12 United States Patent

Fletcher et al.

US009824312B2

US 9,824,312 B2
Nov. 21, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)
(52)

(58)

DOMAIN SPECIFIC LANGUAGES AND
COMPLEX EVENT HANDLING FOR
MOBILE HEALTH MACHINE
INTELLIGENCE SYSTEMS

Applicant: Voalte, Inc., Sarasota, FLL (US)

Inventors: Donnie C. Fletcher, Sarasota, FL (US);
Trevor J. Brown, Sarasota, FLL (US)

Assignee: Voalte, Inc., Sarasota, FLL (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Notice:

Appl. No.: 14/735,219
Filed: Jun. 10, 2015

Prior Publication Data

US 2016/0364650 Al Dec. 135, 2016

Int. CIL.

GO6N 5/04 (2006.01)

U.S. CL

CPC e, GO6N 5/046 (2013.01)
Field of Classification Search

P e, GO6N 5/047
U S PO e, 706/47

See application file for complete search history.

(56) References Cited

PUBLICATIONS

Costa et al (“Evaluation of a Rule-Based Approach for Context-

Aware Services” 2008).*

Han et al (“Managing Exceptions in the Medical Worktlow Sys-
tems” 2006).*

Han et al (*Semantic Context-Aware Service Composition for
Building Automation System™ Mar. 2013).*

William N. Robinson (“Implementing Rule-based Monitors within
a Framework for Continuous Requirements Monitoring” 2005).*

* cited by examiner

Primary Lxaminer — LLut Wong

(74) Attorney, Agent, or Firm — Long Technology Law,
LLC; Joseph L. Long

(57) ABSTRACT

Systems and methods can support complex event handling.
A complex event handler can receive a current event. The
current event may be stored to an event log. The current
event may be matched against rule conditions within a rule
implementation system. Prior events may be identified,
within the rule implementation system, upon which the
matched rule conditions also depend. The event log may be
searched for the identified prior events. Prior event param-
cters, corresponding to the identified prior events, may be
retrieved from the event log. The rule conditions may be
evaluated in view of the current event and the retrieved prior
event parameters. Actions may be executed that correspond
to the rule conditions triggered 1n response to the evaluating.
Domain specific language expression may be received,
processed, and incorporated as rules and facts 1nto the rule
implementation system.

20 Claims, 5 Drawing Sheets

410

Receive an event

420

Store the event to an event log

430

Match the event to rule conditions

440

Search the event log for prior events in response to any
matched rule conditions being a function of prior events

450

Retrieve prior evant parameters from event log

480

Evaluate the rule conditions in view of the present
gvent and the prior event parameters

470

Generate resultant events and actions
in response to friggered rules

480

Feed generated events back to complex event handler

(End)

U.S. Patent Nov. 21, 2017 Sheet 1 of 5 US 9,824,312 B2

Event Generator

Domain Module 150
160

DSL
170

Complex Event Handler 110

Rule
Implementation Event Log
System 130

120

Complex Event Handler Module
140

Resultant
Events and Actions
180

Fig. 1

U.S. Patent Nov. 21, 2017 Sheet 2 of 5 US 9,824,312 B2

Rules
250

Facts
260

Network
280

Questions
269

Actions
270

Interface
Module 210

Controller Graph Database
Module 220 240

Database
Translation

Module 230

Rule Implementation System 120

Fig. 2

U.S. Patent Nov. 21, 2017 Sheet 3 of 5 US 9.824.312 B2

310

Support inputs expressed in a domain specific language

320

Recelve a domain specific language expression

330

Process the expression to generate a rule condition

340

Process the expression to generate a rule action

350

Incorporate the rule condition and
rule action into a rule engine

360

Support rule engines based upon graph databases

=L Fig. 3

U.S. Patent Nov. 21, 2017 Sheet 4 of 5 US 9,824,312 B2

400 410

Receive an event

420

Store the event to an event log

430

Match the event to rule conditions

440

Search the event log for prior events in response to any
matched rule conditions being a function of prior events

450

Retrieve prior event parameters from event log

460

Evaluate the rule conditions in view of the present
event and the prior event parameters

470

Generate resultant events and actions
In response to triggered rules

480

Feed generated events back to complex event handler

U.S. Patent Nov. 21, 2017 Sheet 5 of 5 US 9.824.312 B2

NETWORK
2000 2080

NETWORK
PROCESSOR INTERFACE

2010 2070

SYSTEM BUS 2020

INPUT/OUTPUT
INTERFACE

SYSTEM STORAGE
MEMORY MEDIA

2040

US 9,824,312 B2

1

DOMAIN SPECIFIC LANGUAGES AND
COMPLEX EVENT HANDLING FOR
MOBILE HEALTH MACHINE
INTELLIGENCE SYSTEMS

BACKGROUND

Complex events, such as those encountered within health-
care enterprises, may be defined as sequences of events 1n
time that are dynamically coupled together through explicit
or implied relationships and interdependencies. The implied
interdependencies may be subtle and may exist through
multiple layers of indirection. Evaluating automated rules
upon such complex event conditions i1s generally extremely
challenging. When the combined events and time sequences
making up the complex events are subtly related or when
their relationships depend upon multiple layers of indirec-
tion, the challenges increase significantly, eflectively
becoming intractable to traditional approaches.

Data associated with complex events may be weakly
structured or even unstructured. Such datasets often attempt
to aggregate frequently changing information from many
diverse sources having diflerent structures and formats.
Operating rules associated with such data may also be
complex and highly dynamic.

There are numerous challenges to implementing ntelli-
gent rule systems to handle complex events that may be
made up of loosely interrelated time sequences of events that
cach may mnvolve complex datasets of information and their
associated production rules.

There 1s a need in the art for complex event handling
technology that can safely and efliciently support very large,
unstructured datasets of interrelated sequences ol occur-
rences, each of which may involve numerous parameters,
the values and relationships of which may frequently change
in real time. Such solutions would be particularly applicable
in large, information-driven enterprises such as healthcare
tacilities or systems thereof.

SUMMARY

In certain example embodiments described herein, meth-
ods and systems can support complex event handling. A
complex event handler can receive a current event. The
current event may be stored to an event log. The current
event may be matched against rule conditions within a rule
implementation system. Prior events may be identified,
within the rule implementation system, upon which the
matched rule conditions also depend. The event log may be
searched for the identified prior events. Prior event param-
cters, corresponding to the identified prior events, may be
retrieved from the event log. The rule conditions may be
evaluated in view of the current event and the retrieved prior
event parameters. Actions may be executed that correspond
to the rule conditions triggered 1n response to the evaluating.
Domain specific language expression may be received,
processed, and incorporated as rules and facts into the rule
implementation system.

These and other aspects, objects, features, and advantages
of the example embodiments will become apparent to those
having ordinary skill in the art upon consideration of the
following detailed description of illustrated example

embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram depicting a complex event
handler associated with a rule implementation system and an
event log 1 accordance with one or more embodiments
presented herein.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a block diagram depicting a rule implementation
system associated with a graph database 1n accordance with

one or more embodiments presented herein.

FIG. 3 1s a block flow diagram depicting a method for
providing domain specific rules for complex event handling
in accordance with one or more embodiments presented
herein.

FIG. 4 1s a block flow diagram depicting a method for
complex event handling in accordance with one or more
embodiments presented herein.

FIG. 5 1s a block diagram depicting a computing machine
and a module 1 accordance with one or more embodiments
presented herein.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

(L]

Overview

The methods and systems described herein enable effi-
cient complex event handling. The complex event handler
can leverage a rule engine or rule implementation system.
The rule implementation system can operate directly within,
or 1n conjunction with, a graph database system. Events may
be stored to an event log of prior events. Certain prior events
may be retrieved from the event log when evaluating newly
received events. Rule conditions associated with the com-
plex event handler may be evaluated in view of the newly
received events as well as prior events retrieved form the
event log. Actions may be executed when the rule conditions
are appropriately triggered. Domain specific language
expression may be received, processed, and incorporated as
rules and facts into the rule implementation system. The
events, actions, and domain specific language expressions
may be associated with various communication occurrences
within a healthcare enterprise. Examples of such communi-
cation occurrences may include messaging, alarms, voice
calls, stail responsibility changes, and so forth.

The functionality of the various example embodiments
will be explained 1n more detail 1n the following description,
read 1n conjunction with the figures illustrating the program
flow. Turning now to the drawings, in which like numerals
indicate like (but not necessarily 1dentical) elements
throughout the figures, example embodiments are described
in detail.

Example System Architectures

FIG. 1 1s a block diagram depicting a complex event
handler 110 associated with a rule implementation system
120 and an event log 130 1n accordance with one or more
embodiments presented herein. The complex event handler
110 can execute 1n association with a complex event handler
module 140. The complex event handler 110 can receive
incoming events from one or more event generators 150.
The complex event handler 110 can store incoming events to
the event log 130. The complex event handler 110 can match
incoming events against rules within the rule implementa-
tion system 120. Triggering of the rules within the rule
implementation system 120 may also be dependent upon
prior events stored in the event log 130. Triggering of rules
can generate resultant events and actions 180. One or more
domain modules 160 may provide rules for use within the
rule implementation system 120. A domain specific lan-
guage (DSL) 170 may be used 1n conjunction with each of
the domain modules 160.

The complex event handler 110 and associated complex
event handler module 140 can receive incoming events from
one or more event generators 150. The complex event
handler 110 can support making decisions based one or more

US 9,824,312 B2

3

incoming current in combination with one or more prior
events. The decisions may be determined by the rule imple-
mentation system 120 based upon mcoming events along
with prior events stored within the event log 130. In addition
to the rule implementation system 120 triggering rules based
upon ncoming events, rules associated with the complex
event handler 110 may further depend upon prior events
retrieved form the event log 130. The condition of such a
rule may be a function of both current incoming events as
well as prior events.

According to one or more examples related to an enter-
prise messaging system, a current event may be generated
when user Adam sends a first message to user Beth, both
within the same organization. The complex event handler
110 may store, within the event log 130, an event indicating
that the first message was sent. Subsequently, user Beth’s
role within the organization may change. For example, Beth
may have been 1n charge of deliveries on the day when the
first message was sent, but 1s now 1n charge of customer
service. The change 1n Beth’s role may generate an event
that may be stored by the complex event handler 110 1nto the
cevent log 130. At a future time, user Adam may send a
second message to user Beth. Sending the message may
generate an event, which 1s received by the complex event
handler 110. The complex event handler 110 may trigger a
rule within the rule implementation system 120. The com-
plex rule may be a function of both the incoming event (a
second message was sent) and two prior events (a first
message was sent and the role associated with the receiver
has changed). The two prior events may be retrieved from
the event log 130 by the rule implementation system 120
while testing the rule. The rule may indicate that if user
Adam sends a first message to user Beth, user Beth’s role
changes, and then user Adam sends a second message to user
Beth, one or more actions should alert one or both of the
users Adam and Beth to these details. For example, the rule
implementation system 120 may generate an action to notily
user Adam that user Beth has changed roles within the
organization since their last interaction. The rule implemen-
tation system 120 may also generate an action to notify user

Beth that user Adam sent a message and has been notified of

Beth’s new role. User Beth may also be provided the
opportunity to redirect the second message to the new
person 1n her prior role, if appropriate. Furthermore, user
Beth may be provided with an option to 1gnore the message
or to simply continue the conversation with user Adam.

It should be appreciated that rules associated with the
complex event handler 110 can act on multiple incoming
current events from multiple sources as well as depending
upon multiple prior events retrieved form the event log 130.
A rule may be a function of any number of incoming current
events and any number of prior events.

The rule implementation system 120 may be an example
of a rule engine system, production system, or production
rule system. These are often used in artificial intelligence,
automated planning, expert systems, action selection sys-
tems, or other such machine-based knowledge or decision
systems.

The rule implementation system 120 may implement a
plurality of rules. Each rule may contain a condition that
when matched triggers a resultant action. The rule 1mple-
mentation system 120 may receive events that can be
pattern-matched against the rule conditions. When a rule
condition 1s properly matched to incoming events and/or
stored prior events, the rule action associated with the
condition may be triggered. The rule condition may be
specifically formatted to match the formatting of the event

10

15

20

25

30

35

40

45

50

55

60

65

4

data associated with incoming events and/or prior events
stored within the event log 130. According to various
embodiments, the rule implementation system 120 may be
based upon a graph database.

The event log 130 can store events received by the
complex event handler 110. The event log 130 can store
events within a computerized database, a computer memory,
a computer data storage system, a cloud-based data store,
any other data storage mechanisms, or any combinations
thereof. Each events may be time-stamped and/or date-
stamped 1n order to establish when the complex event
handler 110 received each events. According to various
embodiments, stored prior events may be removed from the
event log 130 when they reach a specified expiration date.
Similarly, a rule may trigger indicating removal of an event
entry from the event log 130. A given rule may also indicate
a specilied time window of prior events to be considered
when evaluating the condition of the rule.

The resultant events and actions 180 may be generated as
a result of triggering rules within the rule implementation
system 120 in association with the complex event handler
110. When incoming and/or stored events match the patterns
of a rule condition within the rule implementation system
120, that rule may be triggered generating an action. The
action may include the generation of, or cause the generation
of, a new event. The complex event handler 110 may again
process that new event, which may include storing the event
in the event log 130 and/or trigger rules within the rule
implementation system 120 that match the new event. The
actions may also impact or instruct operations of one or
more other systems.

The event generator 150 may generally be any source of
events that may be processed by the complex event handler
110. One example event generator 150 according to an
example enterprise messaging system may be the transmis-
sion of a message from one user to another user. Another
example event generator 150 according to an example
healthcare enterprise system may the generation of a noti-
fication to a member of the nursing stall when an alarm 1s
generated by a piece of patient mstrumentation.

A domain specific language 170 may be specified for use
within a particular knowledge domain. Examples of knowl-
edge domains 1n a healthcare context may include pharmacy,
nursing, radiology, cardiology, and so forth. The domain
specific language 170 may be used 1n conjunction with one
or more of the domain modules 160 to support speciiying
rules for use within the rule implementation system 120.
Domain users and/or domain experts may provide rules
expressed using their respective domain specific language
170. The rules may be provided in plain text, speech-to-text,
or some other format. The rules may also be provided
through a graphical user interface, wherein the rules may be
constructed using elements of the DSL 170.

The domain module 160 can support iputs using the
domain specific language 170 for defining rules within the
rule implementation system 120. Each given domain may be
associated with 1ts own domain specific language 170.
Because the domain specific language 170 may be oriented
toward users within a particular domain, and may be gen-
crally quite specific to that domain, the domain experts
generally do not need to be familiar with operational details
of the complex event handler 110 or the rule implementation
system 120 to provide imnputs using the domain specific
language 170. A condition generator functionality associated
with the domain module 160 may process mputs expressed
in the domain specific language 170 to generate a rule
condition. Such mputs may be processed 1nto a rule format-

US 9,824,312 B2

S

ted 1n a fashion that simplifies insertion as a rule into the rule
implementation system 120. Similarly, an action generator
functionality associated with the domain module 160 may
process mputs expressed in the domain specific language
170 to extract resultant actions associated with the rule being
triggered within the rule implementation system 120.

The complex event handler 110, the rule implementation
system 120, systems associated with the event generators
150, systems associated with the domain module 160, sys-
tems associated with the resultant events and actions 180, or
any other systems associated with the technology presented
herein may be any type of computing machine such as, but
not limited to, those discussed in more detail with respect to
FIG. 5. Furthermore, any modules (such as the complex
event handler module 140, or the domain module 160)
associated with any of these computing machines or any
other modules (scripts, web content, software, firmware, or
hardware) associated with the technology presented herein
may by any of the modules discussed in more detail with
respect to FIG. 5. The computing machines discussed herein
may communicate with one another as well as other com-
puter machines or communication systems over one or more
networks such as the network technology discussed with
respect to FIG. 3.

FIG. 2 1s a block diagram depicting a rule implementation
system 120 associated with a graph database 240 in accor-
dance with one or more embodiments presented herein. This
example rule implementation system 120 can operate within
the complex event handler 110 to match incoming and prior
events to trigger resultant events and actions 180. The rule
implementation system 120 can operate on rules 250 and
facts 260 to respond to questions 265 or to establish addi-

tional rules 250, additional facts 260, or trigger actions 270.
It should be appreciated that 1n this context, the facts 260
may be mmcoming and prior events associated with the
complex event handler 110. The rule implementation system
120 can include various modules such as an interface
module 210, a controller module 220, and a database trans-
lation module 230. The rule implementation system 120 can
operate directly within, or in conjunction with, a graph
database 240. Rules 250, facts 260, questions 265 or actions
270 associated with the rule implementation system 120
may be communicated directly to or from the rule imple-
mentation system 120. These communications may also
occur 1n conjunction with one or more networks 280.

A rule 250 associated with the rule implementation sys-
tem 120 generally consists of two components: a condition
and a result. The condition and result of a rule 250 may be
said to have an “if, then” relationship. If the condition
obtains, then the rule 250 1s trniggered causing the result to
be fired. The condition generally obtains by the existence, or
truth, of one or more facts 260. For example, a condition
could be, “if 1t 1s Wednesday,” which would trigger when
presented with the fact that the day of the week 1s Wednes-
day. The result of firing a rule 250 generally mnvolves one or
more other facts 260 or the generation of an action 270.
Firing of the rule 250 can assert or retract one or more other
tacts 260. Firing of the rule 250 can also generate one or
more actions 270 as output of the rule implementation
system 120. Asserting or retracting one or more facts 260
can alter the state of the rule implementation system 120,
which may then affect the conditions of other rules 2350
causing them to fire. Altering the state of the rule imple-
mentation system 120 may also aflect the responses pro-
vided to questions 263 processed by the rule implementation
system 120.

10

15

20

25

30

35

40

45

50

55

60

65

6

The graph database 240 can provide the working memory
of the rule implementation system 120. This working
memory can store information comprising the current state
or knowledge of the rule implementation system 120. The
graph database 240 can store information in a graph struc-
ture where nodes are iterconnected by edges. The nodes
generally represent entities or things such as individuals,
departments, or equipment. Edges generally connect nodes
representing the relationship between them. Each node may
be associated with one or more properties, which may
contain information pertinent to that respective node.

The iterface module 210 of the rule implementation
system 120 can provide an application programming inter-
tace (API), scripting interface, domain-specific language
(DSL) 170, or other mechanism for interfacing to the rule
implementation system 120. The interface module 210 may
support transactions with other modules, systems, or entities
associated with the rule implementation system 120. These
transactions may involve providing rules 250 or facts 260 to
the rule implementation system 120, receiving and reacting
to questions 265, retrieving rules 250 or facts 260 from the
rule implementation system 120, or receiving actions 270 or
information associated with actions 270 from the rule imple-
mentation system 120.

The controller module 220 of the rule implementation
system 120 can process control operations of the rule
implementation system 120. Examples of the operations
may include executing queries, starting/stopping rule evalu-
ation, and so forth.

The database translation module 230 of the rule 1mple-
mentation system 120 can provide low-level interactions
with the graph database 240. These interactions may include
performing queries, handling fact node assertion or retrac-
tion, database administrative tasks, and so forth.

It should be appreciated that 1n addition to the interface
module 210, controller module 220, database translation
module 230, and graph database 240, the rule implementa-
tion system 120 may include or interface with other mod-
ules. It should also be appreciated that any two or more of
these modules may be combined into the same module or
modules. Furthermore, any one or more of these modules
may split functionally, or load share, between two or more
modules or execute on two or more computing machines.
Any such modules may operate in a parallel, distributed, or
networked fashion without departing from the spirit or scope
of the technology presented herein.

Within the rule implementation system 120, a rule-fact
graph may be a graph stored 1n the graph database 240. The
rule-fact graph can include various nodes connected by
edges. The rule-fact graph within the graph database 240 can
serve as the working memory of the rule implementation
system 120. This working memory can store information
comprising the current state or knowledge of the rule
implementation system 120. This information can include
various facts 260, which may be stored as nodes connected
by edges representing relationships between the nodes such
that the nodes and edges together can encode the rules 250.

Within the rule implementation system 120, rule interpre-
tation may be provided by executing queries on the rule-fact
graph within the graph database 240. The queries may be
associated with questions 2635 posed to the rule implemen-
tation system 120. The queries and questions 263 may relate
to incoming and prior events. The queries can pattern-match
facts 260 against the encoded rules 250 determining which
of the rules 250 to apply. The condition portion of each rule
250 may be tested against the current state of the working
memory by pattern matching against the rule-fact graph. The

US 9,824,312 B2

7

consequent results can update the knowledge represented by
the rule-fact graph by asserting or retracting information.
The consequent results can also update the event knowledge
by generating an event that will in turn be stored to the event
log 130. Rule mterpretation can execute forward chaining
when updated information aflects other rules 2350 implied
within the rule-fact graph. The results consequent to the
condition can also trigger actions 270 which may include
generating new events. Queries of the rule-fact graph within
the graph database 240 can leverage a schema-iree storage
structure supporting index-iree adjacency where any node
may be directly linked (by one or more edges) to 1ts adjacent
nodes such that index lookups are unnecessary.

Within the rule implementation system 120, representing,
rules 250 within the graph database 240 provides the ability
to establish adjacencies between any nodes (and thus rela-
tionships between facts 260) without having to rebuild
schemas or introduce associating tags or indices. Accord-
ingly, rules 250 may be changed or introduced anew within
the rule-fact graph very etliciently and with reduced efiort or
overhead. Changing this rule representation in a traditional
database for a huge number of entries can be extremely time
consuming and nearly impossible, if such rules changed as
frequently as they might in certain complex enterprise
environments such as health care information systems.

Some example benefits to the rule implementation system
120 leveraging the graph database 240 relate to 1t being more
suitable for managing ad hoc and changing data with evolv-
ing schemas. For example, 1n a healthcare enterprise such as
a hospital department, the number of nurses may vary from
shift to shift, as might the number of patients. Furthermore,
the roles of the nurses may change and the assignments
relating the nurses to specific patients may also change.
When additional facts 260 and rules 250 associated with the
hospital department come into play, the rule-fact graph can
quickly become very large even while being dynamic (rap-
1idly changing). For example, the additional events, facts
260, and rules 250 may relate to procedures, medications,
food service, radiology, tests, specialist referrals, admit/
discharges, code emergencies, monitoring alarms, and so
forth. Other example additional events, facts 260, and rules
250 may relate to routing messages, alarms, notifications,
voice calls, text messages, or other communication modali-
ties to one or more nurses (or wireless mobile devices
associated therewith) within a healthcare enterprise. This
type ol imnformation 1s also well addressed by the schema-
less structure support of the rule implementation system 120
and 1ts associated graph database 240.

Another example benefit to the rule implementation sys-
tem 120 leveraging the graph database 240 stems from the
native pattern matching capabilities of the graph database
240. Such native pattern matching support can provide for
significant increases 1n efliciencies related to rule interpre-
tation and associated queries.

Yet another example benefit to the rule implementation
system 120 leveraging the graph database 240 relates to the
disk-backed performance of the rule implementation system
120 and 1ts associated graph database 240. Disk-backed
operation can provide persistence of state by maintain
information within the graph database 240. Disk-backed
operation can also overcome working memory limitations
encountered 1 operating on a rule-fact graph of ever
increasing size and complexity. It should be appreciated that
this “working knowledge” associated with the rule-fact
graph maintains rules and 1s 1n contrast to the prior event
knowledge stored in the event log 130.

10

15

20

25

30

35

40

45

50

55

60

65

8

The rule implementation system 120, systems associated
with the rules 250, facts 260, or actions 270, systems
associated with the graph database 240, or any other systems
associated with the technology presented herein may be any
type of computing machine such as, but not limited to, those
discussed 1n more detail with respect to FIG. 5. Furthermore,
any modules (such as the interface module 210, controller
module 220, or database translation module 230) associated
with any of these computing machines or any other modules
(scripts, web content, software, firmware, or hardware)
associated with the technology presented herein may by any
of the modules discussed 1n more detail with respect to FIG.
5. The computing machines discussed herein may commu-
nicate with one another as well as other computer machines
or communication systems over one or more networks such
as network 280. The network 280 may include any type of
data or communications network including any of the net-
work technology discussed with respect to FIG. 5.
Example Processes

According to methods and blocks described in the
embodiments presented herein, and, in alternative embodi-
ments, certain blocks can be performed 1n a different order,
in parallel with one another, omitted entirely, and/or com-
bined between different example methods, and/or certain
additional blocks can be performed, without departing from
the scope and spirit of the invention. Accordingly, such
alternative embodiments are included in the invention
described herein.

FIG. 3 1s a block flow diagram depicting a method 300 for
providing domain specific rules for complex event handling
in accordance with one or more embodiments presented
herein.

In block 310, a domain module 160 can support applying
knowledge from domain experts into complex event handler
110. Leveraging a DSL 170 associated with a domain
module 160, rules 250 may be implemented within the rule
implementation system 120 by domain experts. The domain
experts may use jargon or terminology specific to their
specific domain of expertise. Certain example domains,
within a healthcare context, may include pharmacy, radiol-
ogy, skilled nursing, cardiology, and so forth.

In block 320, the domain module 160 can receive an
expression provided by a domain user 1n a domain specific
language 170. The domain user may provide the mput as a
text expression or an assemblage of textual elements
selected according to a graphical user interface. The domain
user may also provide the input as an audible voice mnstruc-
tion that may be converted to a textual mput.

In block 330, the domain module 160 can process the
received expression to extract a rule condition. The rule
condition may be a function of any number ol present
events, any number of prior events, or a combination
thereolf. The recerved expression may be processed accord-
ing to structures, definitions, and syntax of the domain
specific language 170. For example, a domain specific
language 170 associated with the domain of pharmacy may
specily language structures and syntaxes for times and
dosages of pharmaceutical prescriptions. Applying these
structures to the provided expression can support the appro-
priate extraction of the rule condition intended by the
domain user providing the nput.

In block 340, the domain module 160 can process the
received expression to extract a rule action 270. The rule
action 270 may be associated with a rule condition. The rule
action 270 may be executed when the associated rule
condition 1s triggered. The received expression may be
processed according to structures, definitions, and syntax of

US 9,824,312 B2

9

the domain specific language 170. For example, a domain
specific language 170 associated with the domain of phar-
macy may specily language structures and syntaxes for
times and dosages of pharmaceutical prescriptions. Apply-
ing these structures to the provided expression can support
the appropriate extraction of the rule action 270 intended by
the domain user providing the mput.

In block 350, the rule condition and the rule action 270
can be incorporated nto the rule implementation system 120
as a new rule 250. The rule condition of the new rule 250
may be a function of mmcoming and/or stored events. When
the rule implementation system 120 matches incoming and/
or stored events to the rule condition, the rule action 270 of
the new rule 250 may be triggered.

In block 360, the complex event handler 110 can support
leveraging a rule implementation system 120 associated
with a graph database 240. The rule implementation system
120 can convert a received rule 250 to a format suitable for
isertion into the graph database 240. For example, the rule
250 may be converted to one or more nodes and one or more
edges. The database translation module 230 of the rule
implementation system 120 can insert the converted rule 250
into the graph database 240. Rules 250 may be inserted by
adding one or more nodes to the graph database 240 and then
forming one or more edges between newly 1nserted nodes or
existing nodes. These edges can establish relationships
between the nodes, which may represent facts 260. For
example, the rule “all ravens are black,” might be repre-
sented 1n the graph database 240 by creating nodes for
“ravens” and “black” followed by connecting those nodes
with an edge having the property or implication of “1s” or
“are.” Were this same example rule recerved while nodes for
“ravens” and “black™ already in existence, then the rule may

be entered by merely forming the relationship edge between
those two nodes.

FI1G. 4 1s a block flow diagram depicting a method 400 for
complex event handling in accordance with one or more
embodiments presented herein. In block 410, the complex
event handler 110 can receive an event. The event may be a
current incoming event arriving from an event generator
150.

In block 420, the complex event handler 110 can store the
received event to the event log 130. The event log 130 can
maintain stored events to be queried for future rule testing.
A time/date stamp and other 1dentifiers may be applied to the
cvents that are entered into the event log 130.

In block 430, the received event may be matched to rule
conditions associated with the rule implementation system
120. A rule 250 with a condition matching the received event
may be triggered by the rule implementation system 120. A
rule 250 with a condition matching the received event but
also depending upon one or more stored events may cause
the event log 130 to be searched for those stored events.
Accordingly the rule condition may be tested against the
incoming events and the relevant stored events.

In block 440, the event log 130 may be searched for prior
events 1n response to a matched rule condition being a
function of prior events. A rule 250 with a condition match-
ing the received event but also depending upon one or more
stored events may cause the event log 130 to be searched for
those stored events. Accordingly the rule condition may be
tested against the incoming events and the relevant stored
events.

In block 450, event parameters may be retrieved from the
event log 130. Stored events that were identified by the
search discussed with respect to block 440 may be retrieved
from the event log 130. Parameters associated with the

10

15

20

25

30

35

40

45

50

55

60

65

10

stored events being retrieved may also be retrieved form the
event log 130. For example, if the identified stored event
relates to a patient alarm, parameters may include a patient
identifier, what system generated the alarm, which clinicians
were notified of the alarm, when the alarm occurred, and so
forth. The rule 250 having the condition that 1s dependent
upon the identified stored event may be further evaluated in
light of the retrieved event and its associated parameters as
necessary.

In block 460, the rule condition that was matched by the
received event may be evaluated in view of the presently
received events, the prior event(s) retrieved from the event
log 130, and the parameters associated with the prior
event(s). The rule implementation system 120 can evaluate
the recerved event(s), the prior event(s), and any associated
parameters against the rule 250 as though they were facts
260 or questions 265 to match against the rule condition.

In block 470, rule implementation system 120 can gen-
crate resultant events and actions 180 1n response to trig-
gered rules. When, the rule implementation system 120
matches a rule 250 with the received event(s), necessary
prior event(s), and any associated parameters, the rule 250
may be said to have triggered. Triggering a rule 250 may
generate resultant events and actions 180.

In block 480, generated events can be fed back into the
complex event handler 110. These events that have been fed
back into the complex event handler 110 may be stored and
processed just as any other received event.

Example Systems

FIG. § depicts a computing machine 2000 and a module
2050 1n accordance with one or more embodiments pre-
sented herein. The computing machine 2000 may corre-
spond to any ol the various computers, servers, mobile
devices, embedded systems, or computing systems pre-
sented herein. The module 2050 may comprise one or more
hardware or soltware elements configured to facilitate the
computing machine 2000 1n performing the various methods
and processing functions presented herein. The computing
machine 2000 may include various internal or attached
components such as a processor 2010, system bus 2020,
system memory 2030, storage media 2040, input/output
interface 2060, and a network interface 2070 for communi-
cating with a network 2080.

The computing machine 2000 may be implemented as a
conventional computer system, an embedded controller, a
laptop, a server, a mobile device, a smartphone, a set-top
box, a kiosk, a vehicular information system, one more
processors associated with a television, a customized
machine, any other hardware platform, or any combination
or multiplicity thereof. The computing machine 2000 may
be a distributed system configured to function using multiple
computing machines interconnected via a data network or
bus system.

The processor 2010 may be configured to execute code or
instructions to perform the operations and functionality
described herein, manage request flow and address map-
pings, and to perform calculations and generate commands.
The processor 2010 may be configured to monitor and
control the operation of the components 1n the computing
machine 2000. The processor 2010 may be a general pur-
POSE Processor, a processor core, a multiprocessor, a recon-
figurable processor, a microcontroller, a digital signal pro-
cessor (“DSP”), an application specific integrated circuit
(“ASIC”), a graphics processing unit (“GPU”), a field pro-
grammable gate array (“FPGA”), a programmable logic
device (“PLD”), a controller, a state machine, gated logic,
discrete hardware components, any other processing unit, or

US 9,824,312 B2

11

any combination or multiplicity thereof. The processor 2010
may be a single processing unit, multiple processing units,
a single processing core, multiple processing cores, special
purpose processing cores, Co-processors, or any combina-
tion thereol. According to certain embodiments, the proces-
sor 2010 along with other components of the computing
machine 2000 may be a virtualized computing machine
executing within one or more other computing machines.

The system memory 2030 may include non-volatile
memories such as read-only memory (“ROM?”), program-
mable read-only memory (“PROM™), erasable program-
mable read-only memory (“EPROM”), flash memory, or any
other device capable of storing program 1nstructions or data
with or without applied power. The system memory 2030
also may include volatile memories, such as random access
memory (“RAM?”), static random access memory
(“SRAM”), dynamic random access memory (“DRAM”),
and synchronous dynamic random access memory
(“SDRAM?”). Other types of RAM also may be used to
implement the system memory 2030. The system memory
2030 may be implemented using a single memory module or
multiple memory modules. While the system memory 2030
1s depicted as being part of the computing machine 2000,
one skilled 1n the art will recognize that the system memory
2030 may be separate from the computing machine 2000
without departing from the scope of the subject technology.
It should also be appreciated that the system memory 2030
may 1nclude, or operate in conjunction with, a non-volatile
storage device such as the storage media 2040.

The storage media 2040 may include a hard disk, a floppy
disk, a compact disc read only memory (“CD-ROM”), a
digital versatile disc (*DVD”), a Blu-ray disc, a magnetic
tape, a tlash memory, other non-volatile memory device, a
solid sate drive (“SSD”), any magnetic storage device, any
optical storage device, any electrical storage device, any
semiconductor storage device, any physical-based storage
device, any other data storage device, or any combination or
multiplicity thereof. The storage media 2040 may store one
Oor more operating systems, application programs and pro-
gram modules such as module 2050, data, or any other
information. The storage media 2040 may be part of, or
connected to, the computing machine 2000. The storage
media 2040 may also be part of one or more other computing
machines that are 1n commumication with the computing
machine 2000 such as servers, database servers, cloud
storage, network attached storage, and so forth.

The module 2050 may comprise one or more hardware or
soltware elements configured to facilitate the computing
machine 2000 with performing the various methods and
processing functions presented herein. The module 20350
may include one or more sequences of nstructions stored as
software or firmware 1n association with the system memory
2030, the storage media 2040, or both. The storage media
2040 may therefore represent examples of machine or
computer readable media on which instructions or code may
be stored for execution by the processor 2010. Machine or
computer readable media may generally refer to any
medium or media used to provide instructions to the pro-
cessor 2010. Such machine or computer readable media
associated with the module 2050 may comprise a computer
software product. It should be appreciated that a computer
soltware product comprising the module 2050 may also be
associated with one or more processes or methods for
delivering the module 2050 to the computing machine 2000
via the network 2080, any signal-bearing medium, or any
other communication or delivery technology. The module
2050 may also comprise hardware circuits or information for

10

15

20

25

30

35

40

45

50

55

60

65

12

configuring hardware circuits such as microcode or configu-
ration information for an FPGA or other PLD.

The mput/output (“1/0”) nterface 2060 may be config-
ured to couple to one or more external devices, to receive
data from the one or more external devices, and to send data
to the one or more external devices. Such external devices
along with the various internal devices may also be known
as peripheral devices. The I/O interface 2060 may include
both electrical and physical connections for operably cou-
pling the various peripheral devices to the computing
machine 2000 or the processor 2010. The I/O mtertace 2060
may be configured to communicate data, addresses, and
control signals between the peripheral devices, the comput-
ing machine 2000, or the processor 2010. The I/O interface
2060 may be configured to implement any standard inter-

face, such as small computer system interface (“SCSI”),
serial-attached SCSI (*SAS”), fiber channel, peripheral

component 1mterconnect (“PCI”), PCI express (PCle), serial
bus, parallel bus, advanced technology attachment (“ATA”™),
serial ATA (“SATA”), umiversal serial bus (“USB”), Thun-

derbolt, FireWire, various video buses, and the like. The I/O
interface 2060 may be configured to implement only one
interface or bus technology. Alternatively, the 1/O interface
2060 may be configured to implement multiple interfaces or
bus technologies. The I/O interface 2060 may be configured
as part of, all of, or to operate 1n conjunction with, the
system bus 2020. The I/O interface 2060 may include one or
more buflers for builering transmissions between one or
more external devices, internal devices, the computing
machine 2000, or the processor 2010.

The 'O iterface 2060 may couple the computing
machine 2000 to various input devices including mice,
touch-screens, scanners, biometric readers, electronic digi-
tizers, sensors, receivers, touchpads, trackballs, cameras,
microphones, keyboards, any other pointing devices, or any
combinations thereof. The I/O interface 2060 may couple
the computing machine 2000 to various output devices
including video displays, speakers, printers, projectors, tac-
tile feedback devices, automation control, robotic compo-
nents, actuators, motors, fans, solenoids, valves, pumps,
transmitters, signal emitters, lights, and so forth.

The computing machine 2000 may operate 1n a networked
environment using logical connections through the network
interface 2070 to one or more other systems or computing
machines across the network 2080. The network 2080 may
include wide area networks (“WAN™), local area networks
(“LAN”), intranets, the Internet, wireless access networks,
wired networks, mobile networks, telephone networks, opti-
cal networks, or combinations thereof. The network 2080
may be packet switched, circuit switched, of any topology,
and may use any communication protocol. Communication
links within the network 2080 may involve various digital or
an analog communication media such as fiber optic cables,
free-space optics, waveguides, electrical conductors, wire-
less links, antennas, radio-frequency communications, and
so forth.

The processor 2010 may be connected to the other ele-
ments of the computing machine 2000 or the various periph-
crals discussed herein through the system bus 2020. It
should be appreciated that the system bus 2020 may be
within the processor 2010, outside the processor 2010, or
both. According to some embodiments, any of the processor
2010, the other elements of the computing machine 2000, or
the various peripherals discussed herein may be integrated
into a single device such as a system on chip (*SOC”),
system on package (“SOP”), or ASIC device.

US 9,824,312 B2

13

In situations 1n which the systems discussed here collect
personal information about users, or may make use of
personal information, the users may be provided with a
opportunity to control whether programs or features collect
user information (e.g., information about a user’s social
network, social actions or activities, proiession, a user’s
preferences, or a user’s current location), or to control
whether and/or how to receive content from the content
server that may be more relevant to the user. In addition,
certain data may be treated in one or more ways before 1t 1s
stored or used, so that personally identifiable information 1s
removed. For example, a user’s identity may be treated so
that no personally i1dentifiable information can be deter-
mined for the user, or a user’s geographic location may be
generalized where location mnformation 1s obtained (such as
to a city, ZIP code, or state level), so that a particular location
of a user cannot be determined. Thus, the user may have
control over how information 1s collected about the user and
used by a content server.

One or more aspects of embodiments may comprise a
computer program that embodies the functions described
and 1illustrated herein, wherein the computer program 1is
implemented 1n a computer system that comprises mstruc-
tions stored 1n a machine-readable medium and a processor
that executes the mstructions. However, 1t should be appar-
ent that there could be many different ways of implementing
embodiments 1n computer programming, and the imnvention
should not be construed as limited to any one set of
computer program instructions. Further, a skilled program-
mer would be able to write such a computer program to
implement an embodiment of the disclosed invention based
on the appended flow charts and associated description 1n
the application text. Therefore, disclosure of a particular set
of program code instructions 1s not considered necessary for
an adequate understanding of how to make and use the
invention. Further, those skilled 1n the art will appreciate that
one or more aspects of the invention described herein may
be performed by hardware, software, or a combination
thereol, as may be embodied in one or more computing
systems. Moreover, any reference to an act being performed
by a computer should not be construed as being performed
by a single computer as more than one computer may
perform the act.

The example embodiments described herein can be used
with computer hardware and software that perform the
methods and processing functions described previously. The
systems, methods, and procedures described herein can be
embodied 1 a programmable computer, computer-execut-
able software, or digital circuitry. The software can be stored
on computer-readable media. For example, computer-read-
able media can include a tloppy disk, RAM, ROM, hard
disk, removable media, flash memory, memory stick, optical
media, magneto-optical media, CD-ROM, etc. Digital cir-
cuitry can include integrated circuits, gate arrays, building
block logic, field programmable gate arrays (“FPGA”), eftc.

The example systems, methods, and acts described in the
embodiments presented previously are illustrative, and, 1n
alternative embodiments, certain acts can be performed 1n a
different order, 1n parallel with one another, omitted entirely,
and/or combined between different example embodiments,
and/or certain additional acts can be performed, without
departing from the scope and spirit of embodiments of the
invention. Accordingly, such alternative embodiments are
included in the inventions described herein.

Although specific embodiments have been described
above 1n detail, the description 1s merely for purposes of
illustration. It should be appreciated, therefore, that many

10

15

20

25

30

35

40

45

50

55

60

65

14

aspects described above are not mtended as required or
essential elements unless explicitly stated otherwise. Modi-
fications of, and equivalent components or acts correspond-
ing to, the disclosed aspects of the example embodiments, 1n
addition to those described above, can be made by a person
of ordinary skill 1n the art, having the benefit of the present
disclosure, without departing from the spirit and scope of the
invention defined in the following claims, the scope of
which 1s to be accorded the broadest interpretation so as to
encompass such modifications and equivalent structures.

What 1s claimed 1s:
1. A computer-implemented method for complex event
handling, comprising;:

providing, within a complex event handling system, a rule
implementation system comprising an interface to a
graph database for storing rules and facts;

providing, separately from the rule implementation sys-
tem, an event log comprising a history of past events
and associated prior event parameters for future rule
testing;;

recerving, by the rule implementation system, a rule
comprising a rule condition and a rule result such that
when the rule condition obtains, the rule 1s triggered
causing the rule result to be executed;

analyzing, by the rule implementation system, the rule
condition to extract two or more condition entities and
one or more condition relationships;

converting, by the rule implementation system, the
received rule condition to a condition graph comprising
two or more nodes representing the two or more
condition entities, and one or more edges representing
the condition relationships;

analyzing, by the rule implementation system, the rule
result to extract one or more result entities and one or
more result actions:

converting, by the rule implementation system, the rule
result into a result graph comprising one or more nodes
representing the one or more result entities;

inserting, by the rule implementation system, edges rep-
resenting the result actions to connect the condition
graph and the result graph to form a rule graph;

storing, by the rule implementation system, the rule graph
into the graph database;

recerving, by the complex event handling system, a cur-
rent event,

identilying, by the complex event handling system, one or
more rule graphs, within the rule implementation sys-
tem, wherein the respective identified condition graph
associated with each of the one or more rule graphs
comprises condition entities associated with both the
current event and a past occurrence of a particular prior
cvent,

searching, by the complex event handling system, the
event log for the particular prior event;

retrieving, by the complex event handling system, prior
event parameters, from the event log, corresponding to
the particular prior event;

performing, by the rule implementation system, a query
against the graph database to evaluate the identified
condition graph 1n response to both the current event
and the retrieved prior event parameters; and

executing, by the rule implementation system, the asso-
ciated result actions upon the result graph associated
with the i1dentified condition graph in response to the
performed query.

US 9,824,312 B2

15

2. The computer-implemented method of claim 1,
wherein the current event comprises communications within
healthcare enterprise.

3. The computer-implemented method of claim 1,
wherein the actions comprise communications within a
healthcare enterprise.

4. The computer-implemented method of claim 1, further
comprising generating an event that 1s fed back into the
complex event handler.

5. The computer-implemented method of claim 1,
wherein the rule implementation system leverages native
pattern matching capabilities associated with the graph
database.

6. The computer-implemented method of claim 1, further
comprising receiving a domain specific language expres-
s10n, processing the domain specific language expression to
generate a new rule condition, processing the domain spe-
cific language expression to generate a new rule action, and
incorporating the new rule condition and the new rule action
into the rule implementation system.

7. The computer-implemented method of claim 1,
wherein the prior event parameters comprise time/date
stamps.

8. The computer-implemented method of claim 1,
wherein the event log comprises a database of prior received
events.

9. The computer-implemented method of claim 1,
wherein prior received events stored within the event log are
removed from the event log after a specified duration of
time.

10. The computer-implemented method of claim 1,
wherein matching the current event against rule conditions
within the rule implementation system leverages native
pattern matching capabilities associated with the graph
database.

11. A complex event handling system, comprising:

one or more processing units, and one or more processing,

modules, wherein the complex event handling system
1s configured by the one or more processing modules
to:

provide, within the complex event handling system, a rule

implementation system comprising an interface to a
graph database for storing rules and facts;
provide, separately from the rule implementation system,
an event log comprising a history of past events and
associated prior event parameters for future rule test-
Ing;

receive a rule comprising a rule condition and a rule result
such that when the rule condition obtains, the rule 1s
triggered causing the rule result to be executed;

analyze the rule condition to extract two or more condi-
tion entities and one or more condition relationships;

convert the received rule condition to a condition graph
comprising two or more nodes representing the two or
more condition entities, and one or more edges repre-
senting the condition relationships;

analyze the rule result to extract one or more result entities

and one or more result actions:

convert the rule result 1nto a result graph comprising one

or more nodes representing the one or more result
entities;

insert edges representing the result actions to connect the

condition graph and the result graph to form a rule
graph;

store the rule graph into the graph database;

recelve a current event;

oo

10

15

20

25

30

35

40

45

50

55

60

65

16

identify one or more rule graphs, within the rule imple-
mentation system, wherein the respective identified
condition graph associated with each of the one or more
rule graphs comprises condition entities associated
with both the current event and a past occurrence of a
particular prior event;

retrieve prior event parameters, irom the event log, cor-
responding to the particular prior event;

perform a query against the graph database to evaluate the
identified condition graph i1n response to both the
current event and the retrieved prior event parameters;
and

execute the associated result actions upon the result graph
associated with the identified condition graph 1n
response to the performed query.

12. The complex event handling system of claim 11,
wherein the complex event handling system 1s further con-
figured to receive a domain specific language expression,
process the domain specific language expression to generate
a new rule condition, process the domain specific language
expression to generate a new rule action, and incorporate the
new rule condition and the new rule action into the rule
implementation system.

13. The complex event handling system of claim 11,
wherein the complex event handling system 1s further con-
figured to generate an event that 1s fed back 1nto the complex
event handling system.

14. The complex event handling system of claim 11,
wherein the current event comprises a communication
within a healthcare enterprise.

15. The complex event handling system of claim 11,
wherein the actions comprise communications within a
healthcare enterprise.

16. The complex event handling system of claim 11,
wherein the graph database operates 1n support of a health-
care enterprise.

17. The complex event handling system of claim 11,
wherein the rule implementation system leverages native
pattern matching capabilities of the graph database.

18. The complex event handling system of claim 11,
wherein the event log comprises a database of prior recerved
events.

19. The complex event handling system of claim 11,
wherein the prior event parameters comprise time/date
stamps.

20. A computer program product, comprising:

a non-transitory computer-readable storage medium hav-
ing computer-readable program code embodied therein
that, when executed by one or more computing devices,
perform a method comprising:

providing, within a complex event handling system, a rule
implementation system comprising a working memory,
wherein rules associated with the rule implementation
system are represented within a graph database;

providing, separately from the rule implementation sys-
tem and the working memory, an event log comprising
a history of past events and associated prior event
parameters for future rule testing;

recerving a domain specific language expression from a
domain user;

processing the domain specific language expression to
generate a new rule condition comprising two or more
condition entities and one or more condition relation-
ships;

processing the domain specific language expression to
generate a new rule action comprising one or more
result entities and one or more result actions:

US 9,824,312 B2

17

converting the new rule condition to a condition graph
comprising two or more nodes representing the two or
more condition entities, and one or more edges repre-
senting the condition relationships;

converting the rule action into a result graph comprising
one or more nodes representing the one or more result
entities;

iserting edges representing the result actions to connect
the condition graph and the result graph to form a rule
graph;

incorporating the rule graph into the graph database
associated with the rule implementation system:;

receiving, into a complex event handling system, a current
cvent,

storing the current event to the event log;

matching the current event against rule conditions within
the rule implementation system by querying the graph
database:

identifying one or more rule graphs, within the rule
implementation system, wherein associated condition
graphs comprise both the current event and a past
occurrence of a particular prior event;

searching the event log for the particular prior event;

retrieving prior event parameters, from the event log,
corresponding to the particular prior event;

evaluating the condition graphs in view of the current
event and the retrieved prior event parameters;

executing associated result actions upon the result graph
associated with the identified condition graph 1n
response to the evaluating; and

generating an new event that 1s fed back into the complex
event handling system.

G e x Gx ex

10

15

20

25

30

18

	Front Page
	Drawings
	Specification
	Claims

