US009852054B2

12 United States Patent 10) Patent No.: US 9.852.054 B2

Corrie 45) Date of Patent: Dec. 26, 2017
(54) ELASTIC CACHING FOR JAVA VIRTUAL 0,202,127 B 3/2001 Dean et al.
MACHINES 6,496,912 Bl 12/2002 FleldS, Jr. et al.
6,789,156 Bl 9/2004 Waldspurger
o _ _ 7,412,492 Bl 8/2008 Waldspurger
(75) Inventor: Benjamin J. Corrie, San Francisco, 7.421,533 B2 0/2008 Zimmer et al.
CA (US) 7,433,951 Bl 10/2008 Waldspurger
7.472,252 B2 12/2008 Ben-_ZVi
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 7,500,048 Bl 3/2009 Venkitachalam et al

7,640,543 B2 12/2009 Vi et al.
7,702,843 Bl 4/2010 Chen et al.

(*) Notice: Subject to any disclaimer, the term of this 7.716.446 Bl 5/9010 Chen et al.
patent 1s extended or adjusted under 35 7,797,699 B2 9/2010 Kagi et al.
U.S.C. 154(b) by 1094 days. 7,870,153 B2 1/2011 Croft et al.

7,880,126 B2 2/2011 DBennett et al.
8,095,931 Bl 1/2012 Chen et al.

21) Appl. No.: 13/460,556 _
(1) Appl. No (Continued)

(22) Filed: Apr. 30, 2012
OTHER PUBLICATIONS

(65) Prior Publication Data | i | | |
Patent Cooperation Treaty, “International Search Report™, 1ssued in
US 2013/0290641 Al Oct. 31, 2013 connection with International Patent Application No. PCT/US2011/
042388, dated Aug. 30, 2011 (3 pages).
(51) Int. CL (Continued)
Gool 12/02 (2006.01)
GOol 12/121 (201 60) Primary Examiner — Charles Rones
Gool 12/0875 (2016.01) Assistant Examiner — Ryan Dare
GO6F 9/50 (2006.01)
(52) U.S. CL (37) ABSTRACT
CpPC GooF 12/023 (2013.01); GO6F 9/5022

A mechamsm 1s provided for managing memory of a run-
time environment executing on a virtual machine. The
mechanism includes an elastic cache made of objects within

. heap memory of the runtime environment. When the runtime
(2013.01); GO61" 22127151 (2013.01) environment and virtual machine are not experiencing

(58) Field of Classification Search memory pressure from a hypervisor, the objects of the elastic
None o _ cache may be used to temporarily store application-level
See application file for complete search history. cache data from applications running within the runtime
_ environment. When memory pressure from the hypervisor 1s
(56) References Cited exerted, the objects of the elastic cache are re-purposed to
U.S PATENT DOCUMENTS ipﬂate a memory balloon within heap memory of the run-

time environment.

(2013.01); GO6F 12/0875 (2013.01); GO6F
127121 (2013.01); GOOF 9/5077 (2013.01);
GO6F 12/0276 (2013.01); GO6F 2212/1016

5,493,663 A 2/1996 Parikh
5,606,685 A 2/1997 Frandeen 21 Claims, 6 Drawing Sheets

(,- 100

VM 1024 VM 102N
Application 130

Cache Library 132

]
Runtims

Environment 108 |_Balloon Agent 128

t L

Balloon Driver 126

Guest OS 106

Hypervisor 104 Page sharing module 124

llele—

System Hardware 110

Processor || MMU | [Disk [/F | | Netw. /F | | Memory | Page(s)
112 114 118 118 120

R

US 9,852,054 B2
Page 2

(56)

8,156,492
8,359,451
8,543,790
8,583,875
8,949,295
9,015,203

2001/0044856
2002/0019716
2003/0212719
2005/0232192
2005/0262505
2006/0004944
2006/0064697
2006/0161719
2007/0038837
2007/0136402
2007/0192329
2009/0070776

201
201
201
201
201
201
201
201
201
201
201

0/0211754
0/0241785
1/0320682
2/0110577
2/0185854
2/0233435
3/0132957
3/0218644
3/0290382
3/0290596
3/0339568

References Cited

U.S. PATENT DOCUMENTS

B2

AN A A NN ANANAAANAA AN A

4/201
1/201
9/201
11/201
2/201
4/2015
11/2001
2/2002
11/2003
10/2005
11/2005
1/2006
3/2006
7/2006
2/2007
6/2007
8/2007
3/2009
8/2010
9/2010
12/2011
5/201
7/201
9/201
5/201
8/201
10/201
10/201
12/201

L L L W N

d d o L o o o DN

Dahlstedt

Chen et al.
Chen et al.
Garthwaite et al.
McDougall et al.
Corrie

Agesen et al.
Agesen et al.
Yasuda et al.
Rawson
Esfahany et al.
Vi et al.

Kagi et al.
Bennett et al.
Ben-Zvi

Grose et al.
Croft et al.
Dahlstedt
Crosby et al.
Chen et al.
McDougall et al.
Chen et al.
Dahlstedt

............. 711/6

Ben-Yehuda et al. 711/170

Chen et al.
Kasravi et al.
Adachi et al.
Corrie

Corrie

OTHER PUBLICATIONS

Patent Cooperation Treaty, “Written Opinion of the International

Search Authority,” 1ssued 1n connection with International Patent
Application No. PCT/US2011/042388, dated Aug. 30, 2011 (4

pages).

Patent Cooperation Treaty, “International Preliminary Report on
Patentability,” 1ssued in connection with International Patent Appli-
cation No. PCT/US2011/042388, dated Jan. 8, 2013 (5 pages).
Heo et al., Memory overbooking and dynamic control of Xen virtual
machines consolidated environments, ASPOLOS RESOLVE—
Workshop on Runtime Environments/Systems, Layering and Vir-

tualized Environments, 2011.
Schwidefsky et al., Collaborative Memory Management 1n Hosted

Linux Environments:, Proceedings of the Linux Symposium, vol. 2,
pp. 313-328,206.

Tauber, “Automation and Optimization 1 IT-DB Oracle VM
virtualization Systems”, CERN openlab, Aug. 20, 2010.
C.A. Waldspurger, “Memory Resource Management in VMWare

ESX Server” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI 2002), AMC Operating
Systems Review, pp. 181-194, Dec. 2002.

Gordon et al., “Ginko Automated, Application-Driven Memory
Overcommitment for Could Computing”, ASPOLOS RESOLVE—

Workshop on Runtime Environments/Systems, Layering and Vir-
tualized Environments, 2011.

* cited by examiner

U.S. Patent Dec. 26,2017 Sheet 1 of 6 US 9,852,054 B2

'/ 100

VM 1021

Aoplication 13
PPICANON 122 I Cache Library 132 |

Guest OS 106

Runtime
Environment 108 | Balloon Agent 128
126

Balloon Driver

- .

Hypervisor 104 Page sharing module 124

System Hardware 110

Processor|| MMU Disk I/F | | Netw. I/F
112 114 116 118

Figure 1

U.S. Patent Dec. 26,2017 Sheet 2 of 6 US 9,852,054 B2

‘/100

Manager 206

Listener 208

VM 1024
Application(s) 130
Cache Balloon
Cache Library 132 Library 212
Runtime Environment 108
Interpreter 202 Cache Balloon

Heap 204

Cache Objects 214

Guest OS 106
Balloon Driver 126

ﬂ———__————__————-—_ - Y T S TS T ———“_——————

Page sharing module 124

System Hardware 110
Memory 120 Pages 122

Figure 2

Hypervisor 104

U.S. Patent Dec. 26,2017 Sheet 3 of 6 US 9,852,054 B2

204

Eden Space

Young Survivor Space 1
ger(13ecr)§t)ion Survivor Space 2

»
e R
.............

lllllll W w e
nnnnnnnn T
llllllllllllll .
:-:. ----------------- l-'--: :
m_n n
TR AN
llllllllllll

-

"]

-

L}

sty L

- _m m_ m_§ w o

FEEHAHEHEHE LR R rRrErEE
el e Lt L L P e ey et B Bl R B ot et B Bl Bl B | [= =]
e el ek By frel Bl Bt Bt el B B B Rl kbl Bl Bl Bl | . 0 _ K
ol et S R Tl e e T B T B R T = - M
=_=_i _________________ E_g_=_§ _§E_F_1 | = Bl Bl |

I-I:I lllllllll

--
l.i-i:- llllllllllllllllllll
R R s A A . : : : : IIIIII

- it e e b e R R 15%a" et .l:l=l=l=l.l.l.l:l:l:l --------
llllllllllllllll
lllllllllllllllllllllllllllll

IIIIIIIIIIIIIIIIII

"_._._...#'

—————————————

5 ~J 000000000 th 000000000 310
Old L
generation : | Cache Data :
i | Cach 312
(304) ~-3 Cache Data

314

!

Permanent
generation

CIONEN e

$ 9.1nb14

uoneoijdde
ay} Ja)s1bal 03 108lqo payosed
poouslajal ay) Jo aiels AIPon

109(qo ayoes 0] asus.s)o.
sy} buisn Jabeuew uoojjeq syoes
JO JBus)si| ym uonesijdde Jo)siboy

US 9,852,054 B2

Ocv

| 8lv

uoljesijdde ay)
10} Blep ayseo buuo)s pslgo syoeod

uoneoldde

© 0} 199[0 BYOED 0} 92UBISJBI UIN}OY O} @doUSI9}al UIEIS] pUE SA1808Y
-—
~t 14937 | oy
3 BJEp SUoBo POAIedSI 910)S _
= 0} }oalgo ayoeo jo uoibal eiep 189 “
clLy S A “
~ Alowaui : |
— AL L LT |
< deay uiyym josiqo sjoelqo ayoed Auy |
< ayoed Mau 8]ealn ON . |
S S0V
< Ol .
S laBeuew uoojje
o Alowaw deay uiyym T 20¢ "

8UOED 0} B)Ep SUJBD 8pIN0I4

sjoalgo ayoed bulisixa jo 1SI| sAsl}OY

14%1%
uonesijdde 1o} elep ayoeo ajealn

90V

Z0Y
90¢ 19beuey uoojjeg syosen 051 uonesddy

U.S. Patent

o\

aa

4

T

< G ainbid

e}

A

P buueys abed 10)

s anjeA paoclaz buirey sjoalqo syoed Jo - —

- suoibai ejep ay; Jo tosialadAy ANJON L — — s)08[qo ayoes 0} sesusIslal UInjey
0ZS 81G

S}ElS ,peuUoojeq,
e 0} }oalgqo syoed yoes Jo aiels 189

O 91G

T

.M SNjeA paolaz 0} 1oalgo

- ayoes yoea Jo uoibai ejep 109 1 .

o - uoneosyjou sbpajmouyoy

= 144"

75 “ _—p
Blep ayoeo Jo uoisiep Huipusdut HolEaLoU 0} SAIsUodsa:

~ | . ! —

= JO suoiesijdde paJajsibal Ajjou J S1EP POUOED LM SUoRoe

~ , S : . 8JOW JO 8UO Wiousd

< 108lqo ayoeo pansujel yoes 104

) _ 0LG

s 1sanbal Ajsnes g0S

Qs

A~ 0} Jobeuew uoo|jeq ayosed wWouy - "~ fuowsw desy uiym s108(qo suoes

1090 UoOojjBQ 210W 10 BUO }sanbay — S|GE|IRAR SI0W JO SUO SASLIM

1405°

LUoO||Bq S8)eyul 0} }senbal aAjed8Yy 90G

c0G

8z | Juaby uoojjeg 90z 18beuep uoojjeqg ayosen 0cL uonesddy

U.S. Patent

9 ainbiy

US 9,852,054 B2

9)els s|qejieae, ue 0} joalqo

M 9Uoeo paAIadal yoes Jo a)els 189
&
,_w 809
=
. gz | Juabe
[— uoojjeq Aq pasn s)oalqo ayoesd
SlJE|leAE ale anjeA po0Jsz | 9IOW 1O SUO 0} SSOUBISYS.] SAIDIDY
= Buiney sjoalqo ayoes aiow 10 suo ——
M., Jeyy Jabeuew uoo|ieq ayoed AJIjoN 909
< 709
M losintedAy woyy
uoojjeq aje|ap 0} 1sanbal aAlgo0y
c09
gz Juaby uoojjeg 90z iabeuepy uoojjeg ayoren

U.S. Patent

US 9,852,054 B2

1

ELASTIC CACHING FOR JAVA VIRTUAL
MACHINES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application 1s related to the patent application
entitled “Hybrid In-Heap Out-of-Heap Ballooning for Java
Virtual Machines™ Ser. No. 13/460,5635, which 1s assigned to
the assignee of this application and have been filed on the
same day as this application.

BACKGROUND

Virtual computing environments allow multiple virtual
machines (VMs) to run on a single physical platform (also
referred to herein as a “host”) and to share physical
resources. Some virtual computing environments enable
configuration of VMs such that the total amount of memory
designated for use by the VMs 1s larger than the actual
amount of memory available on the host. Referred to as
memory over-commitment, this feature enables the host to
support the simultaneous execution of more VMs. To
achieve over-commitment, the virtual computing environ-
ment simply gives a VM less memory than what the guest
operating system (OS) in the VM believes it has.

Memory over-commitment 1s traditionally enabled using
a technique known as ballooning, which 1s described 1n U.S.
Pat. No. 7,433,951, the entire contents of which are incor-
porated by reference herein. A balloon 1s a resource reser-
vation application that runs as a guest application in the VM
or as driver 1n the guest OS that requests guest physical
memory from the guest OS. After the guest OS has allocated
guest physical memory for use by the balloon application,
the balloon application 1s able to ultimately communicate
information regarding the allocated guest physical memory
to a hypervisor that supports the VM, which 1s then able to
repurpose the host’s system memory (also referred to herein
as “machine memory””) backing the guest physical memory
allocated to the balloon application. That 1s, since the
balloon application only reserves guest physical memory but
does not actually use it, the hypervisor can, for example,
repurpose machine memory that backs such allocated guest
physical memory for use by another VM without fear that
the balloon application would write to the guest physical
memory (and therefore the backed machine memory).

Another technique for memory management that 1s useful
under memory over-commitment situations 1s referred to as
page sharing. In this techmque, the virtual computing envi-
ronment 1dentifies and eliminates redundant copies of guest
physical memory pages across VMs. The virtual infrastruc-
ture maps the i1dentical guest physical pages to the same
machine memory page and enables copy-on-write behavior
with regards to that machine memory page. This technique
cnables sharing of memory between VMs 1n cases where
VMs may be running instances of the same guest OS,
applications, and libraries, and have other data in common.

Unfortunately, there are applications and runtime envi-
ronments that do not work well with conventional memory
over-commitment 1n virtual computing environments. Java
Virtual Machine (JVM) 1s one of the most widely used
runtime environments 1n this category. JVMs typically have
their own memory management mechamsms. Allocated Java
objects sit mn a JVM heap until the JVM runs out of heap
space, and 1n this event, garbage collection sweeps the heap
and recycles dead objects, which are the objects unreachable
from the program. A memory-managed JVM runtime can be

10

15

20

25

30

35

40

45

50

55

60

65

2

a problematic candidate for memory over-commitment
because freed memory made available by garbage collection

1s typically held exclusively for the use of the runtime and
therefore cannot be used by other applications running in the
operating system or virtualized infrastructure. In this envi-
ronment, attempts to over-commit the memory may result in
lack of memory to support the JVM heap, causing a signifi-
cant performance hit.

Such 1ssues with memory over-commitment may be fur-
ther exacerbated as a result of memory usage by certain
applications running within a JVM. Notably, production-
level applications typically use some form of caching to
increase responsiveness and performance. However, appli-
cation-level caches may continue to take up space 1n heap
memory even though the JVM and underlying VM may be
experiencing memory pressure. Some caching mechanisms
have used “soft referenced” objects to permit a garbage
collection to reclaim space from the cache. However, 1n
practice, some JVMs may be slow to remove soit referenced
objects even though the JVM may be under memory pres-
sure. Further, applications generally have no control over the
timing and scope of a garbage collection operation. For
example, applications lack control over which soit refer-
enced objects 1n the cache may be removed (1.e., garbage
collected) and are unable to make a distinction between
“hot” cache entries and “cold” cache entries. Further, mul-
tiple garbage collection operations may be needed to fully
collect a soft referenced cache. Each garbage collection may
occur at an inopportune time, each time causing the JVM to
pause, thereby significantly impacting performance of the
IVM and applications running therein.

SUMMARY

One or more embodiments of the present disclosure
provide methods, systems, and computer programs for man-
aging memory in a host computer system in which virtual
machines (VMs) execute. In one embodiment, an applica-
tion executing within a runtime environment (e.g., JVM)
may use an elastic cache comprised of a plurality of objects
within heap memory to store cache data. A balloon agent
running within JVM 1s configured to inflate and deflate a
memory balloon with the runtime environment according to
memory pressure indications provided from outside the
VMs (e.g., by a hypervisor). To inflate the balloon, the
balloon agent re-purposes objects (or in some cases, allo-
cates new objects) from the elastic cache, overwrites cache
data within the objects with a predetermined value, and
notifies a hypervisor that memory pages contaimng the
objects may be page-shared and reclaimed for other uses. To
deflate the balloon, the balloon agent repurposes one or more
ol the objects under 1ts control to be once again used 1n the
clastic cache. Accordingly, embodiments of the present
disclosure provide a memory balloon and application-level
cache comprised of objects that persist within memory,
reducing the number of dead objects 1n the JVM heap that
may cause garbage collection that impacts performance of
application running within the JVM.

A method for managing memory of a runtime environ-
ment executing on a virtual machine, according to one
embodiment, includes the steps of receiving cache data from
an application executing in the runtime environment and
storing the received cache data 1n one or more objects within
heap memory of the runtime environment. The method
further includes determining, by operation of a memory
management agent, a target size for memory to be reserved
within heap memory of the runtime environment, 1dentify-

US 9,852,054 B2

3

ing at least one of the objects stored 1n the heap memory that
store cache data for the application, and replacing at least
some portion ol the cache data stored in the identified
objects with a first value. The method includes notifying a
hypervisor that at least one machine physical memory page
associated with the i1dentified object and having the first
value, can be re-claimed.

Further embodiments of the present invention include,
without limitation, a non-transitory computer-readable stor-
age medium that includes nstructions that enable a process-
ing unit to implement one or more of the methods set forth
above or the functions of the computer system set forth
above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram that illustrates a virtualized
computer system with which one or more embodiments of
the present invention may be utilized.

FIG. 2 1llustrates, 1n greater detail, the virtualized com-
puter system of FIG. 1 configured to perform memory
management techniques while executing a runtime environ-
ment, according to one or more embodiments.

FIG. 3 depicts a layout of a Java memory heap while a
memory management technique 1s performed, according to
one or more embodiments.

FI1G. 4 1s a flow diagram that 1llustrates steps for a method
of caching application data 1n a managed memory reserved
to a runtime environment, according to an embodiment of
the present ivention.

FI1G. 5 1s a tlow diagram that 1llustrates steps for a method
of managing memory assigned to a runtime environment,
according to an embodiment of the present invention.

FIG. 6 1s a tlow diagram that 1llustrates steps for a method
of managing memory assigned to a runtime environment,
according to an embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram that illustrates a virtualized
computer system 100 with which one or more embodiments
of the present invention may be utilized. Computer system
100 (also referred to as a “server” or “host”) 1s configured to
support a virtualized environment comprised of one or more
virtual machines.

As 1n conventional computer systems, computer system
100 includes both system hardware 110 and system soift-
ware. System hardware 110 generally includes a processor
112, some form of memory management unit (MMU) 114
(which may be integrated with processor 112), a disk inter-
tace 116, a network interface 118, and memory 120 (referred
to herein as “machine memory™). Machine memory 120
stores data and software such as an operating system and
currently running application programs. Generally, MMU
114 1s responsible for managing a virtual memory for
processes running in computer system 100 by mapping
virtual memory pages to machine memory pages. MMU 114
typically divides virtual memory address space and machine
memory address space mnto blocks of contiguous memory
addresses referred to as memory pages 122. Processor 112
may be a single processor, or two or more cooperating,
processors 1 a known multiprocessor arrangement.
Examples of disk interface 116 are a host bus adapter and a
network file system interface. An example of network inter-
tace 118 1s a network adapter, also referred to as a network
interface controller (NIC). In some embodiments, a plurality
of NICs 1s included as network interface 118. It should

10

15

20

25

30

35

40

45

50

55

60

65

4

further be recogmized that system hardware 110 also
includes, or 1s connected to, conventional registers, interrupt
handling circuitry, a clock, etc., which, for the sake of
simplicity, are not shown in the figures.

One or more virtual machines (VMs), represented by VM
102, to VM 102,, are configured within computer system
100 and share the hardware resources of computer system
100. Each virtual machine typically includes a guest oper-
ating system (OS) 106 and virtualized system hardware (not
shown), which includes one or more virtual CPUs, virtual
system memory, one or more virtual disks, one or more
virtual devices, etc., all of which are implemented 1n soft-
ware to emulate the corresponding components of an actual
computer.

The virtual machines run on top of a hypervisor 104
(sometimes referred to as a virtual machine monitor, or
VMM), which 1s a solftware interface layer that abstracts
system hardware 110 into virtualized hardware, thereby
enabling sharing of system hardware 110 of computer sys-
tem 100 amongst the virtual machines. Hypervisor 104 acts
as an interface between VM 102, and system hardware 110
for executing VM-related 1nstructions and for transferring
data to and from machine memory 120, processor(s) 112,
disk interface 116, etc. Hypervisor 104 may run on top of an
operating system of computer system 100 or directly on
hardware components of computer system 100.

In one embodiment, hypervisor 104 includes a page
sharing module 124 configured to perform a page sharing
process, according to one embodiment, on guest physical
memory pages utilized by VM 102,. As described 1n detail
later, page sharing module 124 1s configured to re-map guest
physical memory pages assigned to VM 102, and runtime
environments 108 having the same contents to a same
machine memory page 122. For clanty of discussion, the
term machine memory refers to actual hardware memory
that 1s visible to hypervisor 104. The term guest physical
memory refers to a software abstraction used to provide the
illusion of hardware memory to a VM. Guest physical
memory 1s generally visible to a guest OS running on a VM.
Guest physical memory 1s backed by machine memory and
hypervisor 104 provides a mapping from guest physical
memory to machine memory. The term guest virtual
memory refers to a continuous virtual address space pre-
sented by a guest OS to applications running inside a VM.

VM 102, is configured to support a runtime environment
108 running on top of guest OS 106. To simplify the
description, description of other VMs 102,, are omitted but
it should be understood that VMs 102,, are configured
similarly to VM 102, . In the embodiments 1llustrated herein,
runtime environment 108 1s a Java Virtual Machine (IVM),
although 1t should be recognized that other runtime envi-
ronments and/or applications executing on top of the guest
OS and having their own memory manager, such as data-
bases, web servers, etc., may be used without departing from
the scope of the teachings herein. The embodiments pre-
sented should therefore not be interpreted to be exclusive or
limiting, but rather exemplary or illustrative.

Runtime environment 108 i1s configured to run one or
more applications 130 to provide, for example, web ser-
vices, database services, and other information technology
services that may involve retrieval, processing, and serving
of data to one or more users. To 1improve performance and
reduce latency, applications 130 may utilize a cache library
132 that provides a mechanism for temporarily storing
copies of data used by application 130 for later use. By way
of example, data used by application 130 that are suitable for
caching include web session data, object-relational map-

US 9,852,054 B2

S

pings, database query results, and compiled byte code.
According to one embodiment, cache library 132 1s config-
ured to coordinate with runtime environment 108 to store
cache data 1n one or more objects created within memory
that may also be used by a balloon agent 128 of runtime
environment 108, as described 1n detail below.

Runtime environment 108 of VM 102, 1s configured to
coordinate with hypervisor 104 to manage memory using a
mechanism for balloon memory that performs page sharing,
procedures on guest physical memory pages utilized by
runtime environment 108. According to an embodiment,
VM 102, includes a balloon driver 126 installed in guest OS
106 and a balloon agent 128 within runtime environment
108. Balloon driver 126 1s a systems-level driver configured
to communicate with hypervisor 104 and balloon agent 128
to exert memory pressure on runtime environment 108. For
example, when balloon driver 126 receives instructions from
hypervisor 104 to inflate, balloon driver 126 requests bal-
loon agent 128 to intlate, rather than requesting for memory
pages directly from guest OS 106.

Balloon agent 128 1s a thread or process executing within
runtime environment 108 configured to manage heap
memory of runtime environment 108. Responsive to com-
mands and/or signals provided by hypervisor 104 via bal-
loon driver 126, balloon agent 128 inflates by allocating and
freeing one or more objects within heap memory to effec-
tively reduce the heap space that can be used by runtime
environment 108 and any applications 130 running therein.
A smaller heap may cause garbage collection of runtime
environment 108 to run more frequently, which decreases
throughput. Further, repeated allocation and discarding of
objects within heap memory may further decrease perfor-
mance of runtime environment 108. As such, according to
one embodiment of the present disclosure, balloon agent 128
1s configured to retrieve objects within heap memory that are
used by application 130 for storage cache data and repurpose
the objects for use 1 ballooming. An example technique for
implementing balloon memory 1s further described 1n more
detail in U.S. patent application Ser. No. 12/826,389, filed
Jun. 29, 2010, and entitled “Cooperative Memory Resource
Management via Application-Level Balloon,” which 1s
incorporated herein by reference.

FIG. 2 illustrates, in greater detail, a VM 102, configured
to perform memory management techniques, according to
one or more embodiments, while executing runtime envi-
ronment 108. Runtime environment 108 includes an inter-
preter 202, a heap 204, and a garbage collector 210 to
support execution of one or more applications 130 within
runtime environment 108. Interpreter 202 1s configured to
translate and execute software code (i.e., byte code) of
application 130. Garbage collector 210 1s a memory man-
ager for runtime environment that attempts to reclaim heap
memory occupied by objects in heap 204 no longer used by
runtime environment 108 or applications 130 running
therein. Heap 204 comprises a region of memory (referred
to herein as “heap memory”) reserved for storing one or
more objects (e.g., Java objects) and other data structures
utilized during execution of application 130. Heap 204 1s
illustrated in greater detail and described fturther in conjunc-
tion with FIG. 3.

Runtime environment 108 further includes a cache bal-
loon manager 206 configured to allocate one or more cache
objects 214 within heap 204 for use by applications 130 to
cache temporarily data and for use by balloon agent 128 to
occupy space within heap memory as a memory balloon.
Cache balloon manager 206 provides a centralized interface
by which both applications 130 and balloon agent 128 alike

10

15

20

25

30

35

40

45

50

55

60

65

6

may request new cache objects 214, access existing cache
objects 214, and perform other operations on cache objects
214. Cache balloon manager 206 maintains states for each of
cache objects 214 residing within heap memory that indi-
cates the contents of cache object 214, for example, that a
given cache object 214 1s available for storing cache data.
Cache objects 214 are illustrated 1n greater detail in FIG. 3.

FIG. 3 depicts a layout of heap 204 having cache objects
214 residing therein, according to one or more embodi-
ments. While an embodiment based on Open]JDK, an open
source JVM mmplementation from Oracle Corporation, 1s
depicted, principles of the present disclosure can also be
used with other JVM implementations.

Heap 204 1s divided into regions of young, old, and
permanent generations 302, 304, 306, respectively. Perma-
nent generation 306 holds static data, such as class descrip-
tions, and has its own form of memory management. New
objects are allocated into an “eden” space of young genera-
tion 302. Once the eden space 1s exhausted, runtime envi-
ronment 108 may start a minor garbage collection operation,
where live objects (i.e., reachable) are copied 1nto a “sur-
vivor” space. In the embodiment illustrated herein, there are
two survivor spaces, which serve alternately as the destina-
tion of live objects from the eden space or from the other
survivor space. Objects stay in young generation 302 until
the objects live long enough to be promoted into old
generation 304, sometimes referred to as “tenured space.”
When old generation 304 runs out of space, a major garbage
collection happens and live objects are copied and com-
pacted within old generation heap 304 to create free space.

Known techniques for application-level caching have
used one of a variety of mechanisms of adding and removing
temporary objects allocated within heap 204. In one
example, a cache may be implemented using soft-referenced
objects, which are objects that can be garbage collected even
though the objects are 1n use when garbage collector 210
determines that little to no memory (e.g., in old generation
304) 1s available. However, 1t has been determined that this
approach to caching leads to unpredictable performance
costs due to the lack of control over garbage collection and
the pause time incurred while garbage collection occurs.
Further, 1t has been determined that known techniques for
caching may not be responsive to memory management
techniques used 1n virtualized environments with memory
over-commitment. For example, a JVM executing within a
VM may be unaware of outside memory pressure (e.g., from
hypervisor) and may not release cached data in heap
memory that would help the performance of the whole
system, particularly if that JVM 1s relatively idle. As such,
according to one embodiment, cache balloon manager 206
uses cache objects 214 within heap 204 to provide applica-
tion-level caching when no memory pressure i1s being
exerted by hypervisor 104 and deterministically removes the
cached data from heap 204 without imncurring the cost of
garbage collection.

In one embodiment, cache objects 214 are wrapper
objects that encapsulate one or more regions of data for use
in application-level caching or in memory ballooning. In
some embodiments, the data region for each cache object
214 1s configured 1n a format that cache balloon manager
206 may determine a page address of an underlying guest
physical memory page within heap 204 (e.g., via a Java
Native Interface (INI) call). In the embodiment shown in
FIG. 3, the region of data for each cache object 214 1is
arranged as a byte array (e.g., byte arrays 310, 312),
although other suitable data structures and formats may be
utilized. Rather than allowing direct access to the data

US 9,852,054 B2

7

regions, cache objects 214 expose the one or more regions
of data to applications 130 and balloon agent 128 using
accessor and mutator methods (e.g., getRegion() setRegion
(). In some embodiments, data regions of cache objects 214
may be configured to store cache data, as 1llustrated by byte
array 312, or to be used as part ol a memory balloon, as
illustrated by the zeroed out byte array 310.

Each cache object 214 includes a reference 314 to a data
region (e.g., byte array) allocated within heap memory. In
some embodiments, reference 314 may be configured as a
soit reference, which denotes a type of object that may be
taken away at the discretion of garbage collector 210 in
response to memory demands. In one implementation, an
accessor method (e.g., getRegion()) of cache objects 214
may be configured to check 1t soft referenced data regions
have been taken away, and may throw an exception 1f access
to such a data region 1s attempted. While references 314 to
data regions may be soit references, references to cache
objects 214 themselves, such as those maintained by cache
balloon manager 206, may remain as strong references (1.¢.,
hard references) to ensure tenancy of cache objects 214
within heap memory.

In some embodiments, cache objects 214 are wrapper
objects configured to prevent synchronous access from both
an application 130 and/or a balloon agent 128. Cache objects
214 may further include additional metadata that facilitates
memory management operations described herein. For
example, cache objects 214 may include an internal counter
indicating a number of times the cache object has been used
for memory ballooning or for cache data, a timestamp
indicating a date and time of last utilization, etc.

Returming to FIG. 2, balloon agent 128 1s configured to
request one or more cache objects 214 from cache balloon
manager 206 responsive to memory demands from balloon
driver 126 and hypervisor 104. Balloon agent 128 1s further
configured to notily, or “hint” to hypervisor 104 that guest
physical memory pages backing cache objects 214 as can-
didates for page sharing. In one implementation, balloon
driver 126 may communicate with hypervisor 104 via a
backdoor call and provides a page sharing hint comprising,
an address of a candidate guest physical memory page (e.g.,
a guest physical page number.) Accordingly, balloon agent
128 coordinates with balloon driver 126 and hypervisor 104
to utilize page sharing techniques on guest physical memory
pages that are reserved for heap 204 and that may have been
used for cache data by applications 130.

In one embodiment, cache balloon manager 206 includes
a listener component 208 configured to recerve registrations
from any applications 130 that have stored data 1n a par-
ticular cache object. Listener component 208 1s further
configured to notily the registered applications when that
particular cache object 1s about to be aflected, for example,
re-purposed for ballooning, garbage collected, etc. In some
embodiments, listener component 208 1s configured to inter-
act with registered applications 130 to enable applications
130 to veto an impending removal of cache data from the
particular cache object 214.

To enable access to one or more cache objects 214
managed by cache balloon manager 206, cache library 132
of application 130 may use a utility library, such as a cache
balloon library 212, that 1s configured to provide an appli-
cation-side interface (e.g., API) to cache balloon manager
206. In some embodiments, functionality of cache balloon
library 212 may be incorporated within cache library 132 or
may be separate components as shown 1n FIG. 2. Operations

10

15

20

25

30

35

40

45

50

55

60

65

8

of application 130 for caching data within heap memory
using cache objects 214 1s described 1n greater detail in

conjunction with FIG. 4.

Example of Application-Level Caching

FIG. 4 15 a flow diagram that illustrates steps for a method
of caching application data 1n a managed memory reserved
to runtime environment 108, according to an embodiment of
the present invention. It should be recognized that, even
though the method 1s described in conjunction with the
systems of FIG. 1 and FIG. 2, any system configured to
perform the method steps 1s within the scope of embodi-
ments of the mvention.

At step 402, application 130 generates cache data to be
stored within memory for later use. In step 404, application
130 provides the cache data to cache balloon manager 206
to provision a cache object 214 that encapsulates the pro-
vided cache data. In one implementation, application 130
creates a byte array having the cache data stored therein and
passes the byte array to cache balloon manager 206. In some
embodiments, application 130 utilizes a constructor method
of cache balloon library 212 to obtain a cache object 214 for
its use. Cache balloon library 212 1n turn mmvokes cache
balloon manager 206 to obtain a reference to a cache object
214. Responsive to receiving the cache data from applica-
tion 130, cache balloon manager 206 may provision a cache
object 214 from cache objects already existing within heap
204 or create a new cache object within heap memory. It
should be recognized that application 130 may request
provision of a cache object without providing cache data
(e.g., via a default constructor method).

In step 406, cache balloon manager 206 retrieves a list of
existing cache objects 214 within heap memory. In some
embodiments, the list of existing cache objects may include
a plurality of “strong™ references to cache objects 214. In
step 408, cache balloon manager 206 determines whether
any of the existing cache objects 214 are available for use.
As described above, cache balloon manager 206 tracks the
state of cache objects 214 that categorizes the contents of
cach cache object 214. In some embodiments, a state of a
cache object may indicate that the cache object 1s available
for storing cache data, that a given cache object 214 1is
currently being used for balloon memory (1.e., unavailable),
whether a given cache object 214 has been garbage col-
lected. In some embodiments, a state of a cache object may
indicate that a cache object 1s currently storing cache data for
a particular application. Such cache objects may nonetheless
be re-used for storing cache data of another application.

In step 410, responsive to determining that no existing
cache objects are available for storing cache data, cache
balloon manager 206 creates a new cache object 214 within
heap memory and proceeds to step 412. In some embodi-
ments, cache balloon manger 206 may set a state of cache
object 214 within heap 202 indicating an availability of
cache object 214 to store cache data. It should be recognized
that step 410 may be performed by cache balloon manager
206 when there are little or no cache objects existing, such
as at a time when a runtime environment 108 initially starts
running. In one implementation, cache balloon manager 206
may allocate new cache objects according to a pre-deter-
mined cache size limit. In some embodiments, cache balloon
manager 206 may continue to allocate new cache objects
until a pre-determined size limit for all cache objects within
heap memory has been reached. In some embodiments,
cache balloon manager 206 may allocate new cache objects
even though available cache objects exist within heap

US 9,852,054 B2

9

memory until the pre-determined cache size limit has been
reached, at which point existing cache objects are re-used
and re-purposed.

Newly-created cache objects 214 may be configured for a
dual use in storing application-level cache data and for
memory ballooning. In some embodiments, to facilitate page
sharing, cache objects 214 may be created having an object
s1ze selected to be at least the size of one page of machine
memory 1n system hardware 110 (e.g., 4 MB) though other
sizes are possible, such as multiple pages of memory.
Generally, the use of large objects reduces the number of
objects balloon agent 128 needs to handle for meeting a
large balloon target. However, because cache objects 214 are
repeatedly re-used by both data caches and memory bal-
looning without incurring the cost of new object creation,
embodiments of the present disclosure advantageously per-
mit a smaller size of cache objects 214 to be selected to
provide increased storage granularity and flexibility between
data caching and memory ballooning.

Responsive to determining that at least one cache object
214 15 available for storing cache data, 1n step 412, cache
balloon manager 206 i1dentifies the available cache object
and sets a data region of cache object 214 to store the
received cache data. Cache balloon manager 206 allocates
and includes a data region object (e.g., byte array) for cache
object 214. Alternatively, cache balloon manager 206 may
store a reference to a pre-existing byte array provided by
application 130 and containing the cache data. In embodi-
ments where cache balloon manager 206 provides the data
region objects, cache balloon manager 206 may copy data
from a data structure (e.g., byte array) provided by appli-
cation 130 into the data region of cache object 214. In cases
where a cache balloon manager 206 1s not provided with
cache data (e.g., via default constructor), a byte array 1s still
allocated for cache object 214 and may be set (e.g., via a
mutator method) at a later time. In embodiments where
cache balloon manager 206 stores a pre-existing byte array
provided by application 130, cache balloon manager 206
may create a new wrapper object 214 to represent and track
the state of the pre-existing byte array. In such embodiments,
it should be recognized that application 130 gives up direct
control of that byte array and later interacts with the byte
array via wrapper cache object 214. As described above, the
reference to the data region of cache object 214 may be a soft
reference to permit garbage collection to discard the cached
data 1n response to memory demands. In step 414, cache
balloon manager 206 returns a reference to cache object 214
to application 130. In step 416, application 130 receives and
retains the reference to cache object 214 that 1s now storing,
cache data. Data can only ever be read from or written to the
cache by invoking wrapper methods on cache object 214. In
some embodiments, application 130 may choose to invoke
the wrapper methods of cache object 214 to read and write
certain portions, rather than the entirety, of the data region.
In one mmplementation, application 130 invokes accessor
and mutator methods (e.g., setRegion(), getRegion()) on
any index 1n cache object 214 to read and write cache data
to that portion of the byte array within cache object 214.
Cache balloon library 212 may be configured to track such
indexes to maintain records of where cache data 1s stored
within a particular data region of cache object 214.

Cache data used by application 130 1s generally some
copy or version ol persistent application-level data used
primarily to improve performance of application 130. As
such, cache data may generally be discarded without aflect-
ing application state or operation, should computing
resources (e.g., memory) become scarce. However, 1n some

10

15

20

25

30

35

40

45

50

55

60

65

10

cases, application 130 may wish to create a copy cache data
or perform some “last-chance”™ action just before cache data

1s discarded, such as a copy or saving operation. Accord-
ingly, in some embodiments, in step 418, application 130
may register with listener component 208 of cache balloon
manager 206 to signal interest in cache data of a particular
cache object 214. In step 420, cache balloon manager 206
modifies state of the referenced cache object to register
application 130. In some embodiments, cache balloon man-
ger 206 may modily a central listing of cache objects to
include an association between application 130 and one or
more cache objects 214 storing cache data for application

130.

Example of Memory Ballooning

Embodiments of the present disclosure provide a mecha-
nism to repurpose Java objects storing application-level
cache data within heap memory for management of memory
assigned to the JVM and underlying VM. In some embodi-
ments, the mechanism provides a memory balloon that
“inflates” by re-using cache objects to store zeroed out
memory pages within the Java heap and invoking page
sharing on the zeroed out memory pages, as described
turther in FIG. 3.

FIG. § 1s a flow diagram that illustrates steps for a method
of managing memory assigned to a runtime environment,
according to an embodiment of the present invention. It
should be recognized that, even though the method 1s
described 1n conjunction with the systems of FIG. 1 and FIG.
2, any system configured to perform the method steps is
within the scope of embodiments of the invention.

In step 502, balloon agent 128 recerves a request to inflate
balloon memory within runtime environment 108. In some
embodiments, balloon agent 128 may periodically poll for a
new balloon target size from balloon driver 126 and deter-
mine whether the new target size for memory balloon 1s
greater than or less than a current size of memory balloon.
In another embodiment, the communication between bal-
loon agent 128 and balloon driver 126 within guest OS 106
1s through standard posix system calls.

In step 504, balloon agent 128 requests one or more
balloon objects from cache balloon manager 206 having a
size within memory suilicient to satisfy the memory
demands. In some embodiments, balloon object 128 may
request a plurality of balloon objects having a pre-deter-
mined data region size that may be page shared to reclaim
an amount of heap memory that satisfies the memory
demand.

In step 506, cache balloon manager 206 retrieves one or
more available cache objects 214 allocated within heap
memory. Cache objects 214 may be created anew or
retrieved from a list of existing cache objects within heap
memory. In some embodiments, a cache object 214 1s
deemed “available” for memory ballooning even though the
cache object has a state indicating the cache object 1s already
being used to store application-level cache data. As such,
cache objects 214 are part of an “elastic” cache that permits
its memory space to be reclaimed when VMs 102, to 102,
are under memory pressure from host 100 and hypervisor
104.

In step 508, for each retrieved cache object 214, cache
balloon manager 206 notifies any applications (e.g., appli-
cation 130) that have registered with listener component 208
of an impending deletion of existing cache data stored 1n a
data region of each cache object. In some embodiments,
cache balloon manager 206 may mvoke a callback function

US 9,852,054 B2

11

that was provided by an application 130 during a registration
process (e.g., performed 1n step 418). In step 510, response
to notification of an mmpending deletion of cache data,
application 130 may perform one or more actions using the
cache data, for example, copying out the data to a more
persistent or permanent location. In step 312, application
130 may transmit an acknowledgement to cache balloon
manager 206 to enable cache balloon manager 206 to
proceed with overriding cache object for memory balloon-
ing. In alternative embodiment, application 130 may trans-
mit a “veto” signal, or request, that indicates cache balloon
manager 206 should skip the retrieved cache object and
attempt to use a diflerent cache object for ballooning.

In step 514, cache balloon manager 206 sets a data region
ol retrieved cache object 214 to a pre-determined value. In
one 1mplementation, cache balloon manager 206 1nvokes a
mutator method (e.g., setRegion()) of a particular cache
object 214 to store a value within the data region of cache
object 214. In some embodiments, cache balloon manager
206 zeroes out (1.e., stores a zero value within) within the
data region of cache object 214 to enable a page sharing
process ol guest physical memory pages assigned to heap
204. In some embodiments, cache balloon manager 206 may
set a portion of the data region of a cache object 214
suflicient to satisty a memory demand indicated by balloon
agent 128. The portion may be less than the entire size of the
data region to enable granularized control of a memory
balloon. For example, 1n a case where balloon agent 128
calls for reclamation of 70 MB of heap memory, cache
balloon manager may retrieve 18 cache objects having 4 MB
data regions, zeroing out the data regions of 17 cache objects
and only set a half portion of the data region of the 18" cache
object,

In step 316, cache balloon manager 206 updates state of
the retrieved cache object 214 to indicate cache object 214
1s being used as part of a memory balloon, e.g., a “bal-
looned” state. In some embodiments, cache balloon manager
206 sets a state for retrieved cache object 214 indicating at
least a portion of the data region of retrieved cache object
214 has been zeroed out to be part ol a memory balloon.
Accordingly, such cache objects 214 are unavailable 1n any
later requests for storing application-level cache data. In step
518, cache balloon manager 206 returns references to the
cache objects to balloon agent 128. Balloon agent 128 may
maintain a list of references to cache objects that make the
memory balloon with heap 204.

In step 520, balloon agent 128 notifies hypervisor 104 of
the data regions contained within received cache objects 214
having the pre-determined value to perform a page sharing
operation. In some embodiments, balloon driver 126 may
notily hypervisor 104, for example, via a backdoor call, of
the one or more guest physical memory pages containing,
data regions (“hinted memory pages™). The backdoor call
may 1include page address of the hinted guest physical
memory page (e.g., physical page number, or PPN).

Balloon driver 126, balloon agent 128, and hypervisor
104 subsequently perform an operation for page-sharing, as
described 1n detail in U.S. patent application Ser. No.
12/826,389, specified above. For example, page sharing
module 124 may maps the hinted guest physical memory
page with a matched guest physical memory page to a same
machine memory page 122. Page sharing module 220 may
modily one or more internal references in a page table to
associate the hinted guest physical memory page with the
matched memory page such that only one copy of the
memory page needs be retamned within machine memory
120. That 1s, only one copy of the data region within heap

10

15

20

25

30

35

40

45

50

55

60

65

12

memory needs to be retained within machine memory 120.
It 1s noted that 1f a later access attempts to modify the shared
machine memory page 122 (e.g., later cache data) hypervi-
sor 104 immediately makes a copy of the shared memory as
per a copy-on-write (COW) techmque. Hypervisor 104
reclaims a machine memory page 122 previously utilized by
the hinted guest physical memory page assigned to runtime
environment 108 and makes the de-allocated machine
memory page available to other processes executing on host
computer system 100, such as other VMs and/or other
runtime environments 108.

According to one embodiment, to “detlate” the memory
balloon for runtime environment 108, balloon agent 128
releases cache objects from the memory balloon and enables
them to be repurposed for application-level caching, as
described 1n FIG. 6. FIG. 6 1s a flow diagram that 1llustrates
steps for a method of managing memory assigned to a
runtime environment, according to an embodiment of the
present invention. It should be recognized that, even though
the method 1s described 1n conjunction with the systems of
FIG. 1 and FIG. 2, any system configured to perform the
method steps 1s within the scope of embodiments of the
invention.

In step 602, balloon agent 128 receives a request to deflate
balloon from hypervisor 104. In some embodiments, balloon
agent 128 determines a target size for balloon 1s less than a
current memory size ol runtime environment 108. In step
604, balloon agent 128 notifies cache balloon manager 206
that one or more particular cache objects 214 having zeroed
value are no longer needed for memory ballooning. In step
606, cache balloon manager 206 receives references to one
or more cache objects 214 used by balloon agent 128 and an
indication that the cache objects may now be available for
other purpose (e.g., application level caching).

In step 608, cache balloon manager 206 sets state of each
received cache object 214 to an “available” state. Accord-
ingly, cache objects 214 may continually be re-purposed for
use as an application-level cache (as described 1 conjunc-
tion with FIG. 4) or as a memory balloon. As such, cache
objects 214 configured according to embodiments of the
disclosure persist 1n heap memory without having to con-
stantly create and discard temporary objects, which may
incur object creation costs or may invoke garbage collection.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of
understanding, 1t will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as 1llustrative and not restrictive, and the scope of the
claims 1s not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
For example, runtime environment 108 may generally uti-
lize guest virtual memory pages rather than guest physical
memory pages and the backdoor call mechamsms (e.g.,
hypervisor-aware drivers within guest OS 106, etc.) utilized
by runtime environment 108 to communicate with hypervi-
sor 104 that may translate guest virtual memory page
references received from runtime environment 108 to guest
physical memory page references prior to providing them to
hypervisor 104. In the claims, elements and/or steps do not
imply any particular order of operation, unless explicitly
stated 1n the claims.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities
which usually, though not necessarily, take the form of

US 9,852,054 B2

13

clectrical or magnetic signals where they, or representations
of them, are capable of being stored, transferred, combined,
compared, or otherwise manipulated. Further, such manipu-
lations are often referred to in terms, such as producing,
identifying, determining, or comparing. Any operations
described herein that form part of one or more embodiments
of the invention may be useful machine operations. In
addition, one or more embodiments of the invention also
relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral purpose machines may be used with computer programs
written 1n accordance with the description provided herein,
or it may be more convenient to construct a more specialized
apparatus to perform the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including,
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers, and the like.

One or more embodiments of the present invention may
be implemented as one or more computer programs or as one
or more computer program modules embodied 1n one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be mnput to a computer system; com-
puter readable media may be based on any existing or
subsequently developed technology for embodying com-
puter programs 1n a manner that enables them to be read by
a computer. Examples of a computer readable medium
include a hard drive, network attached storage (INAS),
read-only memory, random-access memory (e.g., a flash
memory device), a CD-ROM (Compact Disc-ROM), a
CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage
devices. The computer readable medium can also be dis-
tributed over a network coupled computer system so that the
computer readable code 1s stored and executed 1n a distrib-
uted fashion.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are 1illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of the invention(s). In
general, structures and functionality presented as separate
components in exemplary configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and i1mprove-
ments may fall within the scope of the appended claims(s).

What 1s claimed 1s:

1. A method for managing memory of a runtime environ-
ment executing 1n a virtual machine, the method comprising;:

receiving cache data from an application executing in the

runtime environment and storing the recerved cache
data in one or more objects within heap memory of the
runtime environment;

determining, by operation of a memory management

agent, a first target size for memory to be reserved

within heap memory of the runtime environment;
identifying at least one of the objects stored 1n the heap

memory that store cache data for the application;

10

15

20

25

30

35

40

45

50

55

60

65

14

replacing at least some portion of the cache data stored 1n

the 1dentified object with a first value; and

notifying a hypervisor that at least one machine physical

memory page associated with the identified object and
having the first value, can be re-claimed.

2. The method of claim 1, wherein the one or more objects
turther comprises a wrapper object having a soft reference to
a data structure containing the cache data.

3. The method of claim 1, further comprising:

setting a state for at least one of the objects within heap

memory 1ndicating an availability of each object to
store cache data.

4. The method of claim 1, further comprising:

setting a state for at least one of the identified objects

within heap memory indicating the at least one 1denti-
fied objects have the first value and are part of a
memory balloon.
5. The method of claim 1, further comprising:
registering the application executing in the runtime envi-
ronment and an association with the one or more
objects storing cache data for the application; and

prior to replacing the at least some portion of the cache
data, notifying the registered application of a change to
the cache data.

6. The method of claim 5, further comprising;:

receiving a veto request, from the registered application,

indicating the one or more objects storing cache data;
and

requesting an different one of the objects stored 1n heap

memory from the one or more objects storing cache
data for the registered application.
7. The method of claim 1, further comprising:
determining, by operation of the memory management
agent, a second target size for memory to be reserved
within heap memory of the runtime environment, the
second target size being less than the first target size;

retrieving the objects stored in the heap memory that store
the first value; and

setting a state for each of the objects indicating each

object 1s available to store cache data.

8. A non-transitory computer-readable storage medium
comprising 1nstructions that, when executed 1n a computing
device, manage memory of a runtime environment execut-
ing in a virtual machine, by performing the steps of:

recerving cache data from an application executing in the

runtime environment and storing the recerved cache
data in one or more objects within heap memory of the
runtime environment;

determining, by operation of a memory management

agent, a lirst target size for memory to be reserved
within heap memory of the runtime environment;
identifying at least one of the objects stored in the heap
memory that store cache data for the application;
replacing at least some portion of the cache data stored 1n
the 1dentified object with a first value; and
notifying a hypervisor that at least one machine physical
memory page associated with the identified object and
having the first value, can be re-claimed.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the one or more objects further com-
prises a wrapper object having a soit reference to a data
structure containing the cache data.

10. The non-transitory computer-readable storage
medium of claim 8, further comprising instructions for:

setting a state for at least one of the objects within heap

memory 1ndicating an availability of each object to
store cache data.

US 9,852,054 B2

15

11. The non-transitory computer-readable storage
medium of claim 8, further comprising instructions for:

setting a state for at least one of the i1dentified objects

within heap memory indicating the at least one 1denti-
fied objects have the first value and are part of a
memory balloon.
12. The non-transitory computer-readable storage
medium of claim 8, further comprising instructions for:
registering the application executing in the runtime envi-
ronment and an association with the one or more
objects storing cache data for the application; and

prior to replacing the at least some portion of the cache
data, notifying the registered application of a change to
the cache data.

13. The non-transitory computer-readable storage
medium of claim 12, further comprising instructions for:

receiving a veto request, from the registered application,

indicating the one or more objects storing cache data;
and

requesting an different one of the objects stored in heap

memory from the one or more objects storing cache
data for the registered application.
14. The non-transitory computer-readable storage
medium of claim 8, further comprising instructions for:
determining, by operation of the memory management
agent, a second target size for memory to be reserved
within heap memory of the runtime environment, the
second target size being less than the first target size;

retrieving the objects stored 1n the heap memory that store
the first value; and

setting a state for each of the objects idicating each

object 1s available to store cache data.

15. A computer system for managing memory of a run-
time environment executing in a virtual machine, the com-
puter system comprising:

a system memory comprising a plurality of machine

physical memory pages; and

a processor programmed to carry out the steps of:

receiving cache data from an application executing in
the runtime environment and storing the received
cache data in one or more objects within heap
memory of the runtime environment;

determining, by operation of a memory management
agent, a first target size for memory to be reserved
within heap memory of the runtime environment;

identifying at least one of the objects stored 1n the heap
memory that store cache data for the application;

10

15

20

25

30

35

40

45

16

replacing at least some portion of the cache data stored
in the identified object with a first value; and
notifying a hypervisor that at least one machine physi-
cal memory page associated with the identified
object and having the first value, can be re-claimed.
16. The computer system of claim 15, wherein the one or
more objects within the heap memory of the runtime envi-
ronment further comprises a wrapper object having a soft
reference to a data structure contaiming the cache data.
17. The computer system of claim 15, wherein the pro-
cessor 15 further programmed to carry out the step of:
setting a state for at least one of the objects within heap
memory 1ndicating an availability of each object to
store cache data.
18. The computer system of claim 15, wherein the pro-
cessor 1s further programmed to carry out the step of:
setting a state for at least one of the identified objects
within heap memory indicating the at least one i1denti-
fied objects have the first value and are part of a
memory balloon.
19. The computer system of claim 15, wherein the pro-
cessor 1s further programmed to carry out the step of:
registering the application executing 1n the runtime envi-
ronment and an association with the one or more
objects storing cache data for the application; and
prior to replacing the at least some portion of the cache
data, notifying the registered application of a change to
the cache data.
20. The computer system of claim 19, wherein the pro-
cessor 1s further programmed to carry out the step of:
recerving a veto request, from the registered application,
indicating the one or more objects storing cache data;
and
requesting an different one of the objects stored 1n heap
memory from the one or more objects storing cache
data for the registered application.
21. The computer system of claim 135, wherein the pro-
cessor 1s further programmed to carry out the step of:
determining, by operation of the memory management
agent, a second target size for memory to be reserved
within heap memory of the runtime environment, the
second target size being less than the first target size;
retrieving the objects stored in the heap memory that store
the first value; and
setting a state for each of the objects indicating each
object 1s available to store cache data.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

