12 United States Patent

McKean et al.

US009830092B2

US 9,830,092 B2
Nov. 28, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

(56)

SOLID STATE DEVICE PARITY CACHING
IN A HYBRID STORAGE ARRAY

Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventors: Brian D. McKean, Longmont, CO
(US); Sandeep Kumar R. Ummadi,
Boulder, CO (US)

Assignee: NetApp, Inc., Sunnyvale, CA (US)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 149 days.
Appl. No.: 14/627,825
Filed: Feb. 20, 2015
Prior Publication Data

US 2016/0246519 Al Aug. 25, 2016

Int. Cl.

GoO6l’ 12/00 (2006.01)

GO6l’ 3/06 (2006.01)

U.S. CL

CPC GooF 3/0619 (2013.01); GO6F 3/0611
(2013.01); GO6F 3/0653 (2013.01); GO6F

3/0685 (2013.01)
Field of Classification Search

CPC GO6F 3/0619; GO6F 3/0611; GO6F 3/0653;
GO6F 3/0685

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
8,549,222 Bl 10/2013 Klemman et al.
8,839,028 Bl 0/2014 Polia et al.
9,081,716 B1* 7/2015 Karmarkar GO6F 11/1076

—— —r— ———

2003/0188104 Al* 10/2003 Sullivan GOG6F 12/0897
711/119
2011/0238885 Al 9/2011 Kitahara et al.
2012/0311195 Al1* 12/2012 Chang GOo6F 9/4411
710/14
2014/0068181 Al 3/2014 Mridha et al.
2015/0003291 Al 1/2015 Oikawa et al.

OTHER PUBLICATTONS

PCT International Searching Authority, Notification of Transmittal
of the International Search Report and the Written Opinion of the
International Searching Authority, or the Declaration, Application

No. PCT/US2016/018751 dated Jun. 9, 2016, 7 pages.

Mao,B., et al. “HPOA: A hybrid parity-based disk array for
enhanced performance and reliability”; ACM Transactions on Stor-
age (TOS). vol. 8, No. 1; Publication [Online). Feb. 2012 [retrieved
Apr. 4, 2016}. Retrieved from the Internet: <URL: http:I/or.nsfc.
gov.cn/bitstream/00001903-5190177/1/1000003 549834 .pdf>; pp.
4.1-4.2.

* cited by examiner

Primary Examiner — Gurte] Bansal
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

A storage manager can reduce the overhead of parity based
fault tolerance by leveraging the access performance of
SSDs for the parities. Since reading a parity value can be

considered a small read operation, the reading of parity from
an SSD 1s an eflectively “free” operation due to the sub-

stantially greater SSD read performance. With reading parity
being an eflectively free operation, placing parity on SSDs
climinates the parity read operations (1n terms of time) from
the parity based fault tolerance overhead. A storage manager
can selectively place parity on SSDs from HDDs based on
a criterion or criteria, which can relate to frequency of access
to the data corresponding to the parity. The caching criterion
can be defined to ensure the reduced overhead gained by
reading parity values from a SSD outweighs any costs (e.g.,

SSD write endurance).

19 Claims, 11 Drawing Sheets

. :,.,.,.,.,._.,.,.,.,.,.,.,.1.,.,.,.1
AHODA D &, A | A
1 "-1"-'.'-"|-"-1

— S ey, —— ——r -

11111111111

r L[]
FatataT

|||||||
[|

Y ERID S ORME
ArEaY

U.S. Patent

.
o

e e e e T e e T e e T e e e e e e e e e e e e e T

-
-
-
-
-
-
-
-

Tty .

Sheet 1 of 11

Nov. 28, 2017

4 e i i iy i b b i i i i i

L THDDA D 10 88D 10
f 5 toA? SR &

A e N e S S Al ale iy ol e Pnate e e ol e i ol i e i e i i e ot e e e

M =
. ' :Z .
. " 1. .
™ - " 1 "
. H { .
MDY Ay By o :
. . . 1
" L] L - ﬁ i L] 3 - 1
. ' ' I .
u L 1. "
. ¥ 1. 1
:—----s---r-----s--r----w-w—- ---J---J----J-—--s---J-----:-s---r-----#---r-----j---r---—--ﬁ---r-----ﬁ .
. " 1 :
. " 1. .
L | [] 1
. ' 1 . .
L -) '
o _ ;} ' my 3 "
: - : "'-j : I b " r 4
L | . 1: t - : ‘-_.
. ' 1 |'. "
:,.._..,...,..,...,.,...,.,...,.,....... .,..,...,..,...,..,...,..,....:.,...,..,...,..,...,..,...,..,:-..,.,...,.,...,.,...,.,., : LI}
. " 1 n
. " 1. .
u L 1. "
L | . Y] 1 .
. -)
s 8 Di} »g’kj : 81 { :
L] " ? [] 1 .
. " 1. .
L | [] 1 .
. ¥ 1. 1
. i :
. 1 i * 1
. 1 k] ¥ N
. " 1 N * .
r-\-‘l_.‘l“l“l“l“l“l“l“l“l_.‘l. ‘l“l“l“l_.‘l“l“l“l‘l“l“l“l“l‘l“:‘_ .) t ‘ # :
. . [. L |] *
. LS - : . - s " i . M . ¥ L]
+ ! ¥ . 1 H M 1
I"] F r Illl- . . 1 . . s k o . .
. Hy it N . % A - ,r-'f
L | [] L] [
'I"'"'"""""'_'f"'f'f"'""' " "

A e e G G

580 CACHED

Lo A S Y A T R T A L S L T L T A T A O A

Ty e T T, e, T B, B,

o
&
¢

Ly

" AT
e

.'\. ..\. "\. .'\. ..\. "\. .'\. ..\. "\. .'\. ..\. "\. .'\. z.\

ARRAY
EALILE

e W o ow o W W

P A A A AR A,
e

n

STCF
A

R
it
%
i)

e g g T o T T T, T o T, T, T o T, T, o T, T, T T

-

-

T a A FETw L B I | LI + ¥ 4__" R | Lk F * ¥ 1

'._._.. R ..,‘_.-. o, . ..-.‘..,".. _-.',",'_""*‘T .f.i.:'_.'l:_.i‘_l ..._I__._ =l R e
a s -t L X - " - " LT :
T el R R E L - - ™ L L8 L]
i T LI B L I 3 RS mw Ty “_""-I- | I B | L B | '.-I_l'"-l F'il -Il""_.-ll
#* b em = L EmEm-EEFE= ' - Rl N I I N N - L L B N R N N R [L L B N R N N R [
Ll I A i [T e . L™ . [e Tl T T PO L / ; LR e e Tl T T PO L™
- - R R T) . Tty T ""‘*--!-I_-r-llf-*"'" " L] ""*'--!-r-r_-llf-*"'" -‘
¥ >
1
h L]

-

A

()

¥y e

-

-

e

E} '}
S
A

-

-

-

3 T 2

"-"'-"'-"'-'"-"'-'""""""""'-

-

R R R R R LR R RN EE RS L

- o F FFFEFF RS EFEF R

-
[

""""""'f"f"f"f"f"f"f"f""""""I"Ir:-.:'

‘...i.i...i.i..‘..i.i...i.i...i.

P i i i e e e el e i i e el i i i e i e e i el R Y
!;I
LY
v ¥FYsrFYysys-sYys rsyYy-fvrysSsyYysSsysSsysSsYyYyrsFYyYsSyYyYsSFYyYysYyYysSsyYysSsYyYrsFYyYsSr

o
X
-

&

‘_-vr *J:II;#:'.I
PR,

T

R .. "
[l T e e e i T B

L o S o L

:: e e

. ‘.- r.--_ ‘_I_

n *. P " e .) .

. -y K 4_(: .) .
: a P 3N -' >
: L N b - ..-ﬁl" 1:
- 1
.

US 9,830,092 B2

'
Cwm e A A A 4 A A 4 _ 4 A 4 4 4 4 4 4 a4 4 A 4 4 4 4 4 4 A A 4 4 A A4 4 a A 4 4 a4 4 a4 4 4 A A 4 A A 4 4 A A 4 4 A 4 a4 4 4 a4 4 4 A 4 4 A 4 4 4 A 4 4 4 A 4 4 4 4 4 4 4 4 4 A 4 4 4 4 4 4 4 _4_4_4_ 4 _4_4_4_4_4

R

TaTaT et e T aTaTaTaTaTaTa eV aTaTaTaTaTaTaTaTaTaTaTaTaTaTaTaTaTaTaTa s s aTa%y |

L |

Rt ek Rat Rat Rak Rt Tl Tt Bl

HYBRID STORAG
ARRAY

i1

U.S. Patent Nov. 28,2017 Sheet 2 of 11 US 9,830,092 B2

iﬁdhidhidhidhihhihh LT R T RN TR LR YTESE SRS R
-i-":‘ "?I "‘:. l'?.‘

« |HDD4 |

Bl BL RL R B R R R BL B R RL B "'""""""""""""""""'.'""""""""""""1.'"""""""""""""""""""""""""

NN E o ere——

Ay iy by e e e e e e e e e e e e e i e e e e e e i e e e i e i e e e e e e e e e e e e i e e i e e e e e e e e e g

FRRRRRRRRRRRRFRR RN R RN R RN R R AR RN RN RN R R R R

HDDZ2 ! Ay | Py

HOD3 | A §

L BE B BE BE B BE BE BE BN |
ol o o ok & R &
.
i dr o o
mmmmm P W & .
g dgr o dr e d o d A
il i Tl iy i

L b i i e i i e i
L B K K E K K _E E
LR B K X & K X R K & J

4

WAL E S S EE S, Ses s s s s se s ss s s s m
[
L B

bl G b i e e i e
L K B K K K L K
L X B K X R K X & K X J

:‘.

-y

1 -

rA

b b b i e i e e i
L B K K B K L E
o

---------r---------r---------

sy i iy e e iy e e iy i e e iy e e iy i e e e i e d e iy i e

MDD L Py 1 B

1-" pipipipipipipipipipipipipipipipipifipipinipipipipipipipipinipipipipipipipipipipipipiptinipipinipipinininininiente '

FYFY FFFY Ty

- oo oo o w oww ow oo owowowow o

A
b NN N NP AP NS N

2
nF

webgedy oyl el el
»

-----------*-----------

Hﬂh WA A A A A A A A A A8 A A A A A Ap A A A A A A A e e A ey A e e e

8]0 CACHED

/
F;

'I a
*
+
- .

L]
-

-

e g g gl gl g g g g o

-

-

adadadadadadadadadadadadadadadada 1".1. <

i

A e e e A W

b s e

STORAGE
WRRAY
MODIALE

CONSISTENGY

-

-

-~
v
'\u.'\u.

-

Ao
a ..

-

oo ol W WW W N N

-

o~
-

-

-

-

-

-

-

;4

ARKMAY MAP

P
:
&
4
&
o o
i
-

L |
,
L]
,
.-'
By iy i i iy iy iy e ey i e i i e e i iy iy iy e e e i e
‘.I .
h
Tt igigr g et Sttty e] Tl SRty e] Tt fgigstigt T Mgty e
i
i
L]
b}
¥
L]

111

-
P -

e R RS LR N -y
" ey

.‘_l_‘
1..-‘- -
T "

+ v wis ¥y » . = F v s ¥
l__."-'l -'l."-.' P 1_#-1I'I . AT TR iy oy
- - - * g

- - & T E T ROk
R - L L L
- LA NS rt

- om m m shah P
"_--I

- _—
B Tye R R eakaE T L op
L | _a

:_“- e n mw
., A NN LN %

- -
I R EEE LR
n_a ="

[R FE I T LN

a=
N o maw - . n B
. Frle e e e .
Ll i E ko m E

Bl R

2

P

=JOWS eI

- mmm g
L]

i

- -
L O B B B BN BN BN BN BN B BN BN B B BN BN BN BN BN BN BN BN BY BN BN BN BN |

-

-

'-\.'-\.'-\.'-\.'

-

-

-

"\."\.
L

-

-

-

-

-

-

-

-

-

-

-

-

-

-

{3
L ;

o e e e e e s e e s e e e e e o e e o e e o e e o e e o

2

L L]
L] L] L 3
b " L L |]
] h] - a
» L] - -
4 N I |.
l‘ A i LI
W, e - PR
- . i * L
e . - - - .
PR - . . r‘ 1
-'. Y ‘.- I‘ l‘
- -, =
w - S .. ~ . - - o.My
.., P . - . - . - .
r . .f. . - . . . -
» - N - - . i . . -
.
+ -
L] ¥
L]
L] .ur'
*a R e e e e e e e e T e e e T e e i e P P e P e e e P e e e P P e T T P T T T R
1
I. -
v

HYBRI STORAGE
HER ARRAY

. |

.

US 9,830,092 B2

Sheet 3 of 11

Nov. 28, 2017

U.S. Patent

323

e

4
L |

..'!‘_. S N,

- -.-.-.-.-.---.-.---.-.---.-.---.-

Paatatrie |

%
1

wipinipipie

.

I:.
oL,
whuin

""""T""""

1
AP PL PP PR LAY

Lo e e e i i e
1

MDD

'-'""-""'-"-"-'""-""'-"-"-'""-""'-'L'-'""-'""-"-"-'""-'""-"

MG

"’L'L"""""""'
L L L R L R eC P B FE L RE B R IR

‘R

&

"-"-"-"-"-"-"-"-"-"-"-"r-"-"-"-"-"-"-"-"-"-"'-"

!

N
YA

¥ i)
L] } L
¥ I
¥ ¥
] *
¥ ; 3
Y,) ¥
[] *
¥ I
¥ v ¥
] []
2 3 e 3
S SR B R
¥, % *
¥, . % .. Ly
¥, . % Ly
¥, % *
¥ % *
¥, % *
¥, % ¥
¥ % *
N N N N |

s

s e e e e e e o e e L

L
'
'
'
'
'
'
'
'
'

brbbbbbbbbbbb

ot s o e e o e e e e e o e e o

T T T T T T T T T T T T T T T e T T T T T T T T T e T e T T T T T T T T T e T T T T T T T T T T e e T e

¥

ML RN R R NI R RN R

{3H

ey sy ky i dp oy ey oy iy e oy e ey e e e e

-

Co.
£
e

o
w

il

i e iy ey i e by e

R F?;F’.g

Sy oy dp iy oy iy dy iy ey e

@.

MP,

-

{3

'y

.1.1.1.1.1.1.1.1.1.1.1..._-_ ey e e By A A A

o

¢

llililflilflllflili.l.l.l.l.l.l.l.l.l.l.

P

m._nm."ﬂ

B

1

HE}i}Z

'l e e ! lll-‘ll- ittt e T

”r
Ly
]
L
'
LR X R v R R N RN RERERERERERESSYS NSNS NN !!!!!!!!!!T!!!!!!!!!!A
¥
¥
*
Ly
¥
*
]

...llllllllllllllllllllllllllllllll\

!.HH"'
_.i*u*.
By

WRIT

Eigg;

& lanlngm PO W NN N R I R NG R RN N RN NN RN IR R R R R RGN R RN N N

D CACKE
CACHE
GEW»%EiS?EHS’f
STORAGE
ARRAY MAP

S
GM&STEN*CY

I.-.'I.-' I.-"I.-' I.-.'I.-' I.-.'I.-' I.-"I.-' I.-.'I.-' I.-.'I.-' I.-"I.-' I.-.'I.-' I.-.'I.-' I.-"I.-' I.-.'I.-' I.-.'I.-' I.-"I.-' I.-.'I.-' .

-

rr e e e e e e e e

"ll“?
1-
1.
1.
1-
1
1
1
1
1
1
1
1

O

»%

-

4‘

L R P g Py ey]

Vaia o

L1t
| ™,

" e R
Lin s R Am A aal i

J

R e e

idaa
§ =)=)=

L]
'h_.|_“ N

-..-.--------

e e L N N NN N N N L

g g

ol
[]
b

kLl LLLLLLLALRLRLRLE Ll Ll LR LEe L ee e e e e e

LI T T N L L L.
FY :
'l "-.L

1 ..__-_..

N . % T

A L

S ¥4

“n [

» Py

] .1“._

.__- -._.-

e y

FF FFFFFFEFEFEFEFEFEEFEEFEFEEFEEFEEFEEFEEFEEFEFEEFEEFEEFEFEFEFEFRI

r
-

Ll LI -
L R e
-
'*-".-
L-il
L% |
.

30

i..._.__ 7

._..I._.._.I._.._.I._.IIIIIIIIIIIIIIIIIIIIIIIII!

'l'"l"-'-'l'

"t rrrrr - F

LI
LA N |
.

L}
¢ o

-+

1 A _._.. K

__.- -_..._

'y e)
X & 5% ¥ M.u‘_.
1 .." __“ . I...Jf#. . Fa
[. ".
. " Yy
* - " ,

" -

..-. P

L] .-._.”.

) ¥

L T o I I L I L)

‘-Ir.. - JE aE EdEdEdEdEdE AN dE S dEaE R dE SN SRR AR SN SN AN N N AN SR AN aEaE

. ..'I 4
+ lr-.
.11 -.._._.
. X
X LN . .
I L o 3 gy
. [.
o
X u.___.. ’
X i-i
ln L |
* F
b =
4 .__.‘.-._

O :

._.l -__.l.-
RS
. o oy . .
L R
il o
A
T "“”
R
. .
1
Lo

¥ F
-
‘1....-...-. LA L T N T .-._.-...-...-...-...-...-...-...-...-...-...-...-...-...-...-...-..‘

[]

.'-‘
o
Pl
Cw
P
.

- d
) -..‘.
. .
.

L
.!..i.

|

1 . .'L
*

..

L .

|
i
2T, »
o
*

..

[

L J

LR

(S W A il

[
I.\I‘.hll-llllllllllllil'

+
i-

*a

.-

"i‘

= EEEEFEEEFEEEEEFEEEFEEEEFEFEFEEFEREEFEEFEFEEFEEEFEFEEEEFEEEFEREEFEEEEEFEEEFEFEEEEEEREEEEEEEEEFEEEEEEEFEEEEEEEEREEEEEEEEFE R EEEEREEEEEEEEFEFEEEFEEEFEFEEEEEEEEREEFEEEEEFEFEEFEEEEFEEEEREEEEEEEEFEEEFEE R EEEEEEEFEE

YBRI STORAGE
ARRAY

L]
L]
]

i, 3

U.S. Patent ov. 28, 2017 Sheet 4 of 11 US 9,830,092 B2

326

» -
]]
&
L *
u' .S

’ A
Jo
> -

rl.‘..‘.‘...‘..‘.‘...‘..hh.l:“.hh.hh.hh.hh.hh.hh: +""""""""""""""""""""""""""I"'""""""""'"'"""'""'"""'"""'"""1

HODS R, 1 RP.

MG | D 1Y

Y.y

&Hy 1580
D, 1550 10

=l e ol e e s ke _ah

W

1
1
1
1
1
1
1
1
1
$
1
1
1
1
1
i
1
1
1
1

de..de..ﬁTd..de..de..*i

e e e e e e e

i
§
i

"- ;_l._l._l..l._l._l..l._l._l..l._l._l..l._l._l..l._l ettt e fm e M N e A A N H M o D A e A D Al A N A A A A e A e g
: vt '
'Jl- - LS : - !
- - SR D{}E {} , D .
¥ . T u s
1 RO o DPy | OF
vt)
I‘- '
3 T . T
|" .‘..-.....-........ N R L N N N N N L N N N N))
r 4 .
v :
2] ot
k .
- :
v :
:_ :I'I'I'-FI'I'-'I'I'-FI'I'-FI'-F-FI' [l ol b o o o o o o) Ll b o o b b ol ol o b ol ol b Sl o)) ;
ot .
v :
D {3 {3 {3 3
r - L. | . -
©k . ' :
Lot -~ & 3
3
ﬁ 1 .
.F':.{ '.-H- : ;:- :-'-'lr'-'lr'-'lr'-'lr'-'lr'-'lr'-'lr'-'-r'- N O T A S S T T S A A R A T T T T R g
wiad e
r ' '
v . j
'- : - Qﬂ C Q ¢
[] "
: E i ~J 3 3
K, -
Py : ; e
3 : f
:' Eﬁ'################ dr i iy e e iy e e e e e e e e e e e e B e e de Wi B b e iy e e e i e e .
vt
P ;
Fopos ”~
r 4]
: A ¢ ' % 2 ' 3 ; |
ll\'l'l‘_l'i'l'l'l'l‘_l'l' N 'i'l'l'l'I'l'i'l'l'l'l‘_l'l'l‘ " ' = .
'3 . r 4
] 3§ ot
:' k) K2 _"- | : I i i i i i b i b b i b b i b b b e e b b b i b b b i b i i B i i b i i b b i b b i el e e i i e i i e i i i
) N ¢ F
.. . - ‘ -
.'I-‘-'I-!-'I-!-'l-‘-'l-""""l‘""‘“'“‘“““" : ' . . E
AHDDYT A A
- ' - l'.
Pt - %% ¥ 3 §
Tk
v !
"a l'-\. R R R N N T N e e R N Y R T R TRy ;
) e,

L)
NI Ry R ..:.:zztﬂ viageininie! NI SRR NI R

oy

S50 CACHE 1)
CONSISTENCY |

¥
x
¥
¥
x
¥
*
1_F K :r]
w [
» >
o 4
5 -
’ o -
'||:_l L -:
C [-
' PR . ¥
LR < s] o
[] - - o 1 --._
F] ’ .
- r -« L 1 -
: . .r g o ' --: .
> - ' y
b ': L -r'_
W o] -
r I T
h 1 o
. . i .
. ¥
1 -
_ ») 4 . *
. y By . : :r
=l i ? Y mygingln 2. ' iy
. . "
- #':. - "1 : --._
. ¥
| -
*
r » b4 d 3
’ - v ruat
.‘ ey .
. 2 | }2 2 . 2 “
L]
l.-I-Il'.-
1-,.‘
ot B b B B b
L i P L e
‘.Il"'. - * ko o .1'- o BTSRRI A el 4 == - . R LR AL T ¥ == - a k. BT - .
'# i.‘ 1-_- 'l" ._Ill - - - l-“ .Iul-I" - - "l'l-l.‘. ’11 - ‘-I.. ._Il - - Ll .ll-"‘ - - "l'l-l.'.
" ;] U . T r r o 1 1 ¥ '} u]
F] LA I TN LI [] Bl L b | u '
': e - --_-“".-: ‘-‘ *u *'I-l----'1-1h1.1‘--+._‘- =t tr '14"' - ¥ "‘- ‘:"ll -, ow_a EE i""':'. .'ﬁ-‘ e # w w 11w mw P T ‘I'"-r‘l *l*' - ga a_w T r r- e -, o 1 4 -"'r‘
= LT o o L e n g mw * [l et B B B B [l L 2al BN ISRV SR S N k) - - . LI N TR SR U A] FF "L . Ll S B el] - | ' S W i ok kT W - "o O ko E W 1 P ¥
- R e e wm om om kETETE -] =R om o e .. i epa u, T %] i o k... N BN ‘h e m g g naome T & TR om o ... T N)] r T oW k.. N N
[Ll "R ' B » 1 et e B BN B B Ol Bald - . sl ey ww R ¥ ¥ 1 Il virw e e e i e wwE ¥
"W dwag L e s B T k L] L & u r
» Ll N » . 1 1 LN , r 1 L i] i . ¥
L]] L] 1 - - . ‘b‘ * 1 - 1 | i . . x
" 1 | * ; _: : [[¥ 1: : + ' |: i) : - ' - x
: : : LY : : 4 : : & : : 4 : : ; : LA A
: 3 : : : : | : . »s : : : ; - :
r] . & . r
L]] * 1 L . . ¥]] 1 L] i . . x
: ~ L AL ; LS e - : . : I o ¥ T
h nn‘*r . ‘* b ! ' % . W - : 2 i, h ; : : : -,
ok L] 1 . .] .f 1 1 L | i . d x
* - - * : 1 2 ::' : il : 2 ' i A) r L T
» - * . [N . + ' . i, i i r x
L - * .] - . * ' L L] i : : ¥
» W * . 1 i\ . + ' i A) : . T
L) * iz 1 . - . r] 3] I i : i ¥
L L] a : 1 3 1: : -4 * 1 |: | i : . 3 x
' 2 ' : ' : * o™ ' : ' i i h - B
:Il L * :] - : * ' |: L] l: r ¥
» * . 1 i\ . + ' i A) : T
L) L » . 1 -+ . r 1 i] i . ¥
L L] * .] L . * ' L L] i . ¥
» L] . . 1 4 . x 1 i] i ¥
» N * . [N . + ' i, i i r x
L L] * .] - . * ' L L] i r ¥
» n * . 1 i\ . + ' i A) : T
L) L] » . 1 -+ . r 1 i] i ¥
L L] * .] L . * ' L L] i : ¥
3 2 ; : ! i : : : : : : : !
T -t * g 1 1 : g ' " 1 i r g
LS
F.
. ¥
¥
: L] ¥
PR)
R B
AT LN 3 LI)
A NN LR N 1
L L LT Y)
r Jrlr ﬁp b'rlr'rlr* 11-“‘-*bl'-
r e ~ %k kN
ok Y r L] " " o= omoEoEoEom N P
e e Sy, R,
Ay ey e ey ey e ey e . . . LR)
. . e !
"., - L
. ‘ - "
'lI| o
. . [B
'l...q--_' ll__'
] - [
-rq -‘. “a - .
T "‘ !. l‘

315

477 ot o5 Lo S
. L |
W ! Ll Y 1
L

&

""...‘ -~
bbb bbb bbb bbb bbb bbb b bbb bbb bbb bbb bbb bbb bbb bbb bbb b bbb bbb b bbb b b bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb b bbb bbb bbb bbb b b b bbb bbb bbb bbb bbb b bbb bbb bbb b bbb bbb bbby atwbrbebebrba bbb bbbt n,

L
+
L
F
-

o HYBRID STORAGE
FIG. 4 ARRAY

U.S. Patent Nov. 28,2017 Sheet 5 of 11 US 9,830,092 B2

501 1. DETECT DATA URDATE FOR HYBRID STORAGE ARRAY

##

QET‘EF{MNE DATA BLOCK AND PARITY LOCATIONG IN|
Siﬁhﬁa{‘ £ ARRAY AFFECTED BY THE DATA JPF}M&

~PARITY ALREADY" _
CACHED ONA SOLD "_‘::::- L BOS
“STATE DEVICE OF THE"
T ARRAYY 7

YES
.. A

UPDATE DATA BLOCK AND RECALGULME
RPARITY ACCORDINGLY, THEN UPDATE
CONSISTENGCY BTATUS OF DATABLOCK

T HICATE CONSISTENCY STATUR OF
. (PARITY AT 30TH THE BOLID S1ATE OE B‘H“‘E
AND THE HﬁRJ L? :*:-%‘i i‘)&‘éi{‘;& AS |

---- WRITE THE UPDATED DATA BLOCK TO THE ARRAY 511

WRITE THE RECALCULATED PARITY TO THE [513
SO STATE DEVICE ARE THE HARD (85K
DEVICE LOCATIONS

##

AEAAY AR WA WA RS AR AR WA R PR

. , 547
- AFTERCONFIRMATIONOF

- UPDATED DATA BLOCK WRITE, e
INDICATE STATUS OF DATA BLOCK INDICATE STATUS OF PARITY AT BOTH THE

1, | SOLIO STATE DEVIOE AND THE HARD DISK
A5 CONGIBTENT DEVICE LOCATIONS AS CONSISTENT AFTER
- CONFIRMATION OF WRITES RECEWVED

--

FF
s e
g 7

FIG. &

U.S. Patent Nov. 28,2017 Sheet 6 of 11 US 9,830,092 B2

~ f?em"=
\BLOLK 305

801 F%Eﬁ,& E}ATA BL{}GK
FP{}%;} THE ﬁ?%ﬁm‘

nnn

a3 READ PARITY FROM THE |
< SOUID STATE DEVICE

UPDATE DATABLOCK |
Tl INACCORDANCE WITH
- DATAUPDATE |

 |RECALCULATE PARITY
| BASED ONUPDATED
DATABLOCK |

...

INDICATE STATUS OF |
609 1. mm BLOCK AS |

/080K

59

U.S. Patent

NE‘*EC f"in" ST;’-'%TUS OF PARITY
AS INLUNGISTENT AT THE

Nov. 28, 2017 Sheet 7 of 11

A eron N
_BLOCK 518

Bt i A b A S U U L B i A e o

. | READ PARITY FROM 175 LOCATIONON
A HARD DISK DEVICE IN THE ARRAY

:::

A UPDATE DATA BLOCK N ,
A{*{‘omm{*f: WITH DATA LIPDATE |

207 -~ | RECALCULATE PARITY BASED
. ON UPDATED DATA BLOCK

709 .| INDICATE STATUS OF DATA
- BLOCKAS INCONSISTENT

111 | WRITE THE UPDATED DATA
71 BLOCK YO THE ARRAY

F’ﬁ‘-’ip TY

’Sﬁﬂﬁ?iﬁﬁ‘?

17

b o R L L Y

US 9,830,092 B2

...

- AFTER CONF! RVATION

Ok URPDATED DATA

BLOCK WRITE, UPDATE
 STATUS OF DATABLOCK |

A CUNSIRTENT

.ﬁ.ﬁ..ﬁ‘

- DETERMINE ?ﬁﬁ‘;iT"*‘

g —— CAC%%EE‘%G SR?TEEEQN mY§5* CACHING ROLID
55 $TMTJ”* f}m"ﬁ"

IHGATE ThE SOUIL RTATE

HARD DISK DEVICE | DRIVE AS CACHING THE PARITY |
______________________________________ _LOCATION | |
727 4o . INDICATE STATUS OF PARITY AT BOTH
PN THE SOLID STATE DEVICE AND THE |

WRITE THE RECALCULATED |
PARITY TO THE HARD DISK |

HARD DISK DEVICE AS INCONSISTENT |

DEVICE LOCATION i
-' WRiTE Tk RECALCULATED PARITY """{;
1 soq - | THE PARITY CACHING SOLID STATE
; ; YL DEVICE AND THE MARD DISK DEVICE
- INDICATE STATUS OF { GCATIONS
PARITY AS CONSISTENT! e oo
CARTER CONFIRMATION + , S

OF WRiTE RECGEIVED

##

INDICATE STATUS OF PARITY AT BOTH

-4 THE SOLE STATE DEVICE AND THE HARD
T DISK DEVICE LOCATIONS AS CONSISTENT

AFTER CONFIRMATION OF WRITES
RECEIVED

U.S. Patent Nov. 28,2017 Sheet 8 of 11 US 9,830,092 B2

i B e e
L]
L] r,

a01 - FOREACH PARITY OF STORAGE ARRAY /
T % CACHEDINSOUID STATEDEVICE 7

BARITY EVICTION .
. CRITERION
“SATISFIEDD

ENSURE PARITY AT HARD DISK
DEVICE LOCATION ._:s CONSISTENT

co7 - | NOTIFY SOLID STATE DEVICE CACHING THE |
T PARITY TO MARK THE PARITY AS INVALID |

o .. [INDICATE THAT PARITY NO LONGER BEING
1 CACHED IN THE BOLID STATE DEVICE

111

EVICTION EVALUATION TRIGGER|

U.S. Patent Nov. 28,2017 Sheet 9 of 11 US 9,830,092 B2

""

GOt _..,,{:r BPM"‘E FOR & Ah& BLGC%‘-;

-* -
) L]
Felpipipipigipipipiy L wimty
1:._--- '-"-'--"-"-"-"-"-"-"-'--"-"-"-"-",1"
\ j
X L
L}

FOR BEACH FARITY CORRESPUNDING

‘." "-'.,
\ 2
- []
L .- L ’ Sy M
AU -' .'P.\' o
. L "Ir §] ; B '.'
o ¥) LA “
¥ - . [] Ld
r]
L]
[
n

. e E% .*-"“ ““
| READ PARITY FF%{;"VI

417 Y
I Eiﬁg %“‘Efa —YES-HSOLID STATE DEVICE
' Y | _LOGATION |

E i {;E : E : : .l""I L:-:-:-:-:-:-:-: ------------------------------ gl
' -
.- ".I
L}
-
]
-
r
"]
- al
'************************ **-ﬁ-*********************i

"READ PARITY FROM HARD
DISK DEVICE LOCATION

**************************** I' 0 ’Q* CALDLHLATE F‘:ﬁm'ﬁ'

.. A o

RECALCULATE PARITY BASED) 405 | BASERONUPDRTED |
{}M LPD}&}?EE} Dh#ﬂ;\ SL{}PE{ E e eeomenemneomen e, ———— l.t....................i

N 4 2 | INDICATE RECALCULATED | |

A 911 L4 PARITYINTHESOUD | |
LT PARITY e . STATE DEVICE A8

CACHING S YES | INCONSISTENT

- ﬁ%«ﬂ TERION SBATIRF ﬁ;{} , . ' ; "{S
;:g;;:z ";‘pg p,ss,p:;f{y*:« DETERMING PARS T?’ {LACH! M} SCJL 5

F STATE DEVIGE AND INDIGATE ThE SOLIR
S’fﬁ‘x £ DEVICE AS CAUHE LOCATION FOR
NO Th RECALCULATED PARITY

a9y -

: i"ﬂi"“‘ﬁ{?ﬁ . e e X
| TINDICATE RECALCUUATED PARITY
e PARITY | | oS INCONSISTENT FOR S0LD
- AS INCONSISTENT AND | 5: STATE DEVICE LOCATION
 WRITETOTHE HARD | b m e E R

DISK DEVICE LOCATION | -
i ~~~~~~~~~~~~~~~~~~~~~~~~ : INDICATE PARITY IN HARD DISK

DEVICE AS INCONSISTENT WITH |
: ﬁeymk ?H“: RE&&L JLA”"'ED SOLID STATE DEVICE L’s’:}CATii}N

E Jﬁlﬁi‘{ -{Q]HE HAR{} S;Sﬁ T
: DEVICE LOCATION ’

g-;:s

44

WL RECA& JLATEE?
PARITY TO THE 80D |
STATE DEVICE

.
L |
. .
. .
}]
RN .
. . . S e P L P e L e s e R ey L L L s e L L L e LTy L) -
-
- . N I it Tttt e i e e T i N alat
e L
_ﬁ . ll.r ‘| o
F L . - !. -# “
:I: '
- A4
]

vafeh Jafefh Jalsls seinils Jeieis Sura,

9@3

NDIGATE STATUS OF | oicATE AFTER CONFIRMATION OF WRITE |
- PARITY INHARD DISK 1 paomes i | RECEIVED, INDICATE STATUS OF FARITY I
%%’*"’QE AS CWSE*‘%‘TEM L UPDAT w SOLID STATE DEVICE AS CONSISTENT |
- AFTER CONFIRMATION (L~ |
. OF WRITE RECEIVED | £ ©

U.S. Patent Nov. 28, 2017 Sheet 10 of 11 US 9,830,092 B2

111

ong - FOREACH PARTTY OF STORAGE ARRAY

CAUHED N GOLID STATE DEVICE

ll

v o

f?ﬁt?i?‘?’ EH»’?{\TK}M‘E
CRETKR f}"‘i
Sﬁs?ﬁ S EIE'?‘

L

UPDATE HARD DISK DEVICE |
- LOCATION OF THE CACHED PARITY

"""""""""""""""""""""""" R YES

1006 -

AFTER CONFIRMATION OF UPDATE AT THE
HARD DISK DEVICE LOCATION, NOTIFY |
SOLID STATE DEVICE CACHING THE |
PARITY TO MARK THE PARITY AS INVALID |

. HNDICATE THAT PARITY NO LONGER BEIN
T CACHED

" ADDITIONAL CACHED F’ﬁsﬁ’f TY TO EVALUATE?

-
.-
r L]
S il
"'n.
h‘ I

- i-

4

[]
d

1041 NO
WAIT FOR REXT PARITY _
EVICTION EVALUATION TRIGBER |

H‘F

1013

H 10

US 9,830,092 B2

Sheet 11 of 11

:
R

L N N N N N I N N N N N N N N N N I N N N N N N N N N N N N |

b
=8
m &
= w

R e R e
P ol

+ ¥ |

] -

L]
L]
.
n

' Ll e §

LR e L R e R R)
LIC I S I A T T T A N N

-

|
PR
-

-n
a . W
L w1

I T T R T O T T T T T T YO O O T T T T T T T T W T T T

1

g

11

ra' e,

P

ﬁ,cﬁ

th Solid Siste Be
Drive Panity Caching

|

Siorage Amay Condroller

{
¥

e e ey e e Sy by Sy Sy g Ay Sy Ay S Ay e e Ay e iy e e iy e Ay Sy Sy Sy Sty iy by

]
- r L= .

-h _-..- 4 L] .. L] .]
b I- i- R

. 3

. ._.-

. .

. .

. ._.-

. .

. .

. -

- .

. .

. ._.-

. .

. .

. ._.-

. .

. 3

.- i-

. .

. .

. ._.-

. .

. .

. -

. .
M “.... -, tom, ” v

- - o1

T
>

13
.
T

13
T
>

»
.
T
>

B

- L N U S N U U N VR S U W M N SR NS VR AL WIS W R Y WO R SR W S R R VR S VS Y ML N R WS VY SR N VR NS R S U SR W U U S VR S U N VY UL R W MY SR WIS W R UL SR U SR U S U NN M U R N N SR N WS VR SR WIS WS SRR UR SN U SR U S U S M U U M N S SR VRS M R N U R L N S SR U S R SR M S Y W M U N AR MY R NS N SR R W U SR SR S Y SR M U T N M U N NS VY R AR N SR R R D SR U S R S M U R N M R N U MR N NS YRR SR N N N Y

"
- _l_-._l_-_-_-_-_-_-_-_-_-_-_-

I~
y—
=
~
o)
~
N
=
rd

U.S. Patent

““““““““““:“““““““‘““‘““““““““I.‘““““““““““‘.I.I.‘.I.I.‘.I.I.‘...‘.‘.I.I.‘.I.I.‘““““““““““‘.‘I.““““““““““““““““:“‘“““““““““

" l.._..-.

—.‘I]

-
#.

L L L N N L N AN

i A

LR L
- . - »
L] L

A a s s aasassasadiasssssasssas

G

25

~
{.
:

Mror

.I
.
-
‘r
R N RN R R R]

L R TN S N UL N S N N T S N S T S N S T S

F

o
" *a

“. .l'

¥

LI T T T T O]
FEFEFEEFEEEET

a2
[3
Fr
[}
-
-,
LI
LI
-'\.

N,

r
l.f L]
ol gl ol ol ol gl gl B ol gl ol ol ol ol gl ol gl ol -

- I-'Iu-'lu'lu-'lu'lu-'lu'I-"I-'I-'I-'I-'Iu'I-'I-'I-'I-'I-'Iu'I-'I-'I-'I-'I-'I-'I-"I-'I-'I-'I-'I-'I-'I-'I-'I-'

s e e s e e e o e dbr e e dbr e e e e e dbr e e e e e e e e dbr o e e e e dr o e e
- -r

-

.-:" "*'I‘. """ 'I"" 'I"I' """ 'I"‘
T oa

US 9,830,092 B2

1

SOLID STATE DEVICE PARITY CACHING
IN A HYBRID STORAGE ARRAY

BACKGROUND

Aspects of the disclosure generally relate to the field of
storage systems, and more particularly to storing parity in
storage systems.

Although solid state storage drives are available, storage
solutions have been offered with hard disk drive arrays
because of the greater cost of solid state drives. As the cost
of solid state drives (SSDs) has decreased, storage solutions
have increased use of the solid state drives due to the
performance benefits ol SSDs. However, SSDs are still more
expensive than hard disk drives (HDDs) and numerous HDD
based storage systems are already deployed. To gain some of
the performance benefits of SSDs while controlling costs,
some storage solutions incorporate both types of storage
devices. These storage solutions are referred to as hybnd
storage arrays or hybrid arrays.

SUMMARY

A storage manager can reduce the overhead of parity
based fault tolerance by leveraging the access performance
of SSDs for the parities. Since reading a parity value can be
considered a small read operation, the reading of parity from
an SSD 1s an eflectively “free” operation due to the sub-
stantially greater SSD read performance. With reading parity
being an eflectively free operation, placing parity on SSDs
climinates the parnty read operations (in terms of time) from
the parity based fault tolerance overhead. A storage manager
can selectively place parity on SSDs from HDDs based on
a criterion or criteria, which can relate to frequency of access
to the data corresponding to the parity. The caching criterion
can be defined to ensure the reduced overhead gained by
reading parity values from a SSD outweighs any costs (e.g.,

SSD write endurance).

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the disclosure may be better understood by
referencing the accompanying drawings.

FIGS. 1 and 2 illustrate example single parity caching in
a solid state drive of a hybrid storage array. FIG. 1 illustrates
initial caching of a recalculated parity, and FIG. 2 illustrates
use of the cached parnty.

FIG. 3 and FIG. 4 illustrate an example of double parity
caching i a hybnid storage array configured with row
diagonal parity and dedicated parity drives.

FIGS. 5-7 are flowcharts of example operations for single
parity caching on a solid state drive of a hybrid storage array.

FIG. 8 depicts a flowchart of example operations for
evicting cached parity from a solid state storage device 1n a
hybrid storage array.

FIG. 9 1s a flowchart of example operations for parity
caching 1n a hybnd storage array that uses multiple parity
protection.

FIG. 10 1s a flowchart of example operations for parity
eviction from a solid state storage device cache in a hybnd
storage array with multiple parity protection.

FIG. 11 depicts an example computer system with a
storage array controller that caches parity on a constituent
solid state storage device.

DESCRIPTION

The description that follows includes example systems,
methods, techniques, and program flows that embody

5

10

15

20

25

30

35

40

45

50

55

60

65

2

aspects of the disclosure. However, 1t 1s understood that this
disclosure may be practiced without these specific details.
For instance, this disclosure refers to standard RAID 5 and
RAID DP 1n illustrative examples. But aspects of this
disclosure can be applied to other Storage Networking
Industry Association (SNIA) defined standard parity based
fault tolerance storage configurations (e.g., RAID 6) and
other non-standard parity based fault tolerance storage con-
figurations (e.g., RAID 3E). In other instances, well-known
istruction instances, protocols, structures and techniques
have not been shown 1n detail in order not to obfuscate the
description.

Introduction

In a hybrid storage array, the SSDs and HDDs can be used
regardless of device type. For mnstance, data blocks can be
distributed across the drives without regard to the drive
being a SSD or a HDD. In some hybrid storage array
configurations, some or all of the SSDs can be used as 11 a
cache for the HDDs within the storage array. This 1s 1n
addition to any caching done at a storage manager for all of
the storage arrays managed by the storage manager. When
an SSD 1s used as cache for the hybrid storage array, the data
blocks are written to the caching SSD and the HDDs of the
hybrid storage array 1n accordance with a caching algorithm.
Regardless of the particular caching scheme, the hybnd
storage array can be configured 1n accordance with a fault
tolerance configuration, such as a RAID configuration.

A RAID configuration provides fault tolerance for a
storage array. The benefit of fault tolerance, however, incurs
overhead for each data update. In a single parity configu-
ration, this overhead can generally be quantified as four
input/output (I/0) operations:

1) reading the data block impacted by the update,

2) reading the parity for the stripe that includes the impacted
data block,

3) wnting the updated data, and

4) wrting the updated parity.

In a two parity configuration, such as RAID 6 or RAID DP,
this overhead can generally be quantified as six I/O opera-
tions:

1) reading the data block impacted by the update,

2) reading the first parity for the stripe that includes the
impacted data block,

3) reading the second parity for the stripe that includes the
impacted data block,

4) writing the updated data,

5) writing the updated first parity, and

6) writing the updated second parnity.

Overview

A storage operating system or storage manager can reduce
the overhead of parity based fault tolerance by leveraging
the access performance of SSDs for the parities. Although
performance can vary across SSDs, small/random read
operations have been measured 1n SSDs to be 100-1000x
times faster than in HDDs. Since reading a parity value can
be considered a small read operation, the reading of parity
from an SSD 1s an eflectively “Ifree” operation due to the
substantially greater SSD read performance. With reading
parity being an eflectively free operation, placing parity on
SSDs eliminates the parity read operations (1n terms of time)
from the parity based fault tolerance overhead. A storage
operating system or storage manager can selectively place
parity on an SSD of a hybnid storage array based on a

US 9,830,092 B2

3

criterion or criteria, which can relate to frequency of access
to the data corresponding to the parity. This “caching
criterion” can be defined to ensure the reduced overhead
gained by reading parity values from a SSD outweighs any
costs (e.g., SSD write endurance).

Example Illustrations

FIGS. 1 and 2 illustrate example single parity caching in
a solid state drive of a hybrid storage array. FIG. 1 illustrates

initial caching of a recalculated parity, and FIG. 2 illustrates
use of the cached parnity. Both FIG. 1 and FIG. 2 are
annotated with a series of numbers, 1-12. These numbers
represent stages ol operations. Although these stages are
ordered for this example, the stages 1llustrate one example to
aid in understanding this disclosure and should not be used
to limit the claims. Claimed subject matter can vary with
respect to the order and some of the operations.

FIG. 1 depicts client devices 101, 103 in communication,
via a network 105, with a storage manager 107. The storage
manager 107 manages access to at least one hybrid storage
array. In this example illustration, the storage manager 107
he storage array via a network element 113 (e.g.,

accesses t

a switch). The storage array includes a solid state drive 1135
and four hard disk drives 116, 117, 119, 121. For this
illustration, data caching in the solid state drive 115 1s not
depicted to avoid distracting from the description of the
parity caching. But both parity and data can be cached 1n the
solid state drive 115 for the HDDs of the storage array. The
storage array alrecady hosts three stripes of data. These
stripes (A, B, and C) are logically depicted in a horizontal
arrangement across the storage array. Stripe A consists of
data block A, data block A,, and data block A,. The parity
for stripe A 1s indicated as P . Stripe B consists of data block
B,, data block B,, and data block B;. The parnity for stripe
B 1s indicated as P. Stripe C consists of data block C,, data
block C,, and data block C,. The parity for stripe C 1s
indicated as panty P..

FIG. 1 also depicts a storage array module 109 1nstanti-
ated on the storage manager 107. The storage array module
109 can be an executing program that manages access to the
storage array, a card or application specific integrated circuit
designed for storage array management, etc. As examples,
the storage array module 109 can be a storage operating
system, a part of a storage operating system (e.g., a kernel
process), a driver (e.g., RAID drniver), an add-on to a dniver,

etc. The storage array module 109 maintains one or more
data structures 111. The one or more data structures 111 have
data 125, data 123, and data 124. The data 125 indicate
locations of data and parity within the storage array (“‘stor-
age array map”’). The data 123 indicate parity consistency
status with respect to the cache 1n the storage manager 107
(“cache consistency status™). The data 124 indicate which
parities are cached in the caching SSD (*SSD cached™).
Before any SSD caching, the data 124 will be empty or
non-existent. Since this illustration stores a parity (when
SSD cached) 1n both the caching SSD and an HDD, the data
123 indicates two consistency statuses for a single parity.
The data 123 indicates a consistency status for a parity
between the storage controller cache and the HDD and
between the storage controller cache and the caching SSD.
In the depicted data of the storage array map 125 and the
parity status 123, the drives are identified as follows: the
solid state drive 115 1s ‘SSD’, the hard disk drive 116 1s
‘HDD1’, the hard disk drive 117 1s ‘HDD?2’, the hard disk
drive 119 1s ‘HDD?3’, and the hard disk drive 121 1s ‘HDD4’.

10

15

20

25

30

35

40

45

50

55

60

65

4

At a stage 1, one of the client devices 101, 103 commu-
nicate a write request to the storage manager 107 via the
network 105. Data in the storage array may have been
written by either of both of the client devices 101, 103. The
communicated write request will update data already written
into the storage array.

At stage 2, the storage array module 109 mnitially pro-
cesses the write request. The storage array module 109
determines that the write request impacts the data block A.,.
The write request can indicate a file handle and oflset used
by the storage array module 109 to determine the impacted
data block. The storage array module 109 accesses the data
structure 111 to determine location of the data block A..
With the storage array map 125, the storage array module
109 determines that the data block A, 1s stored on the hard
disk drive 117 and determines that the parity P, (1.e., the
parity value for stripe A) 1s stored on the hard disk drive 121.
The storage array module 109 also accesses the SSD cached
data 123 and determines that the parity P, 1s not currently
cached.

After determining their locations, the storage array mod-
ule 109 obtains A, and P ,. At stage 3, the storage array
module 109 reads A, from the hard disk drive 117. At stage
4, the storage array module 109 reads P, from the hard disk
drive 121.

After obtaining the impacted data block and the corre-
sponding parity value, the storage array module 109 gener-
ates an updated data block and recalculates the correspond-
ing parity. The updated data block 1s depicted as A,'. At stage
5, the storage array module 109 recalculates the parity for
stripe A to reflect the change to the data block A,. For this
illustration, parity 1s generated by XORing data blocks of a
stripe. To calculate the new parity value, the data block A,
1s “subtracted” from the parity value P ,, and the updated
data block A,' 1s added to the result of the subtraction. With
XORing, the addition and subtraction are XOR operations.
The recalculated parity value 1s depicted as P ,'. Both the
updated data block and the recalculated parity are cached in
memory of the storage manager 107.

At stage 6, the storage array module 109 updates the
cache consistency status 123 for the parity for stripe A. Stage
6 1s decomposed 1nto stages 6a and 65 and depicted adjacent
to the cache consistency status 123. Again, the indication of
“a” and “b” are used to 1illustrate the different changes and
not to indicate any particular order. At stage 6a, the storage
array module 109 indicates that the stripe A parity as stored
in the storage manager 107 1s imnconsistent with the stripe A
parity 1n the hard disk drive 121. At stage 6b, the storage
array module 109 indicates that the stripe A parity as stored
in the storage manager 107 1s inconsistent with the stripe A
parity in the solid state drive 115. In this case, the incon-
sistency with the solid state drive 115 exists because there 1s
no stripe A parity in the solid state drive 115 yet. The storage
array module 109 could, instead, initially use a null value or
other similar indication in the cache consistency status 123
to indicate that the parity 1s not yet stored 1n the solid state
drive 115. As another example, the storage array module 109
may not maintain a consistency status for the parity until the
parity 1s actually stored 1n the solid state drive 115. Parity 1s
likely not cached until a criterion or criteria are satisiied. But
this example assumes that a parity caching criterion 1s
satisfied. In FIG. 1, the cache consistency status 123 1s
structured to mdex by parity (1.e., each row corresponds to
parity). For each parity of the hybrid storage array, the cache
consistency status 123 indicates a consistency bit for each
location beyond the storage controller cache and those
locations. In this case, those locations include the caching

US 9,830,092 B2

S

SSD and the HDD. Imtially, cache consistency status 123
can 1ndicate null values for the locations beyond the storage
controller cache.

After updating parity status, the storage array module 109
writes the updated data block and the recalculated parity to
the storage array. At stage 7, the storage array module 109
writes A,' to the hard disk drive 117. At stage 8, the storage
array module 109 writes P ' to the solid state drive 115. At
stage 9, the storage array module 109 writes P ' to the hard
disk drive 121.

Each drive will return an acknowledgement to the storage
manager 107 after successiul completion of the requested
write and cache consistency status will be updated accord-
ingly. At stage 10, the storage array module 109 updates the
cache consistency status 123 1in accordance with the
acknowledgement received from the hard disk drive 121 to
indicate consistency with the storage controller cache. After
the updated data block has been successtully written by the
hard disk drive 117, the storage array module 109 will

update cache consistency status for the data block (not
depicted). AT

ter the solid state drive 115 indicates successiul
completion of the requested write, the storage array module
109 updates the cache consistency status for the SSD cached
stripe A parity to indicate consistency between the SSD
cache and the storage controller cache for the stripe A parity.

Since P, 1s now being cached, the storage array module
109 also updates data to reflect the SSD caching of parity. At
stage 12, the storage array module 109 updates the SSD
cached data 124 to indicate P,. For this illustration, this
update can be done concurrently with stage 11, after
acknowledgement from the solid state drive 115, or after
stage 11. If done prior to stage 11, the cache consistency
status 123 could be used to prevent an attempt to read P,
from the caching SSD prematurely or the SSD cached data
124 can indicate that P , 1s not yet ready to be read from the
caching SSD.

FIG. 2 continues the illustration from FIG. 1 and depicts
use of the SSD cached, recalculated parity. For FIG. 2, one
of the client devices 101, 103 sends another write request
that impacts a data block protected by the cached stripe A
parity at stage 1. Although some of the operations between
FIGS. 1 and 2 are similar, stripe A parity 1s not read from a
hard disk drive 1n FIG. 2.

At stage 2, the storage array module 109 processes the
write request. The storage array module 109 determines that
the write request impacts the data block A,. The write
request can indicate a file handle and offset used by the
storage array module 109 to determine the impacted data
block. The storage array module 109 accesses the one or
more data structures 111 to determine location of the data
block A ;. With the storage array map 1235, the storage array
module 109 determines that the data block A, 1s stored on
the hard disk drive 119 and determines that the stripe A
parity 1s stored on the hard disk drive 121. The storage array
module 109 also accesses the SSD cached data 124 and
determines that parity for stripe A 1s currently cached 1n the
solid state drive 115. Since the parity for stripe A 1s SSD
cached, the storage array module 109 will read the stripe A
parity from the solid state drive 1135 1nstead of the hard disk
drive 121.

After determining their locations, the storage array mod-
ule 109 obtains A, and P,'. At stage 3, the storage array
module 109 reads A, from the hard disk drive 119. At stage
4, the storage array module 109 reads P ' from the solid state
drive 115. As mentioned earlier, this parity read from the
solid state drive 1135 instead of the hard disk drive 121

reduces the time overhead for updating parity.

10

15

20

25

30

35

40

45

50

55

60

65

6

After obtaining the impacted data block and the corre-
sponding parity value, the storage array module 109 gener-
ates an updated data block and recalculates the correspond-
ing parity. The updated data block 1s depicted as A;'. At stage
5, the storage array module 109 recalculates the parity for
stripe A to reflect the change to the data block A,. To
calculate the new parity value, the data block A, 1s sub-
tracted from the parity value P ', and the updated data block
A,'1s added to the result of the subtraction. The recalculated
parity value 1s depicted as P ,".

At stage 6, the storage array module 109 updates the
cache consistency status 123 to indicate that the parity for
stripe A 1n both the hard disk drive 121 and the solid state
drive 115 are inconsistent with that stored in the storage
controller cache. As 1n FIG. 1, stage 6 1s decomposed into
stages 6a and 6b. At stage 64, the storage array module 109
indicates that the stripe A parity as stored in the storage
manager 107 1s inconsistent with the stripe A parity 1n the
hard disk drive 121. At stage 65, the storage array module
109 indicates that the stripe A parity as stored 1n the storage
manager 107 1s inconsistent with the stripe A parity 1n the
solid state drive 115.

After updating cache consistency status, the storage array
module 109 writes the updated data block and the recalcu-
lated parity to the storage array. At stage 7, the storage array
module 109 writes A;' to the hard disk drive 119. At stage
8, the storage array module 109 writes P " to the solid state
drive 115. At stage 9, the storage array module 109 writes
P " to the hard disk drive 121.

Each drive will return an acknowledgement to the storage
manager 107 after successiul completion of the requested
write and cache consistency will be updated accordingly. At
stage 10, the storage array module 109 updates the cache
consistency status 123 1n accordance with the acknowledge-
ment received from the hard disk drive 121. After the
updated data block has been successiully written by the hard
disk drive 117, the storage array module 109 will update
cache consistency status accordingly (not depicted). After
the solid state drive 115 indicates successiul completion of
the requested write, the storage array module 109 updates
the cache consistency status 123 to indicate consistency
between the solid state drive 115 and the storage controller
cache. Since SSD cache data 124 already indicates SSD
caching of the parity for stripe A, no updates are necessary
to the data 124.

FIGS. 1 and 2 depicted SSD single parity caching for a
hybrid storage array. A storage array can be protected with
greater parity, though. A storage array can be protected with
double parnity, triple parity, etc. Calculation and arrangement
of parity can also vary. For example, the first parity of a
double parity configuration can be calculated with XOR
operations as depicted 1n FIGS. 1 and 2. The second parity,
however, can be calculated with a finite field or Galois field
based encoding technique (e.g., Reed Solomon encoding).
As another example, parity can be calculated with XOR
operations and different data striping. The first parity can be
calculated with horizontal striping and XOR operations, and
the second parity can be calculated with diagonal striping
and XOR operations (1.e., row diagonal parity).

FIG. 3 and FIG. 4 1llustrate an example of double parity
SSD caching 1n a hybrid storage array configured with row
diagonal parity and dedicated parity drives. In FIGS. 1 and
2, cache consistency was maintained for the storage con-
troller cache. The storage controller cache had 2 parity
caching relationships: 1) an HDD relationship, and 2) an
SSD relationship. The two relationships could be considered
an 1mplicit parity caching relationship between the SSD and

US 9,830,092 B2

7

the HDDs. I stripe A parity on the SSD 1s inconsistent with
the storage controller cache and stripe A parity on the HDD
1s consistent with the storage controller cache, then the
different consistencies indicate an inconsistency between the
SSD and the HDD. Unlike FIGS. 1 and 2, party caching
relationships are maintained between a caching SSD and the
HDDs as depicted in FIGS. 3 and 4. FIG. 3 1llustrates mnitial
SSD caching of both recalculated parities, and FIG. 4
illustrates use of the SSD cached parities. Both FIG. 3 and
FIG. 4 are annotated with a series of numbers 1-13. These
numbers represent stages ol operations, similar to FIGS. 1
and 2. Although these stages are ordered for this example,
the stages illustrate one example to aid in understanding this
disclosure and should not be used to limit the claims.
Claimed subject matter can vary with respect to the order
and some of the operations.

FIG. 3 depicts client devices 301, 303 in communication,
via a network 305, with a storage manager 307. The storage
manager 307 manages access to a hybnd storage array. In
this example illustration, the storage manager 307 accesses
the storage array via a network element 313 (e.g., a switch).

The storage array includes a solid state drive 3135 and six
hard disk drives 316, 317, 319, 320, 321, 322. Similar to the

example of FIGS. 1 and 2, the solid state drive 315 1s
configured as a cache for the HDDs of the storage array. The
storage array already hosts four groups of data blocks and
corresponding parity. The groups of data blocks include data
blocks A,-A,, data blocks B,-B,, data blocks C,-C;, and
data blocks D,-D;. The row parity stored in the hybnd
storage array includes RP,-RP,. The diagonal parity stored
in the hybrid storage array includes DP,-DP,.

The storage array module 309 maintains one or more data
structures 311. The one or more data structures 311 have
storage array map data 325, cache consistency data 323, and
SSD cache consistency data 326. In this illustration, the
cache consistency 323 indicates consistency ol parity
between cache memory of the storage manager 307 and the
solid state drive 315. The SSD cache consistency data 326
indicates consistency of parity between the caching SSD and
relevant HDDs. In the depicted data, the drives are identified
as follows: the solid state drive 315 1s SSD), the hard disk
drive 316 1s HDD1, the hard disk drive 317 1s HDD?2, the
hard disk drive 319 1s HDD3, the hard disk drive 320 1s
HDD4, the hard disk drive 321 1s HDDS5, and the hard disk
drive 322 1s HDD®6.

At stage 1, one of the client devices 301, 303 communi-
cates a write request to the storage manager 307 via the
network 305. Data in the storage array may have been
written by either or both of the client devices 301, 303. The
communicated write request will update data already written
into the storage array.

At stage 2, the storage array module 309 initially pro-
cesses the write request. The storage array module 309
determines that the write request impacts the data block B, .
The storage array module 309 accesses the data structure
311 to determine location of the data block B, and corre-
sponding parities.

The cache consistency data 323 1s
arranged differently than 1n FIG. 1 to show that consistency
data may not be maintained for a consistency relationship
between the storage manager cache and the HDDs, at least
with respect to cached SSD parity. With the storage array
map 325, the storage array module 309 determines that the
data block B, 1s stored on the hard disk drive 317. The
storage array module 309 also determines that the corre-
sponding row parity RP, 1s stored on the hard disk drive 321
and that the corresponding diagonal parity DP, 1s stored on
the hard disk drive 322. The storage array module 309 also

10

15

20

25

30

35

40

45

50

55

60

65

8

determines that neither the row parity nor the diagonal parity
1s cached in the solid state drive 315 with the SSD cache
consistency data 326 since 1t will initially have no indication
of either parity. Indeed, the SSD cache consistency data 326
may be non-existent or a corresponding structure not instan-
tiated until parity 1s first cached (or attempted to be cached)
in the solid state drive 315.

After determining locations, the storage array module 309
obtains B,, RP,, and DP,. At stage 3, the storage array
module 309 reads B, from the hard disk drive 317. At stage
4, the storage array module 309 reads RP, from the hard disk
drive 321. At stage 3, the storage array module 309 reads
DP, from the hard disk drive 322.

After obtaining the impacted data block and the corre-
sponding parity values, the storage array module 309 gen-
crates an updated data block and recalculates the corre-
sponding parity values. The updated data block 1s depicted
as B,'. At stage 6, the storage array module 309 recalculates
the row parity value for B, to reflect the change to the data
block B,. For this illustration, row parity 1s generated by
XORing data blocks of a row stripe. To calculate the new
row parity value, the data block B, 1s subtracted from the
parity value for RP,, and the updated data block B,' 1s added
to the result of the subtraction. The recalculated row parity
RP, 1s depicted as RP,'. At stage 7, the storage array module
309 recalculates the diagonal parity value for B, to reflect
the change to the data block B,. The diagonal parity 1s
generated by XORing data blocks of a diagonal stripe. To
calculate the new diagonal parity value, the data block B, 1s
subtracted from the parity value of DP,, and the updated
data block B,' 1s added to the result of the subtraction. The
recalculated diagonal parity DP, 1s depicted as DP,".

At stage 8, the storage array module 309 updates the
cache consistency data 323 for the recalculated parities.
Stage 8 1s decomposed into stages 8a and 8b and depicted
adjacent to the cache consistency data 323. Again, the
indication of “a” and “b” are used to illustrate the different
changes and not to indicate any particular order. At stage 8a,
the storage array module 309 indicates that RP, as stored in
the storage manager cache 1s inconsistent with RP, as stored
(or not stored in this case) in the solid state drive 315. As
described earlier, in FIG. 1, various techniques can be used
to account for the imitial lack of any parity in the caching
SSD. At stage 8b, the storage array module 309 indicates
that DP, as stored in the storage manager cache i1s incon-
sistent with RP, as stored (or not stored 1n this case) in the
solid state drive 315. In both stages 8a and 8b, the storage
array module 309 also updates the cache consistency data
323 to imndicate “SSD” 1n order to explicit identily the
consistency relationship as being between the storage man-
ager cache and the caching SSD. Although this 1s not
necessary in some cases, a data structure with the cache
consistency data 323 may also indicate consistency between
the storage manager cache and other drives (even other
caching SSDs) of the storage array. The storage array
module 309 also updates cache consistency data for the data
block B, in the hard disk drive 317 to indicate inconsistent
(not depicted).

After updating cache consistency data 323, the storage
array module 309 writes the updated data block and the
recalculated parity values to the storage array. At stage 9, the
storage array module 309 writes B,' to the hard disk dnive
317. At stage 10, the storage array module 309 writes RP,'
to the solid state drive 315. At stage 11, the storage array
module 309 writes DP,' to the solid state drive 315.

Each drive will return an acknowledgement to the storage
manager 307 after successiul completion of the requested

US 9,830,092 B2

9

write and the storage array module 309 with update cache
consistency data accordingly. The storage array module 309
updates the cache consistency data of the data block and
parities 1 accordance with the acknowledgements received
from the drnives. After the updated data block B, has been
successtully written by the hard disk drive 317, the storage
array module 309 will update cache consistency data to
indicate consistent (not depicted). Alter the solid state drive
315 indicates successiul completion of both requested
writes, the storage array module 309 updates the cache
consistency data 323 to indicate consistent for the cached
row parity and diagonal parity at stage 12. As with stage 8,
stage 12 1s decomposed into stages 12a and 12b. The storage
array module 309 updates the cache consistency data 323 for
RP, 1n stage 12a and for DP, 1n stage 12b. If the requested
write for both parities was a single request, a single confir-
mation or acknowledgement from the solid state drive 315
can trigger stage 12.

Since RP, and DP, are now being SSD cached, the storage
array module 309 also creates or updates the SSD cache
consistency data 326 to reflect the SSD caching of the
parities. At stage 13, the storage array module 309 updates
the SSD cache c0n31stency data 326 to indicate that RP, on
the hard disk drive 321 1s inconsistent with RP, on the sohd
state drive 3135. The storage array module 309 also updates
the SSD cache consistency data 326 to indicate that DP, on
the hard disk drive 322 1s inconsistent with DP, on the Sohd
state drive 315. For this 1llustration, this update of the SSD
cache consistency data 326 can be done concurrently with
stage 12, after stage 12, or after acknowledgement from the
solid state drive 315. This update to the SSD cache consis-
tency data 326 could also be done 1n connection with stage
8. In other words, the SSD cache consistency data 326 can
be created/updated based upon an attempted SSD caching of
the parity. Regardless of when parity on a HDD 1s marked
as mconsistent with SSD cached parity, it 1s not updated to
consistent or removed until the SSD cached parity 1s evicted
or selected for eviction. If a change 1n designated parity
drive occurs, then the SSD cache consistency data 326 is
updated to reflect the change in parity drive.

FIG. 4 continues the 1llustration from FIG. 3 and depicts
use of the cached, recalculated parity values. For FIG. 4, one
of the client devices 301, 303 sends another write request
that impacts a data block protected by the cached diagonal
parity DP,' at stage 1. Although some of the operations
between FIGS. 3 and 4 are similar, the diagonal parity DP,’
1s not stored on the hard disk drive 322.

At stage 2, the storage array module 309 processes the
write request. The storage array module 309 determines that
the write request impacts the data block C,. The storage
array module 309 accesses the data structure 311 to deter-
mine location of the data block C,. With the storage array
map 325, the storage array module 309 determines that the
data block C, 1s stored on the hard disk drive 319. The
storage array module 309 also determines the locations of
the parity values for the data block C,. The storage array
module 309 determines that the row parity for the data block
C, (RP,) 1s on the hard disk drive 321 with the storage array
map 325 and 1s not cached (the SSD cache consistency data
326 does not indicate RP,). The storage array module 309
determines that the corresponding diagonal parity for the
data block C, 1s cached on the solid state drive 315 accord-
ing to the SSD cached consistency data 326. Thus, the
storage array module 309 disregards the inconsistent diago-
nal parity DP, on the hard disk drive 322.

After determining locations, the storage array module 309
obtains C, and the corresponding parities, RP, and DP,'. At

10

15

20

25

30

35

40

45

50

55

60

65

10

stage 3, the storage array module 309 reads C, from the hard
disk drive 319. At stage 4, the storage array module 309
reads RP, from the hard disk drive 321. At stage 5, the
storage array module 309 reads the diagonal parity value
DP.,' from the solid state drive 315 1n accordance with the
SSD cache consistency data 326.

After obtaining the impacted data block and the corre-
sponding parity values, the storage array module 309 gen-
erates an updated data block and recalculates the corre-
sponding parity values. The updated data block 1s depicted
as C,'. At stage 6, the storage array module 309 recalculates
the row parity value for C, to reflect the change to the data
block C,. To calculate the new row parity value, the data
block C, 1s subtracted from the parity value RP,, and the
updated data block C,' 1s added to the result of the subtrac-
tion. The recalculated row parity value 1s depicted as RP,'.
At stage 7, the storage array module 309 recalculates the
diagonal parity value for C, to reflect the change to the data
block C,. To calculate the new diagonal parity value, the
data block C, 1s subtracted from the parity value DP,', and
the updated data block C.,' 1s added to the result of the
subtraction. The recalculated diagonal parity value 1s
depicted as DP.,".

At stage 8, the storage array module 309 updates the
cache consistency data 323 to indicate inconsistency
between the storage manager cache and the solid state drive
315 for the recalculated parities. Stage 8 1s decomposed nto
stages 8a and 8b again. At stage 8a, the storage array module
309 indicates that DP, as stored in the storage manager
cache 1s imnconsistent with DP,, as stored (or not stored in this
case) 1n the solid state drive 315. At stage 8b, the storage
array module 309 indicates that RP, as stored in the storage
manager cache 1s inconsistent with RP, as stored (or not
stored 1n this case) 1n the solid state drive 315. As described
carlier, various techniques can be used to account for the
initial lack of a parity in the caching SSD. In both stages 8a
and 8b, the storage array module 309 also updates the cache
consistency data 323 to indicate “SSD” 1n order to explicit
identify the consistency relationship as being between the
storage manager cache and the caching SSD, unless already
indicated therein. The storage array module 309 also updates
status of the data block C, to indicate that the hard disk drive
319 is inconsistent with the storage manager cache for the
data block C,.

After updating consistency data, the storage array module
309 writes the updated data block and the recalculated parity
values to the hybrid storage array. At stage 9, the storage
array module 309 writes C,' to the hard disk drive 319. At
stage 10, the storage array module 309 writes RP.,' to the
solid state drive 315. At stage 11, the storage array module
309 writes DP," to the solid state drive 315.

Each drive will return an acknowledgement to the storage
manager 307 after successiul completion of the requested
write and the storage manager will update cache consistency
accordingly. After the updated data block C, has been
successiully written by the hard disk drive 319, the storage
array module 309 will update cache consistency data accord-
ingly (not depicted). After the solid state drive 3135 indicates
successiul completion of requested writes of the recalculated
parities, the storage array module 309 updates the cache
consistency data 323 to indicate consistency between the
storage manager cache and the solid state drive 315 with
respect to the row parity RP, and the diagonal parity DP.,.

Since RP, 1s now being SSD cached, the storage array
module 309 updates the SSD cache consistency data 326 to
reflect the SSD caching of RP,. At stage 13, the storage array
module 309 updates the SSD cache consistency data 326 to

US 9,830,092 B2

11

indicate that RP, on the hard disk drive 321 1s inconsistent
with RP, on the solid state drive 315.

FIGS. 5-7 are flowcharts of example operations for single
parity caching on a solid state drive of a hybrid storage array.
In the flowchart, dashed lines are used to depict asynchro-
nous operations (e.g., waiting on a response or acknowl-
edgement). For continuity of this description, the example
operations are described as if performed by a storage man-
ager. In addition, the parity caching operations can operate
regardless of caching/builering done internally by the stor-
age manager (e.g., 1n non-volatile random access memory)
prior to writes being committed to a storage array.

At block 501, a storage manager detects a data update for
a hybrid storage array. The storage manager may receive a
write request that impacts at least one data block stored on
a storage device 1n the hybrid storage array, and determines
the 1dentity of the impacted data block. The data update may
be generated internally with respect to the storage manager.
For instance, the data update may be a data synchronization
operation.

At block 503, the storage manager determines locations of
the data block and corresponding parity value in the hybrid
storage array aflected by the data update. The storage
manager determines locations with mapping data. The map-
ping data indicates logical addresses used by clients and/or
the storage manager and corresponding addresses used by
the storage devices. The addresses used by the storage
devices may also be logical addresses or may be physical
addresses. For example, the storage manager may access
mapping data that maps logical block addresses to physical
block addresses.

At block 505, the storage manager determines whether the
parity 1s already cached on a solid state storage device of the
hybrid storage array. The storage manager can maintain data
that indicates whether a parity 1s cached 1n a solid state
storage device of the hybnid storage array. For example, a
data structure can be maintained (e.g., list, array, table, etc.)
that indicates cached parities by device identifier (e.g.,
network address). The device identifier 1dentifies the solid
state storage device being used as the caching SSD. As
another example, a storage manager can maintain a tlag or
bit 1n the storage array map to indicate whether a parity 1s
cached in the caching SSD. If the parity 1s cached, then
control tlows to block 507. If the parity 1s not cached, then
control flows to block 701 of FIG. 7.

At block 507, the storage manager updates the impacted
data block and recalculates the corresponding parity 1n
accordance with the updated data block. After generating the
updated data block and recalculated parity, the storage
manager also updates the cache consistency status of the
impacted data block.

At block 509, the storage manager indicates two consis-
tency statuses as inconsistent for the corresponding parity
that has been recalculated. The storage manager indicates
consistency statuses for the hard disk storage device the
caching solid state storage device as inconsistent with the
storage manager cache.

At block 511, the storage manager writes the updated data
block to the hybrid storage array. For instance, the storage
manager communicates a write request or write command to
the storage device that hosts the impacted data block.

After confirmation that the updated data block has been
written, the storage manager updates consistency status for
the data block to clean at block 5185.

After (or concurrently with) writing the updated data
block, the storage manager writes the recalculated parity to
the solid state drive being used for parity caching and to the

10

15

20

25

30

35

40

45

50

55

60

65

12

hard disk storage device at block 513. The storage manager
communicates different write commands or write requests to
the different storage devices. The storage manager can be
designed to presume that the write to the solid state storage
device will complete more quickly than the write to the hard
disk storage device. Thus, the storage manager can prioritize
writes to the hard disk storage devices over writes to the
solid state storage device.

After confirmation that the parity has been updated at
cach storage device, the storage manager updates each status
accordingly at block 517. After confirmation from the cach-
ing SSD, the storage manager updates the consistency status
to i1ndicate that the caching SSD 1s consistent with the
storage manager cache with respect to the cached parity.
Likewise, the storage manager updates the consistency sta-
tus for the hard disk storage device with respect to the parity
to indicate consistency with the storage manager cache after
confirmation from the hard disk storage device.

FIG. 6 depicts example operations that can be performed
when the parity corresponding to the impacted data block 1s
already cached on the solid state storage device. The
example operations depicted in FIG. 6 can be used to
implement block 507.

At block 601, the storage manager reads the impacted data
block from the storage array based on the determined
location of the impacted data block.

At block 603, the storage manager reads the parity from
the solid state storage device.

At block 605, the storage manager updates the obtained
data block 1n accordance with the data update.

At block 607, the storage manager recalculates the parity
based on the updated data block.

At block 609, the storage manager 1indicates an 1mnconsis-
tent status for the impacted data block as stored on the hard
disk storage device prior to requesting the updated data
block be written to the hybrnid storage array.

FIG. 7 depicts example operations when the parity cor-
responding to the impacted data block has not yet been
cached on a solid state storage device of the hybrid storage
array.

At block 701, the storage manager reads the impacted data
block from the hybrid storage array based on the determined
location of the impacted data block.

At block 703, the storage manager reads the parnty from
the previously determined location, which 1s a hard disk
storage device of the hybrid storage array.

At block 705, the storage manager updates the obtained
data block 1n accordance with the data update.

At block 707, the storage manager recalculates the parity
based on the updated data block.

At block 709, the storage manager 1indicates an 1nconsis-
tent status for the impacted data block as stored on the
determined hard disk storage device with respect to the
storage manager cache.

At block 711, the storage manager writes the updated data
block to the data block location 1n the hybrid storage array.
After confirmation that the updated data block has been
written, the storage manager updates status for the data
block to consistent at block 718. Control tlows from block
711 to block 713.

At block 713, the storage manager determines whether a
parity caching criterion 1s satisfied. The parity caching
criterion can be directly related to the parity 1tself and/or to
a corresponding group of data blocks. As an example of a
direct relationship, the caching criterion can set a threshold
number of parity updates. Upon reaching or exceeding that
threshold, the parity caching criterion 1s satisfied for that

US 9,830,092 B2

13

parity. As another example, a most recently updated or most
frequently updated caching algorithm can be applied to the
parities. As an example of an indirect relationship, a parity
caching criterion can include “hotness™ of data. In other
words, mechanisms can be employed to determine how
frequently data blocks 1n the hybrid storage array are being
updated within a given window of time. The storage man-
ager (or some other monitoring component) can then group
the frequency of updates by corresponding parity. In terms
of stripes, the storage manager determines hot data stripes.
If the frequency of updates grouped by parity 1s beyond a
threshold, then the parity caching criterion 1s satisfied. The
frequency of access can be measured 1n terms of number of
accesses. The storage manager can then determine the
parities corresponding to the hot data blocks and indicate
those parities as ready for caching. As example 1llustrations,

the storage manager can maintain a list of the parities ready
for Cachmg or set data fields (e.g., tlags) associated with the
parities in the storage array map to indicate activation of
parity caching. A caching criterion i1s not necessarily reac-
tive, as 1n the examples above. The storage manager can
determine that an incoming (or ongoing) workload or job
will access a set of data blocks beyond a threshold. The
storage manager can determine the parities corresponding to
those data blocks and activate parity caching for those data
blocks that are expected to be or will be updated beyond the
threshold. As mentioned later, a caching criterion 1s not
necessarily employed. If the parity caching criterion 1s
satisfied, then control flows to block 715. Otherwise, control
flows to block 722.

At block 715, the storage manager determines a solid state
storage device 1in which to cache the parity. A solid state
storage device can be configured 1n advance to be the parity
cache for a hybnid storage array. If the hybnd storage array
includes multiple solid state storage devices and no particu-
lar one 1s specified to be a parity cache, a solid state storage
device of the array can be selected. Examples of a device
selection criterion include type of solid state storage device,
manufacturer of solid state storage device, capacity of the
solid state storage device, age of the solid state storage
device, current use of the solid state storage device, etc. For
instance, the oldest solid state storage device with the least
capacity may be selected for parity caching to allow a newer
solid state storage device with greater capacity to be used for
data caching. The reverse may also be implemented for
device selection (i.e., the newest SSD with most capacity
selected).

At block 717, the storage manager indicates the selected
solid state storage device to cache the parnty.

At block 719, the storage manager indicates an inconsis-
tent status for the parity at both the hard disk storage device
location and the solid state storage device cache location.
After indication of the selected solid state storage device and
update of status for both locations, the operations at blocks
721 are similar to those 1n blocks 513 and 517 of FIG. 5.

At block 721, the storage manager writes the recalculated
parity to the solid state storage device being used for parity
caching and to the hard disk storage device location.

After confirmation that the parity has been updated at
cach location, the storage manager updates each status
accordingly at block 723.

If the storage manager determined at block 713 that the
parity caching criterion 1s not satisfied, then control flows to
block 722.

At block 722, the storage manager indicates inconsistent
status for the parity as stored in the hard disk storage device
with respect to the storage manager cache. The storage

10

15

20

25

30

35

40

45

50

55

60

65

14

manager indicates a status for the primary location, which 1s
a hard disk storage device 1n this case, as dirty.

At block 727, the storage manager writes the recalculated
parity to the hard disk storage device.

After confirmation that the parity has been updated at the
hard disk storage device, the storage manager updates status
of parity at the hard disk storage device to consistent with
the storage manager cache at block 729.

Although the space on a solid state storage device that can
be used for parity caching 1s substantial, an eviction mecha-
nism may still be implemented. It may be desirable to evict
cached parity from a solid state storage device to regulate the
parity caching based writes to the solid state storage device.
FIG. 8 depicts a tlowchart of example operations for evicting
cached parity from a solid state storage device 1 a hybnd
storage array. As with the above figures, FIG. 8 1s described
as 1f the operations are performed by an eviction process of
a storage manager.

At block 801, the eviction process begins an eviction
evaluation for each parity of the hybrid storage array that 1s
cached 1n a solid state storage device of the array. Although
these operations are presented as 1terating over each cached

parity, the claims are not constrained to iterating over each
cached parity. An eviction mechanism can iterate over sets
of cached parity that are less than the total cached parity. The
eviction mechanism can be bound by time, can end early
(e.g., alter evicting X parities), and can be interrupted. In
addition, the eviction mechanism may first collect informa-
tion about the cached parity in an iterative manner, and then
cvaluate the collected information to determine which (1if
any) cached parity to evict. The eviction mechanism can be
triggered based on time (e.g., periodically), an event or
activity (e.g., number of updates to an array, transition in a
workload, etc.), attempted caching ol a new parity, con-
sumption of a threshold amount of space on the solid state
storage device allocated for parity caching, etc.

At block 803, the eviction process determines whether a
parity eviction criterion 1s satisfied. The parity eviction
criterion can depend upon the parity caching criterion. For
instance, the parity eviction criterion can be in accordance
with a least recently updated algorithm or a least frequently
updated algorithm. The parity eviction criterion can be based
on the data protected by the parity. For instance, the parity
corresponding to the “coldest” data (1.e., data with the least
updates within a sliding window of time or window of
operations) may be evicted. It the parity eviction criterion 1s
satisfied, then control flows to block 805. If it 1s not, then
control flows to block 811.

At block 8035, the eviction process ensures that the status
of the parity at the hard disk storage device location 1is
consistent with cache of the storage manager, if relevant. If
the status 1s inconsistent, then the storage manager waits
until the status 1s changed to consistent. After determining,
that the status 1s consistent or 1f the parity 1s not indicated in
the storage manager cache, the storage manager can obtain
a lock on data elements corresponding to the parity.

At block 807, the eviction process notifies the solid state
storage device caching the parity to mark the parity as
invalid. For example, the storage manager can send a TRIM
command to the solid state storage device.

At block 809, the eviction process indicates that the parity
1s no longer being cached. For instance, the storage manager
can clear or remove indication of the solid state storage
device that was caching the parity. The storage manager can
change a bit or flag that indicates whether the associated
parity 1s SSD cached.

US 9,830,092 B2

15

At block 811, the eviction process determines whether
there 1s additional cached parity to evaluate for possible
eviction. If not, then control flows to block 813. It there 1s
an additional cached parity to evaluate for possible eviction,
control flows back to block 801.

At block 813, the eviction process waits for the next parity
eviction evaluation trigger.

The above flowcharts depict example operations for the
case of single parity protection. FIG. 9 1s a flowchart of
example operations for parity caching in a hybrid storage
array that uses multiple parity protection. As with the single
parity Figures, the example operations of FIG. 9 are
described as 1f performed by a storage manager. Operations
in FIG. 9 are similar to some of the operations in FIGS. 5-7,
but a cached parity 1s not written to the corresponding hard
disk storage device while being cached. To reduce unnec-
essary repetition of operations and aid 1n understanding the
disclosure, FIG. 9 does not depict certain operations. For
mstance, FIG. 9 does not depict determining locations,
reading an impacted data block, or maintaining status of the
impacted data block.

At block 901, a storage manager detects an update for a
data block.

At block 903, the storage manager begins parity caching
determination operations for each of m parity (m=1 . . . n,
with n>1) that corresponds to the data block. The iterative
process suggested by block 903 should not be used to
constrain the claims. The process can be terminated early,
can exit upon satisfaction of a condition, can be interrupted,
etc.

At block 905, the storage manager determines whether
parity m 1s cached 1n a solid state storage device. If so, then
control flows to block 907. If the parity m 1s not cached, then
control tlows to block 917.

At block 917, the storage manager reads the parity m from
its hard disk storage device location. Since a storage man-
ager may handle write requests (from a same or different
clients) targeting different data blocks but impacting a same
parity, the storage manager can ensure the parity 1s either not
cached 1n the storage manager or that the parity at the hard
disk storage device location 1s consistent with the storage
manager cache. The storage manager ensures that it 1s
reading a consistent version of the parity m, and will wait 1T
the parity m 1s currently inconsistent. Or the storage man-
ager can skip to the next parity and return to the currently
inconsistent parity later.

At block 919, the storage manager recalculates the parity
m based on the updated data block.

At block 921, the storage manager determines whether a
parity caching criterion 1s satisfied for the parity m. If the
parity cachuing criterion 1s satisfied, then control flows to
block 927. Otherwise, control flows to block 923.

At block 927, the storage manager determines a solid state
storage device 1n which to cache the parity and indicates this
device for the recalculated parity cache location. A solid
state storage device can be configured in advance to be the
parity cache for a hybnd storage array. If the hybnid storage
array includes multiple solid state storage devices and no
particular one 1s specified to be a parity cache, a solid state
storage device of the array can be selected. Examples of
device selection criteria are previously given with respect to
block 7185.

At block 929, the storage manager indicates status of the
parity m for the solid state storage device location as
inconsistent with the storage manager cache.

At block 930, the storage manager indicates status of the
parity m as stored in the hard disk storage device location as

10

15

20

25

30

35

40

45

50

55

60

65

16

inconsistent with the caching solid state storage device.
Control tlows from block 930 to block 913.

At block 913, the storage manager writes the recalculated
parity to the solid state storage device being used for parity
caching. Control flows from block 913 to block 915, as well
as asynchronously to block 935.

At block 915, the storage manager determines whether
there 1s an additional parity corresponding to the updated
data block. If there 1s an additional parity corresponding to
the updated data block, then control returns to block 903.
Otherwise, control flows to block 931. At block 931, the
storage manager 1ndicates that m parities have been updated
for the data block.

After confirmation that the parity m has been written to
the SSD cache location, the storage manager updates parity
status for the SSD cache location to indicate consistency
with the storage manager cache at block 935.

If the storage manager determines at block 921 that the
parity caching criterion 1s not satisiied, then control flows to
block 923.

At block 923, the storage manager indicates status of the
parity as stored in the hard disk storage device as inconsis-
tent with the storage manager cache. This status 1s indicated
for the hard disk storage device location alone, since the
parity 1s not being cached.

At block 925, the storage manager writes the recalculated
parity to the hard disk storage device. Control flows from
block 925 to block 915, as well as asynchronously to block
933.

After confirmation that the parity has been updated at the
hard disk storage device location, the storage manager
updates parity status for the hard disk storage device loca-
tion to consistent at block 933.

If the storage manager determines that the parity m 1s
already cached at block 905, then control flows to block 907.
At block 907, the storage manager reads the parity m from
the caching SSD.

At block 909, the storage manager recalculates the parity
based on the updated data block.

At block 911, the storage manager indicates parity status
for the SSD location as inconsistent with the storage man-
ager cache. Control flows to block 913 from block 911.

FIG. 10 1s a flowchart of example operations for parity
eviction from a caching solid state storage device 1n a hybrid
storage array with multiple parity protection. FIG. 10 1s
similar to FIG. 8 with a deviation to accommodate updating
a hard disk storage device parity that 1s inconsistent with the
SSD cached panty.

At block 1001, an eviction process begins an eviction
evaluation for each parity of the hybrid storage array that 1s
cached 1n a solid state storage device of the array. Although
these operations are presented as iterating over each cached
parity, the claims are not constrained to iterating over each
cached parity as discussed above with reference to FIG. 8.
Similarly, the eviction process can be triggered with the
various triggering criteria also discussed with respect to
FIG. 8.

At block 1003, the eviction process determines whether a
parity eviction criterion 1s satisfied. Various parity eviction
criteria are discussed above with respect to block 803 of
FIG. 8. If the panty eviction criterion 1s satisfied, then
control flows to block 1005. If 1t 1s not, then control flows
to block 1011.

At block 1006, the eviction process updates the hard disk
storage device location for the parity 1n accordance with the
SSD cached parity. The eviction process reads the parity
value 1in the SSD cached location, determines the hard disk

US 9,830,092 B2

17

storage device location, and requests that the parity value be
written to the hard disk storage device location.

At block 1007, the eviction process notifies the solid state
storage device caching the parity to mark the parity as
invalid after recerving confirmation that the hard disk stor-
age device location has been updated. For example, the
storage manager can send a TRIM command to the solid
state storage device.

At block 1009, the eviction process indicates that the
parity 1s no longer being SSD cached. For istance, the
storage manager can clear or remove indication of the solid
state storage device that was caching the parity. The storage
manager can change a bit or flag that indicates whether the
associated parity 1s SSD cached.

At block 1011, the eviction process determines whether
there 1s additional cached parity to evaluate for possible
eviction. If not, then control flows to block 1013. If there 1s
an additional cached parity to evaluate for possible eviction,
control flows back to block 1001.

At block 1013, the eviction process waits for the next
parity eviction evaluation trigger.

Variations

Although the examples refer to maintenance of dirty baits,
other techniques can be used to ensure validity and preserve
consistency of parity (and data). As examples, consistency
and validity of parity can be preserved with locking, atomic
transactions, etc.

The examples often refer to a “storage manager.” The
storage manager 1s a construct used to refer to 1implemen-
tation of functionality for parity caching in a solid state
storage device of a hybrid storage array. This construct 1s
utilized since numerous implementations are possible. A
storage manager may be a server, {iler, controller, a particu-
lar component or components of machine (e.g., a particular
circuit card enclosed 1n a housing with other circuit cards/
boards), machine-executable program or programs (e.g., a
storage operating system), firmware, a circuit card with
circuitry configured and programmed with firmware for
managing storage arrays, etc. The term 1s used to efliciently
explain content of the disclosure. The storage manager can
also be referred to as a managing storage node. Although the
examples refer to operations being performed by a storage
manager, different entities can perform different operations.
For instance, a dedicated co-processor or application spe-
cific integrated circuit can calculate parity.

The examples in FIGS. 1-4 depict a hybrid storage array
that 1s external to the storage manager. However, at least part
of the array may be housed within the storage manager 1tself.
The storage manager can have circuitry to manage a storage
array that includes storage devices mnserted into bays of the
storage manager, storage devices connected directly to ports
ol the storage manager, and storage devices separated from
the storage manager by at least one network element.

The flowcharts are provided to aid in understanding the
illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
vary within the scope of the claims. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed 1n parallel; and the operations
may be performed i a different order. For example, the
operations depicted 1 blocks 511 and 513 can be performed
in parallel or concurrently. With respect to FIGS. 7 and 9, a
caching criterion 1s not necessary. Parity can be cached upon
update and management of the cached parity rely on a
clean-up or eviction criterion or criteria. In addition, the

10

15

20

25

30

35

40

45

50

55

60

65

18

update to indicate inconsistency between a caching SSD and
an HDD {for a parity can occur aiter confirmation of a
successiul write to the caching SSD instead of at block 930
as depicted 1n FIG. 9.

As will be appreciated, aspects of the disclosure may be
embodied as a system, method or program code/instructions
stored 1n one or more machine-readable media. Accordingly,
aspects may take the form of hardware, software (including
firmware, resident software, micro-code, etc.), or a combi-
nation of solftware and hardware aspects that may all gen-
erally be referred to herein as a “circuit,” “module” or
“system.” The functionality presented as individual mod-
ules/units 1n the example illustrations can be organized
differently in accordance with any one of platform (operat-
ing system and/or hardware), application ecosystem, inter-
faces, programmer preferences, programming language,
administrator preferences, efc.

Any combination of one or more machine readable medi-
um(s) may be utilized. The machine readable medium may
be a machine readable signal medium or a machine readable
storage medium. A machine readable storage medium may
be, for example, but not limited to, a system, apparatus, or
device, that employs any one of or combination of elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor technology to store program code. More specific
examples (a non-exhaustive list) of the machine readable
storage medium would include the following: a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a machine readable storage medium may be any
tangible medium that can contain, or store a program for use
by or 1n connection with an instruction execution system,
apparatus, or device. A machine readable storage medium 1s
not a machine readable signal medium.

A machine readable signal medium may 1nclude a propa-
gated data signal with machine readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
machine readable signal medium may be any machine
readable medium that 1s not a machine readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a machine readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RFE, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the disclosure may be written 1n any combination
of one or more programming languages, including an object
oriented programming language such as the Java® program-
ming language, C++ or the like; a dynamic programming
language such as Python; a scripting language such as Perl
programming language or PowerShell script language; and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The program code may execute entirely on a
stand-alone machine, may execute 1 a distributed manner
across multiple machines, and may execute on one machine
while providing results and or accepting input on another
machine.

US 9,830,092 B2

19

Aspects of this disclosure are described with reference to
flowchart illustrations and/or block diagrams. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by program code. The program code may be pro-
vided to a processor ol a general purpose computer, special
purpose computer, or other programmable machine or appa-
ratus.

The program code/instructions may also be stored 1n a
machine readable medium that can direct a machine to
function 1n a particular manner, such that the instructions
stored 1in the machine readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

FIG. 11 depicts an example computer system with a
storage array controller that caches parity on a solid state
storage device of a hybrid storage array. The computer
system 1ncludes a processor umt 1101 (possibly including
multiple processors, multiple cores, multiple nodes, and/or
implementing multi-threading, etc.). The computer system
includes memory 1107. The memory 1107 may be system
memory (e.g., one or more of cache, SRAM, DRAM, zero
capacitor RAM, Twin Transistor RAM, eDRAM, EDO
RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS,
PRAM, etc.) or any one or more ol the above already
described possible realizations of machine-readable media.
The computer system also includes a bus 1103 (e.g., PCI,
ISA, PCI-Express, HyperTransport® bus, InfiniBand® bus,
NuBus, etc.) and a network interface 1105 (e.g., a Fiber
Channel interface, an Ethernet interface, an internet small
computer system interface, SONET interface, wireless inter-
tace, etc. The system also includes a storage array controller
1111. The storage array controller 1111 caches parities of a
hybrid storage array in a constituent solid state storage
device. The storage array controller also evicts cached parity
when a parity eviction criterion 1s met. Any one of the
previously described functionalities may be partially (or
entirely) implemented 1n hardware and/or on the processing
unit 1101. For example, the functionality may be imple-
mented with an application specific integrated circuit, in
logic implemented 1n the processing unit 1101, in a co-
processor on a peripheral device or card, etc. Further,
realizations may 1nclude fewer or additional components not
illustrated 1 FIG. 11 (e.g., video cards, audio cards, addi-
tional network interfaces, peripheral devices, etc.). The
processor unit 1101 and the network interface 1105 are
coupled to the bus 1103. Although illustrated as being
coupled to the bus 1103, the memory 1107 may be coupled
to the processor unit 1101.

While the aspects of the disclosure are described with
reference to various implementations and exploitations, it
will be understood that these aspects are illustrative and that
the scope of the claims 1s not limited to them. In general,
techniques for caching parity and evicting parity in a hybrnd
storage array as described herein may be implemented with
facilities consistent with any hardware system or hardware
systems. Many varnations, modifications, additions, and
improvements are possible.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are 1illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of the disclosure. In

10

15

20

25

30

35

40

45

50

55

60

65

20

general, structures and functionality presented as separate
components 1n the example configurations may be 1mple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be mmplemented as separate components. These and
other vanations, modifications, additions, and 1mprove-
ments may fall within the scope of the disclosure.

Terminology

This description uses the term “parity.” Since this disclo-
sure relates to storage arrays, 1t should be clear that parity
refers to fault tolerance data that can be used to reconstruct
data (e.g., user data or application data) after a storage
device failure. However, the possibility exists that interpre-
tations will be asserted that disregard this disclosure since
parity can have other meanings. For at least this reason, the
claims will also refer to reconstruction information since
parity 1s used to reconstruct data on a failed storage device.
In addition, the description refers to parity when parity value
would be more appropnate. This 1s done for ease of expla-
nation. Parity for a set/group/plurality of data units can refer
to any parity value that protects the data units. A parity value
1s a particular instance of that panty.

This description also uses the term ““data blocks.” This 1s
a familiar term within the industry, but 1t 1s susceptible to
variations 1n meaning. For this disclosure, a data block 1s a
unit of data that 1s read from or written to a storage array.
The claims will refer to data units to avoid any unintended
interpretations or unnecessary definitions of data blocks
based on a particular technology.

In relation to the above terms, the claims will not refer to
stripes. Although this 1s a common term used when data
striping 1s employed, the claims will simply refer to a groups
or set of data units protected or corresponding to a parity.

What 1s claimed 1s:

1. A method comprising:

determining, after detecting an update that impacts a first

data unit of a plurality of data units that a row parity for
the plurality of data units 1s stored on a first hard disk
storage device of a plurality of hard disk storage
devices and a diagonal parity for the plurality of data
units 1s stored on a second hard disk storage device of
the plurality of hard disk storage devices, wherein a
storage array at least includes the plurality of hard disk
storage devices and a solid state storage device;

alter reading a first value for the row parity from the first

hard disk storage device and a first value for the
diagonal parity from the second hard disk storage
device, calculating a second value for the row parity
based, at least 1n part, on the first value for the row
parity and an updated first data unit and a second value
for the diagonal parity based, at least in part, on the first
value for the diagonal parity and the updated first data
unit;

indicating with a first indication a change 1n the row parity

with respect to the row parity stored 1n the first hard
disk storage device, with a second indication that the
row parity 1s stored in the solid state storage device,
with a third indication a change in the diagonal parity
with respect to the diagonal parity stored 1n the second
hard disk storage device, and with a fourth indication
that the row parity 1s stored 1n the solid state storage
device; and

requesting that the second value for the row parity and the

second value for the diagonal parity be written to the
solid state storage device.

US 9,830,092 B2

21

2. The method of claim 1, further comprising:
determining, using the second indication, that the row
parity 1s stored in the solid state storage device in
response to detecting a second update that impacts a
second data unit of the plurality of data units;

reading the second value for the row parity from solid
state storage device; and

requesting that a third value for the row parity be written

to the solid state storage device after calculating the
third value based, at least 1n part, on the second value
for the row parity and the second update.

3. The method of claim 1, turther comprising maintaining,
the first indication for the row parity and the second 1ndi-
cation for the row parity 1n a storage array manager cache.

4. The method of claim 1, further comprising:

determining, using the second indication, that the row

parity 1s stored 1n the solid state cache; and

reading the row parity from the solid state cache.

5. The method of claim 1, further comprising:

storing the second value for the row parity 1n a storage

array manager cache.
6. The method of claim 1, further comprising requesting
that the second value for the row parity also be written to the
first hard disk storage device.
7. The method of claim 6, turther comprising resetting the
first indication subsequent to the second value written to the
first hard disk storage device.
8. The method of claim 1, further comprising maintaining,
the first indication for the row parity in a storage array
manager cache.
9. The method of claim 8, further comprising maintaining,
a second indication for the row parity 1n a storage array
manager cache.
10. The method of claim 8, further comprising;:
determining that the row parity has been selected for
eviction from the solid state storage device; and

requesting that the second value for the row parity be
written to the first hard disk storage device for the row
parity in response to determining that the row parity has
been selected for eviction from the solid state storage
device.

11. A non-transitory machine-readable medium having
stored thereon instructions for performing a method for
tracking reconstruction information comprising machine
executable code, which when executed by at least one
machine, causes the at least one machine to:

determine, after detection of an update that impacts a first

data unit of a plurality of data units, that row recon-
struction mformation for the plurality of data units 1s
stored on a first hard disk storage device of a plurality
of hard disk storage devices of a storage array and that
diagonal reconstruction information for the plurality of
data units 1s stored on a second hard disk storage device
of the plurality of hard disk storage devices;

read a first value for the row reconstruction imnformation

from the first hard disk storage device and a first value
for the diagonal reconstruction information from the
second hard disk storage device;

indicate with a first indication a change in the row

reconstruction information with respect to the row
reconstruction information stored in the first hard disk
storage;

after calculation of a second value for the row reconstruc-

tion information based, at least 1n part, on the first value
for the row reconstruction mformation and an updated
first data unit, indicate with a second 1indication that the

10

15

20

25

30

35

40

45

50

55

60

65

22

row reconstruction information i1s cached in a solid
state storage device of the storage array;

indicate with a third indication a change 1n the diagonal

reconstruction information with respect to the diagonal
reconstruction information stored in the second hard
disk storage;

alter calculation of a second value for the diagonal

reconstruction information based, at least in part, on the
first value for the diagonal reconstruction information
and the updated first data unit, indicate with a fourth
indication that the diagonal reconstruction information
1s cached 1n the solid state storage device of the storage
array; and

request that the second value for the row reconstruction

information and the second value for the diagonal
reconstruction mformation be written to the solid state
storage device.

12. The machine-readable medium of claim 11, wherein
the machine executable code further causes the at least one
machine to:

determine that the row reconstruction information 1s

cached 1n the solid state storage device 1n response to
detection of a second update that impacts a second data
unit of the plurality of data units;
read the second value for the row reconstruction infor-
mation from the solid state storage device; and

request that a third value for the row reconstruction
information be cached 1n the solid state storage device
after calculation of the third value based, at least 1n part,
on the second value and the second update.

13. The machine-readable medium of claim 11, wherein
the machine executable code further causes the at least one
machine to maintain the first indication for the row recon-
struction information and the second indication for the row
reconstruction mformation 1n a storage array manager cache.

14. The machine-readable medium of claim 11, wherein
the machine executable code further causes the at least one
machine to request that the second value also be written to
the first hard disk storage device.

15. The machine-readable medium of claim 11, wherein
the machine executable code further causes the at least one
machine to maintain the second indication for the row
reconstruction information in a storage array manager cache.

16. The machine-readable medium of claim 11, further
comprising program code to:

determine that the row reconstruction information has

been selected for eviction from the solid state storage
device; and

request that the second value for the row reconstruction

information be written to the first hard disk storage
device for the row reconstruction information 1n
response to a determination that the row reconstruction
information has been selected for eviction from the
solid state storage device.

17. A computing device comprising:

one or more memories containing machine readable

medium comprising machine executable code having
stored thereon instructions for performing a method for
storing row reconstruction information and diagonal
reconstruction information; and

a processor in communication with the one or more

memories and configured to:

determine, after detection of an update that impacts a
first data unit of a plurality of data units, that row
reconstruction information for the plurality of data
units 1s stored on a first hard disk storage device of
a plurality of hard disk storage devices of a storage

US 9,830,092 B2

23

array and that diagonal reconstruction information
for the plurality of data units 1s stored on a second
hard disk storage device of the plurality of hard disk

storage devices of a storage array;

read a first value for the row reconstruction information
from the first hard disk storage device and a first
value for the diagonal reconstruction information
from the second hard disk storage device;

indicate with a first indication a change in the row
reconstruction iformation with respect to the row
reconstruction information stored in the first hard
disk storage;

aiter calculation of a second value for the row recon-
struction mformation based, at least in part, on the
first value and an updated first data unit, indicate
with a second indication that the row reconstruction
information 1s cached in a solid state storage device
of the storage array;

indicate with a third indication a change in the diagonal
reconstruction information with respect to the diago-
nal reconstruction information stored in the second
hard disk storage;

alter calculation of a second value for the diagonal
reconstruction information based, at least 1n part, on
the first value for the diagonal reconstruction infor-
mation and the updated first data unit, indicate with

10

15

20

24

a fourth indication that the diagonal reconstruction
information 1s cached i the solid state storage
device of the storage array; and

request that the second value for the row reconstruction
information and the second value for the diagonal
reconstruction information be written to the solid
state storage device.

18. The computer device of claim 17, wherein the pro-
cessor 15 further configured to:
determine that the row reconstruction information 1s

cached 1n the solid state storage device 1n response to
detection of a second update that impacts a second data
unit of the plurality of data units;

read the second wvalue for the row reconstruction infor-

mation from the solid state storage device; and

request that a third value for the row reconstruction

information be cached in the solid state storage device
after calculation of the third value based, at least 1n part,
on the second value for the row reconstruction infor-
mation and the second update.

19. The computing device of claim 17, wherein the
processor 1s lurther configured to cause the computing
device to maintain the first indication and the second indi-
cation for the row reconstruction imformation in a cache

25 memory of the computing device.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

