read-
able 1nstructions, and one or more processors for executing
the computer readable instructions. The computer readable
istructions includes detecting, using a processor and at a
hypervisor level of the computer system, abnormal conten-
tion of a senially reusable resource caused by a first virtual
machine. The abnormal contention includes the first virtual
machine experiencing resource starvation of computer sys-
tem resources used for processing the first virtual machine,
causing the first virtual machine to block the sernially reus-
able resource from a second virtual machine that 1s waiting
to use the serially reusable resource. The computer readable
instructions also includes adjusting resource allocation at the
hypervisor level of the computer system resources for the
first virtual machine, processing the first virtual machine
based on the resource allocation, and releasing the serially
reusable resource by the first virtual machine in response to
the first virtual machine processing.

In accordance with a further embodiment, a computer
program product for resolving abnormal contention includes
a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the process-
ing circuit for performing a method. The program instruc-
tions executable by a processor to cause the processor to
detect, at a hypervisor level of a computer system, abnormal
contention of a serially reusable resource caused by a first
virtual machine. The abnormal contention includes the first
virtual machine experiencing resource starvation of com-
puter system resources used for processing the first virtual
machine, causing the first virtual machine to block the
serially reusable resource from a second virtual machine that
1s waiting to use the serially reusable resource. The program
instructions executable by a processor to cause the processor
to also adjust resource allocation at the hypervisor level of
the computer system resources for the first virtual machine,
process the first virtual machine based on the resource
allocation, and release the serially reusable resource by the
first virtual machine 1n response to the first virtual machine
processing.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the mvention are described 1n detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The forgoing and other features, and advantages are
apparent from the following detailed description taken 1n
conjunction with the accompanying drawings in which:

FIG. 1A depicts a block diagram of a computer system 1n
accordance with some embodiments of this disclosure;

US 9,858,107 B2

3

FIG. 1B depicts a block diagram of a computer system in
accordance with some embodiments of this disclosure;

FIG. 1C depicts a block diagram of a computer system in
accordance with some embodiments of this disclosure;

FI1G. 2A depicts a block diagram of a computer system for
implementing some or all aspects of the computer system for
resolving abnormal contention, according to some embodi-
ments of this disclosure:

FI1G. 2B depicts a block diagram of a computer system for
implementing some or all aspects of the computer system for
resolving abnormal contention, according to some embodi-
ments of this disclosure;

FIG. 3 depicts a process flow of a method for resolving
abnormal contention in accordance with some embodiments
of this disclosure; and

FIG. 4 depicts a process tlow of adjusting resource
allocation for a method for resolving abnormal contention 1n
accordance with some embodiments of this disclosure.

DETAILED DESCRIPTION

It 1s understood 1n advance that although this disclosure
includes a detailed description on a single computer system,
implementation of the teachings recited herein are not
limited to a computer system and environment. Rather,
embodiments of the present invention are capable of being
implemented 1n conjunction with any other type of virtual-
1zed computing environment now known or later developed
such as systems that include multiple computers or clusters
of systems on which a virtualized machine environment can
be implemented.

Embodiments described herein are directed to resolving
abnormal contention. For example, 1n this disclosure one or
more hypervisor level methods and apparatus for a system to
resolve abnormal contention delays resulting from access to
serially reusable resources 1s introduced. A serially reusable
resource 1s any part of a system that can be used by more
than one program, job, and/or thread but for which access
must be controlled such that either the serially reusable
resource can be used one at a time only (exclusive access
which 1s usually akin to making updates or if there 1s only
one) or the resource can be shared simultaneously, but only
if the program, job, and/or threads are only reading. One or
more of the disclosed embodiments help 1n resolving abnor-
mal delays that occur during obtaining and releasing seri-
alization 1n a virtualized machine environment at the hyper-
visor level. One or more of the disclosed embodiments focus
on situations where a currently processing guest program
image, also called a virtual machine or guest machine, which
i1s currently holding ownership of a serially reusable
resource, 1s starved of processor resources while blocking a
shared serialization resource in a constrained environment.

Turning now to FIG. 1, an electronic computing device
100, which may also be called a computer system 100 that
includes a plurality of electronic computing device sub-
components, any one of which may include or itself be a
serially reusable resource, 1s generally shown 1n accordance
with one or more embodiments. Additionally, a virtualized
machine environment can be implemented at a hypervisor
level on one or more of the plurality of electronic computing
device sub-components. FIG. 1 illustrates a block diagram
of a computer system 100 (hereafter “computer 100”) for
use 1n practicing the embodiments described herein. The
methods described herein can be implemented in hardware,
software (e.g., firmware), or a combination thereof. In an
exemplary embodiment, the methods described herein are
implemented in hardware, and may be part of the micro-

10

15

20

25

30

35

40

45

50

55

60

65

4

processor of a special or general-purpose digital computer,
such as a personal computer, workstation, minicomputer, or
mainiframe computer. Computer 100 therefore can embody
a general-purpose computer. In another exemplary embodi-
ment, the methods described herein are implemented as part
of a mobile device, such as, for example, a mobile phone, a
personal data assistant (PDA), a tablet computer, eftc.
According to another embodiment, the computer system 100
may be an embedded computer system. For example, the
embedded computer system 100 may be an embedded
system 1n a washing machine, an o1l drilling rig, or any other
device that can contain electronics.

In an exemplary embodiment, in terms of hardware archi-
tecture, as shown in FIG. 1, the computer 100 includes
processor 101. Computer 100 also includes memory 102
coupled to processor 101, and one or more mput and/or
output (I/0) adaptors 103, that may be communicatively
coupled via a local system bus 105. Communications adap-
tor 104 may be operatively connect computer 100 to one or
more networks 111. System bus 105 may also connect one
or more user interfaces via interface adaptor 112. Interface
adaptor 112 may connect a plurality of user interfaces to
computer 100 including, for example, keyboard 109, mouse
120, speaker 113, etc. System bus 105 may also connect
display adaptor 116 and display 117 to processor 101.
Processor 101 may also be operatively connected to graphi-
cal processing unit 118.

Further, the computer 100 may also include a sensor 119
that 1s operatively connected to one or more of the other
clectronic sub-components of the computer 100 through the
system bus 105. The sensor 119 can be an integrated or a
standalone sensor that 1s separate from the computer 100 and
may be commumcatively connected using a wire or may
communicate with the computer 100 using wireless trans-
missions.

Processor 101 1s a hardware device for executing hard-
ware 1nstructions or soitware, particularly that stored in a
non-transitory computer-readable memory (e.g., memory
102). Processor 101 can be any custom made or commer-
cially available processor, a central processing unit (CPU),
a plurality of CPUs, for example, CPU 101a-101c, an
auxiliary processor among several other processors associ-
ated with the computer 100, a semiconductor based micro-
processor (in the form of a microchip or chip set), a
macroprocessor, or generally any device for executing
istructions. Processor 101 can include a memory cache
106, which may include, but 1s not limited to, an nstruction
cache to speed up executable instruction fetch, a data cache
to speed up data fetch and store, and a translation lookaside
bufler (TLB) used to speed up virtual-to-physical address
translation for both executable instructions and data. The
cache 106 may be organized as a hierarchy of more cache
levels (L1, L2, etc.).

Memory 102 can include random access memory (RAM)
107 and read only memory (ROM) 108. RAM 107 can be
any one or combination of volatile memory elements (e.g.,
DRAM, SRAM, SDRAM, etc.). ROM 108 can include any
one or more nonvolatile memory elements (e.g., erasable
programmable read only memory (EPROM), flash memory,
clectronically erasable programmable read only memory
(EEPROM), programmable read only memory (PROM),
tape, compact disc read only memory (CD-ROM), disk,
cartridge, cassette or the like, etc.). Moreover, memory 102
may incorporate electronic, magnetic, optical, and/or other
types ol non-transitory computer-readable storage media.
Note that the memory 102 can have a distributed architec-

US 9,858,107 B2

S

ture, where various components are situated remote from
one another, but can be accessed by the processor 101.

The mstructions 1n memory 102 may include one or more
separate programs, each of which comprises an ordered
listing of computer-executable instructions for implement-
ing logical functions. In the example of FIG. 1, the mstruc-
tions 1 memory 102 may include a suitable operating
system 110. Operating system 110 can control the execution
of other computer programs and provides scheduling, input-
output control, file and data management, memory manage-
ment, and communication control and related services.

Input/output adaptor 103 can be, for example but not
limited to, one or more buses or other wired or wireless
connections, as 1s known 1n the art. The input/output adaptor
103 may have additional elements, which are omitted for
simplicity, such as controllers, buflers (caches), drivers,
repeaters, and recervers, to enable communications. Further,
the local interface may include address, control, and/or data
connections to enable appropriate commumnications among
the aforementioned components.

Interface adaptor 112 may be configured to operatively
connect one or more I'O devices to computer 100. For
example, interface adaptor 112 may connect a conventional
keyboard 109 and mouse 120. Other output devices, e.g.,
speaker 113 may be operatively connected to interface
adaptor 112. Other output devices may also be included,
although not shown. For example, devices may include but
are not limited to a printer, a scanner, microphone, and/or the
like. Finally, the I/O devices connectable to interface adaptor
112 may further include devices that communicate both
inputs and outputs, for mnstance but not limited to, a network
interface card (NIC) or modulator/demodulator (for access-
ing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface,
a bridge, a router, and the like.

Computer 100 can further include display adaptor 116
coupled to one or more displays 117. In an exemplary
embodiment, computer 100 can further include communi-
cations adaptor 104 for coupling to a network 111.

Network 111 can be an IP-based network for communi-
cation between computer 100 and any external device.
Network 111 transmits and receives data between computer
100 and external systems. In an exemplary embodiment,
network 111 can be a managed IP network administered by
a service provider. Network 111 may be implemented 1n a
wireless Tashion, e.g., using wireless protocols and technolo-
gies, such as Wik, WiMax, etc. Network 111 can also be a
packet-switched network such as a local area network, wide
area network, metropolitan area network, Internet network,
or other similar type of network environment. The network
111 may be a fixed wireless network, a wireless local area
network (LAN), a wireless wide area network (WAN) a
personal area network (PAN), a virtual private network
(VPN), intranet or other suitable network system.

If computer 100 1s a PC, workstation, laptop, tablet
computer and/or the like, the instructions 1n the memory 102
may further include a basic iput output system (BIOS)
(omitted for simplicity). The BIOS 1s a set of essential
routines that initialize and test hardware at startup, start
operating system 110, and support the transier of data among
the operatively connected hardware devices. The BIOS 1s
stored 1n ROM 108 so that the BIOS can be executed when
computer 100 1s activated. When computer 100 1s 1n opera-
tion, processor 101 may be configured to execute mnstruc-
tions stored within the memory 102, to commumnicate data to
and from the memory 102, and to generally control opera-
tions of the computer 100 pursuant to the instructions.

10

15

20

25

30

35

40

45

50

55

60

65

6

According to one or more embodiments, any one of the
clectronic computing device sub-components of the com-
puter 100 includes, or may 1tself be, a serially reusable
resource that receives a number of job requests and on which
a virtualized computer environment can be implemented.
According to one or more embodiments, a job 1s abstract and
can include a program, a thread, a process, a subsystem, etc.,
or a combination thereof. Further, according to one or more
embodiments, a job can include one or more threads within
a program or diflerent programs. Accordingly, one or more
contention events may occur at any such serially reusable
resource element caused by a plurality of program images
vying for resources while one of those virtual program
image, which may also be referred to as a virtual machine,
1s being starved of processing abilities. These virtual
machines, or program 1mages, are monitored by a hypervisor
or virtual machine monitor (VMM) which 1s a piece of
software, firmware, or hardware which can also create and
run the virtual machines. Further, the contention events may
be normal or abnormal which may be detected and resolved
using a method or apparatus in accordance with one or more
of the disclosed embodiments herewith.

FIG. 1B depicts a block diagram of a computer system
100B 1n accordance with some embodiments of this disclo-
sure. As shown 1n this embodiment the virtual machines, for
example virtual machine 131 (VM1), are shown imple-
mented on a hypervisor layer which 1s a virtualization layer
than can create the virtual machines and control the opera-
tion and execution of the virtual machine processes and
operations. The computer system 100B includes a hardware
layer 132 which can contain similar elements to those shown
in FIG. 1A. The computer system 100B also includes a
virtualization layer call a hypervisor layer 133 that 1s used to
create and control the virtual machines VM1-VM6 as shown
implement on the virtualization layer.

FIG. 1C depicts a block diagram of another computer
system 100C 1n accordance with some embodiments of this
disclosure. The computer system 100C contain a shared host
hardware layer 142 that 1s stmilar the hardware layer 132 of
FIG. 1B and the hardware shown in FIG. 1A. The computer
system 100C also has a virtual machine monitor (VMM)
which 1s also called a hypervisor layer 143 that 1s similar to
the hypervisor layer 133 of FIG. 1B. This computer system
100C also includes a shared host operation system 144 that
operates on the shared host hardware 142 and upon which
the hypervisor layer 143 will operate when creating and
controlling a hosted virtualization 145. The hosted virtual-
ization contains a plurality of virtual machines such as
virtual machine 1 141, virtual machine 2, and wvirtual
machine 3.

FIG. 2A depicts a block diagram of a system for imple-
menting some or all aspects of a computer system 200A for
resolving abnormal contention, according to some embodi-
ments of this disclosure. The computer system 200A can be
a single computer, or any one or more sub-clements as
shown 1n FIG. 1A or can be one of the computer systems
shown 1n either FIG. 1B or FIG. 1C. In other embodiments,
the computer system can be a cluster of computers or can
take on another physical structure with additional software
or firmware layers of which one 1s a hypervisor layer.

Turning now to the other elements shown i FIG. 2A, the
serially reusable resource 201 A 1s shown having a serial path
through which virtual machines and their processes/opera-
tions are received, queued, processed, and outputs are trans-
mitted. For example, a first virtual machine (blocker) 1s
shown holding and using the serially reusable resource
201A. As shown, the first virtual machine (blocker) 1is

US 9,858,107 B2

7

communicatively connected to computer system resources
which process the operations of the first virtual machine
(blocker). As shown, the computer system resources are part
ol the senially reusable resource that the first virtual machine
1s holding and using to the exclusion of other wvirtual
machines. Once processed the first virtual machine (blocker)
will be released along the resource output path shown.

A second virtual machine (waiter) can send request and
queue up for processing and use of the serially reusable
resource 201A. As shown the second virtual machine
(waiter) can remain within the computer system 200A but 1s
in a queue waiting to access and use the serially reusable
resource that 1s currently being blocked or held by the first
virtual machine (blocker) which has temporary ownership.
Further other virtual machines can queue up and wait to
access the senally reusable resource 201A. For example
virtual machine 3 through virtual machine N can queue up
in parallel with the second virtual machine (waiter). In one
embodiment the virtual machine with the highest priority
will gain access to the serially reusable resource 201A once
it 1s released by the first machine (blocker). In another
embodiment the virtual machine that will be granted access
to the serially reusable resource can be selected based on a
first come first serve basis, or alternatively, based on another
selecting scheme such as based on process/operation count
and processing size. According to another embodiment, a
virtual machine M can also queue up for using the serially
reusable resource 201A 1n series behind, for example, the
second virtual machine (waiter). According to one or more
embodiments, the serially reusable resource 201 can be
serialized via any serialization method which may be oper-
ating system dependent as well as programming language
dependent (e.g., mutex, semaphore, enqueue, latch, lock,
etc.).

In these embodiments, the virtual machines are serially
processed by the senially reusable resource 201 A. Thus, the
currently processing first virtual machine (blocker) can
cause a delay for the other virtual machines that are queued
up after the currently processing first virtual machine
(blocker). Such a delay 1s called a contention event which
can be a normal contention event 1f the amount of the delay
consumes the expect amount of time and/or processing
resources. However, the contention event may be an abnor-
mal contention event 1f the first virtual machine (blocker)
usage of the serially reusable resource 201 A exceeds certain
thresholds. This abnormal contention can be detected and
resolved by implementing a system and method according to
the disclosed one or more embodiments of the disclosure.

Turning now to FIG. 2B, a block diagram of a system for
implementing some or all aspects of a computer system
200B for resolving abnormal contention, according to some
embodiments of this disclosure. The computer system 2008
can be a single computer, or any one or more sub-clements
as shown in FIG. 1. In other embodiments, the computer
system can be a cluster of computers or can take on another
physical structure.

Turning now to the other elements shown 1n FIG. 2B, the
serially reusable resource 201B 1s shown having a serial path
through which virtual machines and their processes/opera-
tions are received, queued, processed, and outputs are trans-
mitted. For example, a first virtual machine (blocker) 1s
shown holding and using the serially reusable resource
201B. As shown, the first virtual machine (blocker) 1is
communicatively connected to computer system resources
which process the operations of the first virtual machine
(blocker). As shown, the computer system resources are
separate from the serially reusable resource that the first

10

15

20

25

30

35

40

45

50

55

60

65

8

virtual machine 1s holding and using to the exclusion of
other virtual machines. Once processed the first virtual
machine (blocker) will be released along the resource output
path shown.

A second virtual machine (waiter) can queue up for the
serially reusable resource 201B. As shown the second virtual
machine (waiter) can remain within the computer system
200B but 15 1n a queue waiting to access and use the serially
reusable resource that 1s currently being blocked or held by
the first virtual machine (blocker) which has temporary
ownership. Further other virtual machines can queue up and
wait to access the sernially reusable resource 201B. For
example virtual machine 3 through virtual machine N can
queue up 1n parallel with the second virtual machine
(waiter). In one embodiment the virtual machine with the
highest priority will gain access to the serially reusable
resource 201B once 1t 1s released by the first machine
(blocker). In another embodiment the virtual machine that
will be granted access to the serially reusable resource can
be selected based on a first come first serve basis, or
alternatively, based on another selecting scheme such as
based on process/operation count and processing size.
According to another embodiment, a virtual machine M can
also queue up for using the serially reusable resource 201B
in series behind, for example, the second virtual machine
(waiter).

In these embodiments, the virtual machines are serially
processed by the serially reusable resource 201B. Thus, the
currently processing first virtual machine (blocker) can
cause a delay for the other virtual machines that are queued
up after the currently processing first virtual machine
(blocker). Such a delay 1s called a contention event which
can be a normal contention event 1f the amount of the delay
consumes the expect amount of time and/or processing
resources. However, the contention event may be an abnor-
mal contention event i the first virtual machine (blocker)
usage of the serially reusable resource 201B exceeds certain
thresholds. This abnormal contention can be detected and
resolved by implementing a system and method according to
the disclosed one or more embodiments of the disclosure.

FIG. 3 depicts a process flow of a method 300 for
resolving abnormal contention in accordance with some
embodiments of this disclosure. The method 300 includes
detecting, using a processor and at a hypervisor level of the
computer system, abnormal contention of a serially reusable
resource caused by a first virtual machine (operation 310).
The abnormal contention includes the first virtual machine
experiencing resource starvation of computer system
resources used for processing the first virtual machine,
causing the first virtual machine to block the serially reus-
able resource from a second virtual machine that 1s waiting
to use the serially reusable resource. The method 300
includes adjusting resource allocation at the hypervisor level
of the computer system resources for the first virtual
machine (operation 320). The method 300 also includes
processing the first virtual machine based on the resource
allocation (operation 330). Further, the method 300 includes
releasing the serially reusable resource by the first virtual
machine 1n response to the first virtual machine processing
(operation 340).

According to one or more embodiment, resource starva-
tion can be caused from one or more selected from a group
consisting ol processor resource starvation, memory
resource starvation, and data bandwidth limitation. Accord-
ing to another embodiment, the method 300 may further
include storing historical data from the abnormal contention,
and creating, using the historical data, a time series model to

US 9,858,107 B2

9

model computer system behavior based on abnormal con-
tention of the serially reusable resource over time. The time
series model can be further updated periodically based on
additional contention events. Further, this embodiment of
method 300 can further include taking system measurements
alter releasing the serially reusable resource, storing the
system measurements along with the historical data, and
using the system measurements and historical data to update
the time series model.

According to another embodiment, adjusting resource
allocation at the hypervisor level of the computer system
resources for the first virtual machine affects all processor
resources assigned to the first virtual machine and the
second virtual machine. Further, according to another
embodiment, adjusting resource allocation at the hypervisor
level of the computer system resources for the first virtual
machine can include granting access to processor resources
of the second wvirtual machine. Alternatively, another
embodiment can instead include granting access to spare
processor resources available on the computer system. Fur-
ther, according to another embodiment, access can be
granted to at least one of available memory resources and
network bandwidth.

FIG. 4 depicts a process tlow of adjusting resource
allocation 420 for a method for resolving abnormal conten-
tion 1 accordance with some embodiments of this disclo-
sure. Adjusting resource allocation 420 includes collecting
contention data from the serially reusable resource that may
be blocked or held on the computer system and processes
from the first virtual machine and the second virtual machine
that request and wait for the serially reusable resource that
may blocked or held to be released (operation 422). Adjust-
ing resource allocation 420 also includes selecting a
resource allocation scheme based on the contention data
(operation 424). Further, adjusting resource allocation 420
includes executing the resource allocation scheme (opera-
tion 426). The resource allocation scheme can be, but 1s not
limited to, being one selected from a group consisting of:
adjusting resource priority values of the first virtual machine
and the second virtual machine; readjusting resource priority
values of the first virtual machine and the second virtual
machine; adjusting priorities of all virtual machines in the
system; and terminating and removing the first virtual
machine, allowing the second virtual machine to begin
processing. Further, according to another embodiment,
adjusting priorities of all virtual machines in the computer
system can also include lowering the priorities of all the
virtual machines in the computer system.

The resource allocation scheme can be, but 1s not limited
to, being one selected from a group consisting of: adjusting,
resource priority values of the first virtual machine and the
second virtual machine; readjusting resource priority values
of the first virtual machine and the second virtual machine;
adjusting priorities of all virtual machines 1n the system; and
terminating and removing the first virtual machine, allowing,
the second virtual machine to begin processing. Further,
according to another embodiment, selecting a resource allo-
cation scheme (operation 523) can include selecting the
resource allocation scheme based on the resource allocation
scheme that 1s least destructive to the processes of the first
virtual machine. According to another embodiment, select-
ing a resource allocation scheme can further include select-
ing the resource allocation scheme that 1s least destructive
based on how many attempts are made to fix the abnormal
contention.

According to one or more embodiments, selecting a
resource allocation scheme based on the contention data

10

15

20

25

30

35

40

45

50

55

60

65

10

turther includes detecting abnormal contention events of the
first virtual machine which are duplicates of events that have
already been processed and counting how many times such
events are detected, determinming whether the abnormal con-
tention 1s resolved based on the detecting abnormal conten-
tion events and the counting how many times such events are
detected, selecting the resource allocation scheme based on
whether the abnormal contention persisted after using
another resource allocation scheme to try to remedy the
abnormal contention, and escalating to the selected resource
allocation scheme 1n response to the another resource allo-
cation scheme failing to remedy the abnormal contention.

According to one or more embodiments, a virtual
machine guest can be blocking a shared resource for an
abnormal, and possibly unacceptable, amount of time while
it 1s being starved for processor resource in a constrained
environment, such as when the entire computer system 1s run
at full utilization. When such a starved virtual machine guest
1s causing an abnormal contention, processing as disclosed
herein 1s 1nvoked that detects and helps resolve the abnormal
contention. This processing operates at the hypervisor level.

According to one or more embodiments, the abnormal
contention may be resolved by adjusting a processing cap.
Specifically, the blocker, which may also be called a holder’s
virtual machine, can be “capped™ which 1s defined as when
the blocker 1s prevented from using more resources even
though there are more resources available on the physical
real machine. When the blocker 1s capped, one or more
embodiments can provide processing at the hypervisor level
that can define that the capped virtual machine can tempo-
rarily obtain more resources in order to alleviate the abnor-
mal contention. In one or more embodiments there exist
more resources on the physical machine that can be allo-
cated, so the capped virtual machine that 1s blocking can be
given more resources without involving taking resource
from other virtual machines. In another embodiment, if the
physical machine becomes fully utilized, then i1t becomes a
scenario were other processing operations can be imple-
mented to help resolve the abnormal contention. For
example, weight values for each virtual machine can be
adjusted appropnately.

For example, according to one or more embodiments,
when a currently processing virtual guest machine (blocker)
blocks a serialization resource that 1s shared with other
images, causing an abnormal contention, the priorities of the
blocker and first of the virtual guest machines (waiter)
waiting and queued for processing are compared. If the
waiter priority 1s higher, the two are temporarily adjusted.
For example, the blocker priority may be increased and the
waiter priority may be lowered. By raising the priority of the
blocker, and lowering the priority of the waiter and/or other
virtual guest machines, the blocker 1s enabled to complete its
serialized processing and release the shared resource.
According to one or more embodiments, because the priority
adjustment 1s done at the hypervisor level, the adjustment
may aflect all processor resources assigned to the blocker
and waiter guests.

According to an embodiment, processing begins when an
abnormal contention event 1s detected by one of the virtual
guest machine systems. The abnormal contention event 1s
likely already been characterized as abnormal and 1s likely
being caused at least 1n part by starvation of physical CPU
resources. Once an abnormal contention 1s detected, a hyper-
visor level processor begins dispatch processing and adjust-
ments are made to the priority of a blocking system image
(blocker) and the first waiting system image (waiter).

US 9,858,107 B2

11

For example, 1n accordance with an embodiment, an
abnormal contention can be caused when the blocking
virtual guest machine 1image 1s not receiving execution time
slices from any logical processors due to being low 1n
priority, and/or 1s being preempted by higher priority images
(e.g. a blocking image with Low LPAR weights). In order to
being resolving the abnormal contention, a change 1n hyper-
visor logical processor dispatch priority of the blocker and
waiter images will be performed. For example, 11 the priority
of the blocker 1s lower than the waiter then the blocker is
increased to some level above the waiter (e.g. 10%) and the
waiter 1s decreased by 10%, to allow the blocker to complete
its serialized processing and release the sernalization
resource.

In accordance with another embodiment, an abnormal
contention can be caused when the blocker virtual machine
image 1s receiving insuilicient execution time due to pro-
cessor resource configuration constraints (e.g. LPAR Soft-
Capping, Uni-processor, or non-dedicated processor
images). In order to being resolving the abnormal conten-
tion, temporarily, the blocker will be allowed to access
processor resources of the waiter. In another embodiment the
blocker will be allowed to access spare resources available
on the system.

According to other embodiments, 11 the abnormal con-
tention persists after the temporary adjustment expires, other
measures are taken. For example, priority adjustments are
done 1n increasing increments (e.g. 20%, 30%, 40%.,
etc. ...).

According to another embodiment, 11 the abnormal con-
tention still exists, additional virtual guest machines will be
lowered 1n priority to remove them from competition for
processor resources. For example, 1in accordance with an
embodiment, first other waiters can have their priorties
lowered followed by other higher priority 1mages having
their priorities lowered.

Further, according to another embodiment, if the abnor-
mal contention still exists when all possible 1mages have
been considered for priority adjustment the blocker image
may be stopped and removed from the cluster in order to
relinquish the blocked resource, then restarted, and allowed
to rejoin the cluster.

In another embodiment, 1f the blocker resides on a dif-
terent physical computer system than the waiter(s), a signal
1s sent to the hypervisor level processing system where the
blocker resides.

In accordance with one or more of the disclosed embodi-
ments, one or more of the following benefits and/or advan-
tages can be provided. Particularly, while disclosed embodi-
ments uses the established concept of accelerating a blocker,
one or more embodiments can also decreases the priority of
the first waiter as well 1 order to remove even more
competition for CPU resources. Further, one or more
embodiments can take into account factors which are exter-
nal to the virtual machine, which can also be called a virtual
system 1mage, by operating at the hypervisor level. One or
more embodiments can also consider a computer system
environment where a hypervisor 1s managing several virtual
machine 1mages running on the same physical machine.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not mtended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used 1n this specification, specily the
presence of stated features, integers, steps, operations, ele-

10

15

20

25

30

35

40

45

50

55

60

65

12

ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the
claims below are intended to include any structure, matenal,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the mnvention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described 1n order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of imtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
ivention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present mvention may be assembler

US 9,858,107 B2

13

instructions, instruction-set-architecture (ISA) instructions,
machine i1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Java, Smalltalk, C++, or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instruc-
tions may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider). In some embodiments, electronic circuitry includ-
ing, for example, programmable logic circuitry, field-pro-
grammable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer
readable program instructions to personalize the electronic
circuitry, 1n order to perform aspects of the present inven-
tion.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or

10

15

20

25

30

35

40

45

50

55

60

65

14

portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed:

1. A computer implemented method comprising:

operations to resolve abnormal contention on a computer

system, the operations comprising;

detecting, using a processor and at a hypervisor level of
the computer system, abnormal contention of a seri-
ally reusable resource caused by a first virtual
machine, wherein the abnormal contention includes
the first virtual machine experiencing resource star-
vation ol computer system resources used for pro-
cessing the first virtual machine, causing the first
virtual machine to block the serially reusable
resource from a second virtual machine that 1s wait-
ing to use the senially reusable resource;

in response to the detecting, using the processor and at
the hypervisor level of the computer system, the
abnormal contention of the serially reusable resource
caused by the first virtual machine, collecting
resource data in a sernalized resource history data-
base and analyzing the resource data associated with
the senally reusable resource;

in response to the collecting the resource data and the
analyzing the resource data associated with the seri-
ally reusable resource, adjusting resource allocation
at the hypervisor level of the computer system
resources for the first virtual machine;

in response to the adjusting the resource allocation at
the hypervisor level of the computer system
resources for the first virtual machine, processing the
first virtual machine based on the adjusted resource
allocation; and

in response to the processing the first virtual machine
based on the adjusted resource allocation, releasing
the senially reusable resource by the first virtual
machine.

2. The computer implemented method of claim 1, wherein
adjusting resource allocation at the hypervisor level of the
computer system resources for the first virtual machine
COmprises:

US 9,858,107 B2

15

collecting contention data from the serially reusable
resource and processes from the first virtual machine
and the second virtual machine that request and wait for
the serially reusable resource;

selecting a resource allocation scheme based on the

contention data; and executing the resource allocation
scheme.

3. The computer implemented method of claim 2, wherein
the resource allocation scheme 1s at least one selected from
a group consisting of:

adjusting resource priority values of the first virtual

machine and the second virtual machine;

readjusting resource priority values of the first virtual

machine and the second virtual machine;

adjusting priorities of all virtual machines 1n the computer

system; and terminating and removing the first virtual
machine, allowing the second virtual machine to begin
processing.

4. The computer implemented method of claim 3, wherein
adjusting priorities of all virtual machines in the computer
system comprises:

lowering the priorities of all the virtual machines 1n the

computer system.

5. The computer implemented method of claim 2, wherein
selecting a resource allocation scheme based on the conten-
tion data comprises:

selecting the resource allocation scheme based on the

resource allocation scheme that 1s least destructive to
the processes of the first virtual machine.

6. The computer implemented method of claim 5, wherein
selecting a resource allocation scheme based on the conten-
tion data further comprises:

detecting abnormal contention events of the first virtual

machine which are duplicates of events that have
already been processed and counting how many times
such events are detected:
determining whether the abnormal contention 1s resolved
based on the detecting abnormal contention events and
the counting how many times such events are detected;

selecting the resource allocation scheme based on whether
the abnormal contention persisted after using another
resource allocation scheme to try to remedy the abnor-
mal contention; and

escalating to the selected resource allocation scheme in

response to the another resource allocation scheme
failing to remedy the abnormal contention.

7. The computer implemented method of claim 1, wherein
resource starvation is caused from one or more selected from
a group consisting of processor resource starvation, memory
resource starvation, and data bandwidth limitation.

8. The computer implemented method of claim 1, wherein
adjusting resource allocation at the hypervisor level of the
computer system resources for the first virtual machine
aflects all processor resources assigned to the first virtual
machine and the second virtual machine.

9. The computer implemented method of claim 1, wherein
adjusting resource allocation at the hypervisor level of the
computer system resources for the first virtual machine
COmMprises:

granting access to processor resources of at least one of

the second wvirtual machine and spare processor
resources available on the computer system.

10. The computer implemented method of claim 1,
wherein adjusting resource allocation at the hypervisor level
of the computer system resources for the first wvirtual
machine comprises:

10

15

20

25

30

35

40

45

50

55

60

65

16

granting access to at least one of available memory

resources and network bandwidth.

11. A computer system comprising:

a memory having computer readable instructions to

resolve abnormal contention; and

one or more processors for executing the computer read-

able 1nstructions, the computer readable instructions

comprising:

detecting, using a processor and at a hypervisor level of
the computer system, abnormal contention of a seri-
ally reusable resource caused by a first virtual
machine,

wherein the abnormal contention includes the first
virtual machine experiencing resource starvation of
computer system resources used for processing the
first virtual machine, causing the first virtual
machine to block the serially reusable resource from
a second virtual machine that 1s waiting to use the
serially reusable resource;

in response to the detecting, using the processor and at
the hypervisor level of the computer system, the
abnormal contention of the serially reusable resource
caused by the first virtual machine, collecting
resource data i a sernalized resource history data-
base and analyzing the resource data associated with
the serially reusable resource;

in response to the collecting the resource data and the
analyzing the resource data associated with the seri-
ally reusable resource, adjusting resource allocation
at the hypervisor level of the computer system
resources for the first virtual machine;

in response to the adjusting the resource allocation at
the hypervisor level of the computer system
resources for the first virtual machine, processing the
first virtual machine based on the adjusted resource
allocation; and

in response to the processing the first virtual machine
based on the adjusted resource allocation, releasing
the serially reusable resource by the first virtual
machine.

12. The computer system of claim 11, wherein adjusting
resource allocation at the hypervisor level of the computer
system resources for the first virtual machine comprises:

collecting contention data from the serially reusable

resource and processes from the first virtual machine
and the second virtual machine that request and wait for
the serially reusable resource;

selecting a resource allocation scheme based on the

contention data; and executing the resource allocation
scheme.

13. The computer system of claim 12,

wherein the resource allocation scheme 1s at least one

selected from a group consisting of:

adjusting resource priority values of the first virtual
machine and the second virtual machine;

readjusting resource priority values of the first virtual
machine and the second virtual machine;

adjusting priorities of all virtual machines 1n the com-
puter system; and

terminating and removing the first virtual machine,
allowing the second virtual machine to begin pro-
cessing.

14. The computer system of claim 13, wherein adjusting
priorities of all virtual machines in the computer system
COmprises:

lowering the priorities of all the virtual machines 1n the

computer system.

US 9,858,107 B2

17

15. The computer system of claim 12, wherein selecting
a resource allocation scheme based on the contention data
COmMprises:
selecting the resource allocation scheme based on the
resource allocation scheme that 1s least destructive to
the processes of the first virtual machine; and

selecting the resource allocation scheme that 1s least
destructive based on how many attempts are made to
fix the abnormal contention.

16. The computer system of claim 15, wherein selecting
a resource allocation scheme based on the contention data
turther comprises:

detecting abnormal contention events of the first virtual

machine which are duplicates of events that have
already been processed and counting how many times
such events are detected;
determining whether the abnormal contention 1s resolved
based on the detecting abnormal contention events and
the counting how many times such events are detected;

selecting the resource allocation scheme based on whether
the abnormal contention persisted after using another
resource allocation scheme to try to remedy the abnor-
mal contention; and

escalating to the selected resource allocation scheme in

response to the another resource allocation scheme
failing to remedy the abnormal contention.

17. A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith, the program instructions executable by
a processor to cause the processor to:

detect, at a hypervisor level of a computer system, abnor-

mal contention of a serially reusable resource caused by

a first virtual machine,

wherein the abnormal contention includes the first virtual

machine experiencing resource starvation ol computer

system resources used for processing the first virtual

machine, causing the first virtual machine to block the

serially reusable resource from a second wvirtual

machine that 1s waiting to use the serially reusable

resource;

in response to the detecting, using the processor and at
the hypervisor level of the computer system, the
abnormal contention of the serially reusable resource
caused by the first virtual machine, collecting
resource data 1 a sernialized resource history data-
base and analyzing the resource data associated with
the serially reusable resource;

in response to the collecting the resource data and the

analyzing the resource data associated with the serially
reusable resource, adjust resource allocation at the
hypervisor level of the computer system resources for
the first virtual machine;

in response to the adjusting the resource allocation at the

hypervisor level of the computer system resources for
the first virtual machine, process the first virtual
machine based on the adjusted resource allocation; and

5

10

15

20

25

30

35

40

45

50

55

18

in response to the processing the first virtual machine
based on the adjusted resource allocation, release the
serially reusable resource by the first virtual machine.

18. The computer program product for resolving abnor-
mal contention of claim 17, where adjusting resource allo-
cation at the hypervisor level of the computer system
resources for the first virtual machine comprises program
instructions executable by the processor to cause the pro-
CESSor 10:

collecting contention data from the serially reusable

resource and processes from the first virtual machine
and the second virtual machine that request and wait for
the serially reusable resource;

select a resource allocation scheme based on the conten-

tion data; and

execute the resource allocation scheme, wherein the

resource allocation scheme 1s at least one selected from
a group consisting of:

adjusting resource priority values of the first virtual

machine and the second virtual machine;

readjusting resource priority values of the first virtual

machine and the second virtual machine;:

adjusting priorities of all virtual machines 1n the computer

system; and terminating and removing the first virtual
machine, allowing the second virtual machine to begin
processing.

19. The computer program product for resolving abnor-
mal contention of claim 18, wherein adjusting priorities of
all virtual machines 1n the computer system comprises:

lowering the priorities of all the virtual machines 1n the

computer system.

20. The computer program product for resolving abnor-
mal contention of claim 18, wherein selecting a resource
allocation scheme based on the contention data comprises:

selecting the resource allocation scheme based on the

resource allocation scheme that 1s least destructive to
the processes of the first virtual machine;

selecting the resource allocation scheme that 1s least

destructive based on how many attempts are made to
fix the abnormal contention;

detecting abnormal contention events of the first virtual

machine which are duplicates of events that have
already been processed and counting how many times
such events are detected;
determiming whether the abnormal contention 1s resolved
based on the detecting abnormal contention events and
the counting how many times such events are detected;

selecting the resource allocation scheme based on whether
the abnormal contention persisted after using another
resource allocation scheme to try to remedy the abnor-
mal contention; and

escalating to the selected resource allocation scheme 1n

response to the another resource allocation scheme
failing to remedy the abnormal contention.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

