12 United States Patent

Court

US009848002B2

US 9,848,002 B2
*Dec. 19, 2017

(10) Patent No.:
45) Date of Patent:

(54) ALLOWING FIRST MODULE OF
COMPUTER CODE TO MAKE USE OF
SERVICE PROVIDED BY SECOND MODULE
WHILE ENSURING SECURITY OF SYSTEM

(71)

Applicant: Guest Tek Interactive Entertainment
Ltd., Calgary (CA)

(72) Inventor: Gary R. Court, Calgary (CA)

(73) Guest Tek Interactive Entertainment

Ltd., Calgary (CA)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) 15/290,791

(22)

Appl. No.:

Filed: Oct. 11, 2016

(65) Prior Publication Data

US 2017/0034180 Al Feb. 2, 2017

Related U.S. Application Data

Continuation of application No. 14/702,729, filed on
May 3, 2015, now Pat. No. 9,489,539, which 1s a

(Continued)

(63)

Int. CIL.
HO4L 29/06
GO6F 9/46

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC

(52)
............ HO4L 63/102 (2013.01); GO6F 9/468
(2013.01); GO6F 21/53 (2013.01); GO6F
21/60 (2013.01);

(Continued)

Module input

Vendor

| ~104

3 :

interface

106 —.\
§ Module
H sandbox

validator

114~}

(38) Field of Classification Search
CPC HO4L 63/102
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

GOO6F 9/468
380/255

6,138,235 A * 10/2000 Lipkin

tttttttttttttttttttt

8/2004 Goel
(Continued)

0,775,068 Bl

OTHER PUBLICATIONS

Google-Caja, “A source-to-source translator for securing Javascript-

based web content”, http://code.google.com/p/google-caja/, down-
loaded Nov. 15, 2010. (5 pages).

(Continued)

Primary Examiner — Shawnchoy Rahman

(74) Attorney, Agent, or Firm — ATMAC Patent Services
[td.; Andrew T. MacMillan

(57) ABSTRACT

A system for integrating modules of computer code may
include a sandbox validator for receiving a first module and
verilying that the first module complies with one or more
sandbox constraints. A computing device may execute the
first module within a runtime environment. A module 1nte-
grator may operate within the runtime environment for
receiving a request from the first module to access a service
provided by a second module and only allowing the first
module to access the service when the first module 1s
authorized to access the service according to a service
authorization table. The sandbox validator may ensure the
first module correctly identifies itsell when requesting a
service provide by another module and that the first module
includes runtime policing functions for non-deterministic
operations. A service authorizer may generate an authoriza-
tion policy for the first module, which 1s sent to the com-
puting device along with the first module.

20 Claims, 10 Drawing Sheets

— White list

| Black st

 Non-deterministic list

115 |
Service
authorizer

Module
specific "
autharizations

Module

;

f1 13

Default service
authcrization policy

distributor

N

118

|]
|]
Control server :

| integrator fabla

Service | :
|—amhc:rizatinn L

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

— authorization | :
table |

US 9,848,002 B2
Page 2

Related U.S. Application Data

continuation of application No. 14/063,172, filed on
Oct. 25, 2013, now Pat. No. 9,027,150, which 1s a
continuation of application No. 13/108,167, filed on
May 16, 2011, now Pat. No. 8,689,344,

(51) Int. CL
GO6F 21/53 (2013.01)
GO6F 21/62 (2013.01)
GO6F 21/60 (2013.01)
(52) U.S. CL
CPC GO6F 21/629 (2013.01); GO6F 21/6218
(2013.01); HO4L 63720 (2013.01); GO6F
2221/033 (2013.01); GO6F 2221/2141
(2013.01); GOOF 2221/2149 (2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,873,988 B2 3/2005 Herrmann et al.
7,093,122 B1* 82006 Susser GO6F 9/468
713/153
7,650,627 Bl 1/2010 Stancheva et al.
7,836,303 B2 11/2010 Levy et al.
7,926,086 Bl1* 4/2011 Violleau GO6F 21/629
713/161
8,011,006 B2 8/2011 Suzuki et al.
8,136,149 B2 3/2012 Freund
8.438.640 Bl 5/2013 Vaish et al.

8,689,344 B2 4/2014 Court
8,806,646 Bl 8/2014 Daswani et al.
9,027,150 B2 5/2015 Court
9,189,375 B1 11/2015 Bastien et al.
9,262,628 B2* 2/2016 Woltec..voon.. GO6F 11/302
9,489,539 B2 11/2016 Court
2002/0099944 Al1* 7/2002 Bowlin GOO6F 21/6218
713/185
2004/0107360 Al 6/2004 Herrmann et al.
2008/0134310 Al 6/2008 Borde et al.
2010/0105332 Al 4/2010 McHenry et al.
2011/0202902 Al 8/2011 Whelan
2012/0036220 Al 2/2012 Dare et al.
2012/0204250 Al 8/2012 Anderson et al.
2014/0344334 Al 11/2014 Trachtenberg et al.
2015/0007142 Al1* 1/2015 Bifflecoooiiinnnil. GO6F 21/53
717/126
2015/0235044 Al 8/2015 Cohen et al.

OTHER PUBLICATTIONS

Adsafe, “Making JavaScript Safe for Advertising”, http://www.
adsafe.org/, downloaded Nov. 15, 2010. (4 pages).

Wikipedia, “Capability-based security”, http://en.wikipedia.org/
wiki/Capability-based_security, downloaded Nov. 15, 2010. (5
pages).

Wikipedia, “Object-capability model”, http://en.wikipedia.org/wiki/
Object-capability__model, downloaded Nov. 15, 2010. (4 pages).
Corradi, Antonio, et al. “A flexible access control service for Java
mobile code.” Computer Security Applications, 2000. ACSAC’00.
16th Annual Conference. IEEE, 2000.

* cited by examiner

U.S. Patent Dec. 19, 2017 Sheet 1 of 10 US 9,848,002 B2

Module input

118 116

Module
distributor

102
106 ——— 108 :
White list ;
Module 110 ;
sandbox Black list 12 .
validator . . _ : -
114 Non-deterministic list :
115
gﬂpoedclﬁiec Service Default service :
o horizer izati | i
authorizations authorize au.t_honzatlon pol:cy ;

Control server

ﬂﬂ

E
|
1
|
:
|
1
 J
 J
]
L
i
4
 J
¥
¥
¥
 J
»
¥
L
E
X
:
B
3
 ;
 j
3
¥
:

Service
authorization
table

5 i ' Service

: Module L

: . authorization
e Integrator table

Al N e g N W e N e G N e W
o A B v e W W T W W R R W W R

FIG. 1

U.S. Patent Dec. 19, 2017 Sheet 2 of 10 US 9,848,002 B2

108

White list

1 |Read / execute-only access to global variables of any of the

following types:
Math
Array
Boolean
Number
String
Reghxp
Date

2 |[] subscript operators when the subscript is a positive
numeric literal or string literal

FIG. 2

U.S. Patent Dec. 19, 2017 Sheet 3 of 10 US 9,848,002 B2

110

Black list

1 |Access to global variables
2 |The eval function and with statement

3 {The use of any of the following names as properties:
arguments

callee

caller

CONSTructor

eval

prototype

stack
unwatch
valueOf
watch

4 |Property names that start or end with _

5 |[] subscript operators

FIG. 3

U.S. Patent Dec. 19, 2017 Sheet 4 of 10 US 9,848,002 B2

112

/

Non-deterministic list

Non-deterministic Ensure wrapped with
language features policing function

this check{this)

arguments toArray (arguments)

Loops:

for loopTimer ({lcop codel})
whlle

FIG. 4

U.S. Patent

Dec. 19, 2017

Start module
sandbox validation

502
Parse first
operation
506
o 504
odule j
yes S
" identifies itself re;z::te?
correctly?
yes No
j-508
no All tokens yes
on white hist?
510
Any token no
on black list?
f512

yes

Any token on
non-deterministic
list?

Wrapped with
appropriate runtime
policing function?

916

Validation
fail

FIG. 5

Sheet 5 of 10

No

US 9,848,002 B2

00

520

Ve

Parse next
operation

518
no

End of
module”?

yes

Validation
successful

522

US 9,848,002 B2

Sheet 6 of 10

Dec. 19, 2017

U.S. Patent

9 Dl

00C Jduosener JUSWIUOJIAUT
Jojelbajul 9|NPOIA Miomauiel
cel
sjnpow S|iNpo S|NpoW s|npou
0JJUOD yoeghe|d Bulg | LOYSNO SOINPOA
LIOOY 08PN SN S10H
. SOOINID
| TR e = . - INISS
| uonezuoyne
_ 82IAI8S
pO | S0IAIBS 90IAI8S 90IAIBS SOINIBS _ _ saoines ||
uone.bejul 0JU0D soeghe|d obieyd | pouinbayy | |
aWNUNY BunydI AoA | WO0)380d | 1
09— ” m 124
809 09 ¢+ Tt R AT

U.S. Patent

Module

Hotel custom

Video playback

Dec. 19, 2017 Sheet 7 of 10

134

Service authorization table

US 9,848,002 B2

Authorized service(s)

e Post room charge
e VOD playback
e Lighting control

e Post room charge

PMS billing

none

Room control

Nnone

FIG. 7

U.S. Patent Dec. 19, 2017 Sheet 8 of 10 US 9,848,002 B2

800
Start module
iIntegration
"no"” branch from step 822
-—

802

Module requests
an external
service”?

Nno to step 812

Ves

804

Runtime integration
service checks service

authorization table

Module
authorized to
access the
external service?

no yes

8{ 810
Prohibit moduie from Allow module to
accessing the external access the external
service service

' Pass NULL | . Pass pointer to

’ - : . requested

i pointer : | sqewice :

FIG. 8

U.S. Patent

"'no"” branch from step 802

818

\

Prevent
unauthorized
violation of the
module
sandbox

Dec. 19, 2017

no

Module executing
non-deterministic
operation?

yes

Policing function checks
non-deterministic
operation

Contained to
module sandbox?

Module
execution
finished?

yes

End module
integration

FIG. 9

TP TR TR |

Sheet 9 of 10

812

814

Nno

824

No

yes

US 9,848,002 B2

820

Allow
operation

return to step 802

U.S. Patent Dec. 19, 2017 Sheet 10 of 10 US 9,848,002 B2

Vender :
l\/endor server |
Interface :

Module
distributor

Vender :
vendor server
interface :
Module : S

distributor :

e A W e e - LI

—
@
o

1030 1032
: Module
k: sandbox Black list 1038

validator
Default service
authorization policy

1042

Module
specific .
authorizations

Service
authorization
table

Module
Integrator

US 9,848,002 B2

1

ALLOWING FIRST MODULE OF
COMPUTER CODE TO MAKE USE OF

SERVICE PROVIDED BY SECOND MODULLE
WHILE ENSURING SECURITY OF SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 14/702,729 filed May 3, 2015, which 1s a

continuation of U.S. patent application Ser. No. 14/063,172
filed Oct. 25, 2013, which 1s a continuation of U.S. patent

application Ser. No. 13/108,167 filed May 16, 2011. All of
these applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention pertains generally to integrating modules of
computer code for execution on a computing device. More
specifically, the invention relates to containing each module
within a sandbox and controlling during runtime the ability
ol each module to access services provided by other mod-
ules.

2. Description of the Related Art

Hotels often purchase in-room entertainment and control
systems Irom one or more outside vendors. Typically, a
primary vendor handles the overall system and deals directly
with the hotel owners while subcontracting various sub-
portions to secondary vendors who may or may not have
direct contact with the hotel owners. For example, a primary
vendor may provide high speed Internet access (HSIA) and
video-on-demand (VOD) servers and in-room set-top boxes
(STBs) while subcontracting a secondary vendor to design
an electronic control system for controlling various aspects
of the guest rooms. The primary vendor and secondary
vendor may work together to integrate their portions of the
system such as to allow a guest to utilize a single infrared
remote control device and an in-room television to browse
the Internet, watch television (TV) and movies, and operate
the 1n-room air-conditioner, lights, windows, and curtains.

After the system goes live, hotel management often desire
to further customize and enhance the system. For example,
management may wish to include a new feature unique to
the hotel to distinguish the hotel from other hotels. In this
situation, management typically contacts the primary vendor
of the entertainment system to request incorporation of a
special request or to add one or more new functions. Often
the requested functions are very specific to the particular
hotel and would not be usetul or desirable to mncorporate at
other hotels. In addition to making direct changes to the
system, the primary vendor may need to contact one or more
secondary vendors 1f the requested feature involves inter-
facing with a secondary vendor’s portion of the system.

It 1s inconvenient for hotel management to have to make
these feature requests and to be limited to dealing only with
the primary vendor. It would be beneficial 1t hotel manage-
ment could simply make the changes to the system them-
selves such as by allowing a technical consultant or other
third-party access to add a new feature to the installed
entertainment system. It 1s likewise a financial and time
burden on the primary and secondary vendors to handle
these one-ofl feature requests for diflerent hotels.

However, allowing the hotel or a third-party vendor to
directly modity or add new features could cause stability
problems since third-parties may not understand the system
as whole. For example, in order to add a function to an

15

20

25

30

35

40

45

50

55

60

65

2

in-room STB, a JavaScript program that controls the func-
tions of the STB may need to be modified. Executing
third-party JavaScript code on the in-room STB 1s risky both
in terms of stability and security. Bugs may be mnadvertently
(or deliberately) introduced, and a malfunctioning third-
party script has the potential to crash an in-room STB or
interfere with the rest of the system. Security of guest data,
hotel data, and media content 1s also a concern because each
script running on the STB has unlimited access to the
network and other valuable data within the STB. Content
providers such as Hollywood studios have strict rules
regarding encryption keys and content protection, and the
primary system vendor must protect media assets such as
pay-per-view and VOD content at all times. Giving
untrusted third-party vendor code unlimited access to all
functions of the STB 1s unacceptable under these rules.

Sandboxing 1s a well-known computer security technique
utilized to 1solate running computer programs from each
other. Although JavaScript 1s a very insecure programming
language, 1t 1s possible to “sandbox™ a particular script by
limiting the istructions and commands executable by the
script according to the object-capability model. Generally
speaking there are two approaches to using this capability-
based security model to perform sandboxing on JavaScript:
verification and translation.

The verification approach involves automatically check-
ing before execution that a script 1s written entirely using a
limited subset of the JavaScript language including only
“sate” commands and language features that ensure the
script 1s sandboxed. The original script 1s not changed at all
during the verification process so verified scripts run at their
native speed and with exactly their intended behavior. Only
scripts that first pass the verification process are ensured to
be 1solated within their own sandbox and are allowed to be
run. Scripts mcluding one or more unsafe commands that
could be used to act on or modily any imnformation outside
the sandbox {fail the wverification and cannot be run.
ADsate™ 1s an example of a nondestructive JavaScript
verification tool that can be utilized to verify that a script 1s
sandboxed at any stage of the deployment pipeline or after
delivery as part of compliance testing.

The translation approach involves automatically translat-
ing a potentially unsafe original script file into a translated
script file, which utilizes only code and language features
that can be guaranteed at runtime to stay within the confines
of a given set of sandbox rules. The Google™ (Caja project
1s an example ol a source-to-source JavaScript translator for
securing JavaScript-based web content using this type of
translation approach. Caja provides a compiler called a
“cajoler” that generates a “cajoled” web application from a
tail-stop subset of JavaScript that includes almost the entire
JavaScript language except for a few error-prone constructs.
Caja further allows for a wide range of flexible security
policies including allowing a containing page to grant
authority for an embedded application to access a particular
web service.

Although the above verification and translation
approaches are both wviable options for including active
content from untrusted third-parties into regular web sites,
neither 1s optimal 1n an embedded environment such when
running scripts on a STB 1n a hotel entertainment system.
Due to limiting each script to 1ts own sandbox, the verifi-
cation approach impedes sharing functionality and informa-
tion between scripts provided by different vendors. In this
way, the verification approach 1s useful for 1nserting stand-
alone active content such as advertisements or independent
features that are not closely integrated with the existing

US 9,848,002 B2

3

system; however, hotel management may wish to add a new
script to provide a feature on the STB that requires close

integration with data and/or services provided by code
already existing on the STB. Caja allows granting and
denying authority to web services by passing and denying
access to objects; however, a downside 1s the significantly
increased length of the cajoled (i1.e., translated) web appli-
cations and the resulting computational power requirements
by devices executing the cajoled scripts. Caja 1s designed for
web browsers running on modern personal computers,
which may be orders of magnitude faster than a STB or other
in-room embedded device typical found 1n a hotel entertain-
ment system. In addition to running slower, the translated
script file may also have new bugs or unexpected behaviors
introduced by the Caj a translation process itself, which
turther complicates testing and quality assurance eflorts.

SUMMARY OF THE INVENTION

According to an exemplary embodiment of the imnvention
there 1s disclosed a system for integrating a plurality of
modules of computer code. The system includes a sandbox
validator configured to receive a first module of computer
code and parse the computer code of the first module 1n
order to verity that the first module complies with one or
more sandbox constraints. The sandbox constraints include
requiring that the first module does not include computer
code attempting to access variables having a global scope
and does not include computer code attempting to access
information from outside the first module that 1s not directly
passed to the first module. The system also includes a
computing device configured to execute the first module
within a runtime environment. A module integrator operates
within the runtime environment and is configured to receive
a request from the first module to access a service provided
by a second module of computer code available on the
computing device; allow the first module to access the
service when the first module 1s authorized to access the
service according to a service authorization table; and pre-
vent the first module from accessing the service when the
first module 1s not authorized to access the service according
to the service authorization table.

According to another exemplary embodiment of the
invention there 1s disclosed a method of integrating a
plurality of modules of computer code. The method includes
receiving a first module of computer code at a sandbox
validator; and parsing, by the sandbox validator, the com-
puter code of the first module 1n order to verify that the first
module complies with one or more sandbox constraints. The
sandbox constraints include requiring that the first module
does not include computer code attempting to access vari-
ables having a global scope and does not include computer
code attempting to access information from outside the first
module that 1s not directly passed to the first module. The
method further includes executing the first module within a
runtime environment on a computing device; and receiving,
by a module integrator operating within the runtime envi-
ronment, a request from the first module to access a service
provided by a second module of computer code available on
the computing device. The method further includes allow-
ing, by the module integrator, the first module to access the
service when the first module 1s authorized to access the
service according to a service authorization table; and pre-
venting, by the module integrator, the first module from
accessing the service when the first module 1s not authorized
to access the service according to the service authorization
table.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to another exemplary embodiment of the
invention there 1s disclosed a system for integrating a
plurality of modules of computer code for execution. The
system 1ncludes a control server configured to provide
functionality of a sandbox validator. The sandbox validator
receives a lirst module of computer code and parses the
computer code of the first module 1n order to verify that the
first module complies with one or more sandbox constraints.
The sandbox constraints at least require that the first module
does not include computer code attempting to access vari-
ables having a global scope and does not include computer
code attempting to access information from outside the first
module that 1s not directly passed to the first module. The
system further includes a computing device coupled to the
control server via a computer network. The computing
device receives the first module from the control server via
the computer network and executes the first module within
a runtime environment. The computing device 1s also con-
figured to provide functionality of a module integrator
operating within the runtime environment. The module
integrator receives a request from the first module to access
a service provided by a second module of computer code
available on the computing device, allows the first module
to access the service when the first module 1s authorized to
access the service according to a service authorization table,
and prevents the first module from accessing the service
when the first module 1s not authorized to access the service
according to the service authorization table.

According to another exemplary embodiment of the
invention there 1s disclosed a system for integrating a
plurality of modules of computer code. The system includes
a computer server having one or more processors coupled to
memory and a network interface. By the one or more
processors executing instructions loaded from the memory,
the one or more processors are configured to provide a
vendor interface accessible via the network interface, the
vendor 1nterface operable to receive a first module of com-
puter code from a vendor; a sandbox validator operable to
parse the computer code of the first module 1n order to verify
that the first module complies with one or more sandbox
constraints; a service authorizer operable to generate a
service authorization policy for the first module, the service
authorization policy indicating which services provided by a
second module of computer code are allowed to be accessed
by the first module; and a module distributor operable to
send the first module along with the service authorization
policy to a computing device that already includes the
second module. The system further includes the computing
device. When executing the first module, a module 1ntegra-
tor running on the computing device only allows the first
module to access a particular service provided by the second
module when the first module 1s authorized to access the
particular service according to the service authorization
policy.

According to another exemplary embodiment of the
invention there 1s disclosed a method of integrating a
plurality of modules of computer code. The method includes
providing a vendor interface accessible via a network inter-
face of a computer server; recerving a first module of
computer code from a vendor via the vendor interface; and
parsing, by a sandbox validator, the computer code of the
first module 1n order to verily that the first module complies
with one or more sandbox constraints. The method further
includes generating, by a service authorizer, a service autho-
rization policy for the first module, the service authorization
policy indicating which services provided by a second
module of computer code are allowed to be accessed by the

US 9,848,002 B2

S

first module; and sending the first module along with the
service authorization policy to a computer device that
already includes the second module. When the computing
device executes the first module, a module integrator run-
ning on the computing device only allows the first module
to access a particular service provided by the second module
when the first module 1s authorized to access the particular
service according to the service authorization policy.

According to another exemplary embodiment of the
invention there 1s disclosed a system for integrating a
plurality of modules of computer code. The system includes
a memory storing a plurality of 1nstructions and one or more
sandbox constraints, a communication interface, and one or
more processors coupled to the memory and the communi-
cation interface. By the one or more processors executing
the instructions loaded from the memory, the one or more
processors are configured to provide a sandbox validator
operable to parse computer code of a first module received
via the communication interface in order to verity that the
first module complies with the one or more sandbox con-
straints. The one or more processors further provide a
service authorizer operable to generate a service authoriza-
tion policy for the first module. The service authorization
policy indicating which services provided by a second
module of computer code are allowed to be accessed by the
first module. The one or more processors further provide a
module integrator operable to only allow the first module to
access a particular service provided by the second module
when the first module 1s authorized to access the particular
service according to the service authorization policy.

According to another exemplary embodiment of the
invention there 1s disclosed a method of integrating a
plurality of modules of computer code. The method includes
receiving a first module of computer code from via a
communications interface, and parsing, by a sandbox vali-
dator, the computer code of the first module 1 order to
verily that the first module complies with one or more
sandbox constraints. The method further comprises gener-
ating, by a service authorizer, a service authorization policy
for the first module. The service authorization policy indi-
cating which services provided by a second module of
computer code are allowed to be accessed by the first
module. The method turther comprises only allowing, by a
module integrator, the first module to access a particular
service provided by the second module when the first
module 1s authorized to access the particular service accord-
ing to the service authorization policy.

According to another exemplary embodiment of the
invention there 1s disclosed a non-transitory computer read-
able storage medium comprising instructions that when
executed by one or more processors cause the one or more
processors to perform any of the above-described methods.

One advantageous use of the present invention 1s to allow
third-party vendors to add advanced functionality to a
hotel’s entertainment system 1n a secure and safe manner. A
turther advantage 1s new computer code modules may be
added with limited involvement of one or more vendors

originally responsible for the system.

These and other embodiments and advantages of the
embodiments of the present invention will become apparent
from the following detailed description, taken 1n conjunction

with the accompanying drawings, illustrating by way of
example the principles of the invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1illustrates a block diagram of a system for inte-
grating a plurality of modules of computer code according to
an exemplary configuration of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 shows an exemplary white list of FIG. 1 including
allowed JavaScript operations and language features.

FIG. 3 shows an exemplary black list of FIG. 1 including
operations and language features that are prohibited from
use by vendor modules.

FIG. 4 1llustrates an exemplary non-determimistic list of
FIG. 1 mcluding a list of non-deterministic operations and
their appropriate policing functions.

FIG. 5 1s a flowchart of operations that may be performed
by the sandbox validator of FIG. 1 to verity that a module
complies with a set of sandbox constraints.

FIG. 6 illustrates an exemplary architectural view of
execution layers running on a STB of FIG. 1.

FIG. 7 illustrates an example service authorization table
that could be used to support the hotel custom module shown
in FIG. 6.

FIG. 8 and FIG. 9 together 1llustrate an exemplary opera-
tional flowchart of steps that may be performed by the
module integrator of FIG. 1 at runtime to ensure the opera-
tions of a vendor module comply with the sandbox con-
strains and to control the ability of the module to access one
or more services oflered by other modules.

FIG. 10 1illustrates a block diagram of a system for
integrating a plurality of modules of computer code accord-
ing to another exemplary configuration of the present inven-
tion.

DETAILED DESCRIPTION

FIG. 1 1llustrates a block diagram of a system 100 for
integrating a plurality of modules of computer code accord-
ing to an exemplary configuration of the present invention.
In this configuration, one or more control servers 102 are
coupled via a network 120 to a plurality of computing
devices such as set-top boxes (STBs) 130. Each STB 130
includes a web browser application operating within the
STB for executing interpreted computer code such as
JavaScript modules to provide hotel entertainment and con-
trol system functions to the guest. In one example, the
control server 102 may be installed at the hotel and com-
municate with a plurality of STBs 130 installed 1n various
guest rooms via the hotel’s local area network (LAN) 120.
In another example, the control server 102 may be 1nstalled
at a central location such as an Internet connected data center
and communicate with a plurality of STBs 130 1nstalled 1n
guest rooms 1n a plurality of hotels via network 120 formed
by the Internet and/or hotel LANs. The control server 102
may validate a newly added vendor module, generate a
service authorization policy for the new module, centrally
store the module and service authorization policy, and
distribute the module and 1ts associated service authorization
policy to the various STBs 130/hotels/other computing
devices when required. As shown i FIG. 1, 1t 15 also
possible to have more than one control server 102 each
validating, authorizing, and/or distributing different mod-
ules.

In this configuration, the control server 102 includes a
vendor interface unit 104, a module sandbox validator unit
106, a service authorizer unit 114, and a module distributor
unit 118. Vendors utilize the vendor interface 104 to add
their own modules to the system 100. To ensure security, the
vendor interface 104 may require user authentication before
allowing the vendor to add their code modules. Vendors may
also utilize the vendor interface 104 to retrieve information
regarding the status of their module(s) or to receive data
returned from their module(s) such as from mdividual STBs
130. For example, some vendors may wish to implement

US 9,848,002 B2

7

interactive functions that will require the user to mput data
at the STB 130, which may be received by the vendor
utilizing the vendor interface 104. Besides a physical con-
sole available to vendors, the vendor interface 104 may also
be implemented 1n a virtual manner such as a web based
portal or networked application programming interface
(API) allowing vendors to remotely interact with the control
server 102 through a computer network such as the Internet.

When an external vendor module 1s added, object capa-
bility restrictions are used to verily the code of the module
1s sandboxed and will not affect or access anything outside
its sandbox except external services for which 1t requests
access at runtime. In this configuration, these checks are
done by the module sandbox wvalidator 106 before the
module code 1s sent to the STBs 130 for execution. A benefit

ol performing these checks 1n advance at a central control
server 102 1s that the burden on each STB 130 i1s reduced.

The STBs 130 typically run an interpreted language such as
JavaScript and have minimal system resources. This means
there are no sandboxing capabilities built-in to each STB
130, and implementing a full sandbox 1n JavaScript or some
other mterpreted language on the STB 130 would run too
slowly.

In this configuration, the sandbox validator 106 does not
modily the code of the mmcoming vendor modules while
performing the above mentioned checks. Instead, the mod-
ule sandbox validator 106 verifies vendor modules comply
with a set of sandbox constraints including a white list 108
of allowable JavaScript operations, a black list 110 of
prohibited JavaScript operations, and a non-deterministic
list 112 of JavaScript operations that may be permitted but
cannot be determined safe before runtime. Each line of
module code may be parsed to ensure that only an approved
subset of language constructs are utilized. The three lists
108, 110, 112 may be predefined and published in advanced
so the external vendors know to use the approved commands
and not prohibited commands. For example, FIG. 2 shows
an exemplary white list 108 including allowed JavaScript
operations and language features, FIG. 3 shows an exem-
plary black list 110 including operations and language
teatures that are prohibited from use by vendor modules, and
FIG. 4 illustrates an exemplary non-deterministic list 112
including a list of non-deterministic operations and their
required runtime policing functions.

Because the lists 108, 110, 112 may be provided to the
vendor 1n advance, 1 the full computer language provides
many ways to perform a desired task, the vendor will choose
an 1implementation technique using the approved sub-set of
the language 1n compliance with the lists 108, 110, 112. Thais
avoilds the inefliciencies caused by computer translation
such as when an automatic translator takes unsafe but
cllicient code and translates it into safe but ineflicient code.

The approved subset of operations may not include all the
capabilities of the full language. For example, a “reboot
STB” operation may not be allowed to be performed by a
particular external vendor module whereas a “print text on
screen” operation may be allowed. When a forbidden opera-
tion or command 1s encountered, the sandbox validator 106
may return an error with debug information to the external
vendor via the vendor interface 104 so they can fix the
problem. This information could be displayed 1n real time as
a part of the interface 104 that the vendors use to submit their
code, or could be done at a later time and then passed back
to the vendor such as via email or allowing the vendor to log
in to a web site acting as the vendor interface 104 to see the
results.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The module sandbox validator 106 may also ensure that
non-deterministic operations included on the non-determin-
istic list 112 are wrapped within an appropriate policing
function. The policing functions are provided by the module
integrator 132 during execution and confirm non-determin-
1stic operations behave 1n a way that 1s compliant with the
sandbox rules for the module.

In the example shown 1n FIG. 4, the special JavaScript
variables this and arguments must be wrapped with policing
functions as check(this) and toArray(arguments), respec-
tively. The check function i1s provided by the module inte-
grator 132 to confirm at runtime that the variable this 1s not
the global object having global scope; 1t 1t 1s, the check
function throws an error and prevents the module from
performing that operation. The reason for this policing
function 1s to prevent the special variable this from being
utilized to access information outside the scope of the
module sandbox. Similarly, the toArray function converts
the special arguments variable into a simple array only
including the parameters that were passed as arguments and
none of the other information that 1s normally also included
in the arguments variable. This ensures a module cannot
access 1nformation from outside its scope that was not
deliberately passed to the module. Additionally, loops are
wrapped by a loopTimer function to prevent infinite (and
long duration) loops by timing the duration of the loop and
aborting the loop 1f the time exceeds a predetermined
duration.

In this configuration, the module undergoing validation 1s
not modified by the sandbox validator 106. Therefore, the
vendor must ensure the proper policing functions (e.g.,
check, toArray, loopTimer) are utilized and the validator 106
simply verifies the functions are 1n place according to the
non-deterministic list 112. One benefit of having the vendor
include the policing functions in the module rather than
having the sandbox validator 106 automatically add them 1s
that successfully validated modules will not have been
modified by the sandbox validator 106. The code for the
policing function can be made available to the vendor, and,
in this way, the vendor will be able to accurately test the
module before integration with the system 100 because 1t
includes the policing functions during both testing and
deployment. In another configuration where this benefit 1s
not required or as a backup 1n case the vendor forgets to add
a particular policing function, the sandbox validator 106
may be configured to automatically modity the module to
include the appropriate policing functions where needed.

It should be noted that the three policing functions (check,
toArray, loopTimer) are described to show useful examples;
however, the invention 1s not limited to only these three
policing functions. Likewise, the white list 108 and black list
110 are not lmmited to only the approved and prohibited
JavaScript language features shown, respectively. These lists
108, 110, 112 may be modified according to design require-
ments such as the computer language used to implement
vendor modules. Additionally, the sandbox validator 106
may automatically utilize different lists 108, 110, 112 or
automatically apply features on each list only to certain
vendor modules such that some modules have tighter sand-
box constraints than others. Modules names or other i1den-
tifiers may be utilized by the sandbox validator 106 to
determine the applicable sandbox constraints to validate for
cach module.

Ensuring each module correctly identifies itself when
requesting access to services 1s another function of the
module sandbox validator 106 in this example. As this
function 1s closely related to runtime module integration,

US 9,848,002 B2

9

before understanding the significance of this verification, it
1s helptul to first understand how the module integrator 132
functions during execution on the STB 130 to permit and
deny modules from accessing services provided by other
modules. According to the present invention, modules may
be authorized at runtime to access services provided by other
modules. Services may be utilized to receive data from
existing aspects ol the hotel’s entertainment system, to
provide data to other parts of the system, to call functions
and procedures (which are types of services) related to other
modules, and/or to provide functions and procedures to the
other modules. During module execution by the STB 130, a
module may request access to one or more services provided
by other modules on the STB 130. The access request may
be performed by calling a runtime integration service pro-
vided by the module mtegrator 132. Module integrator 132
either grants or denies the request according to a service
authorization table 134. In one configuration, the request
may be made at load time of the module by specifying the

name of the requesting vendor module and the names of the
desired external services as follows:

runtime_ mmtegration (“Module_Name™,
[“Requested_service name_17"],
[“Requested_service name_ 2], ...,
function(Pointer_to_requested_service 1,
Pointer_to_requested_service 2, ...)

{ code }

where: runtime_integration 1s a service provider by the
module 1mntegrator 132 utilized to provide execution pointers
so modules can call services provided by other modules,
Module_Name 1s the name of the current module (1.e., the
module making the request), Requested_service_name N
are the names of the requested services as provided by other
modules, Pointer_to_requested_service_IN are pointers
returned by the module itegrator 132 being either a valid
pointer to the execution addresses of the requested service
when the module 1s authorized to access that service or an
invalid pointer when the module 1s not authorized, and
{code} is the JavaScript code of the vendor module being a
series ol operations executed as a function and utilizing the
service pointers received from the module integrator 132.

In the code section, the module may also define one or
more services that may be made available to other modules
running on the STB 130 using a similar process. These
vendor provided services may be registered with the module
integrator 132 using a register_service function so that
module mtegrator 132 will record the name of the service
and a valid execution addresses 1n order to pass a pointer to
other modules that are authorized to use this service. An
example of registering a service with the module integrator
132 1n JavaScript 1s as follows:
register_service (“Service_name”, {service code})

where: register_service 1s the registration service pro-
vided by the module mtegrator 132, Service_name 1s the
name of the service provided by the vendor module and that
may be used by other modules 1f they are authorized
according to the service authorization table 134, and ser-
vice_code 1s the JavaScript code of the service. In this way,
all modules may both request access to external services and
provide services to other modules. The module integrator
132 utilizes the service authorization table 134 to determine
which modules may access which services and then autho-
rizes and demes access by passing valid and invalid pointers
accordingly.

10

15

20

25

30

35

40

45

50

55

60

65

10

Returning again to the module sandbox validator unit 106,
because diflerent module names may be authorized to access
different services, during module validation, the module
sandbox validator 106 ensures that the Requesting Modu-
le_Name correctly identifies the name of the module being
validated. This may be done by either failing validation 11 the
module reports another module’s name or by inserting the
module’s correct name. In addition to module names, other
types of module identifiers associated with the module may
be used for this purpose, for example, unique serial numbers,
module names or addresses, and/or vendor codes. The result
1s the sandbox validator 106 ensures the module does not
forge another module’s 1dentifier 1n order to gain unauthor-
1zed access to one or more services at runtime.

FIG. 5 1s a flowchart of operations performed by the
module sandbox validator unit 106 to verity that a module
complies with a set of sandbox constraints defined by the
white list 108, black list 110, and non-deterministic list 112
shown 1n FIG. 1 according to one exemplary configuration.
The steps of the flowchart are not restricted to the exact
order shown, and, 1n other configurations, shown steps may
be omitted or other intermediate steps added. In this con-
figuration, the module sandbox validator unit 106 performs
the following operations:

Step 500: The module sandbox validation process begins
when the sandbox validator 106 receives a new module. For
example, this may occur when a hotel or third-party vendor
submits a new JavaScript module file for execution on one
or more STBs 130 using the vendor interface 104.

Step 502: The sandbox validator 106 automatically parses
the first operation of the incoming module into one or more
tokens. Tokens may be pieces of a command, the command
itsell, or properties ol the commands such as whether 1t
operates on global variables, forms a loop, uses a particular
reserved word, etc. For example, all the various JavaScript
language features included on the lists 108, 110, 112 of FIG.
2, FIG. 3, FIG. 4 are examples of tokens that may be
detected at this step.

Step 504: Is the current operation attempting to request
access 1o an external service? This may be determined 1f one
of the tokens corresponds to a request to the runtime_inte-
gration service described above, for example. If yes, control
proceeds to step 506; otherwise, control proceeds to step
508.

Step 506: When requesting access to the external service,
does the module correctly identify itself to the runtime
integration service? For example, does the Module Name
reported by the module when calling the runtime_integration
service match the name of the module undergoing valida-
tion? I yes, control proceeds to step 308; otherwise, control
proceeds directly to step 516 to fail validation and prevent
the module from 1impersonating another module at runtime.

Step 508: Are all the tokens of the current operation on the
white list 1087 Specific matches of tokens on the white list
108 may correspond to exceptions of prohibited commands
that are blocked by the black list 110. For example, FIG. 2
shows an example of a white list 108 utilized to allow
deterministic and safe uses of JavaScript that cannot escape
a module sandbox. If all tokens of the current operation are
on the white list 108, control proceeds to step 518; other-
wise, control proceeds to step 510.

Step 510: Are any tokens of the current operation on the
black list 1107 Matches 1n this step indicate prohibited
language features and control proceeds directly to step 516
to fail the validation. For example, FIG. 3 shows an example
of black list 110 utilized to prohibit unsate uses of JavaScript
that may be utilized to escape a module sandbox. When the

US 9,848,002 B2

11

current command does not correspond to any of the tokens
listed on the black list 110, control proceeds to step 512.

Step 512: Are any tokens of the current operation on the
non-deterministic list 1127 The non-deterministic list 112 1s
utilized to detect commands that are permitted on the
condition that they are wrapped with a runtime policing
function because they may be unsafe or violate the module
sandbox 11 used improperly and the only way to check them
1s at runtime. For example, FIG. 4 shows an example of the
non-deterministic list 112 listing several non-deterministic
tokens. If any token matches the non-deterministic list 112,
control proceeds to step 514; otherwise, control proceeds to
step 518.

Step 514: In order to ensure these non-deterministic
operations are utilized properly, the sandbox validator 106
checks to see that the non-deterministic operation or token
1s wrapped with the appropriate runtime policing function.
For example, FIG. 4 shows an example of non-deterministic
list 112 showing non-deterministic JavaScript language fea-
tures that are allowed as long as they are wrapped with the
corresponding policing function. IT the non-deterministic
operations are properly wrapped with the corresponding
policing function, control proceeds to step 518; otherwise,
control proceeds to step 516 to fail the validation.

Step 516: Validation fails because the module does not
comply with 1ts sandbox constraints.

Step 518: Is the current operation the last command of the
module? If yes, control proceeds to step 522; otherwise,
control proceeds to step 520.

Step 520: The sandbox validator 106 automatically parses
the next operation of the incoming module 1nto one or more
tokens and returns to step 504.

Step 322: Validation succeeds because all operations of
the module comply with the sandbox constraints defined by
the white, black, and non-deterministic lists 108, 110, 112
according to the name of the module undergoing validation.

Although 1n a preferred configuration the sandbox vali-
dator 106 does not modity the module code 1n any way so
that validated modules run with exactly the same behavior
and speed as they did during testing by the vendor, in
another configuration, the wvalidator may automatically
modily the module code as required to enforce the above
rules. For example, at step 506 the validator 106 may insert
the module’s correct 1dentifier and 1n step 514 the module
may wrap the non-deterministic operation with the required
policing function.

The service authorizer 114 generates a service authoriza-
tion policy for the vendor module according to either a
default service authorization policy 116 and/or module spe-
cific authorizations 115 that may be recerved from an
administrator for one or more specific modules. The service
authorization policy specifies which external services the
module 1s authorized to access during execution on one or
more S1Bs 130.

An existing service provided at each STB 130 may
provide the name of the guest currently staying in the
associated hotel room, and, by default, all vendor modules
may be authorized to access this service according to the
default service authorization policy 116. The default service
authorization policy 116 may contain a list of system-wide
pre-authorized services applicable to all modules. In another
example, the same on-screen user interface (Ul) services
may be authorized for all modules to allow a vendor module
to position buttons and controls on the screen using the same
Ul skin (look and feel) as what the media system 100
currently uses. A hotel guest interacts with the STB 130
using a Ul displayed on an in-room television 136 and

10

15

20

25

30

35

40

45

50

55

60

65

12

controlled by an infrared remote control device. Guests
operating each STB 130 may not even necessarily know that
some functions were implemented by diflerent vendor mod-
ules.

An admimstrator may also configure the service autho-
rizer 114 to either deny a particular module from accessing
one or more services on the default policy 116 or may further
authorize a particular module to access one or more services
other than those listed on the default policy 116. The service
authorizer 114 may automatically generate a different ser-
vice authorization policy for each vendor module according
to the name or other identifier of the vendor module and
module specific authorizations 113. Then, the module and its
associated service authorization policy are passed to the
module distributor 118 for distribution. An administrator
may be presented with lists of the modules 1n the system 100
and services requested by a new vendor module 1n order to
configure module specific authorizations 115. The service
authorizer 114 may generate an updated service authoriza-
tion policy for a module at any time. Upon receiving the
updated service authorization policy, STBs 130 may update
their service authorization tables 134 accordingly.

The module distributor 118 automatically transfers the
module and its associated service authorization policy to one
or more STBs 130 in the hotel. It 1s not necessary that all
STBs 130 run the same modules; for instance, a first STB
130a may operate using a set of modules different than a
second STB 13056. The module distributor 118 may be
implemented as a web server from which the STBs 130
request and download a JavaScript program including a
plurality of modules dynamically selected according to an
identifier associated with the STB such as a room number.
Alternatively, the module distributor 118 may push one or
more modules and/or updated service authorization policies
to one or more S1Bs 130.

FIG. 6 illustrates an exemplary architectural view of
execution layers running on a STB 130. A first layer is
formed by a regular JavaScript execution environment 600
such as may be provided within a web browser running on
cach STB 130. The module integrator 132 operates within
the JavaScript environment 600 as the framework for per-
forming runtime policing functions and controlling each
module’s ability to access services provided by other mod-
ules. In this configuration, the module integrator 132 1s 1tself
a module executed by the JavaScript environment 600 and
provides the runtime integration service 604. The module
integrator 132 may also provide other services (not shown)
such as those required to run the various policing functions
shown 1n FIG. 4 and a registration service allowing modules
to ofler to provide services to other modules, for example.

As explained earlier, the runtime integration service 604
authorizes the other modules 608, 610, 612, 614 to integrate
their services according to a service authorization table 134.
In this example, four modules 608, 610, 612, 614 arc
illustrated including a room control module 608 provided a
lighting control service 620, a video playback module 610
providing a video-on-demand (VOD) playback service 620,
a property management billing module 612 providing a post
room charge service 624, and a hotel custom module 614.
The hotel custom module 614 1s the vendor module 1n this
example and includes a list of required services 626 1n the
form of a request to the runtime integration service 604 to
access externally provided services 624, 622, 620.

To help illustrate a beneficial usage of the present mven-
tion, 1n this example, the purpose of the hotel custom module
614 1s to provide a feature movie experience as designed by
hotel management. When a guest selects the feature movie

US 9,848,002 B2

13

on a menu displayed on the imn-room television 136, the post
room charge service 624 1s utilized to automatically bill the
guest by adding a charge to the room bill using the hotel’s
property management system (PMS), the VOD playback
service 622 1s utilized to automatically begin playback of the
feature movie on the television 136, and the lighting control
service 620 1s utilized to automatically dim the room lights
at the beginning of the movie and then automatically flash
the lights for effect at particular times during the movie such
as during explosions. As can be seen from this simplified
example, besides the runtime integration service, the hotel
custom module 614 needs to access at least three services
620, 622, 624 provided by other modules 608, 610, 612,
respectively. The other modules 608, 610, 612 may be under
the control of a diflerent vendor or provider. Additionally,
although not shown 1n FIG. 6, the hotel custom module 614
may also provide one or more services to other modules.

FIG. 7 1llustrates an example service authorization table
134 that could be used to support the hotel custom module
614 shown 1n FIG. 6. The same service authorization table
134 may be present on all STBs 130 or different STBs 1304,
1306 may have different service authorization tables 134a,
1345 allowing modules access to different services. Difler-
ent service authorization tables 134aq, 1345 may be auto-
matically formed when the module distributor 118 sends
different modules and service authorization policies to each
STB 130 based on the type of hotel room such as standard,
deluxe, penthouse, etc. In one configuration, each row of the
service authorization table may correspond to that module’s
service authorization policy as generated by the service
authorizer 114. In this example, 1f the module distributor 118
does not send the hotel custom module 614 to a STB 130,
that STB 130 will not have the hotel custom module row in
its service authorization table 134. When the module dis-
tributor 118 sends the hotel custom module 614 and its
associated service authorization policy to a STB 130, that
STB 130 will include row 1n the service authorization table
134.

Each module may be authorized to access any number of
services provided by other modules. In the example 1llus-
trated 1n FIG. 7, the hotel custom module 614 1s authorized
to access the post room charge service 624, the VOD
playback service 622, and the lightening control service 620.
More than one module may be authorized to access a single
service such as the post room charge service 624 being
authorized for use by both the hotel custom module 614 and
the video playback module 610. Additionally, some mod-
ules, for example, the PMS billing module 612 and the room
control module 608 1n this example, may not be authorized
to access any external modules, although these modules 608,
612 may themselves provide services authorized to be
accessed by other modules.

FIG. 8 and FIG. 9 together illustrate an exemplary opera-
tional tlowchart of steps that may be performed by the
module integrator 132 at runtime to ensure the operations of
a vendor module comply with 1ts sandbox constrains and to
control the ability of the module to access one or more
services offered by other modules. The steps of the flowchart
are not restricted to the exact order shown, and, in other
configurations, shown steps may be omitted or other inter-
mediate steps added. In this configuration, the module
integrator 132 operates within the runtime JavaScript envi-
ronment 600 on each STB 130 and performs the following
steps:

Step 800: Module integration may start upon loading a
module for execution on the STB 130. In another configu-
ration, module integration may occur and/or continue to

5

10

15

20

25

30

35

40

45

50

55

60

65

14

occur while the modules are executing. For illustration
purposes, 1n this flowchart description, the phrase “the
module” generally refers to a vendor module, and “another
module” generally refers to a module different from the
vendor module. For example, to help understand the tlow-
chart with reference to the example shown in FIG. 6 and
FIG. 7, the hotel custom module 614 may be considered “the
module” and the video playback module 610 may be con-
sidered “another module”. However, 1t should be noted that
the module integrator 132 may be simultaneously utilized
with a plurality of different modules 1n order to ensure
sandboxing and service authorizations are maintained for a
plurality of modules. By handling external service access
requests, service registrations, and policing functions, all of
which were verified as being properly included in the code
of the module by the module sandbox validator 106, the
module integrator 132 1s capable of dynamaically controlling
sandboxing and integration between any number of mod-
ules.

Step 802: Is the module requesting an external service?
The phrase “external service” in this flowchart refers to a
service such as a function or procedure provided by another
module. For example, with reference to the dashed lines in
FIG. 6, the hotel custom module 614 may include a request
to the runtime integration service 604 identifying itself as
the hotel custom module 614 and asking the runtime inte-
gration service 604 to return valid pointers for the post room
charge service 624, VOD playback service 622, and lighting
control service 620.

Step 804: The runtime integration service 604 receives the
request from the module and checks the service authoriza-
tion table 134 to see 1f the module 1s authorized to access the
requested service.

Step 806: When the module 1s authorized to access the
requested service according to the service authorization
table 134, control proceeds to step 810; otherwise, control
proceeds to step 808. As mentioned, because the sandbox
validator 106 has previously ensured that the module has
correctly i1dentified 1itself each time it requests access to an
external service, 1t 1s not possible that the module could
forge another module’s name 1n order to obtain greater
access to external services.

Step 808: Because the module has requested access to a
service for which 1t 1s not authorized, the runtime 1integration
service 604 prevents the module from accessing the prohib-
ited service by passing an invalid pointer such as NULL
pointer as the execution address for the service.

Step 810: Because the module 1s authorized to access the
requested service, the runtime integration service 604 allows
the module to access the external service by passing a valid
pointer to the service’s execution address 1n the JavaScript
environment 600.

Step 812: Is the module executing a non-deterministic
operation wrapped with a policing tunction? If yes, control
proceeds to step 814; otherwise, control proceeds to step
822. As mentioned, 1n a preferred configuration, the sandbox
validator 106 has already ensured the module code 1includes
the appropriate policing function; however, 1n another con-
figuration the module integrator 132 may automatically
detect non-deterministic operations and wrap them with the
appropriate policing function, for example, 1n advance or 1n
real-time.

Step 814: The policing function performs a runtime check
to ensure the non-deterministic operation complies with the
sandbox constraints.

Step 816: Is the non-deterministic operation contained to

the module sandbox 8167

US 9,848,002 B2

15

Step 818: The policing function prevents execution of the
non-deterministic operation when the runtime check deter-
mines that the non-determinmistic operation does not comply
with the sandbox constraints.

Step 820: The policing function allows execution of the
non-deterministic operation when the runtime check deter-
mines the non-deterministic operation complies with the
sandbox constraints.

Step 822: Is the module execution finished? If yes, control
proceeds to the step 824 to end module integration; other-
wise, control returns to step 802.

Step 824: Module integration 1s finished.

At steps 812 to 820, 1n addition to functionality described
for check, toArray, loopTimer illustrated in FIG. 4, the
policing functions may involve code that will check at
runtime that a vendor’s particular operation will not modify
or read any varniables for which it 1s not allowed. For
example, reading a location specified by a pointer may be a
non-deterministic operation 1f the sandbox validator 106 1s
unable to determine to where the pointer will point before
runtime. Therefore, the read operation may be wrapped with
a policing function that will check where the pointer points
at runtime before allowing the operation to actually be
executed.

If the policing function finds that the operation will access
only memory and variables created by the vendor module
code then 1t will allow the operation to execute on the STB
130. Otherwise, 1t will halt the execution and branch control
away Irom the vendor module. For example, the policing
function may branch to a suitable error message to be
displayed on the STB 130 at this point to help the external
vendor debug the problem. Alternately, the policing function
may branch to a section of code that returns status of the
falled operation and any other debug information to the
vendor via the hotel’s network 120 and ultimately to the
vendor interface 104. For example, the error message could
be sent to the vendor interface 104 that vendors use to access
information recerved from STBs 130. This way, the third-
party vendors may collect bug information from all the
STBs 130 throughout the hotel without having to physically
g0 to the rooms to read error messages displayed by indi-
vidual STBs 130 or to contact other vendors responsible for
other portions of the entertainment system.

FIG. 10 1llustrates a block diagram of a system 1000 for
integrating a plurality of modules of computer code accord-
ing to another exemplary configuration of the present inven-
tion. Units having the same names as used 1n the example of
FIG. 1 generally behave similar to as previously described
for FIG. 1; however, the order and the location of the units
are modified in FIG. 10. In system 1000, one or more vendor
servers 1002 are coupled to each computing device, 1llus-
trated as STBs 1030 in this example. The vendor servers
1002 may be untrusted and therefore the module sandbox
validator 1032, the related lists 1034, 1036, 1038, the service
authorizer 1040, and the default service authorization policy
1042 are located at each STB 1030. Although, this increases
the workload on each STB 130 and means that a single
vendor module sent from a vendor server 1002 to a plurality
of STB 130 will under go validation at each STB 130, this
configuration may be advantageous, for example, when
providing a distributed soitware-as-a-service (SaaS) archi-
tecture because no central control server 102 need be uti-
lized.

One advantageous use of the present invention 1s to allow
third-party vendors to add advanced functionality to a
hotel’s entertainment system 1n a secure and safe manner.
The third-party vendors may be provided information on an

10

15

20

25

30

35

40

45

50

55

60

65

16

allowed subset of the JavaScript language, required policing
functions defined by the lists of FIG. 2, FIG. 3, and FIG. 4,
and services available from other modules 1n the system.
The third party module may include a request to access one
or more services provided within the hotel entertainment
system. A primary vendor responsible for the system as a
whole may configure or customize a service authorization
policy for the new module to allow it access to 1ts required
services and no other services. In this way, new computer
code modules may be added with limited imvolvement of
one or more vendors originally responsible for the system.
Further, because the modules do not undergo inethcient
translation process 1n one configuration, they continue to run
at full speed and with their intended behavior.

In summary, a system for integrating modules of com-
puter code may include a sandbox validator for receiving a
first module and verifying that the first module complies
with one or more sandbox constraints. A computing device
may execute the first module within a runtime environment.
A module integrator may operate within the runtime envi-
ronment for receiving a request from the first module to
access a service provided by a second module and only
allowing the first module to access the service when the first
module 1s authorized to access the service according to a
service authorization table. The sandbox validator may
ensure the first module correctly identifies 1itself when
requesting a service provide by another module and that the
first module includes runtime policing functions for non-
deterministic operations. A service authorizer may generate
an authorization policy for the first module, which 1s sent to
the computing device along with the first module.

Although the mvention has been described 1n connection
with a preferred embodiment, 1t should be understood that
vartous modifications, additions and alterations may be
made to the invention by one skilled i1n the art without
departing from the spirit and scope of the mnvention. For
example, with reference to FIG. 1 and FIG. 10, although 1t
1s beneficial to locate the module sandbox validator unit 106,
1032 prior to the service authorizer unit 114, 1040 to avoid
unnecessary processing by the service authorizer 114 should
the module code fail validation, this 1s not a requirement and
the order may be interchanged or performed in parallel.
JavaScript has been utilized to illustrate one example of the
invention; however, this 1s not a limitation and other lan-
guages may utilized to code the modules and the same
principles of the mnvention apply in a similar manner. When
describing how policing function are “wrapped” around
non-deterministic operations, this language 1s also intended
to include adding the policing functions either in advance by
the module author or automatically by the sandbox validator
and at any position in the vendor module to allow the
required runtime check and error handling. Additionally,
module storage (long term and temporary) may be included
at any stage in the system 100, 1000 1n order to store
modules for later distribution and/or execution.

It should also be noted that in the above description
illustrative words such as vendor, administrator, owner,
hotel management, third-party, etc are simply meant as
examples of different types of users to help provide an
understanding of one beneficial application of the invention;
however, 1n other applications, other types of users may
equally apply. Examples of other applications include but
are not limited to usage at hotels, motels, resorts, hospitals,
apartment/townhouse complexes, restaurants, retirement
centres, cruise ships, busses, airlines, shopping centres,
passenger trains, etc. Although, particularly beneficial when
integrating vendor modules authored by different entities, 1n

US 9,848,002 B2

17

practice all modules may be authored by a same enfity. For
example, a single corporation may utilize the mvention to
integrate modules all written in-house, in a safe and secure
manner. STBs 130 are chosen as the computing device to
help illustrate one beneficial usage of the present invention;
however, the described technology 1s equally applicable to
other types of computing devices. Examples of other types
of computing devices include but are not limited to set-top
boxes, televisions, displays, mobile phones, laptop comput-
ers, notebook computers, desktop computers, tablet comput-
ers, personal digital assistants (PDAs), embedded devices,
etc.

The above description describes elements of a system
100, 1000 that may include one or more units, some of
which are explicitly shown 1n the figures, others that are not.
As used herein, the term “unit” may be understood to refer
to computing soitware, firmware, hardware, and/or various
combinations thereof It 1s noted that the units are exemplary.
For example, one or more processors (not shown) may
operate pursuant to mstructions stored on a storage medium
to provide the functions as described for the units. The units
may also be combined, integrated, separated, and/or dupli-
cated to support various applications. Also, a function
described herein as being performed at a particular unit may
be performed at one or more other units and/or by one or
more other devices instead of and/or in addition to the
function performed at the particular unit. Further, the units
may be implemented across multiple devices and/or other
components local or remote to one another, and the units
may be moved from one device and added to another device,
and/or may be included in both devices. In addition to a
dedicated physical computing device, the word “server”
may also mean a service daecmon on a single computer,
virtual computer, or shared physical computer, for example.
The expression “at runtime” includes the state of a module
at the time execution starts and also during execution by one
or more processors ol a computing device. Additionally, all
combinations and permutations of the above described fea-
tures, configurations, and examples may be utilized in
conjunction with the invention.

What 1s claimed 1s:

1. A system for integrating a plurality of modules of
computer code, the system comprising:

a memory storing a plurality of mstructions and one or

more sandbox constraints;

a communication interface; and

one or more processors coupled to the memory and the

communication interface;

wherein, by the one or more processors executing the

instructions loaded from the memory, the one or more

processors are configured to provide:

a sandbox validator operable to parse computer code of
a first module received via the communication inter-
face 1n order to verily that the first module complies
with the one or more sandbox constraints;

a service authorizer operable to generate a service
authorization policy for the first module, the service
authorization policy indicating which services pro-
vided by a second module of computer code are
allowed to be accessed by the first module; and

a module integrator operable to only allow the first
module to access a particular service provided by the
second module when the first module 1s authorized to
access the particular service according to the service
authorization policy.

2. The system of claim 1, wherein the sandbox constraints
at least require that the first module does not include

10

15

20

25

30

35

40

45

50

55

60

65

18

computer code attempting to access variables having a
global scope and does not include computer code attempting
to access mformation from outside the first module that 1s
not directly passed to the first module.

3. The system of claim 1, wherein the module integrator
1s Turther configured to:

allow the first module to access the particular service by

passing to the first module a pointer to an execution
address of the particular service when the first module
1s authorized to access the particular service according
to the service authorization policy; and

prevent the first module from accessing the particular

service by passing to the first module an 1nvalid pointer
as the execution address of the particular service when
the first module 1s not authorized to access the particu-
lar service according to the service authorization
policy.

4. The system of claim 1, wherein, when parsing the
computer code of the first module, the sandbox validator 1s
further operable to ensure when the first module requests
access to the particular service provided by the second
module that the first module correctly identifies 1tself with a
module identifier associated with the first module.

5. The system of claim 1, wherein:

the sandbox validator 1s further operable to automatically

parse c¢ach operation of the first module into one or
more tokens and ensure that a non-deterministic opera-
tion 1s checked with a policing function, the non-
deterministic operation corresponding to an operation
having at least one token listed on a non-deterministic
list; and

the module itegrator 1s further configured to provide the

policing function during execution of the first module
to perform a runtime check of the non-deterministic
operation, allow execution of the non-deterministic
operation when the runtime check determines the non-
deterministic operation complies with the sandbox con-
straints, and prevent execution of the non-deterministic
operation when the runtime check determines that the
non-deterministic operation does not comply with the
sandbox constraints.

6. The system of claim 1, wherein the service authorizer
1s operable to automatically generate the service authoriza-
tion policy according to a default system-wide service
authorization policy.

7. The system of claim 1, wherein the service authorizer
1s operable to automatically generate the service authoriza-
tion policy according to a module-specific authorization
policy and an 1dentifier of the first module.

8. The system of claim 1, wherein the first and the second
modules are written 1n JavaScript.

9. The system of claim 1, wherein the service authorizer
1s Turther operable to dynamically update the service autho-
rization policy for the first module.

10. The system of claim 1, wherein the system 1s a media
entertainment system.

11. A method of integrating a plurality of modules of
computer code, the method comprising;

recerving a lirst module of computer code from via a

communications interface;

parsing, by a sandbox validator, the computer code of the

first module in order to verily that the first module

complies with one or more sandbox constraints;
generating, by a service authorizer, a service authorization

policy for the first module, the service authorization

US 9,848,002 B2

19

policy indicating which services provided by a second
module of computer code are allowed to be accessed by
the first module; and
only allowing, by a module integrator, the first module to
access a particular service provided by the second
module when the first module 1s authorized to access
the particular service according to the service authori-
zation policy.
12. The method of claim 11, wherein the sandbox con-
straints 1nclude requiring that the first module does not
include computer code attempting to access variables having
a global scope and does not include computer code attempt-
ing to access information from outside the first module that
1s not directly passed to the first module.
13. The method of claim 11, further comprising:
allowing the first module to access the particular service
by passing from the module integrator to the first
module a pointer to an execution address of the par-
ticular service when the first module 1s authorized to
access the service according to the service authoriza-
tion policy; and
preventing the first module from accessing the particular
service by passing from the module integrator to the
first module an 1valid pointer as the execution address
of the particular service when the first module 1s not
authorized to access the particular service according to
the service authorization policy.
14. The method of claim 11, further comprising ensuring
by the sandbox validator when parsing the computer code of
the first module that when the first module requests access
to the particular service provided by the second module that
the first module correctly identifies itself with a module
identifier associated with the first module.
15. The method of claim 11, further comprising:
automatically parsing by the sandbox wvalidator each
operation of the first module 1nto one or more tokens;

ensuring by the sandbox validator that a non-deterministic
operation 1s checked with a policing function, the
non-deterministic operation corresponding to an opera-
tion having at least one token listed on a non-deter-
ministic list;

providing by the module integrator the policing function

during execution of the first module to perform a
runtime check of the non-deterministic operation;

10

15

20

25

30

35

40

20

allowing by the module itegrator execution of the non-
deterministic operation when the runtime check deter-
mines the non-deterministic operation complies with
the sandbox constraints; and

preventing by the module integrator execution of the

non-deterministic operation when the runtime check
determines that the non-deterministic operation does
not comply with the sandbox constraints.

16. The method of claim 11, further comprising automati-
cally generating the service authorization policy by the
service authorizer according to a default system-wide ser-
vice authorization policy.

17. The method of claim 11, further comprising automati-
cally generating the service authorization policy by the
service authorizer according to a module-specific authori-

zation policy and an identifier of the first module.

18. The method of claim 11, wherein the first module and
the second module are written in JavaScript.

19. The method of claim 11, further comprising dynami-
cally updating, by the service authorizer, the service autho-
rization policy for the first module.

20. A non-transitory computer readable storage medium
comprising instructions that when executed by one or more
processors cause the one or more processors to perform a
method of integrating a plurality of modules of computer
code, the method comprising:

recerving a lirst module of computer code from via a

communications interface;
parsing, by a sandbox validator, the computer code of the
first module in order to verily that the first module
complies with one or more sandbox constraints;

generating, by a service authorizer, a service authorization
policy for the first module, the service authorization
policy indicating which services provided by a second
module of computer code are allowed to be accessed by
the first module; and

only allowing, by a module integrator, the first module to

access a particular service provided by the second
module when the first module 1s authorized to access
the particular service according to the service authori-
zation policy.

	Front Page
	Drawings
	Specification
	Claims

