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1

VALUE OF INFORMATION WITH
STREAMING EVIDENCE BASED ON A

PREDICTION OF A FUTURE BELIEF AT A
FUTURE TIME

BACKGROUND

The decision processes of acting under uncertainty and
reasoning about the possibilities of future states 1s a widely
cited challenge that has been researched for many years.
When applied to autonomous systems, a prominent class of
problems that can be addressed with this decision process
can be summed up as whether to act now based on current
evidence or to wait for more evidence that may potentially
improve the action selection, at the cost of delay.

By way of a practical example, physically situated sys-
tems such as robots or embodied conversational agents
typically rely on continual sensing to make inferences about
the state of their sensed world and to guide their decisions.
To 1dentity 1deal actions over time, these systems need to
cvaluate whether to act immediately using current sensory
data or wait for more data that may possibly improve state
estimates before acting. Consider a conversational agent
embodied as a program that operates a display monitor,
speakers, microphone and camera mounted outside a per-
son’s office. The agent may use a combination of face
detection and tracking components to track the trajectory of
people 1n its vicinity based on an analysis of pixels 1n the
video stream. In addition, a face recognition component may
be used to 1dentily actors 1n the scene. At a higher level, the
spatial trajectory and 1dentity percepts can be fused to make
inferences about the person’s goals, and ultimately drive
interaction decisions, such as when to initiate or break
conversational engagement with people nearby.

The traditional approach to deliberating about the value of
collecting additional information i advance of action 1s to
compute the expected value of information (VOI), which 1s
a measure of the diflerence of the expected value of the best
decision before and after information 1s collected, consid-
ering the cost of acquiring the information. This includes the
loss 1n value associated with the delay of action to await for
the new information. However, with an autonomous system
such as a conversational agent, the nature of the sensory
evidence 1s streaming and high-dimensional (e.g., thousands
of pixels regularly received 1n captured frames). There are
challenges with computing VOI 1n settings with streaming,
high-dimensional sensory evidence that make the traditional
approaches unsuitable.

SUMMARY

This Summary 1s provided to introduce a selection of
representative concepts in a simplified form that are further
described below 1n the Detailed Description. This Summary
1s not intended to 1dentify key features or essential features
of the claimed subject matter, nor 1s it intended to be used
in any way that would limit the scope of the claimed subject
matter.

Brietly, various aspects of the subject matter described
herein are directed towards constructing one or more belief
projection models from existing evidence, including stream-
ing evidence, to predict a future belief over a state at a future
time. The prediction of the future beliet 1s used to determine
whether to act or wait for additional evidence.

In one aspect, processing logic 1s coupled to a sensor set
comprising one or more sensors, and 1s coupled to an output
mechanism set comprising one or more output mechanisms.
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The processing logic 1s configured to process evidence
received via the sensor set, mncluding streaming evidence,
into one or more belief projection models, and to construct
one or more probability distributions based upon the belief
projection models to predict possible future beliefs over a
state at a future time using the recerved evidence. The
processing logic uses the predicted future beliefs to deter-
mine whether to act via the output mechanism set or wait for
additional evidence to be received.

In one aspect there 1s described receirving sensory evi-
dence, including high-dimensional streaming evidence, and
processing the sensory evidence to project future beliels
over states. The predicted future belief 1s used to make a
decision, e.g., to wait for additional evidence to be received,
or to select which action to take, without waiting for
additional evidence.

Other advantages may become apparent from the follow-
ing detailed description when taken 1n conjunction with the
drawings.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

The present mvention 1s illustrated by way of example
and not limited 1n the accompanying figures in which like
reference numerals indicate similar elements and 1n which:

FIG. 1 1s a block diagram including components config-
ured to act as an autonomous assistant via processing logic
that processes sensory evidence to predict future belief
states, according to one example embodiment.

FIG. 2 1s a representation of processing training data for
a beliel projection model, according to one example
embodiment.

FIG. 3 15 a representation of using lower-level perceptual
inference models to obtain a higher-level state inference
model, according to one example embodiment.

FIG. 4 1s a representation of processing sensory evidence
into percepts, and the percepts into belief state data, accord-
ing to one example embodiment.

FIGS. SA-5C are representations of example traces of
sensed face width, action utilities, and inferences, respec-
tively, according to one example embodiment.

FIGS. 6A-6D are representations of projected percept
beliefs over time, according to one example embodiment.

FIGS. TA-7C are representations of projected percept
beliels over time and distribution data, according to one
example embodiment.

FIG. 8 1s a flow diagram showing example steps that may
be taken to process sensory evidence mnto an action deter-
mination, according to one example embodiment.

FIG. 9 1s a block diagram representing an example
computing environment, into which aspects of the subject
matter described herein may be incorporated.

DETAILED DESCRIPTION

Various aspects of the technology described herein are
generally directed towards using discriminatively trained
conditional models to predict future belief states from exist-
ing evidence, along with using these models to weigh the
tradeofls between acting immediately, waiting for more
sensory evidence to accumulate, and/or orchestrating which
sensors are to be activated at a given time. The models may
be learned automatically from data via self-supervision, and
may be included into hierarchical inferential architectures.

In general, instead of using a generative model that
predicts the probability of future evidence, the model
described herein predicts what the belief over the state at a
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future time will be, based upon the existing evidence. In
other words, using the current evidence, the prediction 1s
based upon a projected (computed) belief of what the future
beliet likely will be. Predictions about future beliefs may be
used to compute the expected cost of taking an optimal
action at that time.

It should be understood that any of the examples herein
are non-limiting. As such, the present mvention 1s not
limited to any particular embodiments, aspects, concepts,
structures, functionalities or examples described herein.
Rather, any of the embodiments, aspects, concepts, struc-
tures, functionalities or examples described herein are non-
limiting, and the present invention may be used various
ways that provide benefits and advantages in computing and
computerized decision making in general.

FIG. 1 1s a representation of an example implementation
of an autonomous system that serves as an automated
secretary or the like, referred to and exemplified as an
assistant 102. For example, one implementation provides the
assistant 102 as a multimodal interactive kiosk that displays
an avatar head on a display 104 and is stationed outside an
oflice. A display engine 106 controls the output to the
display 104, e.g., in the form of graphics, text, animations
and/or video to (possibly) interact with a user 108 based
upon various decisions made by a controller 110. The
controller 110 also causes the output of natural language to
interact with people, possibly the user 108, as represented by
the speech engine 112 and speaker 114. In this way, the
assistant 102 can interact via spoken language with visitors
who stop by 1ts owner’s oflice and can handle a variety of
administrative tasks such as providing information about the
whereabouts and future availability of 1ts owner, scheduling
meetings, and relaying messages.

The exemplified assistant 102 uses multiple sensors 116,
such as a wide-angle camera, microphone array (e.g., based
upon Kinect™ technology), and RFID badge reader, to
make real-time inferences about people 1n 1ts proximity,
including their i1dentities, activities and goals. This 15 rep-
resented by the image data 118 (e.g., frames of captured
video), audio data 119 and other data 120.

The assistant 102 may be a domain expert 1n the presence
and availability of 1ts owner. For example, the assistant 102
may have access to the computer activity of its owner, Wi-Fi
fingerprints of devices on the network being used by the
owner, and calendar data, as represented via activity data
123 and calendar data 124. The underlying system may
continuously (or frequently/occasionally/on demand) makes
probabilistic forecasts about arrival times and likely avail-
abilities of the owner.

By constructing one or more conditional models (collec-
tively labeled 126 1 FIG. 1), each based upon some of the
sensory evidence, which includes data that 1s streaming and
high dimensional 1n nature, the assistant 102 1s able to make
decisions with respect to acting under uncertainty. To this
end, described herein 1s computing VOI based upon high-
dimensional streaming evidence, including to make deci-
s1ons about acting now versus later, and about sensors (e.g.,
whether to 1nvoke further sensors, different sensors and so
forth). The decision may be directed towards a mixed-
mitiative engagement challenge with the assistant 102, e.g.,
whether to engage a person 1 a conversation, or wait for
more 1mformation.

In general, engagement 1s a process by which participants
in a conversation coordinate their actions to initiate, main-
tain and terminate their interactions. For autonomous sys-
tems, a conservative engagement policy 1s to wait for users
to 1mtiate engagement with the system by entering in a
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user-mitiated “t-formation” with the system, in which the
user approached and stood closely 1in front of a camera
sensor. This policy was designed to minimize false positives,
1.€., cases where the system would mmitiate engagement with
someone who was just walking by or who was standing
nearby but talking to someone 1n another office, and also was
straightforward to detect.

However, this prior engagement policy did not account
for those people who do not 1mnitiate engagement, including
people who are waiting for the owner to return to his or her
oflice or to become available (that 1s, when the owner 1s
already 1n the office, but busy). Indeed, 1n actual situations,
instead of seeking engagement, many times a person tends
to bypass the autonomous system and sit 1n a nearby chair,
or talk to others while waiting. In these situations, the
conservative user-initiated engagement policy missed
important opportunities to engage a waiting person in dialog
on behall of the owner. The cost of these missed opportu-
nities can be high. As one example, the system may know
that the owner 1s running late for a scheduled meeting, but
because the visitor does not iitiate engagement, the system
using the conservative engagement policy does not let the
visitor know before he or she leaves 1n frustration.

As described below, rather than relying exclusively on
user-initiated engagement, a system described herein
(1implemented as the assistant 102) 1s configured to proac-
tively mitiate engagement with someone 1n the scene, even
at a distance, if the system knows (e.g., to a threshold
confidence) that the person 1s looking for the owner and that
the system can provide helpful information. The mixed-
initiative engagement policy hinges on inferences about the
engagement action and the goal of the person. As described
herein, the proactive engagement policy balances the costs
of engaging people that are not looking for the owner, with
the costs of missed opportunities to engage visitors before
they leave.

In one aspect, the quality of sensory evidence collected
and the inferences made from this evidence often may be
improved at the cost of additional time delay for sensing and
computation. In general, accumulating additional sensory
evidence over time can lead to more accurate inierences
(e.g., Tor face identification, intention recognition, and so
forth). Also, more powertul sensors can be turned on, and/or
more sophisticated algorithms for audiovisual scene analysis
may be run, e.g., at sub-real-time speeds. In addition,
systems may be able to solicit and obtain external assistance
in quasi-real time. For instance, recognizing faces far from
the camera may be diflicult, but a system may be able to
query people drawn from a knowledgeable crowd for assis-
tance with identifying the person. In this case, the crowd acts
in ellect as a time-delayed sensor; however the additional
evidence may arrive with various delays. When sensors and
inferences are characterized by different levels of accuracy
and by stochastic time-delays, tradeolls arise between acting
immediately and waiting for more information to accumus-
late prior to acting.

Thus, time plays a role 1n the evidence collecting and
decision making processes, icluding that some perceptual
inferences may become more accurate over time, as the
system gathers additional sensory evidence. In the above
example, face 1dentification can become more accurate over
time and as the person moves closer to the camera. In
addition, the assistant has the ability to seek external assis-
tance 1n real time, e.g., the system can take and send a
snapshot of the scene to human volunteers and/or employees
(such as receptionists) 1in real-time and ask them to help
identify the person in the scene, with responses to such
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information-gathering actions arriving with a stochastic
delay. Note that the crowd need not be completely knowl-
edgeable with respect to a person’s 1dentity, e.g., a crowd
may be asked a series of questions, such as whether the
person appears to be a male or female, whether the person
appears to be above a certain height, an approximate age of
the person and so on to help the system narrow in on the
correct 1dentity of the person/user.

Furthermore, the unknown person might leave after a
while, before the system has had a chance to reliably identify
him or her. The methods described herein enable the assis-
tant 102 to reason about the current evidence and the value
of additional sensory evidence that will likely be accumu-
lated 1n the near future, and to resolve tradeofls between
different courses of action, 1n this case engaging, not engag-
ing, or waiting for additional evidence to be accumulated
(possibly including seeking expert assistance).

Thus, one aspect 1s directed towards the tradeoll between
acting immediately based on existing evidence versus col-
lecting additional evidence prior to acting. In a decision
theoretic setting, this tradeofl may be resolved by computing,
the value of information (VOI). Let p(s|E) be a model that
infers the world state s based on existing evidence E, and
C(s, a) be a cost function defined on world states and the
actions aeA that the system may take. The value of infor-
mation computation determines the diflerence between the
expected value of taking an information gathering action
a,, which reveals additional evidence e and selecting the
best domain action a and terminating the decision process.

Vinto (E) = (1)

Z p(s| E)-C(s, @ingo) + Z ple| E) -mfxz pis’ | ElJe)-Cls, a)

L

and the expected value of acting immediately, based on the
existing evidence E:

Voe(E) = max » pls| E)- C(s, a)

This approach can be extended 1n a straightforward man-
ner to reason about sequences ol information gathering
actions. However, VOI can be intractable to compute for
problems with large state spaces or high-dimensional sen-
sory evidence (as 1 FIG. 1 where the audio data 118 and/or
image (video) data 119 arrive as high-dimensional streaming
evidence) due to difficulties 1n constructing generative evi-
dence models p(elE) and due to the summations over all
possible values (high branching factor).

Notwithstanding, using technology described herein, the
value of mformation (VOI) approach for guiding the deci-
sion of whether to wait versus act 1s applicable 1n settings
with high-dimensional, streaming sensory evidence. The
waiting action can be viewed as an information gathering
action, that 1s, additional sensory evidence e 1s collected
while the system 1s waiting. Let 1, denote the sensory
evidence observed by the system up to the current time-point
t, 1.e., E= . The new evidence e that will be revealed by
waiting until some future time t+k 1s E=\__ ., where in one
implementation 1, , comprises a sequence of high-dimen-
sional sensory evidence vectors that are collected from time
1 to time t+k, P, ={y,}._, ... If for generality it is assumed
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that state s changes over time, and s, , denotes the state at
time t+k, the expected value of waiting, computed based
upon equation (1) becomes:

Vinfo (Y1) = Z pis: | ) - C(Sy, Qinpor) +

( 3
Z pfe | ) 'mgxz PSerg | ¥rin) - ClSrpg, @)

Y
Y1 +4 -k y

A direct computation of the expected value of information
(or waiting), requires a model for p(\,, .1 ,), that 1s, p(y,,
s, ..., P, 1p,). Building this type of generative model for
future sensory evidence 1s 1 most cases intractable due to
the streaming and high-dimensional nature of the sensory
evidence .. Alternative formulations often used in Bayes
Nets that rely on a factorization of p(\y. . .I.) based on
p(,. .Is )p(s,l,) encounter similar tractability challenges.

A model for generating p(,,.1),) 1s described herein to
estimate the future state s,_,, with the sensory evidence .
needed to estimate s,_,, via p(s,, .1}, .). Because learning a
generative model for future sensory evidence p(\y,. . I,) 1s
intractable, described herein 1s a reformulation of the
expected value of information computation that (unlike the
traditional approach) relies on a direct prediction of what the
results of the sensory inference b, (s, . )=p(s, .|y, ) will be
at future times t+k, conditioned on the current evidence at
time t:

Y (b r+k|1pr):p(p(3r+ﬁc| lpr+k) |1p.=f)

Note that p(b, .I},) 1s referred to herein as a belief
projection model. This model may be used 1n the expected
value of waiting computation as follows:

Vwair(ﬁbr) — Z P(Sr | i)l’r) - C(Sra ﬂwair) +
PO | Weri) 'mfxz bri Stk ) - CStys > @)

| Z
Stk

D Sp g =P g ) J

Thus, 1nstead of using a generative model p(\, . I.) that
predicts the probability of future evidence, a model 1s used
that directly predicts what the belief over the state s, , at
time t+k will be, b, (s, .)=p(s,..|V,,,) conditioned on the
existing evidence .. This predicted future belief may be
used to compute the expected cost of taking the optimal
action at that time, e.g., max, 2, b, ;(8,,)C(s,,4a).

The belief projection model p(b,, . 11,) can be trained 1n a
supervised fashion based on a corpus of labeled data. For
each training data point (1 ,b,__ ;) the teatures 1, describe the
sensory evidence collected up to time t. The corresponding,
label b, , comprises the output of the state inference models
at some future time t+k, 1.e., p(s,, .1y, .); the training label
1s a beliel over the state s ;. Training data can be collected
by running a system with a given inference model p(s,l,);
and recording the iput features and the beliel b, over s,
produced by this model at each time pomnt 1. FIG. 2
exemplifies training data for a belief projection model, with
pairs of the form 1,—b__ ,, which can be collected automati-
cally at runtime by recording the outputs b, of the state
inference model at each time point t+k.

A belief projection model may be learned automatically
from data via parametric machine learning approaches, e.g.,
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like fitted mixtures of Beta or Dirichlet distributions. A
belief projection model may be learned automatically from
data via non-parametric machine learning approaches, e.g.,
like decision trees. A beliet projection model may be manu-
ally constructed via a set of heuristic rules, e.g., by a domain
expert.

The belief projection model computes a beliel over the
beliet of the state s, ,, given the current evidence. The
training labels therefore comprise b, ;. beliefs over the state
s.,.. For instance, if the state is binary, i.e., s, ,€{0,1}, the
belief over s, is defined over the unit simplex,i.e., b, €A’
which 1s the [0, 1] real interval. In this case the belief
projection model constructs a probability distribution over
this simplex, or over the [0, 1] interval. An approach to the
belief projection model 1s to employ a mixture of Beta
distributions and learn the model parameters 1n a maximum
likelthood manner. An alternative 1s to discretize the [0, 1]
interval mto several bins, treat the problem as multinomial
classification, and build a model via discriminative learning
techniques such as maximum entropy models or decision
trees. The complexity of the learning problem increases as
the size of the original state space increases. For instance, i1
instead of binary, the state 1s a multinomial variable with m
possible values, i.e., s, ,€{0, 1, ... m-1}, the belief of s,
is defined over the unit m-1 simplex, i.e., b ,eA™ " The
beliet projection model may be constructed 1n this case as a
mixture of Dirichlet distributions, and model parameters
may be learned mm a maximum likelihood manner.
Approaches based on discretizing A”"' into bins, e.g., based
on memory-based learning and sampling, also may be
employed

Note that the described approach sums over all possible
belietfs b, .(s,, ). In practice, a tractable solution for com-
puting this sum (integral) may be used. One approach that
works well when the underlying state space 1s small 1s to
discretize the belief space (the simplex) into a number of
bins, and sum over the corresponding probabilities. Another
alternative 1s to construct belief projection models with
parametric forms that allow for analytic integration. Sam-
pling methods may be used to sample the beliefs and
approximate the integral according to the belief projection
model p(b,,.1,).

In practice, many physically situated systems are com-
prised via a coupling of multiple, modular inference com-
ponents into more complex architectures. A hierarchical
structure 1s often harnessed for state inference. For instance,
lower level inference components such as speech recogni-
tion, face tracking, and face i1dentification may abstract the
high-dimensional streaming sensory evidence such as raw
audio and video data into fewer lower-dimensional percepts,
such as words spoken, the location and 1dentity of a person,
and so forth. The outputs of these perceptual models are then
used as inputs for making higher-level inferences about
goals, activities, and other relevant state variables, which
ultimately drive interaction decisions. In engineering such
integrative systems, the lower-level, perceptual models may
be ofi-the-shell components that are trained and optimized
individually, prior to integration i a given application.
These models tend to be more domain independent than the
higher-level state inference models, which are often traimned
for a specific domain.

One approach described herein for computing VOI can be
extended to such modular inference architectures. Let R

denote a set of lower-level perceptual inference models and
—>
o~=(0,) denote the n-tuple of percepts from each inference

model reR (FIG. 3). At time t, each perceptual inference
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model computes p(o, 1y,) independently from other percep-
tual inference models. Each of these models may use as
evidence different subsets of 1, but in general multiple
models may use the same evidence, e.g., the video stream
may be used by a face tracker, a head-pose tracker and a face
identification perceptual model. The state inference p(s Iy,
1s decomposed based on the hierarchical structure using the
perceptual inference models into:

pls; 1) = Y p(@; 14,)- pls, | 77)

{

where p(gfllpﬁ):HFp(Gflwr). The higher level state inference

model conditioned on percepts p(s,lo,) 1s assumed known. In
this hierarchical structure, the expected value of waiting may
be computed as follows:

f— : _
ZJZJ []_[ (o |$r+k)] Oty Qygir) | +
S |(Freio]
bl ...

b
f;‘fﬁ% E (]_[ bﬁk(oﬁk)]-pm |T72) - Clstag> @)

Vivair (¢'r )=

[]_[ p(bi
n=1

i+k L
Stk Ti ot

—
where the perceptual inference models are b, (0, )=
—
p(0,..y,, ). Note that this formulation predicts future
—
beliels over the lower-level percepts o, ., 1.e., perceptual

inference projection models are constructed conditioned on
the current evidence p(p(o, ;. I, )Np,). These perceptual
inference projection models can be traimned independently
from each other by recording the outputs of the perceptual
inference models p(o, .1V, ) over time under the assump-
tion that the action a ;. has no effect on the environment and
evidence.

Returning to the example of FIG. 1, the state S relevant
for making engagement decisions includes two variables.
One variable 1s the user’s Engagement Action (EA), which
includes two values, namely “engaging,” denoting that the
user 1s 1mitiating/entering 1nto an engagement (e.g., an i{-for-
mation) with the Assistant, or “not-engaging” denoting that
the user 1s acting otherwise. Another variable 1s the user’s
Goal (G), which includes two values, namely “looking-for-
owner,” denoting that the user 1s looking for the owner, or
“other” if this 1s not the case.

State inference may be based on a hierarchical graphical
model such as represented 1n FIG. 4, which leverages three
lower-level percepts inferred via direct, conditional models:

F-Formation (FF): indicates whether or not a user 1s

entering in an f{-formation with the assistant 102. The
inference may be based on a conditional model (manu-
ally constructed or trained from data) that leverages
lower level features such as sustained attention, the
trajectory of the face, including speed of movement,
proximity, centrality of location.

Activity (A): 1indicates whether or not the user 1is

approaching the assistant 102. The inference may be

WaLE
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based on a conditional model (manually constructed or
trained from data) that leverages information about the
proximity of the face. Note that Activity correlates
with, but 1s different from f-formation; for example, an
actor may be approaching but not entering in an f-for-
mation with the assistant 102, such as when the owner
enters his or her oflice, and 1n the process passes by 1n
close proximity to the Assistant.

On-calendar (OC): indicates whether the user has a meet-
ing with the owner that has either started or 1s about to
start, e.g., based on a suitable time limit. The inference
may leverage information from one or more face 1den-
tification algorithms running on the captured video
stream and the owner’s calendar information.

As described above, the belief projection models make
predictions about future beliets at the perceptual level. The
three perceptual inference models described above construct
beliefs (i.e., probability distributions) over the correspond-
ing binary percepts. The domain for the output of each
perceptual model 1s the 1-dimensional simplex, 1.e., the
interval [0, 1] in thus example. The belief projection models
in turn model a belief (or probability distribution) over this
domain. The belief projection models may be constructed 1n
this case heuristically based on mixtures of Beta distribu-
tions, and/or they may be learned from data.

The action space for the mixed-initiative engagement
policy includes two task actions: Engage, in which the
Assistant engages the user immediately, and DontEngage, in
which the Assistant decides to not engage the user at the
current time-step. Utilities for the various combinations of
state and action may be obtained from the assistant’s owner;
examples are shown 1n the Table below:

State (S) System
Engagement Engagement
Action (EA) Goal (G) Action (A) Utility
engaging <any> Engage 1.00
DontEngage 0.05
not-engaging  looking-for-owner  Engage 0.75
DontEngage 0.25
other Engage 0.10
DontEngage 1.00

The cost for taking a wait action may be elicited or estimated
based on the current state (e.g., 0.05 1n this example).

In addition, actions may be included to collect additional
information: Wait(t) to collect additional sensory informa-
tion and AskAndWait(t) to ask an external source and also
collect sensory imnformation while waiting for the response,
where t ranges from 1 to 100 seconds, for example.

With the Wait(t) action the assistant 120 waits for a
duration t, then takes the optimal action between Engage or
DontEngage. The expected utility computation 1n this case
takes into account (via the perceptual beliel projection
models) the likely impact of the sensory evidence to be
accumulated by time t. In addition, the computation also
takes 1nto account the likelihood that the person might leave
the scene. This probability 1s modeled based on the time
since the actor was detected, e.g., via a mixture of two linear
hazard rate distributions: the first component has a mean of
around five seconds and models people that simply pass
through the corridor, and the second component has a mean
of around three-hundred seconds and models people that
stay for a while 1n an area near the assistant 102.
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With the AskAndWait(t) action, the assistant 102 launches
an external query about the user’s idenfity, waits for a
duration t, then takes the optimal action between Engage and
DontEngage based on the accumulated information. As with
Wait(t), the computation takes into account the impact of
future sensory evidence and the fact that the actor might
leave by time t. In addition, 1n this case, the expected utility
computation takes into account the probability that the
response will arrive at some future time. The latter 1s
modeled via a log-normal distribution with a mean time of
some number of (e.g., forty) seconds.

At every time step, the assistant re-runs the decision
algorithm and chooses the action with maximum expected
utility, under the current uncertainty from sensor data. By
taking this re-planning approach, the assistant 102 may
choose a particular action such as Wait(10) at a certain time,
and at the next time step the action selected may change
(e.g., to something like Engage or Wait(50)) based on the
accumulated evidence. Additionally, note that the actions are
myopic with a short time horizon, and that the ability to
re-plan with additional information 1s likely to improve the
action decisions.

Consider an example when a person (a possible visitor)
approaches the oflice where the assistant 102 1s stationed,
passes by the assistant 102 and sits down 1n a nearby charr.
The width of the detected face, which correlates with the
distance between the person and the assistant 102, 1s deter-
mined, as represented 1n FIG. SA. At a time t,, as the person
approaches, the assistant 102 reasons that future streaming
sensory 1nformation 1s expected to clarify whether this
person 1s the visitor expected for the current meeting on the
owner’s calendar, and therefore the highest utility action 1s
Wait. The person 1n this example does not approach suil-
ciently, however, and does not enter 1n an {-formation with
the system. By the time t, that he person sits 1n the chair, the
assistant 102 still has uncertainty around his or her identity.

At this point the utility of launching an external informa-
tion-gathering action may exceed the utility of waiting (FIG.
5B), such as once the perceptual beliel projection model
indicates that the identity will likely not be known better 1n
the future, and the visitor 1s not likely to leave immediately.
The assistant 102 may launch an external query about the
user’s 1dentity. When the answer arrives, the maximum
utility action may be Engage, whereby the system initiates
a proactive engagement with the user “Hi, are you looking
for [the owner]|?”

The computations performed at different time steps
include when the visitor 1s detected at and the assistant 102
starts using the decision theoretic engagement computations
at time t,, once the face identification algorithm provides a
first estimate for the 1dentity of the visitor. Between times t,
and t,, as the visitor 1s getting closer, the probability of
t-formation and approaching are increasing; the assistant
102 1s uncertain about whether this visitor 1s on-calendar
(FIG. 5C). Based on the lower level perceptual evidence, the
state inference indicates that at time t, the marginal prob-
ability that the visitor 1s looking-for-owner 1s 0.43 1n this
example of FIG. 5C. Throughout the t; to t, period, the
expected utility for Engage has been steadily increasing and
for DontEngage has been decreasing (FIG. 5B).

As also shown 1n FIG. 5B, the assistant 102 also computes
the utility of Wait(t) and AskAndWait(t). For each time f,
these computations are based on belief projection models for
the On-calendar, Activity and F-formation percepts. As
shown 1 FIGS. 6 A-6C, the projected future beliels may be
represented by probabilities/histograms at every future time
point for these three percepts, as computed at time t,. In
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FIGS. 6 A and 6B, the actual beliefs are shown as solid lines,
and the projected beliefs shown as histograms.

The projected beliefs for the On-calendar percept (FIG.
6A) may be constructed as a mixture of two Beta distribu-
tions. The means of the two Beta distributions 1n the mixture
are projected i time towards 0 and 1, with a slope based on
how fast the actor 1s approaching the system. The resulting
mixture model retlects the fact that, 11 the actor 1s getting,
closer the system, the On-calendar perceptual inference 1s
more likely to output future beliefs concentrated towards O
and 1. Note that mean of a projected belief has to match the
current estimated probability that the person 1s on-calendar
(since the On-calendar percept i1s invariant). The weights of
the two components in the Beta mixture model are set such
that this constraint holds.

The projected beliefs for the Activity percept computed at
time are shown in FIG. 6B. The same methodology of
mixture of Betas with evolving means 1s used as for the
On-calendar percept. One difference 1s that, because the
Activity 1n not necessarily invariant, i this case the
expected value of future beliefs does not need to match the
current expectation. The future beliefs for the F-Formation
percept are constructed in a similar manner, and shown in
FI1G. 6C. As FIGS. 6 A-6C show, the future beliefs indicate
that 11 the assistant 102 waits, the uncertainty will be reduced
over whether the person 1s on the calendar, whether they are
approaching, and whether they are engaging. The computa-
tion for the expected utility of Wait(t) integrates over these
predicted future beliefs, and also takes into account the
probability that the actor will disappear. FIG. 6D shows the
resulting expected utility of Wait(t) for diflerent values of t.
The maximum expected utility 1s attained for a wait time of
t equals three seconds, and corresponds to the value for the
Wait action shown i gray i FIG. 6D. Similarly, the
computation for the expected utility of AskAndWait(t) inte-
grates over the predicted future beliets, over the probability
that the response might arrive by time t, and takes into
account the likelithood of different responses.

As FIG. 5B shows, while the expected utility on Engage
increases between t, and t,, and even exceeds the expected
utility of DontEngage shortly thereafter, the expected utility
of Wait 1s even larger: the system infers that waiting 1s most
beneficial because the person 1s getting closer and uncer-
tainties about their 1dentity, and ultimately their goals waill
likely be resolved in the near future.

Next, 1n this example, the visitor passes by the assistant
102 and sits in a nearby chair. In FIGS. 7A-7C the projected
beliefs for the On-calendar, Activity and F-Formation per-
cepts, are again shown, as computed at time t,. As the person
1s no longer getting closer (the gradient on the face size 1s no
longer positive as shown 1 FIG. SA), the projected beliefs
indicate that there 1s not much to gain from waiting. At this
point, t;, the expected utility of AskAndWait exceeds the
expected utility of Wait (FIG. 5B), and the Assistant
launches an external query about the i1dentity of the visitor.
From this point forward the AskAndWait action 1s no longer
evaluated, but the expected utility computation for the Wait
action also takes 1into account the fact that the response to the
system’s mnformation gathering action might arrive.

A Tew seconds later 1n this example, at time t,, the answer
arrives, namely that the visitor 1s imdeed the person the
owner 1s expecting, whereby the corresponding probability
for on-calendar increases to 1.0 (see FIG. 5C), and the
maximum expected utility action becomes Engage (see FIG.
5B). The assistant 102 initiates an engagement with the
visitor that 1s at this point still waiting 1n the chair by saying,
“Pardon me, are you looking for [the owner]?”
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FIG. 8 summarizes some of the concepts described herein
via a flow diagram comprising example steps. In FIG. 8, step
802 represents collecting the evidence. Step 804 represents
using the current evidence to project future beliefs, using the
models as described herein. Step 806 represents combining
the projections as appropriate, e.g., from the perceptual
projection models 1n use.

Based upon the future beliet, step 808 represents a deter-
mination as to whether to act now or wait for more evidence.
If the decision 1s to wait, step 808 branches to step 810.

Step 810 represents determiming whether to use/activate
one or more sensors; (one or more other sensors may be
turned off, e.g., 1f their information 1s no longer needed or
relevant, or cannot change over time). If so, step 812
represents activating the one or more sensors. Note that as
used herein, asking a crowd/expert for assistance 1s consid-
ered activating another sensor at step 812.

Step 814 represents taking the action, which may be to do
something active, or end the process. For example, in the
assistant scenario described above, the action may be a
decision to engage, in which audio and/or visible data (and
possibly other data such as haptic feedback) 1s output to the
user. Conversely, the decision may be to not engage, n
which event the process may end until triggered again, or,
for example adjust to give attention to a different user who
1s approaching.

As can be seen, described herein 1s a technology that
addresses various challenges of computing the value of
information 1n systems that operate with high-dimensional
streaming sensory evidence. The technology 1s based upon
developing beliet projection models, comprising direct con-
ditional models that can be trained from data to predict
future beliefs from existing evidence. The technology may
leverage such models to resolve tradeolls between acting
immediately versus waiting for more sensory evidence to
accumulate. The technology 1s conducive for computing
value of mformation 1 systems that use modular, hierarchi-
cal architectures for making state inferences.

The technology may be implemented 1n a deployed physi-
cally situated interactive agent with a mixed-imtiative
engagement policy. The system 1s able to resolve tradeotls
between waiting for more information to accumulate from
the face identification sensor, soliciting help 1n real time
from a local group of experts to 1dentily a person, and/or
acting immediately (proactively engaging the person) based
on the existing face i1dentification data.

Example Operating Environment

As mentioned, advantageously, the techniques described
herein can be applied to any device. It can be understood,
therefore, that handheld, portable and other computing
devices and computing objects of all kinds are contemplated
for use 1n connection with the various embodiments.
Accordingly, the below general purpose remote computer
described below 1n FIG. § 1s but one example of a computing
device.

Embodiments can partly be implemented via an operating,
system, for use by a developer of services for a device or
object, and/or included within application software that
operates to perform one or more functional aspects of the
vartous embodiments described herein. Software may be
described 1n the general context ol computer executable
instructions, such as program modules, being executed by
one or more computers, such as client workstations, servers
or other devices. Those skilled 1n the art will appreciate that
computer systems have a variety of configurations and
protocols that can be used to communicate data, and thus, no
particular configuration or protocol 1s considered limiting.
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FIG. 5 thus illustrates an example of a suitable computing
system environment 500 1 which one or aspects of the
embodiments described herein can be 1mplemented,
although as made clear above, the computing system envi-
ronment 500 1s only one example of a suitable computing
environment and 1s not intended to suggest any limitation as
to scope of use or functionality. In addition, the computing,
system environment 500 1s not intended to be mterpreted as
having any dependency relating to any one or combination

of components 1llustrated 1n the example computing system
environment 500.

With reference to FIG. 5, an example remote device for
implementing one or more embodiments includes a general
purpose computing device in the form of a computer 510.
Components of computer 510 may include, but are not
limited to, a processing unit 520, a system memory 530, and
a system bus 522 that couples various system components
including the system memory to the processing unit 520.

Computer 510 typically includes a vanety of computer
readable media and can be any available media that can be
accessed by computer 510. The system memory 330 may
include computer storage media 1n the form of volatile
and/or nonvolatile memory such as read only memory
(ROM) and/or random access memory (RAM). By way of
example, and not limitation, system memory 530 may also
include an operating system, application programs, other
program modules, and program data.

A user can enter commands and information into the
computer 510 through input devices 540. A monitor or other
type of display device 1s also connected to the system bus
522 via an mterface, such as output interface 550. In addition
to a monitor, computers can also include other peripheral
output devices such as speakers and a printer, which may be
connected through output 1nterface 550.

The computer 510 may operate 1n a networked or distrib-
uted environment using logical connections to one or more
other remote computers, such as remote computer 570. The
remote computer 570 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, or any other remote media consumption or
transmission device, and may include any or all of the
clements described above relative to the computer 510. The
logical connections depicted in FIG. 5 include a network
572, such local area network (LAN) or a wide area network
(WAN), but may also include other networks/buses. Such
networking environments are commonplace in homes,
oflices, enterprise-wide computer networks, intranets and
the Internet.

As mentioned above, while example embodiments have
been described 1n connection with various computing
devices and network architectures, the underlying concepts
may be applied to any network system and any computing,
device or system in which it 1s desirable to improve etli-
ciency ol resource usage.

Also, there are multiple ways to implement the same or
similar functionality, e.g., an appropriate API, tool kit, driver
code, operating system, control, standalone or downloadable
soltware object, etc. which enables applications and services
to take advantage of the techniques provided herein. Thus,
embodiments herein are contemplated from the standpoint
of an API (or other software object), as well as from a
soltware or hardware object that implements one or more
embodiments as described herein. Thus, various embodi-
ments described herein can have aspects that are wholly in
hardware, partly 1n hardware and partly 1n software, as well
as 1n soltware.
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The word “exemplary” 1s used herein to mean serving as
an example, instance, or illustration. For the avoidance of
doubt, the subject matter disclosed herein 1s not limited by
such examples. In addition, any aspect or design described
herein as “exemplary” 1s not necessarily to be construed as
preferred or advantageous over other aspects or designs, nor
1s 1t meant to preclude equivalent exemplary structures and
techniques known to those of ordinary skill in the art.
Furthermore, to the extent that the terms “includes,” “has,”
“contains,” and other similar words are used, for the avoid-
ance of doubt, such terms are intended to be inclusive 1n a
manner similar to the term “comprising” as an open transi-
tion word without precluding any additional or other ele-
ments when employed 1n a claim.

As mentioned, the various techniques described herein
may be implemented 1n connection with hardware or soft-
ware or, where appropriate, with a combination of both. As
used herein, the terms “component,” “module,” “system”
and the like are likewise intended to refer to a computer-
related entity, either hardware, a combination of hardware
and software, software, or software in execution. For
example, a component may be, but i1s not limited to being,
a process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application run-
ning on computer and the computer can be a component.
One or more components may reside within a process and/or
thread of execution and a component may be localized on
one computer and/or distributed between two or more com-
puters.

The aforementioned systems have been described with
respect to mteraction between several components. It can be
appreciated that such systems and components can include
those components or specified sub-components, some of the
specified components or sub-components, and/or additional
components, and according to various permutations and
combinations of the foregoing. Sub-components can also be
implemented as components communicatively coupled to
other components rather than included within parent com-
ponents (hierarchical). Additionally, 1t can be noted that one
or more components may be combined into a single com-
ponent providing aggregate functionality or divided into
several separate sub-components, and that any one or more
middle layers, such as a management layer, may be provided
to communicatively couple to such sub-components in order
to provide integrated Ifunctionality. Any components
described herein may also interact with one or more other
components not specifically described herein but generally
known by those of skill in the art.

In view of the example systems described herein, meth-
odologies that may be implemented 1n accordance with the
described subject matter can also be appreciated with ret-
erence to the tlowcharts of the various figures. While for
purposes of simplicity of explanation, the methodologies are
shown and described as a series of blocks, 1t 1s to be
understood and appreciated that the various embodiments
are not limited by the order of the blocks, as some blocks
may occur 1n different orders and/or concurrently with other
blocks from what 1s depicted and described herein. Where
non-sequential, or branched, flow 1s illustrated via tlowchart,
it can be appreciated that various other branches, flow paths,
and orders of the blocks, may be implemented which
achieve the same or a similar result. Moreover, some 1llus-
trated blocks are optional in implementing the methodolo-
gies described hereinafter.
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Conclusion

While the invention 1s susceptible to various modifica-
tions and alternative constructions, certain 1illustrated
embodiments thereol are shown 1n the drawings and have
been described above in detail. It should be understood,
however, that there 1s no intention to limit the invention to
the specific forms disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, alternative constructions,
and equivalents falling within the spirit and scope of the
invention.

In addition to the various embodiments described herein,
it 1s to be understood that other similar embodiments can be
used or modifications and additions can be made to the
described embodiment(s) for performing the same or
equivalent function of the corresponding embodiment(s)
without deviating therefrom. Still further, multiple process-
ing chips or multiple devices can share the performance of
one or more functions described herein, and similarly,
storage can be eflected across a plurality of devices. Accord-
ingly, the invention 1s not to be limited to any single
embodiment, but rather 1s to be construed in breadth, spirit
and scope 1n accordance with the appended claims.

What 1s claimed 1s:
1. A method for executing an assistant on a computing
device to determine whether or not to act, the method
comprising:
receiving, by the assistant, streaming evidence from one
O MOre Sensors;

constructing, by the assistant, one or more belief projec-
tion models to predict a future beliel over a state at a
future time, the one or more belief projection models
using existing evidence that 1s collected until a defined
period of time to determine a probability of a future
state that 1s based on evidence to be collected between
the defined period of time and the future time, the
existing evidence comprising the streaming evidence
and other evidence obtained prior to the streaming
evidence;

based on the predicted future belief and the one or more

beliet projection models, determining, by the assistant
device, a likelihood of obtaining particular evidence
between the defined period of time and the future time
to determine whether to act at the defined period of time
for a next action or wait for the future time to act for the
next action; and

based on determining to act at the defined period of time

or wait for the future time to act for the next action,
transmitting, by the assistant device, data using an
output device at the defined period of time without
obtaining the particular evidence or upon receipt of the
particular evidence at the future time.

2. The method of claim of claim 1 wherein determining,
the timing of the next action comprises computing a cost of
taking the next action at the future time.

3. The method of claim of claim 1 wherein constructing,
the one or more beliel inference projection models com-
prises processing at least part of the existing evidence into
percepts.

4. The method of claim of claim 1 wherein constructing
the one or more beliel inference projection models com-
prises projecting models for at least one of: on-calendar,
activity or F-formation related percepts.

5. The method of claim of claim 1 further comprising
based on a determination to act without obtaining the
particular evidence, initiating engagement with a person by
using the output device.
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6. The method of claim 1 further comprising associating
a cost with activating the at least one other sensor.

7. The method of claim 1 wherein activating the at least
one other sensor comprises seeking a response {from one or
more humans.

8. The method of claim of claim 1 further comprising one
or more of the following: a) learning the belief projection
model automatically from data via one or more parametric
machine learning approaches, b) learning the belief projec-
tion model automatically from data via non-parametric
machine learning approaches, and ¢) constructing the belief
projection model manually via a set of heuristic rules.

9. The method of claim of claim 1 further comprising
automatically collecting training data while receiving the
streaming evidence.

10. A system for executing an assistant on a computing
device to determine whether or not to act, the system
comprising;

a Processor;

processing logic;

a sensor set comprising one or more sensors; and

an output mechanism set comprising one or more output

devices:

the processing logic, when executed by the processor,

configured to:

process evidence recerved via the sensor set, including
streaming the evidence into one or more belief
projection models, the one or more belief projection
models using existing evidence that 1s collected until
a defined period of time to determine a probability of
a future state that 1s based on evidence to be collected
between the defined period of time and the future
time, the existing evidence comprising the streaming
evidence and other evidence obtained prior to the
streaming evidence;

using a predicted future belief obtained from the one or
more belief projection models to determine a likel:-
hood of obtaining particular evidence between the
defined period of time and the future time to deter-
mine whether to act at the defined period of time for
a next action or wait for the future time to act for the
next action; and

based on determining to act at the defined period of
time or wait for the future time to act for the next
action, transmitting data using one or more of the
output devices at the defined period of time without
obtaining the particular evidence or upon receipt of
the particular evidence at the future time.

11. The system of claim 10 wherein the processing logic
1s incorporated into an autonomous assistant that uses the
predicted future belief over the state to determine whether to
initiate engagement with a person.

12. The system of claim 10 wherein the sensor set
comprises a camera, and wherein the processing logic pro-
cesses streaming evidence received via the camera.

13. The system of claim 10 wherein the sensor set
comprises a connection to computing devices that interface
with humans that respond with at least some of the particular
evidence.

14. The system of claim 10 wherein the output mechanism
set comprises a speaker.

15. The system of claim 14 wheremn the audio data
comprises speech, mncluding speech to imitiate engagement
with a person.

16. One or more computer-readable hardware storage
devices having computer-executable mstructions for execut-
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ing an assistant on a computing device to determine whether
or not to act, that cause the assistant to perform operations
comprising;
receiving sensory evidence, including high-dimensional
streaming evidence into one or more belief projection
models, the one or more beliet projection models using
existing evidence that 1s collected until a defined period
of time to determine a probability of a future state that
1s based on evidence to be collected between the
defined period of time and the future time, the existing
evidence comprising the streaming evidence and other
evidence obtained prior to the streaming evidence;
determining a likelihood of obtaining particular evidence
1s between the defined period of time and the future
time to determine whether to act at the defined period
of time for a next action or wait for the future time to
act for the next action;
based on determining to act at the defined period of time
or wait for the future time to act for the next action,
transmitting data using an output device at the defined
period of time without obtaining the particular evidence
or upon receipt of the particular evidence at the future

time.
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17. The one or more computer-readable hardware storage
devices of claim 16 having further computer-executable
instructions that cause the computing device to perform an
operation comprising making a decision to wait for the
particular evidence to be received.

18. The one or more computer-readable hardware storage
devices of claim 16 having further computer-executable
instructions that cause computing device to perform an
operation comprising making a decision to act without
waiting for the particular evidence.

19. The one or more computer-readable hardware storage
devices of claam 16 having further computer-executable
instructions that cause the computing device to, based on a
determination to act without obtaining the particular evi-
dence, mitiating engagement with an electronic assistant
using the output device.

20. The one or more computer-readable hardware storage
devices of claim 16, wherein constructing the one or more
belief inference projection models comprises processing at
least part of the existing evidence into percepts.
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