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Access Second Portion Of Metric Information

230
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Figure 2
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Calculate Projected Operational Metric Measurements

330

Determine Number Of Cloud Resource Instances
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PREDICTIVE LOAD SCALING FOR
SERVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to and the benefit of U.S.
Provisional Application Ser. No. 61/972,703, entitled “Pre-
dictive Load Scaling for Services”, filed on Mar. 31, 2014,
which application 1s incorporated by reference herein 1n its
entirety.

BACKGROUND

Cloud services are widely used to provide many types of
functionality 1ncluding hosting applications, providing
access to data storage, providing web sites, email or other
tunctionality. Cloud services typically run on a network of
computer systems that may be located remotely to each
other. The computer network may be configured to provide
the various services using virtual machines. The services
may be scaled by adding or removing virtual machines as
needed. For instance, at times of peak load, additional virtual
machines may be instantiated, while at times of reduced
load, virtual machines may be shut down. These virtual
machines are typically either brought up or taken down 1n a
reactionary manner (1.e. reacting to current load), or are
managed based on historical load data.

BRIEF SUMMARY

Embodiments described herein are directed to determin-
ing an optimal number of concurrently runmng cloud
resource instances and to providing an interactive interface
that shows projected operational metric measurements. In
one embodiment, a computer system accesses metric mnfor-
mation which identifies operational metric measurements
tor cloud resource mstances over a first period of time prior
to a present time. The computer system then accesses a
second portion of metric information that identifies opera-
tional metric measurements for the cloud resource instances

over a second period of time, where the second period of

time 1s a period of time that occurred 1n the past but which
corresponds to a specified future period of time. The com-
puter system then calculates projected operational metric
measurements based on the identified operational metric
measurements over the first period of time (e.g. for reactive
tuning) and further based on the 1dentified operational metric
measurements over the second period of time (e.g. for
predictive tuning). The computer system then determines,
based on the projected operational metric measurements, a
number of cloud resource instances that are to be concur-
rently running at a specified future point 1n time.

In another embodiment, a computer system provides an
interactive interface that shows projected operational metric
measurements. The computer system accesses operational
metric measurement data over a specified time period. The
computer system calculates projected operational metric
measurements based on the accessed operational metric
measurements and determines, based on the projected opera-
tional metric measurements, a number of cloud resource
instances that are to be concurrently running at specified
tuture points 1n time. The computer system then provides an

interactive interface that displays the determined number of

cloud resource 1nstances that are to be concurrently running
at the specified points in time. The interactive interface
turther allows input that changes operational metric settings
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2

and dynamically updates the determined number of concur-
rently running cloud resource instances.

This Summary 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

Additional features and advantages will be set forth 1n the
description which follows, and in part will be apparent to
one of ordinary skill in the art from the description, or may
be learned by the practice of the teachings herein. Features
and advantages of embodiments described herein may be
realized and obtained by means of the instruments and
combinations particularly pointed out in the appended
claims. Features of the embodiments described herein will
become more fully apparent from the following description
and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

To further clarily the above and other features of the
embodiments described herein, a more particular description
will be rendered by reference to the appended drawings. It
1s appreciated that these drawings depict only examples of
the embodiments described herein and are therefore not to
be considered limiting of its scope. The embodiments will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

FIG. 1 1illustrates a computer architecture i which
embodiments described herein may operate including deter-
mining an optimal number of concurrently running cloud
resource instances.

FIG. 2 1llustrates a tlowchart of an example method for
determining an optimal number of concurrently running
cloud resource instances.

FIG. 3 illustrates a flowchart of an example method for
providing an interactive interface that shows projected
operational metric measurements.

FIG. 4 1llustrates an embodiment of a time window for
scale-up evaluation.

FIG. § 1illustrates an embodiment of an interactive inter-
face that displays a projected instance count.

FIG. 6 illustrates an embodiment of an iteractive inter-
face that displays an impact preview.

DETAILED DESCRIPTION

Embodiments described herein are directed to determin-
ing an optimal number of concurrently runmng cloud
resource instances and to providing an interactive interface
that shows projected operational metric measurements. In
one embodiment, a computer system accesses metric infor-
mation which identifies operational metric measurements
for cloud resource instances over a first period of time prior
to a present time. The computer system then accesses a
second portion of metric information that identifies opera-
tional metric measurements for the cloud resource mstances
over a second period of time, where the second period of
time 15 a period of time that occurred 1n the past but which
corresponds to a specified future period of time. The com-
puter system then calculates projected operational metric
measurements based on the identified operational metric
measurements over the first period of time (e.g. for reactive
tuning) and further based on the 1dentified operational metric
measurements over the second period of time (e.g. for
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predictive tuning). The computer system then determines,
based on the projected operational metric measurements, a
number of cloud resource instances that are to be concur-
rently runming at a specified future point in time.

In another embodiment, a computer system provides an
interactive iterface that shows projected operational metric
measurements. The computer system accesses operational
metric measurement data over a specified time period. The
computer system calculates projected operational metric
measurements based on the accessed operational metric
measurements and determines, based on the projected opera-
tional metric measurements, a number of cloud resource
instances that are to be concurrently running at specified
future points 1n time. The computer system then provides an
interactive interface that displays the determined number of
cloud resource mstances that are to be concurrently running
at the specified points in time. The interactive interface
turther allows input that changes operational metric settings
and dynamically updates the determined number of concur-
rently running cloud resource instances.

The following discussion now refers to a number of
methods and method acts that may be performed. It should
be noted, that although the method acts may be discussed in
a certain order or illustrated 1n a flow chart as occurring 1n
a particular order, no particular ordering 1s necessarily
required unless specifically stated, or required because an act
1s dependent on another act being completed prior to the act
being performed.

Embodiments described herein may implement various
types of computing systems. These computing systems are
now increasingly taking a wide variety of forms. Computing
systems may, for example, be handheld devices, appliances,
laptop computers, desktop computers, mainirames, distrib-
uted computing systems, or even devices that have not
conventionally been considered a computing system. In this
description and 1n the claims, the term “computing system”™
1s defined broadly as including any device or system (or
combination thereotf) that includes at least one physical and
tangible processor, and a physical and tangible memory
capable of having thereon computer-executable instructions
that may be executed by the processor. A computing system
may be distributed over a network environment and may
include multiple constituent computing systems.

As 1llustrated 1n FI1G. 1, a computing system 101 typically
includes at least one processing unit 102 and memory 103.
The memory 103 may be physical system memory, which
may be volatile, non-volatile, or some combination of the
two. The term “memory” may also be used herein to refer to
non-volatile mass storage such as physical storage media. IT
the computing system 1s distributed, the processing, memory
and/or storage capability may be distributed as well.

As used herein, the term “executable module” or “execut-
able component” can refer to software objects, routings, or
methods that may be executed on the computing system. The
different components, modules, engines, and services
described herein may be implemented as objects or pro-
cesses that execute on the computing system (e.g., as sepa-
rate threads).

In the description that follows, embodiments are
described with reference to acts that are performed by one or
more computing systems. If such acts are implemented in
soltware, one or more processors of the associated comput-
ing system that performs the act direct the operation of the
computing system 1n response to having executed computer-
executable instructions. For example, such computer-ex-
ecutable instructions may be embodied on one or more
computer-readable media that form a computer program
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4

product. An example of such an operation involves the
mamipulation of data. The computer-executable instructions
(and the mamipulated data) may be stored in the memory 103
of the computing system 101. Computing system 101 may
also contain communication channels that allow the com-
puting system 101 to communicate with other message
processors over a wired or wireless network.

Embodiments described herein may comprise or utilize a
special-purpose or general-purpose computer system that
includes computer hardware, such as, for example, one or
more processors and system memory, as discussed 1n greater
detail below. The system memory may be included within
the overall memory 103. The system memory may also be
referred to as “main memory”, and includes memory loca-
tions that are addressable by the at least one processing unit
102 over a memory bus 1in which case the address location
1s asserted on the memory bus 1itself. System memory has
been ftraditionally wvolatile, but the principles described
herein also apply in circumstances in which the system
memory 1s partially, or even fully, non-volatile.

Embodiments within the scope of the present invention
also 1nclude physical and other computer-readable media for
carrying or storing computer-executable nstructions and/or
data structures. Such computer-readable media can be any
available media that can be accessed by a general-purpose or
special-purpose computer system. Computer-readable
media that store computer-executable instructions and/or
data structures are computer storage media. Computer-
readable media that carry computer-executable instructions
and/or data structures are transmission media. Thus, by way
of example, and not limitation, embodiments of the mmven-
tion can comprise at least two distinctly different kinds of
computer-readable media: computer storage media and
transmission media.

Computer storage media are physical hardware storage
media that store computer-executable instructions and/or
data structures. Physical hardware storage media include
computer hardware, such as RAM, ROM, EEPROM, solid
state drives (*“SSDs”), flash memory, phase-change memory
(“PCM”), optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other hardware
storage device(s) which can be used to store program code
in the form of computer-executable instructions or data
structures, which can be accessed and executed by a general-
purpose or special-purpose computer system to implement
the disclosed functionality of the invention.

Transmission media can include a network and/or data
links which can be used to carry program code 1n the form
of computer-executable instructions or data structures, and
which can be accessed by a general-purpose or special-
purpose computer system. A “network™ 1s defined as one or
more data links that enable the transport of electronic data
between computer systems and/or modules and/or other
clectronic devices. When information 1s transierred or pro-
vided over a network or another communications connection
(erither hardwired, wireless, or a combination of hardwired
or wireless) to a computer system, the computer system may
view the connection as transmission media. Combinations of
the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code 1n the form of computer-executable
instructions or data structures can be transferred automati-
cally from transmission media to computer storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be buflered in RAM within a network interface module
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(e.g., a “NIC”), and then eventually transferred to computer
system RAM and/or to less volatile computer storage media
at a computer system. Thus, it should be understood that
computer storage media can be included 1n computer system
components that also (or even primarily) utilize transmission
media.

Computer-executable mstructions comprise, for example,
istructions and data which, when executed at one or more
processors, cause a general-purpose computer system, spe-
cial-purpose computer system, or special-purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable instructions may be, for
example, binaries, intermediate format instructions such as
assembly language, or even source code.

Those skilled in the art will appreciate that the principles
described herein may be practiced in network computing
environments with many types ol computer system configu-
rations, including, personal computers, desktop computers,
laptop computers, message processors, hand-held devices,
multi-processor systems, microprocessor-based or program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, mobile telephones, PDAs, tablets,
pagers, routers, switches, and the like. The mvention may
also be practiced 1n distributed system environments where
local and remote computer systems, which are linked (either
by hardwired data links, wireless data links, or by a com-
bination of hardwired and wireless data links) through a
network, both perform tasks. As such, 1n a distributed system
environment, a computer system may include a plurality of
constituent computer systems. In a distributed system envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

Those skilled i the art will also appreciate that the
invention may be practiced 1n a cloud computing environ-
ment. Cloud computing environments may be distributed,
although this 1s not required. When distributed, cloud com-
puting environments may be distributed internationally
within an orgamzation and/or have components possessed
across multiple organizations. In this description and the
tollowing claims, “cloud computing” 1s defined as a model
for enabling on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services). The definition of “cloud
computing” 1s not limited to any of the other numerous
advantages that can be obtained from such a model when
properly deployed.

Still further, system architectures described herein can
include a plurality of independent components that each
contribute to the functionality of the system as a whole. This
modularity allows for increased flexibility when approach-
ing 1ssues of platform scalability and, to this end, provides
a variety of advantages. System complexity and growth can
be managed more easily through the use of smaller-scale
parts with limited functional scope. Platform fault tolerance
1s enhanced through the use of these loosely coupled mod-
ules. Individual components can be grown incrementally as
business needs dictate. Modular development also translates
to decreased time to market for new functionality. New
functionality can be added or subtracted without impacting
the core system.

FI1G. 1 illustrates a computer architecture 100 in which at
least one embodiment may be employed. Computer archi-
tecture 100 includes computer system 101. Computer sys-
tem 101 may be any type of local or distributed computer
system, including a cloud computing system. The computer
system 101 includes modules for performing a variety of
different functions. For instance, the communications mod-
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6

ule 104 may be configured to communicate with other
computing systems. The computing module 104 may
include any wired or wireless communication means that
can receive and/or transmit data to or from other computing
systems. The communications module 104 may be config-
ured to interact with databases, mobile computing devices
(such as mobile phones or tablets), embedded or other types
of computing systems.

In some embodiments, the communications module 104
of computer system 101 may be configured to receive metric
information from database 111. The database 111 may be
any type of local or distributed database, and the data stored
within the database may be stored according to substantially
any open or proprictary data storage standard. The metric
information 112 may include various operational metric
measurements 113 for different cloud resources. For
example, the metric information may include central pro-
cessing unit (CPU) load over a period of time. This may be
general CPU load or CPU load that 1s specific to the hosting
of a given service or virtual machine. Other metric 1nfor-
mation may be related to memory, networking bandwidth,
number of concurrently running virtual machines, number of
CPU cores or any other cloud resource. These cloud
resources 114 may be monitored by the computer system
101 over time, and the information identified from the
monitoring may be stored as metric information 112.

The accessing module 105 of computer system 101 may
be configured to access the metric information using a wired
or wireless connection to the database 111 (1in some cases, 1t
should be noted, the database 111 may be local to computer
system 101). Once the metric information 112 has been
accessed, the calculating module of computer system 101
may calculate a projected operational measurement 107.
This projected value may be an approximation or projection
of what the CPU load or other resource will be consuming
at some point 1n the future. Such a projection may be used
to determine how much hardware to have available for
scaling on a given day or week or month, etc. For example,
many websites encounter a large number of guests on or near
the holidays 1n November and December. In such cases, 1t
may be desirable to know how much hardware to have
available to scale up to be able to handle the increase 1n
users. In embodiments herein, this projected operational
measurement 107 may be based on past load over certain
periods of time. This will be explained 1n greater detail
below.

The determining module 108 of computer system 101
may use the projected operational measurement 107 to
determine an optimal number 109 of cloud resource
instances 114 (which includes virtual resources (e.g. VM
instances) and/or physical resources (e.g. CPUs or network
ports)). This determined optimal number of instances 109
may be provided to the interface instantiating module 110
which 1nstantiates 1nteractive interface 115. The interactive
interface 115 displays the optimal number of instances 109
for a given period of time. A user 116 may be able to view
the number of instances 109 1n context with other settings,
such as settings that govern how a service 1s to be hosted.
The user may interact with the interface 115 to change
certain hosting settings and view an updated projection 107
of cloud resources that should be available if those hosting
settings are used. In this manner, a user 116 may be able to
make virtual changes to the hosting settings of an applica-
tion and view the impact to existing cloud resources 114 it
those changes were actually to be applied.

In some embodiments described herein, computing sys-
tem 101 1s designed to determine the optimal or ideal
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number of cloud instances (e.g. concurrently running virtual
machines) that the user 116 should have at any given point
in time. This determination may be made by looking at
previous time windows of the load on the cloud resources
(perhaps 1n relation to a given service), based on known
recurring patterns such as daily patterns (e.g. previous days
in the week may have similar load at similar times of the
day), weekly patterns (e.g. the same day and time 1n a
previous week likely has similar load characteristics) or
annual patterns (e.g. there may be some broader patterns,
such as the school year or the holiday season).

As determination of optimal cloud resources 1s being
made, it may be beneficial to discount historical data the
older 1t gets. The load of a cloud resource or service over a
month ago could be very different from the load of last week.
The interactive interface 115 may be configured to show to
the user 116 time-series data of the performance of a service,
an application, a specified cloud resource or any combina-
tion thereof. This data may include the number of instances
hosting the service and may further include the aggregate
load on the service or cloud resource. Thus, unlike typical
metrics, this not the average across all of the cloud resource
instances, but stead sums or aggregates the load metrics
across all of the instances in the system. The data further
includes a projected instance count (1.e. 109), based on the
agoregate load, the user-defined hosting settings and any
prediction logic.

The projected mstance count 109 may be used 1n multiple
ways. When the user 116 views the interactive interface 115,
it shows them what scaling should have done at a given point
in time. In addition, as the user 116 changes the hosting
settings for their service, they can see a live preview that the
changes would have on the service, without having to
commit and wait for those changes to take effect. This live
preview 1s based on the historical data (i.e. the predictive
side of the logic), as future data i1s obviously not yet
available. Additionally, this information, along with the total
cllects of the new user-defined settings, may be presented to
the user 116 as aggregate statistics.

In some embodiments, an optimal number of cloud
resource istances 114 may be determined or predicted by
looking at usage patterns, and specifically at weekly pat-
terns, as opposed to monthly or daily patterns. These weekly
patterns may be the most common patterns, and may be
universal across all (or most) services. That said, the same
logic could be applied to different periods of time (e.g.
monthly or yearly). The time period may even be user-
customizable such that the user can select certain hours,
days, weeks, etc. over which to view cloud resource load.

As used herein, the term “‘auto-scaling” refers to auto-
matically scaling a cloud resource (e.g. the number of VMs
currently running to host a service, or the size of a particular
VM hosting a service) up or down based on current need.
When an auto-scaling job 1s mitiated, 1t may mmtially look at
the previous hour’s load. This 1s a reactive aspect of auto
scaling, and, at least 1n some cases, scale up decisions made
by looking at the past hour may be prioritized over any other
decisions. This may be done to err on the side of better
performance as opposed to cost savings, as users are typi-
cally more impacted by bad performance than by a small
difference 1n cost savings.

Thus, as shown 1n FIG. 4, the first time window consid-
ered when determining or predicting future use, may be the
previous hour 401. Next, the system may look at what the
projected usage 1s for the next hour. This 1s calculated by
looking at what happened over the next 60 minutes 1n
previous weeks, with an increasing discount the further back
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we go. For example, 11 the current time 1s 1 pm (402), then
the previous hour 401 would be noon-1 pm and the next hour
403 would be the usage between 1 pm and 2 pm a week ago,
two weeks ago, three weeks ago, and so on. Each previous
week may be rated at a different level. For example, the past
week may be weighted at 0.5, two weeks ago at 0.23, three
weeks ago at 0.125, and so on. By combining these values
together, the system can determine a single projected CPU
value for the upcoming hour. If the cloud resource load 1s
above the threshold that the user has defined, then a scale up
action may take place.

Next, scale-down conditions may be evaluated. For scale-
down, computer system 101 may be configured to only look
at the previous hour (or other time increment). This ensures
that we don’t erroneously scale down just because last week
there wasn’t a load at that time. In one embodiment, the
system may scale down only 1f current usage and historical
usage are both sufliciently low. This 1s a more aggressive
approach to keeping performance high and optimizing per-
formance over cost savings.

In other embodiments, a timeline may be shown that
indicates what would have happened had an auto-scaling
teature been enabled. Initially, two different time series of
data may be stored: instance count and auto-scale status.
Both may be accomplished by having a regular job that
emits the state of the system at certain time increments (e.g.
every five minutes). This information may then be used to
calculate two separate lines as shown in the projected
instance count 501 of FIG. 5: auto-scaled 1nstance count and
non-auto-scaled instance count. The dotted line 1s zero for
all data points where auto-scale 1s ofl, and 1s equal to the
instance count where auto-scale 1s on. The other (solid) line
1s the opposite: 1t 1s zero when auto-scale 1s on and the
instance count when auto-scale 1s off.

The aggregate load 1s also based on the time-series data of
metrics reported from the users’ system. In some embodi-
ments, the default metric 1s CPU usage, but it can be any
metric that the user selects or defines. There are two types of
metrics: percentage and absolute. For each percentage data
point, the system takes the aggregate metric and multiplies
by the number of instances that are running at that point in
time. Absolute data points are treated a little differently, as
they are not normalized to a certain threshold (e.g. 100%).
Accordingly, 1n such cases, the system first divides by the
maximum target that the user has defined, and then multi-
plies by the number of instances. The projected instance
count may be calculated by running an auto-scale engine
over the mstance count at each data point. For example, 1f
the user 116 has indicated that they should scale up when
CPU 1s above 60%, then the projected instance count will be
the aggregate CPU load divided by 0.6. As such, this line
changes as the user adjusts the auto-scale settings. This
allows the user to preview the eflect that a new set of options
would have on the performance, as well as show the cost of
applying those settings.

Additionally, the interactive intertace 115 may be config-
ured to show to the user rolled up statistics on the overall
success of proactive auto-scale. The aggregate statistics may
include two values: cost without auto-scale and cost with
auto-scale. Cost without 1s calculated by multiplying the
non-auto-scaled instance count by the per-unit cost of the
virtual machines. It there 1s no data point for the non-auto-
scale 1nstance cost, the maximum of the instance count line
1s used to fill mn the data. The cost with auto-scale 1is
calculated by multiplying the projected instance count by the
per-unit cost of the virtual machines. These concepts will be
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explained further below with regard to methods 200 and 300
of FIGS. 2 and 3, respectively.

In view of the systems and architectures described above,
methodologies that may be implemented in accordance with
the disclosed subject matter will be better appreciated with
reference to the flow charts of FIGS. 2 and 3. For purposes
of simplicity of explanation, the methodologies are shown
and described as a series of blocks. However, 1t should be
understood and appreciated that the claimed subject matter
1s not limited by the order of the blocks, as some blocks may
occur 1 different orders and/or concurrently with other
blocks from what 1s depicted and described herein. More-
over, not all illustrated blocks may be required to implement
the methodologies described hereinatter.

FIG. 2 1llustrates a flowchart of a method 200 for deter-
miming an optimal number of concurrently running cloud
resource instances. The method 200 will now be described
with frequent reference to the components and data of
environment 100.

Method 200 1ncludes an act of accessing a first portion of
metric information which 1dentifies operational metric mea-
surements for one or more cloud resource instances over a
first period of time prior to a present time (act 210). For
example, accessing module 105 of computer system 101
may access metric information 112 which includes opera-
tional metric measurements 113 for various cloud resource
instances 114. The metric information 112 may include
metric information for the prior hour, for example. Thus, as
shown 1n FIG. 4, the metric information may correspond to
the CPU load or other measurement over the previous hour
401.

Method 200 includes an act of accessing a second portion
of metric information that identifies operational metric mea-
surements for the one or more cloud resource nstances over
at least a second period of time, the second period of time
comprising a period of time that occurred in the past but
which corresponds to a specified future period of time (act
220). The accessing module 105 of computer system 101
may access another portion of metric information 112 that
shows various operational characteristics of one or more
cloud resource 1nstances over a period of time. The period of
time may correspond to a period that occurred in the past but
which corresponds to a future period of time. Thus, if the
current time 1s 10 am (e.g. 402 1n FIG. 4) on Tuesday, April
8th, the previous hour (401) would have been from 9 am-10
am, while the next hour 403 would correspond to the hour
from 10 am-11 am, but one week (or two or three weeks)
displaced. Thus, the period of time 1s said to have occurred
in the past (e.g. on Tuesday, April 1st, from 10 am-11 am),
but corresponds to the future period of time Tuesday, April
8th, from 10 am-11 m.

This second period of time may be selected or customized
by a user. The second period of time (403) 1s used for
predicting future load (or other measurement), while the first
period of time (401) 1s used for reacting to past load (1n most
cases, 1n the very recent past). As indicated, the second
period of time may be specified by user 116 and may be a
day, a week, a month a year, or some other specified
timelrame (e.g. a weekend, six months, an hour and twelve
minutes, etc.). Older operational metric measurements may
be weighted progressively less than newer operational met-
ric measurements. Thus, second time periods 403 that cor-
respond to a time that occurred 1n the past but also corre-
spond to a future time may each be weighted progressively
less for each older operational measurement. Thus, 1n some
embodiments, those operational metric measurements 113
that are identified over the first period of time 401 are
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prioritized over the identified operational metric measure-
ments of the second period of time 403 when calculating the
projected operational metric measurements 107. This pri-
oritization may lead to performance of a hosted service
being prioritized over potential cost savings that could be
realized 1 a certain number of cloud resources (e.g. VMs)
were scaled down in an auto-scale operation.

Method 200 next includes an act of calculating one or
more projected operational metric measurements based on
the 1dentified operational metric measurements over the first
period of time and further based on the identified operational
metric measurements over the second period of time (pre-
dictive tuning) (act 230). For example, calculating module
106 of computer system 101 may calculate projected opera-
tional metric measurements 107 based on the identified
operational metric measurements 113 over the first period of
time (e.g. 401) (reactive tuning) and further based on the
identified operational metric measurements over the second
period of time (predictive tuning) (e.g. 403). In some cases,
current operational metric measurements may also be taken
into account (e.g. at 402). The measurements over the first
period of time (1.e. the recent past) may be used for reactive
tuning or reactive auto-scaling, which 1s scaling cloud
resource instances up or down to match the demand. If
demand has been high for the past hour, 1t 1s likely that
demand will continue to be high for the next hour (at least
during a workday). Similarly, if demand has been low, 1t 1s
more likely than not that the next hour will remain at low
demand (at least during the night time).

However, transitions may occur more quickly, for
example, 11 a website 1s offering a midmght deal, demand
may change greatly from the load seen over the previous 11
pm-12 am hour. Similarly, trathic may increase for a service
that provides applications used by workers. Demand may go
up substantially 1n the morming and may drop substantially
in the eveming when workers go home. Accordingly, the
calculating module 106 may look not only at the recent past,
but may also look at what happened in the next hour (or
other timeframe) 1n the past (e.g. what happened 1n the next
hour, one day ago, or one week ago). In this manner, the
calculating module 106 can provide a projected operational
measurement 107 that includes a reactive measurement and
a predictive measurement.

The determining module 108 may then determine, based
on the projected operational metric measurements 107, a
number of cloud resource instances 109 that are to be
concurrently running at one or more specified future points
in time (act 240). The determined number of instances 109
may specily how many virtual machines, or how many CPU
cores, or how many network ports or how many other cloud
resource instances 114 are to be runming to handle the load
predicted 1n the projected operational measurement 107. The
projected operational measurement 107 may be more accu-
rate than other methods, as 1t includes the 1dentified opera-
tional metric measurements over the first period of time (1.¢.
the reactive measurements) and the identified operational
metric measurements over the second period of time (1.¢. the
predictive measurements). In some cases, there may be
conilicting data between the measurements of the past hour
(which may be high) and the measurements of the approach-
ing hour, one or two weeks ago (which may indicate that
load will be low). In such cases, cloud resource scaling
actions may give deference to the load measured over the
prior hour (401) over the load measured over periods of time
that are farther back. At least in some cases, however, this
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may be a configurable setting, and a user or administrator
may establish a policy to determine which measurements are
given deference.

If the determining module 108 determines that a specified
number of virtual machine instances are to be concurrently
running, and the number of currently runmng virtual
machine 1nstances 1s (substantially) lower or higher than the
determined number 109, the determining module may trig-
ger an auto-scaling action. Thus, 11 the determined number
of instances 109 1s, for example, five, and the number of
currently running VM 1nstances 1s 8, an auto-scaling action
may occur which reduces the number of concurrently run-
ning VM i1nstances to five. The auto-scaling action may
include adding or removing VM instances, and may be
performed repeatedly as determined by the determining
module 109 and as the projected operational measurement
107 changes.

In some embodiments, virtual machine instances may
only be removed upon determining that the removal would
not trigger other auto-scaling actions, so as to prevent
flapping (where one auto-scaling rule indicates that
instances are to be added and, once added, a second auto-
scaling rule indicates that the newly added instances are to
be removed). Policies may be implemented which specily
that auto-scaling actions are prevented from removing VM
instances. This prioritizes health over resource savings, as
VM 1nstances are not scaled down even in times of reduced
load. Auto-scaling actions may further be configured to
increase or decrease the size one or more currently running
virtual machine instances, instead of powering down or
powering up new ones. Increasing the size may include
increasing the number of available CPUs, CPU cores,
memory, storage, networking capacity or increasing the
quantity ol other resources. The projections made by the
calculating module 106 may be displayed in an interactive
interface 115, as will be explained further below with regard
to method 300 of FIG. 3.

FIG. 3 illustrates a flowchart of a method 300 for pro-
viding an interactive interface that shows projected opera-
tional metric measurements. The method 300 will now be
described with frequent reference to the components and
data of environment 100.

Method 300 includes an act of accessing one or more
portions ol operational metric measurement data over at
least one time period (act 310). For example, accessing
module 105 of computer system 101 may access operational
metric measurement data 113 that includes metric data for
one or more cloud resources over a period of time. The
calculating module 106 of computer system 101 may then
calculate one or more projected operational metric measure-
ments 107 based on the accessed operational metric mea-
surements (act 320). In this calculation, reactive and/or
predictive calculations may be used. The determining mod-
ule 108 may then determine, based on the projected opera-
tional metric measurements 107, a number of cloud resource
instances that are to be concurrently running at one or more
specified future points in time (act 330). The interface
instantiating module 110 may then instantiate an interactive
interface 1135 that displays the determined number of cloud
resource 1nstances 109 that are to be concurrently running at
the one or more specified points 1 time. The interactive
interface further allows iput (e.g. from user 116) that
changes operational metric hosting or auto-scale settings and
dynamically updates the determined number of concurrently
running cloud resource instances (act 340).

For example, as shown i FIG. 6, a user may specily
different actions 604 that are to occur or different metric
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settings that are to be maintained when hosting a service or
otherwise using cloud resources. The user may specily a
target CPU load range 601 that is to be maintained for each
CPU, or may specily a target queue 602, or time to wait after
scaling up or down. The user may turn auto-scaling on or off
using switch 605, and may view the projected statistics or
measurements at 603. The statistics may include an indica-
tion of the cost to run the cloud resources with auto-scaling
on and with auto-scaling turned off.

The interactive mterface may also show historical opera-
tional metric measurement data for a specified time period
(1.e. what actually happened during that timeframe) and
further show an 1ndication of the number of virtual machine
instances that would have been concurrently running had
auto-scaling been applied during the time period (as shown
in FIG. 5 where the dotted line shows the number had
auto-scaling been on, while the solid line shows the actual
measurements. Accordingly, it can be seen 1in FI1G. 5 that had
auto-scaling been on between the period of 6 pm and 9 pm,
the number of concurrently running instances would have
dropped, leading to a cost savings. Accordingly, users may
use the interactive interface to see what actually happened,
what would have happened had auto-scaling been turned on,
and what would happen if certain settings were applied to
the cloud resource(s).

In some embodiments, the interactive interface 115 pro-
vides an indication that an auto-scaling action has been
triggered based on the determined number of virtual
machine instances that are to be concurrently running. As
mentioned above, these auto-scaling actions may take place
when the determining module 108 determines that a certain
number of virtual machine instances 109 are to be concur-
rently running. If more or fewer than that determined
number are currently running, the computer system 101
triggers an auto-scaling action. Fach time one of these
auto-scaling actions occurs, the user 116 may be apprised 1n
the mteractive interface 115. The user may use this infor-
mation to change settings 1f, for example, auto-scaling
actions are taking place too often. The interactive interface
may further provide an option to choose which virtual
machine 1nstances are removed during an auto-scaling
action. There may be situations where a user would like
certain VM 1nstances removed in a scale-down or certain
VM mstances added 1n a scale-up. Accordingly, the user may
make such specifications using the interactive interface.
Options may also be provided which allow the user to select
a new size for those virtual machine 1nstances that are to be
changed during an auto-scaling action

Accordingly, methods, systems and computer program
products are provided which determine an optimal number
of cloud resource instances that should be concurrently
running at any given point mn time. Moreover, methods,
systems and computer program products are provided which
provide an interactive iterface that shows current and
projected operational metric measurements.

The concepts and features described herein may be
embodied in other specific forms without departing from
theirr spirit or descriptive characteristics. The described
embodiments are to be considered 1n all respects only as
illustrative and not restrictive. The scope of the disclosure 1s,
therefore, indicated by the appended claims rather than by
the foregoing description. All changes which come within
the meaning and range of equivalency of the claims are to be
embraced within their scope.

We claim:

1. At a computer system including at least one processor
and a memory, a computer-implemented method for deter-
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miming an optimal number of concurrently running cloud
resource instances, the method comprising;:
an act of accessing a first portion of metric information
that 1dentifies first operational metric measurements for
one or more cloud resource mstances over a first period
of time prior to a present time, wherein the first period
of time 1s a contiguous time period;
an act of accessing a second portion of metric information
that identifies second operational metric measurements
for the one or more cloud resource instances over at
least a second period of time, the second period of time
comprising one or more discrete periods of time that
occurred 1n the past, the second period of time also
corresponding to one or more specified future periods
of time;
an act of calculating one or more projected operational
metric measurements based on the identified opera-
tional metric measurements over the first period of time
and further based on the i1dentified operational metric
measurements over the second period of time; and
an act of determining, based on the one or more projected
operational metric measurements, a number of cloud
resource instances that are to be concurrently running at
the one or more specified future periods of time; and

based on at least the one or more projected operational
metric measurements, an act of scaling the concurrently
running cloud resource mstances during at least one of
the one or more specified future points 1n time.

2. The method of claim 1, wherein the 1dentified opera-
tional metric measurements over the first period of time are
prioritized over the identified operational metric measure-
ments of the second period of time when calculating the one
or more projected operational metric measurements.

3. The method of claim 1, wherein the second period of
time 1s specified by a user and comprises at least one of a
day, a week, a month or a year.

4. The method of claim 3, wherein older operational
metric measurements are weighted progressively less than
newer operational metric measurements.

5. The method of claim 1, wherein the projected opera-
tional metric measurements based on the i1dentified opera-
tional metric measurements over the first period of time
comprise reactive measurements while the projected opera-
tional metric measurements based on the i1dentified opera-
tional metric measurements over the second period of time
comprise predictive measurements.

6. The method of claim 1, wherein determining a number
of virtual machine instances that are to be concurrently
running triggers an auto-scaling action 1f the number of
concurrently running virtual machine instances 1s more or
less than the determined number.

7. The method of claim 6, wherein the auto-scaling action
comprises adding at least one virtual machine instance.

8. The method of claim 6, wherein the auto-scaling action
comprises removing at least one virtual machine 1nstance.

9. The method of claim 8, wherein virtual machine
instances are removed upon determining that the removal
would not trigger other auto-scaling actions.

10. The method of claim 6, wherein auto-scaling actions
are prevented from removing virtual machine instances to
prioritize health over resource savings.

11. The method of claam 6, wherein the auto-scaling
action comprises increasing or decreasing the size of at least
one currently running virtual machine instance.

12. A computer program product for implementing a
method for providing an interactive interface that shows
projected operational metric measurements, the computer

5

10

15

20

25

30

35

40

45

50

55

60

65

14

program product comprising one or more computer-readable
hardware storage media having stored thereon computer-
executable instructions that, when executed by one or more
processors ol a computing system, cause the computing
system to perform the method, the method comprising:
accessing a {irst portion of metric measurement data that
identifies first operational metric measurements for one
or more cloud resource instances over a {first time
period prior to a present time, wherein the first time
period 1s a single, contiguous time period;

accessing a second portion of metric mformation that

identifies second operational metric measurements for
the one or more cloud resource instances over at least
a second period of time, the second period of time
comprising one or more discrete periods of time that
occurred i1n the past, the second period of time also
corresponding to one or more specified future periods
of time;

calculating one or more projected operational metric

measurements based on both the accessed operational
metric measurements over the first time period and the
second time period;
determining, based on the one or more projected opera-
tional metric measurements, a number of cloud
resource instances that are to be concurrently running at
the one or more specified future periods of time; and

providing an interactive interface that displays the deter-
mined number of cloud resource instances that are to be
concurrently running at the one or more specified
periods of time, the interactive iterface further allow-
ing input that changes operational metric settings and
dynamically updates the number of concurrently run-
ning cloud resource instances.

13. The computer program product of claim 12, wherein
the interactive interface show historical operational metric
measurement data for a time period and an indication of the
number of virtual machine mstances that would have been
concurrently running had auto-scaling been applied during
the time period.

14. The computer program product of claim 13, wherein
the interactive interface further shows a cost savings for the
time period had auto-scaling been applied during that time
period.

15. The computer program product of claim 12, wherein
the interactive interface provides an indication that an auto-
scaling action has been triggered based on the determined
number of virtual machine instances that are to be concur-
rently running.

16. The computer program product of claim 135, wherein
the interactive interface provides an option to choose which
virtual machine instances are removed during an auto-
scaling action.

17. The computer program product of claim 16, wherein
the interactive interface provides an option to select a new
size for those virtual machine instances that are to be
changed during an auto-scaling action.

18. A computer system comprising the following;:

One Or mMore pProcessors;

system memaory;

one or more computer-readable storage media having

stored thereon computer-executable instructions that,
when executed by the one or more processors, cause the
computing system to perform a method for determining
an optimal number of concurrently running virtual
machine instances, the method comprising the follow-
ng:
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accessing a first portion of metric information that
identifies first operational metric measurements for
one or more virtual machine instances over a first
period of time prior to a present time, wherein the
first period of time 1s a contiguous time period;

accessing a second portion of metric information that
identifies second operational metric measurements
for the one or more virtual machine 1nstances over at
least a second period of time, the second period of
time comprising a plurality of discrete periods of
time that occurred 1n the past, the second period of
time also corresponding to one or more specified
future periods of time;

calculating one or more projected operational metric
measurements based on the identified operational
metric measurements over the first period of time
and further based on the 1dentified operational metric
measurements over the second period of time; and

determining, based on the one or more projected opera-
tional metric measurements, a number of virtual
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machine instances that are to be concurrently run-
ning at the one or more specified future periods of
time;

based on at least the one or more projected operational
metric measurements, an act of scaling the concur-
rently running cloud resource instances during at

least one of the one or more specified future periods
of time.

19. The computer system of claim 18, wherein determin-
ing a number of virtual machine instances that are to be

concurrently running triggers an auto-scaling action ii the
number of concurrently running virtual machine instances 1s

more or less than the determined number.

20. The computer system of claim 18, wherein the auto-
scaling action 1s automatically performed upon determining
that a second, different auto-scaling action would not be

triggered.
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