US009842074B2

12 United States Patent

Raghavan

US 9.842.,074 B2
Dec. 12, 2017

(10) Patent No.:
45) Date of Patent:

(54) TAG ALLOCATION FOR NON-POSTED (56) References Cited

LAYER
_ 6,681,274 B2* 1/2004 Ennis GO6F 13/4036
(71) Applicant: AVAGO TECHNOLOGIES 710/5
GENERAL IP (SINGAPORE) PTE. 7,454,551 B2* 11/2008 Myerscccccovernnns GOGF 9/466
LTD., Singapore (SG) 710/310
7,979,592 B1* 7/2011 Petteycoevvvvennn, GOO6F 13/404
709/205
(72) Inventor: Ramprasad Raghavan, Colorado 8,356,124 BL* 1/2013 Davis .ccoovrevvecen. GOG6F 13/362
Springs, CO (US) 370/438
8,521,941 B2* 82013 Regula GO6F 13/404
: 710/105
(73) Assignee: AVAGO TECHNOLOGIES 5
GENERAL IP (SINGAPORE) PTE. 5:093.754 B2t 92013 Glass oo oor S
LTD., Singapore (SG) .
" (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PURI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 316 days. Stratix V Avalon-ST Interface with SR-IOV Pcie Solutions User
Guide, Altera, Dec. 15, 2014.
(21) Appl. No.: 14/610,648 Primary Examiner — Raymond Phan
(74) Attorney, Agent, or Firm — Sheridan Ross P.C.
(22) Filed: Jan. 30, 2015 (57) ABSTRACT
_ o Embodiments herein provide for tag allocation 1n a PCle
(65) Prior Publication Data application layer. In one embodiment, an apparatus operable
US 2016/0224487 A1 Aug. 4, 2016 to intfarface Wiﬂ:l a plura}lity ol virtual functiions and a
plurality of physical functions to process data via the PCle
protocol. The apparatus includes a packet builder commu-
(1) Int. CL. H nicatively coupled to each of the virtual functions and the
GOor 13/00 (2006-0;) physical functions and operable to build packets for non-
GOoF 13/362 (2006-O:~) posted commands from the virtual and physical functions.
GoOol 15/42 (2006-O:~) The apparatus also includes a tag allocator operable to
GO6F 9/44 (2006.01) allocate tags from a first set of tags to the packets of
(52) U.S. CL non-posted commands from any of the virtual and physical
CPC ... GO6F 13/362 (2013.01); GO6F 9/4411 tunctions employing extended tags when the tags of the first
2013.01): GO6F 13/4221 (2013.01 sel are available, and 1o reserve a second dilierent set ol tags
(); () 1labl d d ditf f tag
. : . Or remaining virtual an sical Tunctions not employin
(58) Field of Classification Search ! ining virtual and physical tunct ploying

COMMANDS IN A PCIE APPLICATION

USPC 710/104-110, 305-317
See application file for complete search history.

Backend 110-1

U.S. PATENT DOCUMENTS

extended tags until the first set of tags are all allocated.

21 Claims, 6 Drawing Sheets

Backend 110-N

PF VF VF PF
111-1 | 112-1 112-1 | 111-1
Application Layer
100
Packet Tag Processor
Builder Allocator 103
101 102 o

Transaction Layer
104

US 9,842,074 B2
Page 2

(56)

2003/0097500 Al* 5/2003 Ennis

References Cited

U.S. PATENT DOCUMENTS
8,881,150 B2* 11/2014 Sawa

8,918,568 B2* 12/2014 Ayzenfeld

2012/0221764 Al 8/2012 Glass et al.
2012/0284437 Al 11/2012 Ayzenfeld et al.

* cited by examiner

GO6F 13/102

718/1

GOOF 13/14

710/104

GOO6F 13/4027

710/52

U.S. Patent Dec. 12,2017 Sheet 1 of 6 US 9,842,074 B2

Backend 110-1 Backend 110-N

PF | VF
111-1 | 112-1

Application Layer
100

Packet Tag

Processor

Builder Allocator 103

101 102

Transaction Layer
104

FIG. 1

U.S. Patent Dec. 12,2017 Sheet 2 of 6 US 9,842,074 B2

200

—~

Build Packets For Non-posted Commands
From Virtual And Physical Functions

Allocate Tags From A First Set Of Tags
To The Packets Of Non-posted
Commands From Any Of The Virtual And
Physical Functions Employing Extended
Tags As They Come Avallable
While Reserving A Second Different Set
Of Tags For Non-posted Commands From
Functions Not Employing Extended Tags

Are The
Tags Of The First Set
All Allocated

Allocate Tags To The Packets Of Non-
posted Commands From Any Of The
Virtual And Physical Functions Employing

Extended Tags In The Second Different
Set Of Tags

FIG. 2

U.S. Patent Dec. 12,2017 Sheet 3 of 6 US 9,842,074 B2

Free Tag
q Allocate Tag Val
Free Tag Val Availability Management °
Port Port Allocate Tag
Free lag 32 < 257 252 Deallocate Tag

Free Tag 32 Val

Tag Allocator

102

Tag Request Bus Requester Port
299

Tag Grant Bus

FIG. 3

U.S. Patent Dec. 12,2017 Sheet 4 of 6 US 9,842,074 B2

PF PF
111-1 111-2

Extended Extended
Tags Tags
Enabled Disabled

Arbiter
279

Tag
Allocator
Application Layer 102
100 —
Queue
270
Packet

Builder Processor

103

101

Transaction Layer
104

FIG. 4

U.S. Patent Dec. 12,2017 Sheet 5 of 6 US 9,842,074 B2

Extended Extended
Tags Tags
Enabled Disabled

Queue
276-2

Packet
Builder
101-2

Processor
103-2

Packet Tag
Builder Allocator

101-1 102

Processor
103-1

Arbiter Application
275 Layer
100
Transaction Layer
104

FIG. 5

U.S. Patent Dec. 12,2017 Sheet 6 of 6 US 9,842,074 B2

COMPUTER
PROCESSOR READABLE

302 MEDIUM
306

PROGRAM

/O DEVICES AND DATA

304 MEMORY

308

310

HOST
SYSTEMS

INTERFACES
312

COMPUTING SYSTEM 300

FIG. 6

US 9,842,074 B2

1

TAG ALLOCATION FOR NON-POSTED
COMMANDS IN A PCIE APPLICATION
LAYER

FIELD OF THE INVENTION

The invention generally relates to Peripheral Component
Interface Express (PCle) devices.

BACKGROUND

PCle employs virtualization 1n what 1s known as Single
Root-Input/Output Virtualization (SR-IOV) comprising vir-
tual functions (VFs) and physical functions (PFs). The VFEs
and PFs communicate 1n the PCle environment via packets
of posted transactions and non-posted transactions (also
known as “commands”). Non-posted commands, such as
read and write Input/Outputs (1/0Os), are those where a
requesting VF or PF (1.e., a requester) expects to receive a
completion Transaction Layer Packet (TLP) when the com-
mand 1s completed. Posted commands, such as memory
writes and messages, are those where the requester does not
expect to and will not receive a completion TLP even 1f an
error occurs. An application layer generates an incrementing
sequence number, or “tag”, for each outgoing packet of a
command that serves as a umque identification for the
transmitted packet. However, current tagging in PCle can be

problematic because 1t can create congestion among com-
peting VFs and PFs 1in the PCle environment.

SUMMARY

Systems and methods herein provide for tag allocation 1n
a PCle application layer. In one embodiment, an apparatus
1s operable to iterface with a plurality of VFs and a plurality
of PFs to process data via the Peripheral Component Inter-
tace Express (PCle) protocol. The apparatus includes a
packet builder communicatively coupled to each of the VFs
and the PFs and operable to build packets for non-posted
commands from the VFs and PFs. The apparatus also
includes a tag allocator operable to allocate tags from a first
set of tags to the packets of non-posted commands from any
of the VFs and PFs employing extended tags when the tags
of the first set are available, and to reserve a second different
set of tags for remaining VFs and PFs not employing
extended tags until the first set of tags are all allocated.

The various embodiments disclosed herein may be imple-
mented 1n a variety of ways as a matter of design choice. For
example, some embodiments herein are implemented 1n
hardware whereas other embodiments may include pro-
cesses that are operable to implement and/or operate the
hardware. Other exemplary embodiments, including soft-
ware and firmware, are described below.

BRIEF DESCRIPTION OF THE FIGURES

Some embodiments of the present invention are now
described, by way of example only, and with reference to the
accompanying drawings. The same reference number rep-
resents the same element or the same type of element on all
drawings.

FIG. 1 1s a block diagram of an exemplary PCle appli-
cation layer.

FI1G. 2 1s a tflowchart of an exemplary process of the PCle
application layer of FIG. 1.

FIG. 3 1s a block diagram of an exemplary tag allocator.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 4 and 5 are block diagrams of exemplary imple-
mentations of the tag allocator 1n a PCle application layer.

FIG. 6 illustrates an exemplary computer system operable
to execute programmed instructions to perform desired
functions described herein.

DETAILED DESCRIPTION OF THE FIGURES

The figures and the following description illustrate spe-
cific exemplary embodiments of the invention. It will thus be
appreciated that those skilled 1n the art will be able to devise
various arrangements that, although not explicitly described
or shown herein, embody the principles of the invention and
are included within the scope of the invention. Furthermore,
any examples described herein are intended to aid 1n under-
standing the principles of the invention and are to be
construed as being without limitation to such specifically
recited examples and conditions. As a result, the invention 1s
not lmmited to the specific embodiments or examples
described below.

FIG. 1 1s a block diagram of an exemplary PCle appli-
cation layer 100. The PCle application layer 100 may be
operable on any PCle device or system to interface with a
plurality of backend functions or devices 110-1-110-N (also
known as system images and collectively referred to herein
as “backends™; wherein “N” 1s an integer greater than “1”
and not necessarily equal to any other “N” reference desig-
nated herein). Each of the backends 110 1s operable to
present a plurality of PFs 111 and/or VFs 112 using the
SR-IOV {features of the PCle protocol. The host system
views these backends 110 via their various PFs 111 and VFs
112 as individual devices.

Each PF 111 and each VF 112 of a backend 110 can
support a number of outstanding requests. For example, 1f a
PF 111 can handle more than 32 outstanding requests, the
application layer 100 establishes that PF 111 as having
extended tags enabled. Otherwise the application layer 100
designates the PF 111 as having 1ts extended tags disabled
(e.g., ExtendedTagEn=0, also known as ExtendedTagEn
reset) and the application layer 100 generates tag values that
are five bits 1n length for each non-posted command from the
PF 111. The same occurs for each VF 112. For simplicity, the

PFs 111 and VFs 112 will be collectively referred to as
functions 111/112.

The application layer 100 can be configured as a single
queue structure where a request from a function 111/112 1s
arbitrated before a command 1s packetized via a packet
builder 101 and transmitted to the transaction layer 104 and
ultimately to the host. Alternatively, the application layer
100 can have independent queues that service each function
111/112 wherein arbitration occurs as packets are configured
by the packet builder 101 and transmitted to the transaction
layer 104. Each of these 1s described in greater detail below
in FIGS. 4 and 5.

In any case, the tag allocator 102 generates a unique tag,
for each of the commands of the functions 111/112. As
mentioned, there are two types of commands from the
functions 111/112, non-posted command and posted com-
mands. Completions are returned 1n response to non-posted
commands and processed by a processor 103. Then, the
processor 103 matches a completion tag with each range of
tags to determine which queue it belongs to.

Previously, the queue structures became congested as the
functions 111/112 arbitrated for tags. For example, 1 a
shared queue 1implementation, tags were allocated sequen-
tially starting from *“0”. If commands that support extended
tags from a function 111/112 occupy the first 32 slots of the

US 9,842,074 B2

3

queue, then any function that has extended tags disabled 1s
precluded from sending commands until one of the first 32
slots of the queue 1s freed.

In the mndependent queue structure implementation, each
queue manages the tag ranges allocated to them. If a

backend 110 with a function 111/112 has extended tags
disabled, then the backend 110 needs to connect to the 0-31
range in the queue. Accordingly, 1if more than one function
exists with extended tags disabled, then the lower 32 tags of
this range are divided, thereby restricting the function 111/
112 from utilizing its full capacity for sending outstanding
requests. And, as the tags are fixed in hardware, the function
111/112’s capacity to send outstanding requests cannot be
changed at runtime.

The application layer 100 of this embodiment addresses
these congestion problems of non-posted commands by
employing a centralized tag allocator 102. And, for functions
111/112 having extended tags enabled, the tag allocator 102
will allocate those tags as they come available. The tag
allocator 102 also reserves the lower 32 tags for functions
111/112 where extended tags are disabled until all of the
higher order tags are used by the functions 111/112 that
support extended tags. One exemplary process for tag allo-
cation 1s now shown and described 1n FIG. 2.

FIG. 2 1s a flowchart of an exemplary process 200 of the
PCle application layer 100 of FIG. 1. In this embodiment, 1t
1s assumed that the application layer 100 1s operational and
building packets for commands from the functions 111/112,
in the process element 201. And, while the embodied tag
allocation may be relevant to all commands 1ssued from the
tfunctions 111/112, the process 200 specifies tag allocations
from non-posted commands as these commands receive
completions from the host. That 1s, posted commands are not
notified of completions and therefore there 1s no need for
completion tag comparison.

In the process element 202, the tag allocator 102 allocates
tags from a {first set of tags to the packets of non-posted
commands from any of the functions 111/112 employing
extended tags as the tags come available. In this regard, the
tag allocator 102 reserves a second set different set of tags
(c.g., a lower set of tags from 0 to 31) for use by functions
111/112 not employing extended tags. The tag allocator 102
continually monitors the queue to determine whether all of
the tags of that first set have been allocated, 1n the process
clement 203. IT all of the tags have not been allocated, then
the tag allocator 102 continues to allocate tags, in the
process element 202. Otherwise, the tag allocator 102 allo-
cates tags to the packets of the non-posted commands from
any ol the functions 111/112 in the second different set of
tags, 1n the process element 204. In this regard, the tag
allocator 102 reserves the second set of tags for the functions
111/112 employing extended tags while the first set of tags
are unavailable.

The tag allocator 102 continues to monitor the queue to
determine whether tags come available. For example, once
tags above 31 are available for the commands of the func-
tions 111/112, the tag allocator 102 will relinquish the
reservation on the second different set of tags such that the
commands not employing extended tags can use the second
set of tags.

FIG. 3 1s a block diagram of an exemplary tag allocator
102. The tag allocator 102, 1n this embodiment, comprises
two sets ol availability ports 251, the Free Tag 32 port and
the Free Tag port. The Free Tag 32 port advertises any free
tag less than 32. The Free Tag port advertises any free tag

10

15

20

25

30

35

40

45

50

55

60

65

4

greater than or equal to 32. It all tags greater than or equal
to 32 are used, then the Free Tag port advertises any free tag
that 1s less than 32.

The command queue (shown and described in greater
detail below 1n FIGS. 4 and 5) makes a request for tag on a
request report 253 of the tag allocator 102. Once granted, the
tag allocator 102 determines whether the command has
extended tags enabled (e.g., ExtendedTagEn =1) as well as
whether the free tag value has been enabled (1.e., Free Tag
Val=1). If so, the tag allocator 102 allocates a free tag via an
Allocate Tag port of the management port 252, If extended
tags are disabled (e.g., Extended TagEn=0) and the Free Tag
32 Val=1 on the availability port 251, then the tag allocator
102 allocates a Free Tag 32 via the allocate tag port of the
management port 252. The commands are then transierred
from the command queue to the transaction layer 104 for
processing by the host system. Once completed, the host
system 1ssues a completion tag that 1s compared to the
command queue such that the tag allocator 102 can deallo-
cate/relinquish the tag for use by another command.

FIGS. 4 and 5 are block diagrams of exemplary imple-
mentations of the tag allocator 102 1 a PCle application
layer 100. In FIG. 4, the application layer 100 1s configured
with a single command queue 276 for non-posted commands
from the PFs 111-1 and 111-2. In this example, the PF 111-1
has extended tags enabled and the PF 111-2 has extended
tags disabled. Thus, the tag allocator 102 reserves the lower
tags O to 31 for commands from the PF 111-2 until all of the
commands from the PF 111-1 have been allocated.

If all the commands from the PF 111-1 (or any other
functions 111/112 with extended tags enabled) have been
allocated, then the tag allocator 102 begins to allocate the
lower tags 0 to 31 until an extended tag comes available.
This occurs when the command 1s packetized by the packet
builder 101 and transferred to the transaction layer 104 for
processing by the host system and a completion tag 1s
returned to the processor 103 for comparison to the com-
mand queue 276. The processor 103 then informs the tag
allocator 102 that the tag has been returned and can now be
reallocated as an extended tag.

In FIG. 5, each of the PFs 111-1 and 111-2 1s configured
with 1ts own packet builder 101 and command queue 276.
The centralized tag allocator 102 1ssues tags one at a time
from the command queues 276-1 and 276-2. Again, the tag
allocator 102 reserves the lower level tags O to 31 until all
of the tags by the command queue 276-1 have been used. If
all of the tags greater than or equal to 32 are all used (i.e.,
the extended tags), the tag allocator 102 then 1ssues tags in
the range O to 31 to the command queue 276-1 as needed
until an extended tag comes available. Again, an extended
tag comes available when a completion tag 1s returned from
the host system through the transaction layer 104 to the
processors 103-1 and 103-2.

It should be noted that the embodiments illustrated 1n
FIGS. 4 and § are merely mtended to be exemplary and
nonlimiting. An application layer 100 can and typically will
be coupled to a plurality of functions 111/112 (e.g., in the
thousands). And the non-posted commands from these func-
tions 111/112 can comprise any combination ol having
extended tags enabled and having extended tags disabled.

The embodiments herein provide several advantages over
the prior art. For example, when tags greater than or equal
to 32 are used first by functions 111/112 that have extended
tags enabled, it allows the entire range of tags to be utilized
when commands can be sent by both types of functions
111/112. If the application layer 100 has a dedicated queue
structure, tag ranges for multiple queues are no longer

US 9,842,074 B2

S

needed. Accordingly, firmware can be configured to enable
extended tag capability of the functions 111/112 based on
what the function can support as opposed to having the same
setting for all functions 111/112. Additionally, a dedicated
queue structure can have varying depths for individual
queues without having to care how tags will be allocated,
thereby optimizing gate utilization based on a connected
backend’s 110 requirements.

The mvention can take the form of an entirely hardware
embodiment, an enfirely software embodiment or an
embodiment containing both hardware and software ele-
ments. In one embodiment, the mvention 1s implemented in
software, which includes but 1s not limited to firmware,
resident software, microcode, etc. FIG. 6 illustrates a com-
puting system 300 1n which a computer readable medium
306 may provide nstructions for performing any of the
methods disclosed herein.

Furthermore, the invention can take the form of a com-
puter program product accessible from the computer read-
able medium 306 providing program code for use by or 1n
connection with a computer or any instruction execution
system. For the purposes of this description, the computer
readable medium 306 can be any apparatus that can tangibly
store the program for use by or in connection with the
instruction execution system, apparatus, or device, including
the computer system 300.

The medium 306 can be any tangible electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system (or apparatus or device). Examples of a computer
readable medium 306 include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Some

examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)

and DVD.

The computing system 300, suitable for storing and/or
executing program code, can include one or more processors
302 coupled directly or indirectly to memory 308 through a
system bus 310. The memory 308 can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code 1s retrieved from bulk storage during
execution. Input/output or I/O devices 304 (including but
not limited to keyboards, displays, pointing devices, etc.)
can be coupled to the system either directly or through
intervening 1/0O controllers. Network adapters may also be
coupled to the system to enable the computing system 300
to become coupled to other data processing systems, such as
through host systems interfaces 312, or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modem and Ethernet cards are just a
tew of the currently available types of network adapters.

What 1s claimed 1s:

1. An apparatus operable to interface with a plurality of
virtual tunctions and a plurality of physical functions to
process data via the Peripheral Component Interface Express
(PCle) protocol, the apparatus comprising:

a packet builder communicatively coupled to each of the
virtual functions and the physical functions and oper-
able to build packets for non-posted commands from
the virtual and physical functions; and

a tag allocator operable to allocate tags from a first set of
tags to the packets of non-posted commands from any
of the wirtual and physical functions employing
extended tags when the tags of the first set are avail-

10

15

20

25

30

35

40

45

50

55

60

65

6

able, and to reserve a second different set of tags for
remaining virtual and physical functions not employing
extended tags until the first set of tags are all allocated.

2. The apparatus of claim 1, wherein:

the second set of tags that are reserved comprises 32 tags

incremented from O to 31; and

the tags of the first set of tags are incremented from 32.

3. The apparatus of claim 1, wherein:

the tag allocator comprises a port operable to advertise

tags that are available from the second set of tags to
assign at least one Iree tag from the available tags.

4. The apparatus of claim 1, wherein:

the tag allocator comprises a port operable to advertise

tags that are available from the first set of tags until
cach of the function tags from the first set are used, and.,
in response to all of the tags from the first set being
used, the port 1s further operable to advertise available
tags from the second set of tags.

5. The apparatus of claim 1, wherein:

the tag allocator 1s further operable to release an assigned

tag when an associated non-posted command 1s com-
plete.

6. A method operable 1n a Peripheral Component Interface
Express (PCle) application layer interfacing with a plurality
of virtual functions and a plurality of physical functions to
process data via the PCle protocol, the method comprising;:

building packets for non-posted commands from each of

the virtual and physical functions;

allocating tags from a first set of tags to the packets of

non-posted commands from any of the virtual and
physical functions employing extended tags when the
tags of the first set are available; and

reserving a second different set of tags for remaining

virtual and physical functions not employing extended
tags until the first set of tags are all allocated.

7. The method of claim 6, wherein:

the second set of tags comprises 32 tags incremented from

0 to 31; and

the tags of the first set of tags are incremented from 32.

8. The method of claim 6, further comprising:

advertising tags that are available from the second set of

tags until each of the function tags from the first set are
used.

9. The method of claim 6, further comprising;:

advertising tags that are available from the first set of tags

until each of the function tags from the first set are
used; and,

in response to all of the tags from the first set being used,

advertising available tags from the second set of tags.

10. The method of claim 6, further comprising:

releasing an assigned tag when an associated non-posted

command 1s complete.

11. A non-transitory computer readable medium compris-
ing 1instructions that, when executed on by a processor
operable with a Peripheral Component Interface Express
(PCle) application layer interfacing with a plurality of
virtual functions and a plurality of physical functions to
process data via the PCle protocol, directs the processor to:

build packets for non-posted commands from each of the

virtual and physical functions;

allocate tags from a first set of tags to the packets of

non-posted commands from any of the virtual and
physical functions employing extended tags when the
tags of the first set are available; and

reserve a second diflerent set of tags for remaining virtual

and physical functions not employing extended tags
until the first set of tags are all allocated.

US 9,842,074 B2

7

12. The computer readable medium of claim 11, wherein:
the second set of tags comprises 32 tags incremented from

0 to 31; and
the tags of the first set of tags are incremented from 32.
13. The computer readable medium of claim 11, further
comprising instructions that direct the processor to:
advertise tags that are available from the second set of
tags.
14. The computer readable medium of claim 11, further
comprising instructions that direct the processor to:

advertise tags that are available from the first set of tags
until each of the function tags from the first set are

used: and,

in response to all of the tags from the first set being used,
advertise available tags from the second set of tags.

15. The computer readable medium of claim 11, further

comprising instructions that direct the processor to:
release an assigned tag when an associated non-posted
command 1s complete.

16. A Peripheral Component Interface Express (PCle)

device, comprising:

a queue operable to temporarily store non-posted com-
mands from a plurality of functions operable on the
PCle device; and

a tag allocator communicatively coupled to the queue and
operable to tag non-posted commands 1n the queue with
extended tags while reserving a set of tags for functions
not employing extended tags until the extended tags are
used,

5

10

15

20

25

8

wherein the queue 1s operable to transfer the non-posted
commands to a host after the non-posted commands are
tagged.

17. The PCle device of claim 16, wherein:

the functions comprise both virtual functions and physical
functions operable 1 a Single Root-Input/Output Vir-
tualization (SR-10V) PCle environment.

18. The PCle device of claim 16, further comprising:

a processor communicatively coupled to the tag allocator
and operable to receive acknowledgement from the
host that a first of the non-posted commands 15 com-
plete,

wherein the tag allocator 1s further operable to release a
first of the tags associated with the first non-posted
command from the queue based on the acknowledge-
ment.

19. The PCle device of claim 16, wherein:

the tag allocator 1s further operable to monitor the queue
to determine when extended tags are available.

20. The PCle device of claam 16, further comprising:

a packet builder communicatively coupled to each of the
functions and operable to build packets for the non-
posted commands.

21. The PCle device of claim 20, further comprising:

a transaction layer operable to transier the packets of the
non-posted commands to the host.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

