12 United States Patent
Zhang et al.

US009830166B2

US 9,830,166 B2
Nov. 28, 2017

(10) Patent No.:
45) Date of Patent:

(54) SOFTWARE-DEFINED 10T CONTROLLER

(71) Applicant: Verizon Patent and Licensing Inc.,
Arlington, VA (US)

(72) Inventors: Zhi-hong Zhang, Foster City, CA (US);
Jonathan Andrew Banks, Dublin, CA

(US); Laiwah Alice Leung, Danville,
CA (US)

(73) Assignee: Verizon Patent and Licensing Inc.,
Basking Ridge, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 226 days.

(21) Appl. No.: 14/688,852

(22) Filed: Apr. 16, 2015
(65) Prior Publication Data
US 2016/0308957 Al Oct. 20, 2016
(51) Inmt. CL
GO6F 9/44 (2006.01)
GO6F 9/455 (2006.01)
(52) U.S. CL
CPC GO6F 9/4425 (2013.01); GO6F §/36

(2013.01); GO6F 9/45508 (2013.01)

(58) Field of Classification Search
CPC e, GO6F 9/4425

USPC e e 709/201
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

OTHER PUBLICATTIONS

AT&T, “Supported Platforms™, https://m2x.att.att.com/developer.

supportedplatforms, Sep. 5, 2014, 8 pages.

R. Colin Johnson, “Drones and Wearables App Store Launches”,
http://www.eetimes.com/document.asp?doc_ 1d=1325341, Jan. 20,
2014, 5 pages.

Oskar Andero, “Dynamic Android Sensor HAL D*A*S*H”, Sony
Corporation, 2012, 36 pages.

Rachel Cericola, “ALYT Launches Android Smart Home Manager
on Indiegogo™, http://www.electronichouse.com/daily/smarthome/
alytlaunchesandroidsmarthomemanageronindiegogo/, Apr. 11,
2014, 2 pages.

Sensor Platforms, Inc., “Open Sensor Platform White Paper”,
http://community.arm.com/serviet/ JiveServlet/previewBody/8657 -
102-1-15597/0SP%20White%20Paper.pdf, Apr. 7, 2014, 4 pages.

(Continued)

Primary Examiner — David Lazaro
Assistant Examiner — Z1a Khurshid

(57) ABSTRACT

An Internet of things (IoT) controller may execute a first IoT
application, associated with operating an IoT device, and a
second IoT application associated with operating the IoT
device. The IoT controller may load an IoT application
program interface (API) associated with the first IoT appli-
cation and the second IoT application, and may 1dentity a
first set of functions including a first function, associated
with the first IoT application, and a second function asso-
ciated with the second IoT application. The IoT controller
may translate, based on the IoT API, the first set of functions
to a second set of functions including a third function,
associated with the first IoT application, and a fourth func-
tion associated with the second IoT application. The IoT
controller may cause the IoT device to operate, based on the
second set of functions, during the execution of the first IoT

2015/0249642 Al1* 9/2015 Burnsccccoovevnnn.., HO4L 12/66 o L.
796/4 application and the second IoT application.
2016/0105292 Al* 4/2016 Cholccoovvvnvnnen, HO41. 12/2818
709/206 20 Claims, 12 Drawing Sheets
100~y
Cregte y_’ﬂﬁgllewlﬂ Store Virtual
evice laT Device AP
, Virtual loT Q 1;’5 S
R Device AP Generic N :'W ;
& S loT Vi
e T 110 CGF‘!HG”E:-{’ ; i 3
lo T Device :
Developer 0T Device
Develop lot App
based on Virtual
T Device AP
(dava, Python, eic.)
12{3*\@ /)
' faT App S | Generic
BN, ioT
@ i 128 sorroller

App
Beveleper

foT Davics

US 9,830,166 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Sanem Kabadayi1 et al., “Virtual Sensors: Abstracting Data from

Physical Sensors™, University of Texas, 2006, 6 pages.
Indiegogo, “ALYT: Beyond Smart: Genius”, www.indiegogo.com/
projects/alyt-beyond-smart-genius, Apr. 25, 2014, 43 pages.

* cited by examiner

US 9,830,166 B2

Sheet 1 of 12

Nov. 28, 2017

U.S. Patent

di "Old

Jadoeas
ddy

2901A8(Q 10}

GGt

100D |
10t |
- Jusudn) |

(*019 ‘UOLAL ‘BARD)
ldV 0IA3({0}
[BNUIA UO Paseq
ddy] 0] dojona(

Vi Old

S0iIAS(] LO] 19doipAs(]

aoIne(d 1 0j

J8(j0nu00 | O
oueudy | 1Y 80IA80
' 10} [EBUIA

|dY 991A8Q L O}
IBNLIA 81015

Y 801A8C
L0} [BNUIA 818810

90INS(] | O]

Wiis
i

Com“—.ocm\d& @CN O AR M y . .

uo peseq aieiedQ .
) AV 991180 10| feNLiIA
091 Uo peseq uoloundg 2

0] UOROUN | OB|SuURl}

w ®

GGl ®

US 9,830,166 B2

10

Sheet 2 of 12

Nov. 28, 2017

ldV 90ir8(]
10} [eiiA peo’
Q ddy | 0f 8Indax3

)

OF i

U.S. Patent

olBURL)

IB[IOAUDN

10f
OLIBLUDY)

UOIONIIS U]

)

UORONASU} LD PASE(
uonound | Ajiuepi

0G 1

GE1L

ddy |0} ajnoexyg
O} UCHEDIPLY

9UNS(]
1esn

US 9,830,166 B2

Sheet 3 of 12

Nov. 28, 2017

U.S. Patent

0Ge
90IN8(]

ladors
a2iA8(g | 0]

0ve
90IAD(T

IEJET Gl
ddy {0f

¢ Ol

09¢
a%IAB(]

2101Q day

0ee
20IA8(]

198

022
19}j0U0D

10}

012
20IAS(] | O]

& Ol

US 9,830,166 B2

0/ 09¢ 05€
-
e 0B8] jusuodiuon uauodiuon
M Lo B UNWILIOND iHgleilslg indu
~
Qs
Qs
=
7»
W OLE
) shy
% -
- ove OFE 443
=
rd jusuodwon

2BRI0)S AJOWBIN 1058800.4
¥~ 00¢

U.S. Patent

US 9,830,166 B2

oy %7
9JB}i81U] {041U0) | O] |4V 1AL
g |
y—
T
=
W
>
Qs
=
7» —
I — Gly
ouowomm 10 hwmm:mmsp#_wn_{ 10] |dV 99IA(]

— 10] {ENLIA
o
& |
o GOP
~ uonesyddy | of
>
=
rd

U.S. Patent

(0[%7
19AL(H0d INOD

Ol¥
1ebrUR N

92iN0S8Y uonediddy

US 9,830,166 B2

Sheet 6 of 12

Nov. 28, 2017

U.S. Patent

G "Old

|dV 808P | O} {BNLIA 8U} 8I0IS

80IABD |0} UB YliM DBIBIDOSSE |4y S0IASP | O] {erliA B SAI808Y

-0¢S

-0iG

18d0jaAs(]
0008 8u0.(

US 9,830,166 B2

0002 BuoI(]

| arociuon | 029
| 4BljOUOD

03U} {SdD) g1 uoye30T -

Oju} JOSusg peadsg -

IdY 0002

QUOI(] 401G | 14V 000¢ 2uoig

Sheet 7 of 12

£ ¢ aelionuod L of se
{ dwes | 1sjjonuo) 1o

X 10¢ \ jadojaaa(

) L m
19[jOU0D |
101 |

G09

Nov. 28, 2017

OJU} {OUOD) UOISIA -

OfuU] "UWHUOD) 8DI0A -
QjU} JOAIUOD) JUBLUBAOW -

idV X 109

4V
X 109 84015

U.S. Patent

US 9,830,166 B2

Sheet 8 of 12

Nov. 28, 2017

U.S. Patent

LIOIJOUNS PU028S 8y} U0 paseq a1eiado 0} 921A8D | 0] BUl 8snen

14V 92IA8D | O] [BNLIA 84} U0 DASE(UoilouUN]
DUODAaS B 0] UOHouUN) 1Sl aul alejsuel |

LOIIONJISLH 8yl 0} BuipuOdsSa.100 UOIIoUNy 1S1l B Ajiuap|

uoneosydde | 0] 8yl Ylim PSIRIDOSSE PUBLLLLIOD UR 8AI808Y

DOIASD | 0] 89Ul UIIM PBIBIDOSSE |4V @0IA8PD | 0] fBNIIA B PROT]

92IASD | O] Ue UM pajeioosse uoijedldde | 0] ue a1nosx3

094

0GL

04

91974

UL

OLL

US 9,830,166 B2

Sheet 9 of 12

Nov. 28, 2017

U.S. Patent

S iV 12AL(]
Ues | JBJJOU0Y | 0| PEOT

#.

IdV X 10G
$i8~—" peo
9
. ddy 104u0n
U8~ uewenon

¥ 109 9}N09X3

(x10g u) mmw
L 19]jOIIU0D | - _
10} | ddy jonuon x 108

81N08X3 0} UOIIBDIPU

US 9,830,166 B2

g
o
= Gp8
S)
o
= dn SSAON
= uuy 3o X 108
¥ p,
| 01 € uld 188
— O 8~ 1AL | IBJJOAU0D) | 0]
—
> T
<) (1'c wd)oip uonoun4 en _
“ GER~— (1 ¢ wd)oip = (dn‘ys}‘wie)aaoll O
2 - 1dV X 109
~ T

088 AdN Yo} ‘wir)sAcuw,, uooUN4 |jed
-ddy j04U0N) ¥ 108

U.S. Patent

&

GZ8

)

df Wiy 1j07] OAOH
0] PUBLLLLIOYD

19ALQ @37 40j0D

US 9,830,166 B2

(eaer Duisn
SALI(] SUOUTOIDIN

ddy UollBSIOAUO) [BOIOA

)

o

= ISALIQ Joyeads

A

1 P o P P P P P P Py i

>

- 1OA1(] 1010 Bo . uoylA4 Buisn

s ddy Buioueq
JOALI(]

- losuag aouefeg .

I~ w

) w

-3

e IBALI(] JOJON WY eaep Duisn

wun ddy {0J1U0N) JUBLLBAOWN

rd

Fh ko hFh

S0t sddy Lo}

JAALI(] BiBLED Si¥ sidv
10} [eNLIIA

GET SIdV 19ALQ

N
-
L
~—
<
- ¥— 006
)
-

US 9,830,166 B2

X3

gilsle

10

(0D 1oj) /_.... - |
- ¢ JIOpUSA | 000¢ 2u0i(] | - > |
0 7 1adojoAsq ady
= _ |
T | | BARP Duisn
.mn...w “ 19H04u0] || - — Q0N UOISIA doeas(-
) > | IR o " I01U0D 1 0] ‘X 10g Ang -

_ Mm“ Wﬂm mwﬂm,.,...,ﬁ |

= | ﬂWw ﬁ | UoylA4 DPuisn ddy
Q | ﬁi | -¢——p | UOHEDIUNWWOY) 82I0A dOj8As(] -
' | 9I0IS ddV 19l | JBJJOUOTY 1 0] ‘X 109G Ang -
?u ||||||||| / 2 18qoPAs(aay
2
rd

(1dV uim x log)
| JOPUBA

eaep Duisn ddy
1043U0N) JUBLUBAOIN dojoAa(-

sddy ¥ 1089 peojumog/Ang -

“ Ang -
JBJ0AIU0D) | 0] ‘X 109 Ang - 49{OIUO0T) | 0] X 10g Ang

a
| 19S | Jodojena(] ddy

U.S. Patent

Us 9,830,166 B2

1
SOFTWARE-DEFINED 10T CONTROLLER

BACKGROUND

The Internet of things (IoT) refers to the network of >

physical objects with Internet connectivity, and the commu-
nication between such objects and other Internet-enabled
devices and systems. The IoT extends Internet connectivity
beyond traditional devices (e.g., desktop computers, laptop
computers, smart phones etc.) to a range of devices and
everyday things that may utilize embedded technology to
communicate and interact with an external environment via
the Internet.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1C are diagrams of an overview of an example
implementation described herein;

FIG. 2 1s a diagram of an example environment in which
systems and/or methods, described herein, may be imple-
mented;

FIG. 3 1s a diagram of example components of one or
more devices of FIG. 2;

FIG. 4 1s a diagram of an functional elements of one or
more devices of FIG. 2;

FIG. 5 1s a flow chart of an example process for receiving
and storing a virtual IoT device API associated with an IoT
device;

FIG. 6 1s a diagram of an example implementation relat-
ing to the example process shown in FIG. §;

FIG. 7 1s a tlow chart of an example process causing an
IoT device to operate based on translating a function,
associated with an IoT application for the IoT device, using
a virtual IoT device API;

FIGS. 8A and 8B are diagrams of an example implemen-
tation relating to the example process shown 1 FIG. 7;

FIG. 9 1s a diagram of an example showing a manner in
which multiple IoT applications, multiple virtual IoT device
APIs, and/or multiple driver APIs may interact in accor-
dance with implementations described herein; and

FIG. 10 1s a diagram of an example IoT app store
environment associated with 1mplementations described
herein.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
M

ERRED

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers 1 different drawings may identity the
same or similar elements.

An IoT device may operate based on one or more IoT
applications 1nstalled on the IoT device. For example, a
robotics device may operate based on a movement control
application, a voice communication application, a dancing
application, or the like. As another example, an unmanned
aerial vehicle (UAV or “drone”) may operate based on an
auto-pilot application, a video processing application, an
object analysis application, or the like. Traditionally, a
platform (e.g., including hardware and/or soiftware) for the
IoT device may be selected and/or designed based on such
IoT applications (e.g., such that the platform is selected
and/or designed specifically for the IoT device). For
example, with respect to a controller in a drone, sensing
components, motor control components, or the like, may be
selected and/or designed specifically for the drone (1.e., the
components may not be used 1n another type of IoT device).

10

15

20

25

30

35

40

45

50

55

60

65

2

Additionally, under the traditional design approach, an
Io'T application may be developed using a hardware depen-
dent programming language, such as C programming lan-
guage. As such, an IoT application developer may be unable
to develop the IoT application using a high-level program-
ming language, such as Java programming language, Python
programming language, or the like. As such, the Io'T appli-
cation developer may need specific knowledge of hardware
included in the IoT device.

Implementations described herein provide a platform that
uses a virtual IoT device API that allows a generic IoT
controller to be software-defined for use 1n different IoT
applications and/or different IoT devices. Moreover, 1n some
implementations, the plattorm may allow an IoT application
developer, associated with an IoT application, to develop the
IoT application using a high-level programming language
(e.g., based on the virtual IoT device API).

FIGS. 1A-1C are diagrams of an overview of an example
implementation 100 described herein. For the purposes of
example implementation 100, assume that an IoT device
developer develops an IoT device that includes a generic IoT
controller. Further, assume that the Io'T device developer has
access to driver API information associated with the generic
Io'T controller (e.g., provided by a designer of the generic
IoT controller). As shown i1n FIG. 1A, and by reference
number 105, the IoT device developer may create a virtual
Io'T device API based on the driver API information asso-
ciated with the generic IoT controller. As shown by refer-
ence number 110, the IoT device developer may provide
(e.g., via an IoT device developer device) the virtual IoT
device API to the generic IoT controller. As shown by
reference number 115, the generic IoT controller may
receive and store the virtual IoT device API (e.g., such that
the virtual IoT device API may be loaded at a later time).
Notably, 1n this example, the generic IoT controller may be
capable of storing one or more virtual IoT device APIs for
multiple IoT devices (e.g., a robotics device, a sensing
device, a drone, etc.). As such, the generic IoT controller
may be included in different IoT devices, and may be
capable of executing applications for the different IoT
devices (e.g., based on the corresponding virtual IoT device
APIs).

For the purposes of FIG. 1B, assume that an IoT appli-
cation developer device, associated with an IoT application
developer, stores or has access to the virtual IoT device API
associated with the Io'T device. As shown 1n FIG. 1B, and by
reference number 120, the IoT application developer may
develop, based on the wvirtual IoT device API, the IoT
application in a high-level programming language (e.g.,
Java, Python, etc.). As shown by reference number 123, the
application developer device may provide the IoT applica-
tion to the generic IoT controller. As shown by reference
number 130, the generic IoT controller may store the IoT
application (e.g., such that the IoT application may be
executed at a later time).

For the purposes of FIG. 1C, assume that a user device 1s
capable of communicating with the generic IoT controller
(e.g., such that the user device may control, operate, manipu-
late, etc., the IoT device via the IoT application). As shown
by reference number 135, the user device may provide (e.g.,
based on user input) an indication to execute the IoT
application stored by the generic IoT controller. As shown
by reference number 140, the generic IoT controller may
execute the IoT application and may load the virtual IoT
device API for the IoT device.

As shown by reference number 145, the user device may
provide (e.g., based on user input) a command associated

Us 9,830,166 B2

3

with the IoT application (e.g., for controlling, operating,
manipulating, etc., the IoT device). As shown by reference
number 150, the generic IoT controller may identify a first
function corresponding to the command. Here, the first
function may be described 1n the high-level programming
language 1 which the IoT application was created. As
shown by reference number 1355, the generic IoT controller
may translate the first function to a second function (e.g., a
function 1n a language that may be used to control hardware
of the IoT device) based on the virtual IoT device API. As
shown by reference number 160, the generic IoT controller
may then cause the IoT device to operate based on the
second function.

In this way, a virtual IoT device API may allow a generic
IoT controller to be software-defined for use 1n different IoT
applications and/or with different IoT devices. Moreover, 1n
some 1mplementations, an IoT application developer, asso-
ciated with an IoT application, may develop the IoT appli-
cation using a high-level programming language and based
on the virtual IoT device API.

FIG. 2 1s a diagram of an example environment 200 in
which systems and/or methods, described herein, may be
implemented. As shown i FIG. 2, environment 200 may
include an IoT device 210, an IoT controller 220, a user
device 230, an IoT app developer device 240, an Io'T device
developer device 250, an IoT app store device 260, and a
network 270. Devices of environment 200 may interconnect
via wired connections, wireless connections, or a combina-
tion of wired and wireless connections.

Io'T device 210 may include a device that 1s capable of
receiving, processing, generating, determining, and/or pro-
viding information via the IoT. For example, IoT device 210
may include a computing device (e.g., a desktop computer,
a laptop computer, a tablet computer, a handheld computer,
a camera, an audio recorder, a camcorder, etc.), an appliance
(e.g., a relrigerator, a microwave, a stove, etc.), a sensing
device (e.g., a temperature sensor, a pressure sensor, an
accelerometer, etc.), a processing device, a metering device,
a machine-to-machine (M2M) device, a robotics device, a
drone, a medical device, an automobile, a light bulb, and/or
another type of device. In other words, IoT device 210 may
be any “thing” in the IoT. In some implementations, IoT
device 210 may include IoT controller 220.

IoT controller 220 may include a device capable of
controlling, operating, manipulating, communicating with,
or the like, IoT device 210. For example, IoT controller 220
may 1nclude a computing device (e.g., a single-board com-
puter, a system on a chip, an integrated circuit, etc.) that
includes a processing device (e.g., a central processing unit
(CPU), a microprocessor, etc.), a memory component, an
input/output (I/0) component, and/or one or more other
components. In some 1mplementations, IoT controller 220
may be a generic controller (1.e., IoT controller 220 may not
be designed for a particular IoT device and/or a particular
IoT application). Additionally, or alternatively, IoT control-
ler 220 may be capable of sending and/or receiving infor-
mation via network 270. For example, IoT controller 220
may include a modem, such as a 3G modem, a 4G modem,
or the like. In some implementations, IoT controller 220 may
be capable of storing and/or loading one or more virtual IoT
device APIs and/or storing and/or executing one or more IoT
applications.

User device 230 may include one or more devices capable
ol receilving, generating, storing, processing, and/or provid-
ing information related to an application associated with IoT
device 210. For example, user device 230 may include a
communication and/or computing device, such as a mobile

10

15

20

25

30

35

40

45

50

55

60

65

4

phone (e.g., a smart phone, a radiotelephone, etc.), a laptop
computer, a tablet computer, a handheld computer, a gaming
device, a wearable communication device (e.g., a smart
wristwatch, a pair of smart eyeglasses, etc.), or a similar type
of device. In some implementations, user device 230 may
allow a user to control, operate, manipulate, or the like, IoT
device 210 via IoT controller 220.

IoT app developer device 240 may include a device
associated with an application developer that develops,
creates, generates, produces, and/or designs an application
associated with IoT device 210. For example, IoT app
developer device 240 may include a server device or a
collection of server devices. In some 1mplementations, IoT
app developer device 240 may provide and/or send the
application to another device, such as app store device 260
(e.g., such that the application may be accessed, received,
stored, executed, etc., by another device of environment
200).

IoT device developer device 250 may include a device
associated with an IoT device developer that develops,
creates, generates, produces, and/or designs IoT device 210
and/or one or more components of IoT device 210. For
example, Tot device developer device 250 may include a
server device or a collection of server devices. In some
implementations, Tot device developer device 250 may
provide and/or send information associated with IoT device
210 (e.g., a virtual IoT device API) that allows one or more
applications to be executed by IoT device 210 and/or IoT
controller 220.

IoT app store device 260 may include a device associated
with distributing, providing, and/or selling IoT device 210,
IoT controller 220, and/or one or more IoT applications
associated with IoT device 210. For example, IoT app store
device 260 may include a server device or a collection of
server devices. In some implementations, IoT app store
device 260 may allow a user to (e.g., via user device 230)
purchase, download, receive, or the like, Io'T device 210, IoT
controller 220, and/or the one or more IoT applications.

Network 270 may include one or more wired and/or
wireless networks. For example, network 270 may include a
cellular network (e.g., a long-term evolution (LTE) network,
a 3G network, a code division multiple access (CDMA)
network, etc.), a public land mobile network (PLMN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), a telephone network
(e.g., the Public Switched Telephone Network (PSTN)), a
private network, an ad hoc network, an intranet, the Internet,
a fiber optic-based network, a cloud computing network, or
the like, and/or a combination of these or other types of
networks.

The number and arrangement of devices and networks
shown 1n FIG. 2 are provided as an example. In practice,
there may be additional devices and/or networks, fewer
devices and/or networks, different devices and/or networks,
or differently arranged devices and/or networks than those
shown 1n FIG. 2. Furthermore, two or more devices shown
in FIG. 2 may be implemented within a single device, or a
single device shown in FIG. 2 may be implemented as
multiple, distributed devices. Additionally, or alternatively, a
set of devices (e.g., one or more devices) of environment
200 may perform one or more functions described as being
performed by another set of devices of environment 200.

FIG. 3 1s a diagram of example components of a device
300. Device 300 may correspond to IoT device 210, IoT
controller 220, user device 230, IoT app developer device
240, IoT device developer device 250, and/or app store
device 260. In some implementations, IoT device 210, IoT

Us 9,830,166 B2

S

controller 220, user device 230, IoT app developer device
240, IoT device developer device 250, and/or app store
device 260 may 1nclude one or more devices 300 and/or one
or more components of device 300. As shown 1n FIG. 3,
device 300 may include a bus 310, a processor 320, a
memory 330, a storage component 340, an input component
350, an output component 360, and a communication nter-
tace 370.

Bus 310 may include a component that permits commu-
nication among the components of device 300. Processor
320 1s implemented 1n hardware, firmware, or a combination
of hardware and software. Processor 320 may include a
processor (e.g., a central processing unit (CPU), a graphics
processing umt (GPU), an accelerated processing unit
(APU), etc.), a microprocessor, and/or any processing coim-
ponent (e.g., a field-programmable gate array (FPGA), an
application-specific integrated circuit (ASIC), etc.) that
interprets and/or executes instructions. Memory 330 may
include a random access memory (RAM), a read only
memory (ROM), and/or another type of dynamic or static
storage device (e.g., a flash memory, a magnetic memory, an
optical memory, etc.) that stores information and/or 1nstruc-
tions for use by processor 320.

Storage component 340 may store mformation and/or
software related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
a solid state disk, etc.), a compact disc (CD), a digital
versatile disc (DVD), a tloppy disk, a cartridge, a magnetic
tape, and/or another type of computer-readable medium,
along with a corresponding drive.

Input component 350 may include a component that
permits device 300 to receive information, such as via user
iput (e.g., a touch screen display, a keyboard, a keypad, a
mouse, a button, a switch, a microphone, etc.). Additionally,
or alternatively, mnput component 350 may include a sensor
for sensing information (e.g., a global positioming system
(GPS) component, an accelerometer, a gyroscope, an actua-
tor, etc.). Output component 360 may include a component
that provides output information from device 300 (e.g., a
display, a speaker, one or more light-emitting diodes
(LEDs), etc.).

Communication interface 370 may include a transceiver-
like component (e.g., a transceiver, a separate receiver and
transmitter, etc.) that enables device 300 to communicate
with other devices, such as via a wired connection, a
wireless connection, or a combination of wired and wireless
connections. Communication interface 370 may permit
device 300 to receive imformation from another device
and/or provide information to another device. For example,
communication interface 370 may include an Ethernet inter-
face, an optical interface, a coaxial interface, an infrared
interface, a radio frequency (RF) interface, a universal serial
bus (USB) iterface, a Wi-F1 interface, a cellular network
interface, or the like.

Device 300 may perform one or more processes described
herein. Device 300 may perform these processes 1n response
to processor 320 executing soitware instructions stored by a
computer-readable medium, such as memory 330 and/or
storage component 340. A computer-readable medium 1s
defined herein as a non-transitory memory device. A
memory device includes memory space within a single
physical storage device or memory space spread across
multiple physical storage devices.

Software 1instructions may be read into memory 330
and/or storage component 340 from another computer-
readable medium or from another device via communication

10

15

20

25

30

35

40

45

50

55

60

65

6

interface 370. When executed, solftware 1nstructions stored
in memory 330 and/or storage component 340 may cause
processor 320 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or 1n combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

The number and arrangement of components shown 1n
FIG. 3 are provided as an example. In practice, device 300
may include additional components, fewer components,
different components, or diflerently arranged components
than those shown 1n FIG. 3. Additionally, or alternatively, a
set of components (e.g., one or more components) of device
300 may perform one or more functions described as being
performed by another set of components of device 300.

FIG. 4 1s a diagram of example functional elements of
device 400 that corresponds to one or more devices of FIG.
2. In some implementations, device 400 may correspond to
Io'T controller 220 and/or IoT device 210. In other imple-
mentations, one or more of the example functional elements
of device 400 may be implemented by another device or a
collection of devices including or excluding IoT device 210
and/or IoT controller 220, such as by one or more other
devices of environment 200. As shown 1n FIG. 4, device 400
may include an IoT application 405, an application resource
manager 410, a virtual IoT device API 415, IoT API man-
ager 418, an IoT protocol 420, an operating system (OS)
425, a communications (COM) port driver 430, a driver API
435, and an IoT control interface 440. In some 1mplemen-
tations, functional elements 405-440 may be implemented
using one or more devices 300 and/or one or more compo-
nents ol device 300.

IoT application 405 may perform operations associated
with an IoT application used to control, manage, manipulate,
operate, and/or communicate with IoT device 210. In some
implementations, IoT application 405 may be developed,
created, generated, produced, and/or designed by an IoT
application developer associated with IoT app developer
device 240. In some implementations, IoT application 405
may be written using a high-level programming language,
such as Java programming language, Python programming,
language, or the like. In some implementations, IoT appli-
cation 4035 may include a manifest that identifies one or more
other Tunctional elements needed to execute Io'T application
405. For example, IoT application 405 may include a
manifest that includes mformation (e.g., a name, a version
number, etc.) that identifies one or more virtual IoT device
APIs 415, one or more driver APIs 435, or the like, that may
be needed to execute IoT application 405. In some 1mple-
mentations, IoT application 405 may recerve and/or provide
information from and/or to user device 230 and/or one or
more other functional elements of device 400.

In some implementations, device 400 may include mul-
tiple IoT applications 405. Additionally, or alternatively,
device 400 may receive and store an additional IoT appli-
cation 405 (e.g., device 400 may receive and store a first IoT
application 405 on a first day, a second IoT application 405
on a thirtieth day, etc.). In some implementations, device 400
may maintain a collaboration list associated with sharing of
resources by the multiple Io'T applications 405. For example,
device 400 may maintain a collaboration list that describes
how a first IoT application 405 1s to (e.g., simultaneously,
concurrently, etc.) work in conjunction with a second IoT
application 405 1n order to share resources (e.g., one or more
virtual IoT device APIs 415, one or more driver APIs 435,

Us 9,830,166 B2

7

one or more hardware components of IoT device 210, etc.)
needed to execute the first IoT application 405 and the
second IoT application 403.

Application resource manager 410 may perform opera-
tions associated with managing, installing, uninstalling, 5
updating, and/or licensing IoT application 405. In some
implementations, application resource manager 410 may be
capable of protecting IoT application 4035 (e.g., from sofit-
ware piracy activities). Additionally, or alternatively, appli-
cation resource manager 410 may be capable of managing 10
resources (e.g., one or more virtual Io'T device APIs 415, one
or more driver APIs 435, one or more hardware components
of IoT device 210, etc.) to be concurrently used by a first IoT
application 405 and a second IoT application 405 (e.g., when
the first IoT application 405 and the second IoT application 15
405 are being executed at the same time) based on a
collaboration list associated with one or more IoT applica-
tions 405.

Virtual IoT device APl 415 may perform operations
associated with translating a first function to a second 20
function (e.g., from a high-level programming language to a
hardware dependent programming language) such that IoT
device 210 may be controlled, managed, manipulated, oper-
ated, and/or communicated via IoT application 405. For
example, device 400 may receive an indication (e.g., pro- 25
vided by user device 230) to execute IoT application 405,
and device 400 may execute IoT application 405 and load
virtual IoT device API 415. Here, IoT application 405 may
receive a command and may 1dentify a first function corre-
sponding to the command. Virtual IoT device API 415 may 30
translate the first function (e.g., from a high-level program-
ming language) to a second function (e.g., in another lan-
guage, such as C programming language) such that IoT
device 210 may operate 1n accordance with the second
function. In this way, virtual Io'T device API 415 may isolate 35
IoT application 405 from directly controlling one or more
hardware components of IoT device 210.

In some implementations, virtual IoT device API 415 may
be accessed by an IoT application developer of IoT appli-
cation 405, and may allow the IoT application developer to 40
treat Io'T device 210 as a virtual IoT device (e.g., since the
application developer need not have particular knowledge of
hardware components of IoT device 210 1n order to develop
IoT application 405 1n the high-level programming lan-
guage). In some 1implementations, virtual IoT device API 45
415 may be generated, created, developed, and/or provided
by an IoT device developer associated with IoT device
developer device 250. In some implementations, device 400
may include one or more virtual IoT device APIs 415 (e.g.,
where each of the one or more virtual IoT device APIs 415 50
may be associated with one or more IoT applications 405
and/or one or more driver APIs 435).

Io'T API manager 418 may perform operations associated
with managing, obtaining, retrieving, and/or storing virtual
IoT device API 415 and/or driver API 435 that may be 55
needed to execute Io'T application 405. For example, device
400 may receive IoT application 405 including a manifest
includes imformation (e.g., a name, a version number) that
identifies one or more virtual IoT device APIs 415 and/or
one or more driver APIs 435 that may be needed to execute 60
IoT application 405. Here, IoT API manager 418 may
determine whether device 400 stores the one or more virtual
IoT device APIs 415 and/or the one or more driver APIs 435
and, 11 not, IoT API manager 418 may retrieve (e.g., from an
online storage device, such as IoT app store device 260) and 65
store the one or more virtual IoT device APIs 415 and/or the
one or more driver APIs 435 (e.g., such that the one or more

8

virtual IoT device APIs 415 and/or the one or more driver
APIs 435 may be loaded when IoT application 405 1s
executed at a later time).

IoT protocol 420 may perform operations associated with
standardizing information formats and/or control formats
between IoT application 405 and one or more other func-
tional elements of device 400. In some implementations, IoT
protocol 420 may use an open source protocol, such as
constrained application protocol (CoAP), message queue

telemetry transport (MQTT) protocol, lightweight M2M
(LWM2M) protocol, or the like.

OS 425 may perform operations associated with manag-
ing resources (e.g., hardware resources, software resources,
etc.) of device 400 and/or providing services for one or more
functional elements of device 400. For example, OS 425
may include an operating system, such as Android, Red Hat,
Ubuntu, 108, or the like.

COM port driver 430 may perform operations associated
with managing and/or controlling communications ports of
device 400. For example, COM port driver 430 may perform
operations associated with managing and/or controlling
communication via one or more ports, such as an Ethernet
port, a RS-485 port, a RS-232 port, a universal asynchronous
receiver/transmitter (UART) port, a universal serial bus
(USB) port, a port associated with communicating via a
cellular network (e.g., a 3G network, an LTE network, etc.).

Driver API 435 may perform operations associated with
managing and/or controlling communication with one or
more hardware components of device 400. For example,
driver APl 435 may perform operations associated with
setting, managing, and/or controlling analog I/O pins of
device 400, digital I/O pins of device 400, or the like. In
some 1mplementations, driver API 435 may communicate
with other functional elements of device 400, such as virtual
IoT device API 415. In some implementations, device 400
may include one or more driver APIs 435 (e.g., where each
of the one or more driver APIs 435 may be associated with
one or more IoT applications 405 and/or one or more virtual
Io'T device APIs 415).

IoT control interface 440 may perform operations asso-
ciated with a hardware interface across which one or more
functional elements of device 400 exchange information,
such as virtual IoT device API 415 and driver API 435. In
some 1mplementations, 10T control interface 440 may per-
form operations associated with mapping a (e.g., translated)
second function, associated with an IoT application 405 and
translated by virtual IoT device API 415, such that driver
API 435 may cause IoT device 210 to operate based on the
translated function.

The number and arrangement of functional elements
shown 1n FIG. 4 are provided as an example. In practice,
device 400 may include additional functional elements,
fewer functional elements, different functional elements,
and/or differently arranged functional elements than those
shown 1n FIG. 4. Additionally, or alternatively, a set of
functional elements (e.g., one or more functional elements)
of device 400 may perform one or more functions described
as being performed by another set of functional elements of
device 400.

FIG. 5 1s a flow chart of an example process 500 for
receiving and storing a virtual IoT device API associated
with an IoT device. In some implementations, one or more
process blocks of FIG. 5 may be performed by Io'T controller
220. In some implementations, one or more process blocks
of FIG. 5 may be performed by another device or a set of
devices separate from or including IoT controller 220, such
as one or more other components of IoT device 210.

Us 9,830,166 B2

9

As shown 1n FIG. 5, process 300 may include receiving a
virtual IoT device API associated with an IoT device (block
510). For example, IoT controller 220 may receive virtual
IoT device API 415 associated with IoT device 210. In some
implementations, IoT controller 220 may receive virtual IoT
device API 415 when another device provides virtual IoT
device API 415, such as IoT device developer device 250 or
IoT app store device 260. Additionally, or alternatively, IoT
controller 220 may receive virtual IoT device API 4135
during manufacture and/or configuration of IoT device 210
(e.g., virtual IoT device API 415 may be provided to IoT
controller 220 when IoT device 210 1s manufactured and/or
configured by the IoT device developer). Additionally, or
alternatively, IoT controller 220 may receive virtual IoT
device API 413 at another time (e.g., IoT controller 220 may
download virtual IoT device API 415 at a later time).

In some implementations, virtual IoT device API 415 may
be created by the IoT device developer 1n order to allow IoT
device 210 to operate based on one or more IoT applications
via virtual IoT device API 415. For example, the IoT device
developer may obtain (e.g., from an entity associated with
designing IoT controller 220) imnformation associated with
driver API 435 (e.g., a driver manual that identifies available
functions, parameters, pins, ports, serial peripheral inter-
taces, etc). Here, the IoT device developer may create virtual
IoT dewce API 415 based on the information associated with
driver API 435. For example, with respect to a robotics
device, the IoT device developer may create virtual IoT
device API 415 such that a movement control 1s associated
with a particular port, and that a first pin (e.g., pin 1)
corresponds to a left arm of the robotics device, a second pin
(e.g., pin 2) corresponds to a right arm of the robotics device,
a first parameter value (e.g., 1) corresponds to a moving an
arm 1n an upward direction, a second parameter value (e.g.,
0) corresponds to moving an arm 1n a downward direction,
or the like. Here, virtual IoT device API 415 may be used to
translate a first function, associated with IoT application
405, to a second function, 1n order to cause IoT device 210
to operate. Continuing with the above example, virtual IoT
device API 415 may be created such that a first function
(e.g., written m a high-level programming language) indi-
cating that the left arm of the robotics device 1s to move 1n
the upward direction translates to a second function (e.g., dio
(pin 1, 1)) that may be carried out by driver API 435.

In some implementations, virtual IoT device API 415 may
include information that allows multiple IoT applications to
be independently developed for IoT device 210. For
example, with respect to a robotics device, virtual IoT device
API 415 may include information associated with a first port
that 1s to be used for movement control, a second port that
1s to be used for voice communication, and so on. As such,
independent IoT applications developers may develop IoT
applications for IoT device 210 (e.g., since virtual IoT
device API 415 will be identical for each IoT application
405) independent of one another. For example, an IoT
application developer may develop a movement control
application concurrently with another (e.g., imndependent)
IoT application developer developing a voice communica-
tion application.

As further shown i FIG. 5, process 500 may include
storing the virtual IoT device API (block 520). For example,
IoT controller 220 may store virtual Io'T device API 415. In
some 1mplementations, IoT controller 220 may store virtual
IoT device API 415 when IoT controller 220 receives virtual
IoT device API 415 (e.g., after IoT controller 220 receives
virtual IoT device API 415). Additionally, or alternatively,
IoT controller 220 may store virtual IoT device API 4135

10

15

20

25

30

35

40

45

50

55

60

65

10

based on information, indicating that Io'T controller 220 1s to
store virtual IoT device API 415, received from another
device, such as user device 230. In some 1implementations,
Io'T controller 220 may store virtual IoT device API 415 1n
a memory location (e.g., of a flash memory, a RAM, a ROM,
a cache, a hard disk, etc.) of IoT controller 220.

In some implementations, IoT controller 220 may store
information associated with virtual IoT device API 415 such
that a previous virtual IoT device API 415 (e.g., virtual IoT
device API 415 recerved at an earlier time) 1s overwritten
and/or deleted. Additionally, or alternatively, IoT controller
220 may store virtual IoT device API 4135 such that IoT
controller 220 may load virtual IoT device API 415 at a later
time. In some implementations, IoT controller 220 may store
multiple virtual IoT device APIs 415 associated with differ-
ent IoT devices 210 and/or different IoT applications 405.

Although FIG. 5 shows example blocks of process 500, 1n
some 1mplementations, process 500 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted 1n FIG. 5. Additionally,
or alternatively, two or more of the blocks of process 500
may be performed in parallel.

FIG. 6 1s a diagram of an example implementation 600
relating to example process 500 shown 1n FIG. 5. For the
purposes ol example implementation 600, assume that a first
Io'T device developer (e.g., Bot X developer) has created a
first virtual IoT device API 415 (e.g., Bot X API) for a first
IoT device 210 (e.g., Bot X) based on driver information
(e.g., associated with driver API 435) for IoT controller 220.
Similarly, assume that a second Io'T device developer (e.g.,
Drone 2000 developer) has created a second virtual IoT
device API 415 (e.g., Drone 2000 API) for a second IoT
device 210 (e.g., Drone 2000) based on the driver informa-
tion for IoT controller 220. In other words, assume that the
Bot X developer and the Drone 2000 developer have created
the Bot X API and the Drone 2000 API, respectively, based
on the same driver information associated with Io'T control-
ler 220.

As shown 1n the upper portion of FIG. 6, and by reference
number 6035, a Bot X developer device may provide, to a first
Io'T controller 220 (e.g., IoT controller 1), the Bot X API. As
shown, the Bot X API may include information (e.g., that
identifies functions, parameters, pins, ports, serial peripheral
interfaces, etc.) associated with translating movement con-
trol functions, vision control functions, and voice commu-
nication functions for Bot X. As shown by reference number
610, IoT controller 1 may store the Bot X API. As shown by
reference number 615, IoT controller 1 may be 1nstalled in
Bot X.

Similarly, as shown 1n the lower portion of FIG. 6, and by
reference number 620, a Drone 2000 developer device may
provide, to a second IoT controller 220 (e.g., Io'T controller
2) the Drone 2000 API. As shown, the Drone 2000 API may
include mformation associated with translating speed sensor
functions, pilot control functions, and location 1dentification
functions for Drone 2000. As shown by reference number
625, IoT controller 2 may store the Drone 2000 API. As
shown by reference number 630, IoT controller 2 may be
installed 1n Drone 2000.

As noted 1 FIG. 6, 10T controller 1 may be the same as
IoT controller 2. In other words, IoT controller 1 and IoT
controller 2 may be generic IoT controllers 220 that may
operate their respective IoT devices 210 based on loading
corresponding virtual IoT device APIs 415 (i.e., IoT con-
troller 220 may be software-defined). As an example, while
FIG. 6 describes IoT controller 1 as being used to carry out
functions associated with Bot X applications, 10T controller

Us 9,830,166 B2

11

1 may also be capable of receiving the Drone 2000 API, and
being installed 1n Drone 2000 (e.g., such that IoT controller
1 may carry out functions, associated with Drone 2000
applications, based on the Drone 2000 API). In this way,
virtual IoT device APIs 415 may allow a generic IoT
controller 220 to be software-defined for use in different IoT
applications 405 and/or 1n different IoT devices 210.

As idicated above, FIG. 6 1s provided merely as an
example. Other examples are possible and may differ from
what was described with regard to FIG. 6.

FIG. 7 1s a flow chart of an example process 700 for
causing an IoT device to operate based on translating a
function, associated with an IoT application for the IoT
device, using a virtual IoT device API. In some implemen-
tations, one or more process blocks of FIG. 7 may be
performed by IoT controller 220. In some implementations,
one or more process blocks of FIG. 7 may be performed by
another device or a set of devices separate from or including
IoT controller 220, such as one or more other components of
IoT device 210.

As shown 1n FIG. 7, process 700 may include executing
an IoT application associated with an IoT device (block
710). For example, IoT controller 220 may execute IoT
application 4035 associated with IoT device 210. In some
implementations, IoT controller 220 may execute IoT appli-
cation 405 when Io'T controller 220 recerves an indication to
execute IoT application 405.

In some 1implementations, IoT controller 220 may execute
IoT application 405 based on information provided by
another device, such as user device 230. For example, user
device 230 may provide (e.g., based on user input) an
indication that IoT controller 220 1s to execute IoT appli-
cation 405, and IoT controller 220 may execute IoT appli-
cation 405 accordingly. As an example, user device 230 may
provide, to IoT controller 220 included in a web cam device,
an indication that IoT controller 220 1s to execute a video
capture application associated with the web cam device.
Here, 10T controller 220 may receive the indication, and
may execute the video capture application accordingly.

In some 1implementations, IoT controller 220 may execute
IoT application 405 based on information stored by IoT
controller 220. For example, IoT controller 220 may receive
(e.g., from user device 230, from app store device 260, etc.)
information associated with IoT application 405, and may
store the information associated with IoT application 405.
Here, 10T controller 220 may execute IoT application 4035
based on the stored information. In some 1mplementations,
IoT controller 220 may store multiple IoT applications 405.
For example, IoT controller 220 may recerve and store a {irst
IoT application 403 at a first time, and may receive and store
a second IoT application 405 at a second time (e.g., a later
time). In some implementations, IoT controller 220 may
execute one or more ol the multiple IoT applications 4035
(1.e., IoT controller 220 may concurrently execute the one or
more IoT applications 405).

As further shown i FIG. 7, process 700 may include
loading a wvirtual IoT device API associated with the IoT
device (block 720). For example, IoT controller 220 may
load virtual IoT device API 415 associated with IoT device
210. In some 1implementations, IoT controller 220 may load
virtual IoT device API 415 when (e.g., belfore, after, con-
currently with) executing Io'T application 405. Additionally,
or alternatively, IoT controller 220 may load virtual IoT
device API 415 when IoT controller 220 receives an indi-
cation to load virtual IoT device API 415.

In some implementations, IoT controller 220 may load
virtual IoT device API 415 based on information stored by

10

15

20

25

30

35

40

45

50

55

60

65

12

IoT controller 220. For example, IoT controller 220 may
receirve and store virtual IoT device API 415, as described
above, and may load virtual IoT device API 415 from a
memory storage location associated with storing virtual IoT
device API 415.

In some implementations, 10T controller 220 may auto-
matically load virtual IoT device API 415 when IoT con-
troller 220 receives an indication to execute any Io'T appli-
cation 4035 associated with IoT device 210 (e.g., such that
Io'T controller 220 loads virtual IoT device API 415 for each
IoT application 405). In some 1mplementations, IoT con-
troller 220 may load multiple virtual IoT device APIs 4185.
For example, IoT controller 220 may load multiple virtual
IoT device APIs 415 when a single IoT application 405 is
configured to use multiple virtual IoT device APIs 415. As
another example, IoT controller 220 may load multiple
virtual IoT device APIs 415 when IoT controller 220
executes multiple Io'T applications 405 (e.g., where each IoT
application 405 1s configured to use one or more of the
multiple virtual IoT device APIs 415).

As further shown in FIG. 7, process 700 may include
receiving a command associated with the IoT application
(block 730). For example, IoT controller 220 may receive a
command associated with IoT application 405. In some
implementations, IoT controller 220 may receive the com-
mand after IoT controller 220 executes IoT application 405.
Additionally, or alternatively, IoT controller 220 may
receive the command when another device provides the
command, such as when user device 230 provides the
command.

A command may include information, associated with IoT
application 405, that indicates that IoT controller 220 1s to
control, manage, manipulate, operate, and/or communicate
with IoT device 210 in a manner corresponding to the
command. For example, the command may be associated
with controlling movement of a robotics device, performing
object analysis using a camera of a drone, recording a
measurement (e.g., a speed, a temperature, a pressure)
detected by a sensor, and so on.

In some implementations, IoT controller 220 may receive
the command based on information provided by user device
230. For example, user device 230 may provide (e.g., based
on a user indication) a command 1ndicating that IoT device
210 1s to operate 1n a particular manner. Here, Io'T controller
220 may receive the command via network 270. As a
particular example, a user may indicate (e.g., by selecting a
button on a user mterface of user device 230), that a robotics
device 1s to move a lelt leg forward. Here, user device 230
may provide (e.g., via network 270) a command to IoT
controller 220 included in the robotics device. In this
example, IoT controller 220 (e.g., Io'T application 405) may
identify a function, corresponding to the command, as
described below.

In some implementations, IoT controller 220 may receive
multiple commands associated with IoT application 405
(e.g., concurrently, 1n a series, 1n a sequence, etc.). Addi-
tionally, or alternatively, IoT controller 220 may receive
(e.g., concurrently, 1n a series, 1n a sequence, etc.) multiple
commands associated with multiple IoT applications 405
(e.g., when IoT controller 220 1s executing multiple IoT
applications 405 at the same time).

As further shown in FIG. 7, process 700 may include
identifying a first function corresponding to the command
(block 740). For example, IoT controller 220 may 1dentily a
first function corresponding to the command. In some 1mple-
mentations, 10T controller 220 may 1dentity the first function
after IoT controller 220 receives the command. Additionally,

Us 9,830,166 B2

13

or alternatively, IoT controller 220 may i1dentily the first
function at another time (e.g., when IoT controller 220 1s
configured to automatically identity the first function).

A first function, as used herein, may include information,
in the form of high-level programming code, that identifies
the manner in which IoT controller 220 1s to control,
manage, manipulate, operate, and/or communicate with IoT
device 210. Continuing with the above example, IoT con-
troller 220 may receive the command associated with mov-
ing the left leg of the robotics device forward, and IoT
controller 220 (e.g., IoT application 4035) may identify a first
function corresponding to the command (e.g., move (leg,
left, forward)) for virtual IoT device API 415 (e.g., such that
virtual IoT device API 415 may translate the first function to
a second function, as described below). As shown 1n this
example, 1n some implementations, IoT controller 220 may
identify the function, corresponding to the command based
on imnformation associated with IoT application 405. In some
implementations, IoT controller 220 may 1dentity multiple
first functions associated with one or more commands. For
example, IoT controller 220 may identify a set of first
functions corresponding to a set of commands associated
with Io'T application 4035 being executed by IoT controller
220. As another example, IoT controller 220 may 1dentify a
set of first functions corresponding to a set of commands
associated with multiple IoT applications 405 being
executed by IoT controller 220.

As further shown i FIG. 7, process 700 may include
translating the first function to a second function based on
the virtual IoT device API (block 750). For example, IoT
controller 220 may translate the first function to a second
function based on wvirtual IoT device API 415. In some
implementations, IoT controller 220 may translate the first
function after IoT controller 220 1dentifies the first function
for virtual IoT device API 415.

A second function, as used herein, may include informa-
tion, in the form of a programming code that may be used
to control hardware, that identifies the manner in which IoT
controller 220 1s to control, manage, manipulate, operate,
and/or communicate with IoT device 210.

In some implementations, Io'T controller 220 (e.g., virtual
IoT device API 415) may translate the first function based on
information associated with virtual IoT device API 415.
Continuing with the above example, IoT application 4035
may 1dentily the first function (e.g., move (left, leg, for-
ward)) for virtual IoT device API 415, and virtual IoT device
API 415 may translate the first function to a second function
based on information associated with virtual IoT device API
415. Here, for example, virtual IoT device API 415 may
translate the first function to a second function (e.g., dio (pin
2, 0)) such that the second function may be identified for
driver API 435 1n order to control the robotics device. In this
way, IoT controller 220 (e.g., virtual IoT device API 415)
may 1solate IoT application 405 from directly controlling
IoT device 210. As such, IoT application 405 may be
developed 1n a high-level program language (e.g., rather
than a hardware dependent programming language).

In some 1mplementations, IoT controller 220 may trans-
late multiple first functions to multiple second functions. For
example, IoT controller 220 may translate a set of {first
functions, associated with multiple IoT applications 4035
being concurrently executed by IoT controller 220, to a set
of second functions associated with controlling IoT device
210.

As further shown i FIG. 7, process 700 may include
causing the IoT device to operate based on the second
tfunction (block 760). For example, IoT controller 220 may

10

15

20

25

30

35

40

45

50

55

60

65

14

cause IoT device 210 to operate based on the second
function. In some implementations, IoT controller 220 may
cause IoT device 210 to operate after IoT controller 220
translates the first function to the second function.

In some implementations, IoT controller 220 (e.g., virtual
IoT device API 415) may cause IoT device 210 to operate,
based on the second function, by identifying the second
function for dniver APl 435. Continuing with the above
example, virtual Io'T device API 415 may 1dentity the second
function (e.g., dio (pin 2, 0)) on driver API 435, and driver
API 435 may carry out the function (e.g., by setting a second
pin to a particular value) such that the left leg of the robotics
device moves forward in accordance with the command.

In some implementations, IoT controller 220 may cause
IoT device 210 to operate based on multiple second func-
tions. For example, IoT controller 220 may cause IoT device
210 to operate based on a set of second functions, where
cach second function, of the set of second functions, may be
associated with a different IoT application 405 of multiple
IoT applications 405 being concurrently executed by IoT
controller 220. In some implementations, driver API 435
may carry out the set of second functions based on rules
information, stored or accessible by driver API 435, asso-
ciated with resolving a contlict between two or more second
functions of the set of second functions (e.g., when the two
or more second functions use the same driver API 435).
Additional details regarding the use of rules information are
described below.

Although FIG. 7 shows example blocks of process 700, 1n
some 1mplementations, process 700 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted 1n FIG. 7. Additionally,
or alternatively, two or more of the blocks of process 700
may be performed in parallel.

FIGS. 8A and 8B are diagrams of an example implemen-
tation 800 relating to example process 700 shown 1n FIG. 7.
For the purposes of example implementation 800, assume
that IoT controller 220 (e.g., IoT controller 1) 1s included 1n
Io'T device 210 (e.g., Bot X), and that Io'T controller 1 stores
or has access to an IoT application 405 (e.g., Bot X move-

ment control application) associated with Bot X, virtual IoT
device API 4135 (e.g., Bot X API) associated with Bot X, and

driver API 435 (e.g., IoT controller 1 driver API) associated
with IoT controller 1. Further, assume that user device 230
(e.g., UD1) 1s configured to control Bot X via the Bot X
movement control application.

As shown 1 FIG. 8A, and by reference number 805, IoT
controller 1 may receive, from UDI1 (e.g., based on user
input), an indication to execute the Bot X movement control
application. As shown by reference number 810, Io'T con-
troller 1 may execute the Bot X movement control applica-
tion. As shown by reference number 815, IoT controller 1
may also load (e.g., from a memory location of IoT con-
troller 1), the Bot X API. As shown by reference number
820, IoT controller 1 may also load the IoT controller 1 API
(e.g., from a memory location of IoT controller 1).

As shown in FIG. 8B, and by reference number 825, UD1
may provide (e.g., based on user input and via the Bot X
movement control application) a command to move a left
arm of Bot X 1n an upward direction. As shown by reference
number 830, IoT controller 1 may receive the command, and
the Bot X movement control application (e.g., being
executed by IoT controller 1) may identify a first function
(e.g., move (arm, leit, up)), corresponding to the command,
for the Bot X API. As shown by reference number 835, the
Bot X may translate, based on information associated with
the Bot X API, the first function to a second function (e.g.,

Us 9,830,166 B2

15

move (arm, left, up)=dio (pin 3, 1)), and may identify the
second Tunction for the IoT controller 1 driver. As shown by
reference number 840, the IoT controller 1 driver may, based
on the second function, manipulate Bot X accordingly (e.g.,
by setting pin 3 to a value of 1). As shown by reference
number 845, the left arm of Bot X may move in the upward
direction based on the manipulation by the IoT controller 1
driver.

As indicated above, FIGS. 8 A and 8B are provided merely
as an example. Other examples are possible and may differ
from what was described with regard to FIGS. 8A and 8B.

FIG. 9 1s a diagram of an example 900 showing a manner
in which multiple IoT applications, multiple virtual IoT
device APIs, and/or multiple driver APIs may interact in
accordance with implementations described herein. For the
purposes of FIG. 9, assume that IoT controller 220 1included
in device 210 (e.g., Bot X) stores three IoT applications 4035
(e.g., amovement control application, a dancing application,
and a verbal conversation application), five virtual IoT
device APIs 415 (e.g., a vision API, a motion API, an
emotion API, a music API, and a verbal communication
API), and seven driver APIs 435 (e.g., a camera driver, an
arm motor driver, a balance sensor driver, a leg motor driver,
a speaker driver, a microphone driver, and a color light
emitting diode (LED) driver).

As shown 1n FIG. 9, a particular IoT application 405 may
use one or more virtual IoT device APIs 415. For example,
the movement control application may use the vision API
and the motion API. As another example, the dancing
application may use the motion API, the emotion API, and
the music API. As an additional example, the verbal con-
versation application may use the motion API and the verbal
communication API. As such, each virtual IoT device API
415 may be used and/or shared by one or more (e.g.,
independently developed) IoT applications 405 (e.g., where
concurrent usage of each virtual IoT device API 415 may be
managed by application resource manager 410 in accor-
dance with a collaboration list maintained by IoT controller
220).

As further shown 1n FIG. 9, a particular virtual IoT device
API 415 may use one or more driver APIs 435. For example,
the vision APl may use the camera driver. As another
example, the motion API may use the arm motor driver, the
balance sensor driver, and the leg motor driver. As vyet
another example, the emotion API may use the arm motor
driver, the speaker driver, and the color LED driver. As still
another example, the music API may use the speaker driver.
As a final example, the verbal communication API may use
the speaker driver and the microphone driver. As such, each
driver API 435 may be used and/or shared by one or more
virtual Io'T device APIs 415 (e.g., where concurrent usage of
cach dniver API 435 may be managed by application
resource manager 410 in accordance with a collaboration list
maintained by IoT controller 220).

In some 1mplementations, each driver API 435 may store
or have access to rules information associated with operating
IoT device 210. The rules information may include infor-
mation associated with resolving a contlict between second
functions to be carried out driver 435. For example, the rules
information may include information associated with resolv-
ing a conilict based on a preferred scenario associated with
IoT device 210 (e.g., a hardware limitation, etc.), a hardware
status associated with IoT device 210 (e.g. a robot’s leg
position, etc.), or another type of information. In some
implementations, driver API 435 may resolve a contlict,
associated with two or more second functions, based on the
rules information. For example, driver API 435 may receive

10

15

20

25

30

35

40

45

50

55

60

65

16

a first second function (e.g., function A) via a first virtual IoT
device API 415, and may receive (e.g., sitmultaneously, 1n a
series, 1 a sequence, etc.) a second function (e.g., function
B) via a second virtual IoT device API 415 (e.g., belore
driver API 435 carries out function A). Here, driver API 435
may determine, based on the rules mnformation, 11 driver API
4335 1s to carry out function A before carrying out function
B, or if driver API 435 1s to carry out function B before
carrying out function A, and may act accordingly. In other
words, driver API 435 may use the rules information to
determine a priority associated with carrying out multiple
functions associated with multiple virtual IoT device APIs
415.

In some implementations, IoT controller 220 may store
multiple versions of virtual IoT device API 415 such that
cach of the one or more versions may be used 1n association
with IoT application 405. As such, two different Io'T appli-
cations 405 may call a same virtual IoT device API 415, but
cach of the two different IoT applications 405 may use a
different version of the same virtual IoT device API 415.
Additionally, or alternatively, Io'T controller 220 may store
multiple versions of driver API 435 such that each of the one
or more versions may be used 1n association with virtual IoT
device API 415. As such, two different virtual IoT device
APIs 415 may call a same driver API 4335, but each of the
two different virtual IoT device APIs 4135 may use a different
version of the same driver API 435.

In this way, one or more IoT applications 405, one or more
virtual IoT device APIs 415, and/or one or more driver APIs
435 may be mixed and matched for (e.g., concurrent) use by
Io'T controller 220 to control, manage, mampulate, operate,
and/or communicate with IoT device 210.

FIG. 10 1s a diagram of an example IoT app store
environment 1000 associated with 1mplementations
described herein. Environment 1000 shows an example of a
manner in which implementations described herein may
enable an IoT app store based on using a soitware-defined
(e.g., generic) IoT controller 220. For the purposes of FIG.
10, assume that a group of application developers (e.g., app
developer 1 through app developer 5), a group of users (e.g.,
user 1 and user 2), and a group of vendors (e.g., vendor 1,
vendor 2, and vendor 3) have access to an IoT app store (e.g.,
hosted by IoT app store device 260).

As shown, assume that vendor 1 sells a first IoT device
(e.g., Bot X and a Bot X API created for a generic IoT
controller) via the IoT app store, vendor 2 sells a second IoT
device (e.g., Drone 2000 and a Drone 2000 API created for
the generic IoT controller) via the IoT app store, and vendor
3 sells the generic 10T controller via the IoT app store.

As further shown, each application developer may 1nde-
pendently develop an application for an IoT device. For
example, app developer 1 may purchase Bot X (e.g., includ-
ing the Bot X API) and a generic IoT controller, and may
develop a Bot X movement control application using Java
programming language. As another example, app developer
2 may purchase Bot X (e.g., including the Bot X API) and
a generic IoT controller, and may develop a Bot X voice
communication application using Python programming lan-
guage. As still another example, app developer 3 may
purchase Bot X (e.g., including the Bot X API) and a generic
IoT controller, and may develop a Bot X vision control
application using Java programming language. As yet
another example, app developer 4 may purchase Drone 2000
(e.g., mcluding the Drone 2000 API) and a generic IoT
controller, and may develop a Drone 2000 auto pilot appli-
cation using Java programming language. As a {final
example, app developer 5 may purchase Drone 2000 (e.g.,

Us 9,830,166 B2

17

including the Drone 2000 API) and a generic IoT controller,
and may develop a Drone 2000 video processing application
using Python programming language.

As shown, each user may then purchase an IoT device, a
generic o1 controller, and one or more applications asso-
ciated with the purchased IoT device. For example, user 1
may purchase Bot X, a generic IoT controller, and the Bot
X applications (e.g., the movement control application, the
voice communication application, and/or the vision control
application). As another example, user 2 may purchase
Drone 2000, a generic IoT controller, and the Drone 2000
applications (e.g., the auto pilot application and/or the video
processing application). Here, using the generic IoT con-
troller may enable the IoT app store to as described below.

As 1ndicated above, FIG. 10 1s provided merely as an
example. Other examples are possible and may differ from
what was described with regard to FIG. 10.

Implementations described herein provide a platform that

—

uses a virtual IoT device API that allows a generic 101
controller to be software-defined for use in different IoT
applications and/or different IoT devices. Moreover, 1n some
implementations, the platform may allow an IoT application
developer, associated with an Io'T application, to develop the
IoT application using a high-level programming language
(e.g., based on the virtual IoT device API).

In some 1mplementations, the software-defined (e.g., re-
configurable by software) generic IoT controller may be
described as a multipurpose IoT controller. For example,
multiple IoT applications may be stored by the generic IoT
controller 1n the IoT device, and the generic IoT controller
may concurrently execute two or more of the multiple IoT
applications (e.g., with different purposes). Additionally, or
alternatively, the software-defined generic IoT controller
may be described as a universal 10T controller. For example,
in an 1implementation associated with a camera application,
the generic IoT controller may act as a 4G enabled webcam.
As another example, in an implementation associated with a
credit card reader application and a vending control appli-
cation, the generic IoT controller may act as an advanced
vending machine controller.

The 1foregoing disclosure provides illustration and
description, but 1s not intended to be exhaustive or to limait
the implementations to the precise form disclosed. Modifi-
cations and variations are possible i light of the above
disclosure or may be acquired from practice of the imple-
mentations.

As used herein, the term component 1s mtended to be
broadly construed as hardware, firmware, or a combination
of hardware and software.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, or a combination of hardware and software. The
actual specialized control hardware or software code used to
implement these systems and/or methods 1s not limiting of
the implementations. Thus, the operation and behavior of the
systems and/or methods were described herein without
reference to specific software code—it being understood that
software and hardware can be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features
may be combined 1n ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only

10

15

20

25

30

35

40

45

50

55

60

65

18

one claim, the disclosure of possible implementations
includes each dependent claim in combination with every
other claim in the claim set.

No element, act, or command used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the terms “group” and “set” are intended to include
one or more items (e.g., related items, unrelated items, a
combination of related items and unrelated 1tems, etc.), and
may be used interchangeably with “one or more.” Where
only one item 1s intended, the term “one” or similar language
1s used. Also, as used herein, the terms “has,” “have.,”
“having,” or the like are intended to be open-ended terms.
Further, the phrase “based on” 1s intended to mean “based,
at least 1n part, on” unless explicitly stated otherwise.

What 1s claimed 1s:

1. An Internet of things (IoT) controller, comprising:

a memory storing instructions; and

a processor to execute the mstructions to:

execute a first IoT application associated with operating
an o1 device;
execute a second IoT application associated with oper-
ating the IoT device,
the second IoT application being executed during
execution of the first IoT application;
load at least one virtual IoT device application program
interface (API) associated with the first IoT applica-
tion and the second IoT application;
identify a first set of functions,
the first set of functions including:
a first functional associated with the first IoT appli-
cation, and
a second function associated with the second IoT
application;
translate the first set of functions to a second set of
functions based on the at least one virtual IoT device
API,
the second set of functions including;
a third function i1dentifiable for at least one driver
API to control the IoT device, and
a fourth function identifiable for the at least one
driver API to control the IoT device; and
cause the IoT device to operate, via the at least one
driver API, based on the second set of functions,
the IoT device being caused to operate during execu-
tion of the first IoT application and the second IoT
application.

2. The IoT controller of claim 1, where the first function
1s associated with a first high-level programming language,
the second function 1s associated with a second high-level
programming language, and the third function and the fourth
function are associated with a hardware-dependent program-
ming language.

3. The IoT controller of claim 1, where the processor 1s
turther to:

receive the at least one virtual IoT device API; and

store the at least one virtual IoT device API; and

where the processor, when loading the at least one virtual

IoT device API, 1s to:
load the at least one virtual Io'T device API after storing
the at least one virtual IoT device API.

4. The IoT controller of claim 1, where the processor 1s
turther to:

determine rules information associated with operating the

[oT device,

Us 9,830,166 B2

19

the rules imnformation identifying a priority associated
with the third function and the fourth function; and
where the processor, when causing the IoT device to
operate, via the at least one driver API, based on the
second set of functions, 1s to:
cause the IoT device to operate, via the at least one

driver API, based on third function and the fourth
function, and 1n accordance with the rules informa-
tion.

5. The IoT controller of claim 1, where the processor 1s
turther to:
receive the first IoT application via an IoT app store
device; and
store the first Io'T application; and
where the processor, when executing the first IoT appli-
cation, 1s to:
execute the first IoT application after storing the first
IoT application.
6. The IoT controller of claim S, where the processor 1s
turther to:
receive the second IoT application,
the second IoT application being received after the first
IoT application 1s received; and
store the second IoT application; and
where the processor, when executing the second IoT
application, 1s to:
execute the second IoT application after storing the
second IoT application.
7. The IoT controller of claim 1, where the processor 1s
turther to:
load a set of driver APIs associated with the IoT device,
the set of driver APIs corresponding to the at least one
virtual IoT device API, and
the set of driver APIs including the at least one driver
API; and
where the processor, when causing the IoT to operate
based on the second set of functions, 1s to:
cause the IoT device to operate based on loading the set
of driver APIs.
8. A method, comprising:
executing, by a controller, a first Io'T application associ-
ated with operating an IoT device;
executing, by the controller, a second IoT application
associated with operating the IoT device,
the second IoT application being executed while the
first IoT application 1s executing;
loading, by the controller, a set of virtual IoT device
application program interfaces (APIs) associated with
the first IoT application and the second IoT application;
identifying, by the controller, a first set of functions,
the first set of functions including:
a first function associated with the first IoT applica-
tion, and
a second function associated with the second IoT
application;
translating, by the controller, the first set of functions to
a second set of functions based on the set of virtual IoT
device APIs,
the second set of functions including:
a third function identifiable for at least one driver
API to control the IoT device, and
a fourth function identifiable for the at least one
driver API to control the IoT device; and
causing, by the controller, the IoT device to operate, via
the at least one driver API, based on the second set of
functions,

5

10

15

20

25

30

35

40

45

50

55

60

65

20

the IoT device being caused to operate while the first
IoT application and the second IoT application are
being executed.

9. The method of claam 8, where the first function 1s
associated with a first high-level programming language, the
second function 1s associated with a second high-level
programming language, and the third function and the fourth
function are associated with a hardware-dependent program-
ming language.

10. The method of claim 8, further comprising:

recerving the set of virtual IoT device APIs; and

storing the set of virtual IoT device APIs; and

where loading the set of virtual IoT device APIs for the

Io'T device comprises:
loading the set of virtual IoT device APIs after storing
the set of virtual IoT device APIs.

11. The method of claim 8, further comprising:

determining rules information associated with operating

the IoT device,

the rules information identifying a priority associated
with the third function and the fourth function; and

where causing the IoT device to operate, via the at least

one driver API, based on the second set of functions

COMprises:

causing the IoT device to operate, via the at least one
driver API, based on third function and the fourth
function, and 1n accordance with the rules informa-
tion.

12. The method of claim 8, further comprising:

receiving the first IoT application via an IoT app store

device; and

storing the first IoT application; and

where executing the first IoT application comprises:

executing the first IoT application after storing the first
IoT application.
13. The method of claim 12, further comprising:
recerving the second IoT application,
the second IoT application being received after the first
IoT application 1s received; and
storing the second IoT application; and
where executing the second IoT application comprises:
executing the second IoT application after storing the
second IoT application.
14. The method of claim 8, further comprising:
loading a set of driver APIs, associated with the IoT

device,
the set of driver APIs corresponding to the set of virtual
[oT device APIs, and
the set of dniver APIs including the at least one driver
API; and
where causing the IoT to operate, via the at least one
driver API, based on the second set of functions com-
prises:
causing the IoT device to operate based on loading the
set of driver APIs.
15. A system, comprising;:
one or more devices comprising:
a memory to store instructions; and
a processor to execute the instructions to:
execute a first IoT application associated with an IoT
device:
execute a second IoT application associated with the
[oT device,
the second IoT application being executed during
execution of the first IoT application;

Us 9,830,166 B2

21

load an IoT application program interface (API)
associated with the first IoT application and the
second IoT application;
recelve a first set of functions,
the first set of functions ncluding: 5
a first function associated with the first IoT
application, and
a second function associated with the second
IoT application;
translate the first set of functions to a second set of 10
functions based on the IoT API,
the second set of functions including:
a third function identifiable for at least one
driver API to control the IoT device, and
a fourth function 1dentifiable for the at least one 15
driver API to control the IoT device;
load a set of driver API corresponding to the IoT API
and associated with the second set of functions:
and
control the IoT device, via the at least one driver API,
based on the second set of functions and the set of
driver APIs,
the IoT device being controlled while the first IoT
application 1s executing and while the second

IoT application 1s executing.

16. The system of claim 15, where the first function 1s
associated with a first high-level programming language, the
second function 1s associated with a second high-level
programming language, and the third function and the fourth
function are associated with a hardware-dependent program-
ming language.

17. The system of claim 15, where the processor 1s further
to:

receive the IoT API; and
store the IoT API; and

20

25

30

22

where the processor, when loading the IoT APL 1s to:
load the Io'T API based on storing the IoT API.
18. The system of claim 15, where the processor 1s further
to:
determine rules information associated with operating the
[oT device,
the rules information i1dentifying a priority associated
with the third function and the fourth function; and
where the processor, when controlling the IoT device, via
the at least one driver API, based on the second set of
functions, 1s to:
control the IoT device, via the at least one driver API,
based on third function and the fourth function, and
in accordance with the rules mformation.
19. The system of claim 15, where the processor 1s further
to:
receive the first IoT application via an IoT app store
device; and
store the first IoT application; and
where the processor, when executing the first IoT appli-
cation, 1s to:
execute the first IoT application after storing the first
IoT application.
20. The system of claim 19, where the processor 1s further
to:
recerve the second IoT application,
the second IoT application being received after the first
IoT application 1s received; and

store the second IoT application; and
where the processor, when executing the second IoT
application, 1s to:
execute the second IoT application after storing the
second IoT application.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

